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One semantic and two syntactic decision procedures are given for determining the validity of
Aristotelian assertoric and apodeictic syllogisms. Results are obtained by using the Aristotelian
deductions that necessarily have an even number of premises.

1. Background

McCall’s 1963 L~X-M calculus generates the two-premised assertoric and
apodeictic syllogisms that are clearly valid for Aristotle. But McCall’s account of
deduction does not match that found in Aristotle’s Prior Analytics, A25. One of
the purposes of the following discussion is to give a recursive definition of
deduction for syllogisms with two or more premises that matches Aristotle’s.
With it we can make sense of the passages in A25 that have puzzied
commentators. So, for example, we show that every deduction has an even
number of premises and an odd number of members.

In many respects the system developed below is similar to McCall’s. For
example, all of McCall’'s 333 “valid L-X-M moods” are deducible in the
following system. But the system diverges from McCall’s in that LIaa will not be
regarded as valid. Thom 7991 gives good reasons for not regarding it in this
way.

The syntax for the system is taken from Johnson 7993, which makes use of
singular sentences to accommodate proofs by ecthesis. So the system is unlike
McCall’s L-X-M, which excludes singular sentences.

The semantics for the system is similar to that in Johnson 7993. Its set-up
commits Aristotle to the truth of certain sentences without making the truth
values assigned to sentences a function of assignments that make up the
sentence. So, for example, we commit Aristotle to saying that for every
predicate term ‘a’ there is some singular term ‘m’ such that ‘m is a’ is true. But

we remain neutral on the question of whether by saying this we are committing |

him to saying that (i) every predicate term denotes a non-empty set or (ii) there
is no uninstantiated property.

But the semantics below also differs from that in Johnson 7993, which |

accommodated Thom’s 7991 claim that, for Aristotle, if something is necessarily
an x then anything that is an x is necessarily an x. (In personal correspondence
Thom recently told me that, for Aristotle, snow is necessarily white but it is not
true that everything that is white is necessarily white. I think Thom’s recent
remark is right, and the semantics below conforms with it. So, in this sense, the
semantics is similar to that in Johnson 1989.)
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2 Fred Johnson

Decision procedures for determining the validity of syllogisms are given by:
(i) putting a limit on the number of valuations needed to find counterexamples;
(ii) putting a limit on the size of deductions; and (iii) listing forms of
inconsistent sets for the syllogistic language.

2. Preliminaries

Sentences are built from
Names: my, My, . - -
Terms: ag, ay, - - -

- Copulas: €, €;,, ¢, ¢n
Quantifiers: A, E, I, O
Operators: L, M

Definition 2.1: (1) m ¢ a is a singular sentence iff m is a name, c is a copula, and
a is a term. (2) Qab is an asserforic senience iff Q is a quantifier and both a and
b are terms. (3) Lx and Mx are apodeictic sentences iff x is an assertoric
sentence. (4) Singular sentences, assertoric sentences, and apodeictic sentences
are sentences and are the only sentences. (Read ‘m; €a;” as ‘my is an a;’,
‘m; €, a;” as ‘my is necessarily an a;’, ‘my ¢ a;” as ‘m, is not an a;’, ‘mMy ¢, ;" as
‘m; is necessarily not an a’, ‘LAaja,” as ‘Necessarily all a; are a,’, and ‘MEa;ay’
as ‘Possibly no a; are a;’, etc.)

Definition 2.2.: A finite set of sentences is a chain iff each number of the set is
an assertoric or apodeictic sentence and the members of the set can be arranged
as a finite sequence such that each term occurs exactly twice and in consecutive
members of the sequence, where the first and last members of a sequence. are
consecutive members. (A set of sentences with one member is a chain iff its
member is a sentence in which one term occurs twice.)

Definition 2.3: (Y, x) is a syllogism iff Y, x (that is Y U {x}) is a chain. (So, for
example, ({LAaja,}, Llasa;) is a syllogism but {{LAa;a,}, LIaa;) is not. (Set
brackets will often be omitted when referring to chains and syllogisms.) A
syllogism (Y, x) is an apodeictic syllogism if one of the members of Y, x is an
apodeictic sentence; otherwise, it is an assertoric syllogism. (There are 12 x 24"

syllogisms with exactly n premises.)

Definition 2.4: An e-evaluation is a function v that assigns t or f to sentences,
which meets the sixteen conditions stated below. In the statement of these
conditions, a, b, and c range over terms and m ranges over names. There are
countably many terms and countably many names.

(1) For every a, there is an m such that v(m € a) = t.

(2) For every m and a, v(m e a) =tiff v(m ¢ a) =1.

(3) For every m and a, if v(m €, a) =t then v(m € a) = L.

(4) For every m and a, if v(m ¢, a) =t then v(m ¢ a) = t.

(5) v(Aab) = tiff, for every m, if y(m € a) =t then v(m e b) =t.
(6) v(Eab) = tiff nomis such that v(m € a) =t and v(m e b) = t.
(7) ov(lab) = t iff v(Eab) = f.

(8) v(Oab) = t iff v(Aab) = f.

T
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(9) ov(LAab) =t iff
((1; ior every m, if v(m € a) =t then v(m €, b) = t, and
11) for every m i = ,
(10) ATty o tyiff and ¢, if v(m ¢, b) =t and v(Aca) =t th
(1) for every m and ¢, if v(m € a) =t and v(Acb) =t t
(11) for every m and c, if v(m € b) =t and v(Aca) =t t:
(iii) for every c, if, for some m, v(m € a) =t and v(ﬁ
__ somen, v(n ¢,b) =tand v(ne,c)=t, and
(iv) for every c, if, for some m, v(m eb) =t and ov(
some n, v(n ¢,a) =t and v(n €, c) =1t.
(11) v(LIab) = t iff either )
((13 ior some m, v(m e a) =t and v(m €, b) =t, or
ii) for some m, v(m €, a) =t and v —t.
(12) v(LOab) = tiff, for some)m, v{m € (:)l il'z)andt'v(m b
(13) v(MAab) = t iff o(LOab) =f. B
(14) v(MEab) = t iff v(LIab) = f.
(15) v(Mlab) =t iff v(LEab) = f,
(16) v(MOab) = t iff v(LAab) = f.

D‘efi.ni.tion 2.5: v is an €"-valuation iff v is an e-valuatior
(infinite) set of sentences such that v assigns t to each memf
pon—members of Y, then no more than n names occur in the
is g-satisfiable (e"-satisfiable) iff there is an e-valuation (
assigns t to each member of Y. Y is inconsistent iff Y is
(Y, x) is valid (Y Fx) iff Y, x* is inconsistent, where LAab* -
MIaI?, LIab* = MEab, LOab* = MAab, Aab; = Qab, Eab®:
I?zb’;= Aab, MAab* = LOab, MEab* = Llab, MIat;* = LE—'

ab. |

/LA 3. Vy-syllogisms

ab refers to Aab or LAab. X/LAa — b refe i
_ . 15 to J i
it refers to {?(/LAblbz, ... X/LAb, ib,}, where a=b;, b =1
refers to (J, if a = b; otherwise, it refers to X/LLAa — ¢, LAcb.
{LAaya;, Aasa,, LAajas} has form X/LAa—b and als
{LAaya;, Aaza,} has form X/LAa — b but not form LAa —b.

Eab or LEab; '
Loab(?r ab; X/Llab refers to Iab or Llab; and X/LOab

" Definition 3.1: A chain has an [ -form iff it has n members

one of the following I-forms (inconsistent-forms):

11 X/LAa — b, X/LOab

12 LAa — ¢, MAcd, LAd — b, LOab

13 X/LAa — c, LAcb, MOab

21 X/LAc — a, X/LAc — b, X/LEab

gg X/LAc — a, X/LAc — d, MAde, X/LAe — b, LEab (or LEl
X/LAc — a, X/LAc — d, LAdb, MEab (or MEba)

g; §?§2C —a, X/LAd — b, X/LIcd, X/LEab (or X/LEba)
LEba)c a, X/LAd — e, MAef, X/LAf - b, X/LIcd (or
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(9) v(LAab) =t iff
- (i) for every m, if v(m € a) = t then v(m €, b) = t, and
(i1) for every m and c, if v(m ¢, b) = t and v(Aca) = t then v(m ¢, c) = t.
(10) v(LEab) = t iff
(i) for every m and c, if v(m € a) =t and v(Acb) =t then v(m ¢, ¢) =t,
(ii) for every m and c, if v(m € b) = t and v(Aca) =t then v(m ¢,c) =t,
(iii) for every c, if, for some m, v(m e a) =t and v(m e c) =t then, for
some n, v(n ¢,b) =t and v(n e, c) =t, and
(iv) for every c, if, for some m, v(m eb) =t and v(m e c) =t then, for
some n, v(n ¢,a) =t and v(n e, ¢) =t.
(11) v(LIab) = t iff either
(i) for some m, v(m e a) =t and v(m e, b) =t, or
(ii) for some m, v(m €, a) =t and v(m € b) =t.
(12) v(LOab) =t iff, for some m, v(m €, a) = t and v(m ¢, b) = t.
(13) v(MAab) =t iff v(LOab) = 1.
(14) v(MEab) = t iff v(LIab) = f.
(15) v(MIab) = t iff v(LEab) = f.
(16) v(MOab) =t iff v(LAab) =f.

Definition 2.5: v is an €"-valuation iff v is an ec-valuation and if Y is the
(infinite) set of sentences such that v assigns t to each member of Y and to no
non-members of Y, then no more than n names occur in the sentences in Y. Y
is e-satisfiable (€"-satisfiable) iff there is an e-valuation (e"-valuation) that
assigns t to each member of Y. Y is inconsistent iff Y is not e-satisfiable.
(Y, x) is valid (Y Ex) iff Y, x* is inconsistent, where LAab* = MOab, LEab* =
Mlab, Llab* = MEab, LOab* = MAab, Aab* = Qab, Eab* = Iab, Iab* = Eab,
QOab* = Aab, MAab* = LOab, MEab* = Llab, Mlab* = LEab, and MQab* =
LAab.

3. V,-syllogisms

X/LAab refers to Aab or LAab. X/LLAa — b refers to & if a = b; otherwise,
it refers to {X/LAb;b,, ... X/LAb, :b,}, wherea=b;,b=Db,,n>1. LAa—b
refers to (J, if a = b; otherwise, it refers to X/LAa — c, LAcb. (So, for example,
{LAajya;, Aazay, LAajas} has form X/LAa—Db and also form LAa—b.
{LAa,a;, Aaja,} has form X/LAa — b but not form LAa — b.) X/LEab refers to
Eab or LEab; X/Llab refers to Iab or Llab; and X/LOab refers to Oab or
LOab. ‘ -

Definition 3.1:\ .. chain has an I-form iff it has n members, for n = 1, and has
one of the followr. g I-forms (inconsistent-forms):

11 X/LAa —b, X/Ltab

12 LAa — ¢, MAcd, LAd — b, LOab

13 X/LAa — ¢, LAcb, MOab

21 X/LAc — a, X/LAc — b, X/LEab

22 X/LAc — a, X/LAc — d, MAde, X/LAe — b, LEab (or LEba)

23 X/LAc —a, X/LAc — d, LAdb, MEab (or MEba)

31 X/LAc —a, X/LAd — b, X/Llcd, X/LEab (or X/LEba)

32 X/LAc —a, X/LAd — e, MAef, X/LAf — b, X/Llcd (or X/LIdc), LEab (or
LEba)
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33 X/LAc — a, X/LAd — b, Mlcd, LEab (or LEba)
34 Llab, MEab (or MEba)
35 X/LAc — a, X/LAd — e, LAeb, X/Llcd (or X/LIdc), MEab (or MEba)

So, for example, all of the following sets of sentences have I-form 11:
{Oajar}, {LOaja;}, {Aaja,, OAia}, {Aaja;, LOaja}, {LAaja;, Oajar},
(LAaja,, LOajay}, {Aajay, Aaza;, Oajas}, {LAa 2, LAaya;, LOa;a3}, among
others. In contrast to sets of sentences with I-form 11, sets with I-form 12 have
at least two members and sets with I-form 32 have at least three members.

The I-forms are numbered to reflect their relations to the three Smiley-
forms; defined below.

Definition 3.2: (Y, x) is a V-syllogism (valid-syllogism) iff it is a syllogism and
Y, x* has an I-form. {Y,x) is a V-syllogism iff (Y,x) is a V-syllogism and Y,
x has n members.

Since {Aaja,, Aajas, Aajaz* (that is, Oajaz)} has I-form 11, and since
({Aaja,, Aayaz}, Aajaz) is a syllogism, {({Aajay, Aaya3}, Aajay) (Barbara-
XXX) is a Vy-syllogism. Since ({Aajay, Oazaz* (that is, Aajas)}, Oajaz) has
Iform 11, and since ({Aaja,, Oaas}, Oajaz) is a syllogism, ({Aaa;, Oajas},
Oaya;) (Bocardo-XXX) is a V3-syllogism.

The following table lists the 333 V;-syllogisms.

X/L L L X L M M X M
X/ L X L M L X M M L
XM L L L M M M M X X
Barbara 11 13 13 i2 12
Celarent 31 33 33 32 35 32 35
Darii 31 35 35 33 32 32 33
Ferio 31 32 32 33 35 35 33
Cesare 31 33 33 32 35 32 35
Camestres 31 33 33 35 32 35 32
Festino 31 32 32 33 35 35 33
Baroco 11 12 13 12 13
Darapti 21 23 23 23 22 22 22 22
Felapton 21 22 22 22 23 23 22
Disamis 31 35 35 32 33 33 32
Datisi 31 35 35 33 32 32 33
Bocardo 11 12 12 13 13
Ferison 31 3 32 33 35 35 33
Bramantip 21 23 23 22 22 22 22
Camenes 31 33 33 35 32 35 32
Dimaris 31 35 35 32 33 33 32
Fresison 31 32 32 33 35 35 33
Fesapo 21 22 22 22 23 23 22
Barbari 21 23 23 22 22 22 22
Celaront 21 22 22 22 23 23 22 23
Cesaro 21 22 22 22 23 23 22 23
Camestrop 21 22 22 23 22 23 22
Camenop 21 22 22 23 22 23 22
Total 192 24 15 8 24 24 16 7 15 8 =333

Apodeictic Syllogisms: Deductions and Decision I

Cells marked with a numeral indicate the I-form that geners
So, for example, I-form 11 generates Barbara-XXX, Bart
cardo-LLM, among others. I-form 22 generates Camenop-!
example of Camenop-MLX: ({MAa,a,, LEajas}, Oaza;). T
generated by I-form 22, first form the following special case
c=a and e = b: {Aad, MAde, LEea}. Then replace a by a
ay, forming {Aasa; (that is, Oasz,a;*), MAa,a,, LEajas}.)

The 333 Vj-syllogism are precisely the syllogisms that
counts as the ‘valid L-X~-M moods’. Following McCall, thes
Aristotle recognized as valid or would have regarded as val
out his system in more detail. No empty cell on the table
that Aristotle recognized as valid.

Some features of V-syllogisms are obvious. (For exa
Vy-syllogisms in which L occurs in the conclusion and L d
premises. And there is no V,-syllogism in which I occurs m
premises.) Others are less obvious but are still decidable. (I
moods are there such that some V-syllogism has this mo
many V;-syllogisms are there?)

One of our goals will be to show that the V,-syllo
syllogisms. Half of the argument is found in the next theo
half will use the account of deducibility given in the next sec

Theorem 3.1: If (Y, x) is a syllogism, Y U {x} has n memt
(Y, x) is a V,-syllogism.

Proof. A chain « has a Smiley-form iff « has one of the I-f
provided ‘L’ does not occur in «. (These forms, listed in Th
Smiley 1973, provide a decision procedure for determi
assertoric syllogisms.) By definition, if « is a chain then
results from deleting all occurrences of L. and M in &, and
results from replacing all occurrences of Qab in a* with I
quantifier. (So, if o= MAaja,, LOaya;, then o = Aa,s
LAaja;, LOaya;. By inspecting the I-forms we note that if
&* has a Smiley-form. For example, if o has I-form 13 ther
Aa-b, Oab. If o has I-form rs then o* has I-form rl.)
Theorem 3.1 follows immediately from Lemmas 1 and 2,

Lemma 1: If o is a chain that does not have an I-form anc
Smiley-form then « is e3-satisfiable.

Proof. Use the following two lemmas.

Lemma 1.1: If &« is a chain and &* does not have a Sm
e3-satisfiable.

Proof. The general strategy is to take advantage of Jc
involving “‘ordinary’’ set-theoretic definitions of satisfiability
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L L L X L M M X M
e L X L M L X M M L
M L L M M M M X X
11 13 13 2 12

31 033 33 32 35 32 35
31 35 35 33 032 32 33
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92 24 15 8 24 24 16 7 15 8 =333
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Cells marked with a numeral indicate the I-form that generates the Vs-syllogism.
So, for example, I-form 11 generates Barbara-XXX, Barbara-XXM, and Bo-
cardo-LLM, among others. I-form 22 generates Camenop-MLX. (Consider this
example of Camenop-MLX: ({MAaja,, LEajas}, Oasa;). To recognize that it is
generated by I-form 22, first form the following special case of I-form 22, where
c=a and e =b: {Aad, MAde, LEea}. Then replace a by a3, d by a;, and e by
ay, forming {Aaza; (that is, Oaz,a;*), MAaja,, LEajyas}.)

The 333 Vi-syllogism are precisely the syllogisms that McCall 1963, p. 46,
counts as the ‘valid L-X-M moods’. Following McCall, these are inferences that
Aristotle recognized as valid or would have regarded as valid if he had worked
out his system in more detail. No empty cell on the table marks an inference
that Aristotle recognized as valid.

Some features of V,-syllogisms are obvious. (For example, there are no
Vp-syllogisms in which L occurs in the conclusion and L does not occur in the
premises. And there is no V,-syllogism in which I occurs more than once in the
premises.) Others are less obvious but are still decidable. (For any n how many
moods are there such that some V-syllogism has this mood? For any n how
many V,-syllogisms are there?)

One of our goals will be to show that the V,-syllogisms are the valid
syllogisms. Half of the argument is found in the next theorem. The remaining
half will use the account of deducibility given in the next section.

Theorem 3.1: If (Y,x) is a syllogism, Y U {x} has n members, and Y E x, then
(Y, x) is a V,-syllogism.

Proof. A chain « has a Smiley-form iff & has one of the I-forms 11, 21, and 31,
provided ‘L’ does not occur in «. (These forms, listed in Theorem 2 on p. 143 of
Smiley 71973, provide a decision procedure for determining the validity of
assertoric syllogisms.) By definition, if « is a chain then o* is the chain that
results from deleting all occurrences of L. and M in «, and a* is the chain that
results from replacing all occurrences of Qab in o* with LQab, where Q is a
quantifier. (So, if o =MAaa,, LOaya;, then o* = Aaja,, Oaya; and al =
LAaja,, LOajya,. By inspecting the I-forms we note that if & has an I-form then
o* has a Smiley-form. For example, if o has I-form 13 then o* has Smiley-form
Aa-b, Oab. If « has I-form rs then «* has I-form rl.)
Theorem 3.1 follows immediately from Lemmas 1 and 2, below.

Lemma 1: If « is a chain that does not have an I-form and «* does not have a
Smiley-form then « is e-satisfiable.

Proof. Use the following two lemmas.

Lemma1.1: If o is a chain and o* does not have a Smiley-form then a* is
e’-satisfiable.

Proof. The general strategy is to take advantage of Johnson’s 7991 result
involving “ordinary’’ set-theoretic definitions of satisfiability for chains, where it
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is shown that any chain that does not have an I-form is satisfiable in a

three-membered domain.
As in Johnson 71993, we use matrices of form

a @ 4  Apy1

to indicate e-valuations, where each cell is filled with €, €,, ¢,, or the empty
symbol, and where € or €, occurs in each column. So, for example, the matrix

g1 |a1  a ag ay as

my € €n ¢n €
my (S
ms €

indicates an e-valuation, g, where g(mjea;)=t, gi(m; e ay) =t,
gi(my e a) =t, g(my €ay) =1, g(Aaa,) =t, g(Aaas) =1, g(m¢a) =t
eI[C.To prove Lemma 1.1 we convert Johnson’s 1991 matrices for models with
three-membered domains that show the satisfiability of chains that do not have
Smiley-forms into €’-valuations. So, for example, the following matrix on p. 186
of Johnson 7991, shows that the chain (Eaja,, Oaja;, Aasay, Oajay) is satis-
fiable:

a D a
M1 @ as @ ay
g g I I

Convert this matrix, My, in a natural way, forming matrix

o) a;  a a3  ay as

M, ™ | € e €
2 m, € €

m3

g, is an e3.valuation that also satisfies the chain Ea;a,, Oajas, Aa3a4, Oa ay. By
following the above procedure we can convert any model with a three-m'em-
bered domain that shows the satisfiability of a chain of assertoric sentences into
an e>-valuation that shows the satisfiability of the chain.

Lemma 1.2: If o is a chain and & does not have a Smiley-from then at is

e3-satisfiable.
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Proof. Assume the antecedent. By Lemma 1.1 there is a m:

£3 4 a - ap  agy

that indicates an €’-valuation that satisfies o, where cells i
empty and the remaining cells are empty or contain ‘e’. Co:
matrix M, by changing each occurrence of ‘e’ to ‘g,’, les
unchanged. The €3-valuation, g,, determined by M, satisfie
consider the four types of sentences that could occur in
Llaja;, and LOaja;. Note that for a sentence Lx of an
g4(Lx) = f then g3(x) = f, though we assumed that g;(x) = t.

Since any e’-valuation that assigns t to LQab assigns t
Lemma 1 is true, given Lemma 1.2,

Lemma 2: If « is a chain that does not have an I-form and ¢
then « is €3-satisfiable.

Proof. The lemma follows directly from the following |
consider the number of occurrences of M in a.

Lemma 2.1: If « is a chain that does not have an I-form, o
and M does not occur in «, then « is €3-satisfiable.

Proof. If o* has a Smiley-form and M does not occur in .
11, 21, or 31. So the lemma is vacuously true.

Lemma 2.2: If o is a chain that does not have an I-form, a
and M occurs exactly once in «, then « is €-satisfiable.

Proof. Assume the antecedent. For each of the forms @ m
matrix M such that vy is an e*-valuation that assigns t to
chain. The column to the right of the last labeled column ha
the first column. For the following matrices Condition 1 f
met, since in each of the matrices either € or €, occurs in e:

We let ‘XQ occurs in o’ be short for ‘Q, but neither 1.
«’, where Q is a quantifier.

Case I: o has I-form 11. There are three subcases to consid

Subcase 1.1: XO occurs in a. Then o has form (1M1)
X/LAd — b, Oab. Use

V1M1 a s C d s b
ny €n €n
my €n €pn
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t any chain that does not have an I-form is satisfiable in a
ed domain.
son 1993, we use matrices of form

a a3y Ay

valuations, where each cell is filled with €, €, ¢4, Or the empty
here € or €, occurs in each column. So, for example, the matrix

81 a; a a3 ay as

my € €n ¢, (S
my €
ms €

€-valuation, g, where g(m;ea)=t, g(meay)=t,
t, g(m € a) =, gi(Aaas) =t, gi(Aajas) =t, gi(my ¢ay)=t,

Lemma 1.1 we convert Johnson’s 1991 matrices for models with
ed domams that show the satisfiability of chains that do not have
nto €’-valuations. So, for example, the following matrix on p. 186
)91, shows that the chain (Ea,a,, Oaya;, Aasza,, Oaja,) is satis-

a3 & a3 a,
Ml ] dy ] ay
g o g o

natrix, My, in a natural way, forming matrix

£ ap  a a3 ay as

m € € S
M, !
my € €

uation that also satisfies the chain Eajay, Oaja;, Aasa,, Oa;a,. By
above procedure we can convert any model with a three-mem-
that shows the satisfiability of a chain of assertoric sentences into
n that shows the satisfiability of the chain.

-« is a chain and «* does not have a Smiley-from then a' is
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Proof. Assume the antecedent. By Lemma 1.1 there is a matrix, M3, of form

g3 a; a Ay  Apyq

that indicates an e>-valuation that satisfies o, where cells in row m; (i > 3) are
empty and the remaining cells are empty or contain ‘e’. Convert matrix Mj; into
matrix My by changing each occurrence of ‘€’ to ‘eg,’, leavmg the other cells
unchanged. The e*-valuation, g4, determined by M, satisfies a", To show this,
consider the four types of sentences that could occur in a*: LAalaJ, LEa;a;,
Llaja;, and LOaja;. Note that for a sentence Lx of any of these types 1f
g4(Lx) = f then g3(x) = £, though we assumed that g3(x) = t.

Since any e*-valuation that assigns t to LQab assigns t to Qab and MQab,
Lemma 1 is true, given Lemma 1.2,

Lemma 2: If « is a chain that does not have an I-form and «* has a Smiley-form
then « is e’-satisfiable.

Proof. The lemma follows directly from the following four lemmas, which
consider the number of occurrences of M in «.

Lemma 2.1: If o is a chain that does not have an I-form, &* has a Smiley-form,
and M does not occur in a, then « is €-satisfiable.

Proof. If o has a Smiley-form and M does not occur in o« then « has I-form
11, 21, or 31. So the lemma is vacuously true.

Lemma 2.2: If « is a chain that does not have an I-form, o* has a Smiley-form,
and M occurs exactly once in «, then « is e3-satisfiable.

Proof. Assume the antecedent. For each of the forms a may have we specify a
matrix M such that vy is an e>-valuation that assigns t to each member of the
chain. The column to the right of the last labeled column has the same entries as
the first column. For the following matrices Condition 1 for an e-valuation is
met, since in each of the matrices either € or €, occurs in each column.

We let ‘XQ occurs in & be short for ‘Q, but neither LQ nor MQ, occurs in
«’, where Q is a quantifier.

Case 1. &* has I-form 11. There are three subcases to consider.

Subcase 1.1: XO occurs in «. Then o has form (1M1) X/LAa—c, MAcd,
X/LAd — b, Oab. Use

Uim1 a <t C d tee b
my €n €n €n
my €n €n
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(If a# ¢ and ‘€’ occurred in cell my/c then vy would assign f to LAac, given
condition 10.i.) Subcase 1.2: LO occurs in « and « has more than two members.
(If o has exactly two members then « has I-form 12.) If o has form (1M2)
X/LAa — ¢, MAcd, X/LLAd — e, Aeb, LOab, use

UVim2 a e C d vt € b
my € (S €, €n
m, €n €, €

If o has the form (1M3) X/LAa — e, Aec, MAcd, X/LAd — b, LOab, use

ons |2 -+ e ¢ d .- b
my (5% €n € #n T ¢n €n"
my €n Tt €n

(If d#b and if no symbol occurred in cell m;/d then vz would assign f to
LAdb, given condition 10.ii.) Subcase 1.3: MO occurs in o. If o has exactly one
member, then « has form (1M4) MOQOaa. Use

Uim4 ‘ a
m; € €
my
mgy

If o has more than one member, then & has form (1M5) X/LAa —c, Acb,
MOab. Use

Uims a e C b
my €n €n € €,
my

Case 2: &* has I-form 21. Subcase 2.1: XE occurs in @. Then « has form (2M1)
X/LAc — d, MAde, X/LAe — a, X/LAc — b, Eab (or Eba). Use

UaMi i a e e d . c PN b
my €n €p €n
my €n L €n €h

Subcase 2.2: LE occurs in «. Vacuous, since « has I-form 21. Subcase2.3: ME
occurs in «. Subcase2.3.1: a has exactly one member. Then « has form (2M2)
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MEaa. Use
Uam2 a
my € €
my

Subcase 2.3.2: « has more than one member. Define condi
some a and b X/LAa—b occurs in « and if X/LAc—
X/LAc—dC X/LAa—b.

Subcase 2.3.2.1: Condition i is met. Then « has form (2M
MEab (or MEba). Use

Uans ‘ a o e d b
my € e €n € €
my

Subcase 2.3.2.2: Condition i is not met. Then « has forn
Ada, X/LAc — e, Aeb, MEab. Use

UZM4 1 a d Ty C e e b
my € €, €, -'° €, €
my

Case 3: & has I-form 31. Subcase3.1: XE occurs in «
occurs in «. Then a has form (3M1) X/LAc-—e,
X/LAd — b, X/Llcd (or X/LIdc), Eab (or Eba). Use

Ui a - f e . c d - b
m; €n €, €q €,
my €n €,

m3

Subcase 3.1.2: MI occurs in «. Then o has the form
X/LAd — b, Mlcd, Eab (or Eba). Use

U3vp a PPN c d T e b

m; €n €q <
myp €n €n

ms

case 3.2: LE occurs in «. Vacuous, since « has I-form 3
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l.‘e’ occurred in cell m;/c then vivi would assign f to LAac, given
1.) Subcase 1.2: LO occurs in « and o has more than two members.

actly two members then « has I-form 12.) If & has form (1M
. 2
MAcd, X/LAd — e, Aeb, LOab, use ( )

Uimp |a - c d s e b
ml € P en ¢n en. .
m, €, gy €

orm (IM3) X/LLAa — e, Aec, MAcd, X/ILAd — b, LOab, use

U]_M3 a LY e C d - . b
my €n €n € ¢n ¢n €n
m, (S €n

if no symbol occurred in cell m
condition 10.ii.) Subcase 1.3: MO
« has form (IM4) MOaa. Use

1/d then vyy; would assign f to
occurs in «. If o has exactly one

U1m4 l a
my € €
m;

mjy

> than one member, then a has form (IM5) X/LAa—c¢, Ach,

Uivs a e C b
my € € € €n
my

I-form 21. Subcase2.1: XE occurs in a. Then « has form (2M1)
Ade, X/LAe — a, X/LAc — b, Eab (or Eba). Use

€p

! OCCurs in «. Vacuous, since « has I-form 21. Subcase 2.3: ME
bease2.3.1: « has exactly one member. Then « has form (2M2)
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MEaa. Use
ome | @
my € €
my

Subcase 2.3.2: « has more than one member. Define condition i as follows. For
some a and b X/LAa—b occurs in « and if X/LAc—d occurs in « then
X/LAc—dC X/LAa—b.

Subcase 2.3.2.1: Condition i is met. Then « has form (2M3) X/LAa — d, Adb,
MEab (or MEba). Use

Uon3 ’ a e d b
my € €n € €
my

Subcase 2.3.2.2: Condition i is not met. Then « has form (2M4) X/LAc —d,
Ada, X/LAc — e, Aeb, MEab. Use

Doma l a d < Y ce € b
m, € e, €y €, € €
my

Case 3: o has I-form 31. Subcase3.l: XE occurs in «. Subcase3.1.]1: MA
occurs in «. Then « has form (3M1) X/LAc—e, MAef, X/LAf-a,
X/LAd — b, X/LIcd (or X/LIdc), Eab (or Eba). Use

b | @ - £ e e e d e b

ml En e1’1 en en

my €n €n €n
mj3

Subcase 3.1.2: MI occurs in «. Then « has the form (3M2) X/LAc - a,
X/LAd — b, Mlcd, Eab (or Eba). Use

Ui ‘ a . I d e b
my €n €q €n
my €n €n

Subcase 3.2: LE occurs in «. Vacuous, since a has I-form 32 or 33.




10 Fred Johnson

Subcase 3.3: ME occurs in a. If o has exactly two members than a has form
(3M3) Iab, MEab (or MEba). Use

Ui ' a b

my € € €
my
mj

If & has more than two members and Condition i is met then « has form (3M4)
X/LAc — d, Adb, X/LIac (or X/LIca), MEab (or MEba). Use

Usn4 ‘ a C s d b
m;y S €n et €y € €
my

mj

If o has more than two members and Condition i is not met then « has form
(3M5) X/LAc — e, Aea, X/LAd — £, Afb, X/Llcd, MEab (or MEba). Use

UaMs ’ a e -+ c d -+ f b
m |e €, €n  En €, € €
mj

Lemma 2.3: If « is a chain that does not have an I-form, &* has a Smiley-form,
and M occurs exactly twice in @, then « is e3-satisfiable.

Proof. Assume the antecedent. For each of the forms o may have we either use
a matrix given in Lemma 2.2 or provide a new matrix that shows that « is
e3-satisfiable. By familiar observations the new matrices satisfy Condition 1 for
an e-valuation. If « is a chain in which there is more than one occurrence of the
operator M let o™ be any chain that resuits from removing all but one
occurrence of M from «. We use the fact that if an ™ chain is e3-satisfiable
then chain « is e>-satisfiable. To show this note that QabkMQab. (For
example, if v(Aab)=t and v(MAab) ={, then, for some m, v(me,a)=t,
v(m ¢,b) =t, and v(m € b) = t, which is impossible.)

Casel: o has I-form 11. Subcase1.1: XO or MO occurs in a. Then an o™

chain has form IMI1. Subcase1.2: LO occurs in «. Then « has form (1MM1)
X/LAa — ¢, MAcd, X/LAd — e, MAef, X/LAf — b, LOab. Use

D1MMI ' a - c d [ e f e b
my €, - €p ¢ #a =
m; €q €n

m3 En P El’l
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(If f # b and no symbol occurred in cell m;/f then vy WO
given condition 10.ii.)

Case 2: o has I-form 21. Subcase2.1: XE or ME occurs
chain has form 2M1. Subcase2.1: LE occurs in «. Subce
(2MM1) X/LAc —d, MAde, X/LAe — f, MAfg, X/LAg —
(or LEba). Use

Vol ‘a e g f e e d .. c
m; én e ¢, €n €n
mp €n €n €n Tt ¢

m;3 €n e €n

(Given condition 11.i, since vpypp(my € a) =t and vyypy
occur in cell my/d. Otherwise, vayp Would assign f to LI
1111, since szMl(mZ € a) =t and UZMMl(m2 € g) =1, it mus
some i (1 =<i=<3) voymi (m; ¢,b) and vopgmy (M ¢, g) =t
true for i = 2.) Otherwise, vypy would assign f to LEab.)

Subcase 2.1.2: « has form 2MM2) X/LAc — d, MAde, X/
MAfg, X/LAg — b, LEab. Use

Daninga ‘a e d c f g
ml en . .. en Y en
1 €n e €n ¢
I'I:l3 ¢ e ¢n €

Case 3: o has I-form 31. Subcase 3.1: XE or ME occurs
chain has form 3M1 or 3M2. Subcase3.2: LE occurs i
(3MM1) X/LAc—e, MAecf, X/LAf—g, MAgh, X/L,
X/Licd (or X/LIdc), LEab (or LEba), use

Uammi la s++ h g - f e - d
m; € T én €y T €yq €n
m, € T & T P

my €, e €,

If o has form (3MM2) X/LAc—e, MAef, X/LAf—a
LAh — b, X/LIcd, LEab (or LEba), use

b

o | @ e f e -+ ¢ d <+ g h
m, €, . €, €n . €,
m; €n e €n ¢n
mjy &n e ¢n €n

And if o has form (3MM3) X/LAc —e, MAef, X/LAf —
(or Mldc), LEab (or LEba), use




Fred Johnson

ME occurs in «. If o has exactly two members than « has form
Eab (or MEba). Use

Uam3 ’ a b

my € € €.
m,
mg

> than two members and Condition i is met then a has form (3M4)
\db, X/LIac (or X/LIca), MEab (or MEba). Use

Uang ' a C < d b
my € & €, € €
my

e than two members and Condition i is not met then « has form
—e, Aea, X/LAd — f, Afb, X/LIcd, MEab (or MEba). Use

’a [S c d f b

f v is a chain that does not have an I-form, a* has a Smiley-form,

exactly twice in «, then « is e*-satisfiable.

1e the antecedent. For each of the forms a may have we either use
n in Lemma 2.2 or provide a new matrix that shows that « is
By familiar observations the new matrices satisfy Condition 1 for
1. If o is a chain in which there is more than one occurrence of the
et @™ be any chain that results from removing all but one
M from «. We use the fact that if an o™ chain is e3-satisfiable
is ’-satisfiable. To show this note that QabFMQab. (For
(Aab) =t and v(MAab) =f, then, for some m, v(m €, a) =t,
and v(m € b) = t, which is impossible.)

s I-form 11. Subcase 1.1: XO or MO occurs in «. Then an o™
n IML. Subcase1.2: LO occurs in «. Then a has form (IMM1)
[Acd, X/LLAd — e, MAef, X/LAf — b, LOab. Use

c d - e f - b
n e en ¢n ¢n En
En P en
en “ e en
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(If £ # b and no symbol occurred in cell m;/f then vy would assign f to LAfb,
given condition 10.ii.)

Case2: o has I-form 21. Subcase2.1: XE or ME occurs in «. Then an o™
chain has form 2M1. Subcase2.1: LE occurs in o. Subcase2.1.1: o has form
(2MM1) X/LAc — d, MAde, X/LAe — f, MAfg, X/LAg — a, X/LAc — b, LEab
(or LEba). Use

UMMt la g f e d c ... b
I‘I‘l1 ¢1’l PR ¢l‘l en e en s e En ¢D
mp €n ot €n éx Tt €5 e € €n

ms €4 .. €n

(Given condition 11.i, since voypi{m; € a) =t and vypp(Adb) =t, ‘¢, must
occur in cell my/d. Otherwise, vovp would assign f to LEab. Given condition
11.ii, since vpyp(my, € a) =t and v (my € g) = t, it must be the case that for
some I (1=<<i=3) vy (my ¢, b) and vovpnn (M ¢, g) = t. (The consequent is
true for i = 2.) Otherwise, vy wWould assign f to LEab.)

Subcase 2.1.2: o has form (2MM2) X/LAc — d, MAde, X/LAe — a, X/LAc - f,
MAfg, X/LAg — b, LEab. Use

Do ‘a e d ¢ f g b
Il'l1 En e En DY en
my €n vt €n én e ¢n €n
mg3 én Tt € €n U €q ¢

Case 3. o has I-form 31. Subcase3.1: XE or ME occurs in «. Then an o™
chain has form 3M1 or 3M2. Subcase3.2: LE occurs in «. If o has form
(3MM1) X/LAc—e, MAef, X/LAf—g, MAgh, X/LAh—a, X/LAd-b,
X/LIcd (or X/1.Idc), LEab (or LEba), use

Vst 'a v h g --- e - ¢ d --- b
my en e %n €n e €y €, L €, [
m, € - & T S €

my =M e €n

If o has form (3MM2) X/LAc —e, MAef, X/LAf—a, X/LAd — g, MAgh,
LAh — b, X/LIcd, LEab (or LEba), use

vz | @ - f e -+ ¢ d -+ g h -+ b
my €, P €n €, e €n
m; €n e €n ¢n e ¢ €q

T N € e &

And if o has form (3MM3) X/LAc — e, MAef, X/LAf —a, X/LAd — b, Mlcd
(or Mldc), LEab (or LEba), use
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vans | @ e f e .- C d --- b
my €n €n
my €q T €n ¢n e ¢n €n

mj én T ¢n €n €n ¢n

Lemma 2.4; If « is a chain that does not have an I-form, o* has a Smiley-form,
and M occurs more than twice in &, then « is e3-satisfiable.

Proof. Assume the antecedent. If « is a chain with more than two occurrences
of M let o™ be any chain that results from deleting all but two occurrences of
M from a. So cither an a™ or an a®™ chain has one of the forms mentioned in
Lemmas 2.2 and 2.3. (For example, if o* has I-form 11 and LO occurs in « then
a chain o™ has form 1IMM1.) So « is c3-satisfiable, since Qab k MQab, as
noted in the proof of Lemma 2.3.

4. Deductions

The following account of deduction is motivated by Aristotle’s discussion of
deductions in Pr. An. A25. So, for example, we attempt to accommodate the
following claim, using Smith’s 7989, pp. 39-41, translations here and below:

Counting deductions by their main premises . . . every deduction will be from
an even number of premises and an odd number of terms [sentences] (for the
terms [sentences] are more in number by one than the number of premises).
(Pr. An. 42b1-4)

I think Aristotle used two types of deducibility relationships—those of one
type generate the valid two-premised syllogisms, and those of the other type
generate the valid polysyllogisms from the valid two-premised syllogisms. For
the latter type of deducibility relationship the even-premised feature, mentioned
above, holds, though it does not hold for the former.

Definition 4.1: {x, y} |3 iff ({x,y},z) is a V;-syllogism.

Definition4.2: 1) If {y;,v>} Fays then (yi,¥2,y3) is a deduction of y; from
{y1,¥2}; 2) If {y1, - - - Yus . . . X) is a deduction of x from Y, if {x, w} k52, and if
some term in w does not occur in a member of {y;,...y,}, then
(Vs Yn» - - - X, W, Z) I8 a deduction of z from Y, w; 3) If (Yir---Yns-..X) 18
a deduction of x from Y, if {w,z} l3v;, and if a term in w and z occurs in no
member of Y then {(yi, ... W,Z,¥j,-..¥n, -..X) is a deduction of x from
Y U {w,z} —y;; 4) 8 is a deduction of x from Y only if d is a deduction of x
from Y in virtue of the conditions 1 to 3.

So, for example, (Aab, Abc, Aac) is a deduction of Aac from {Aab, Abc}
(by 1). So (Aab, Abc, Aac, Acd, Aad) is a deduction of Aad from {Aab,
Abc, Acd} (by 2), since {Aac, Acd} |3 Aad and ‘d’ does not occur in {Aab,
Abc}. So (Aab, Abe, Aec, Abc, Aac, Acd, Aad) is a deduction of Aad from
{Aab, Abe, Aec, Acd} (by 3), since {Abe, Aec} -3 Abc and ‘e’ does not occur
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in {Aab, Abc, Acd}. In contrast, note that {(Aab, Abc, Aa
deduction of Aab from {Aab, Abc}. This is one of the
eschewed by Aristotle. (See Pr. An. B5.)

Conditions 2) and 3) are in line with the following comn

... the term [sentence] will be put either outside or in
An. 42b8)

Condition 2) builds deductions by putting sentences on tl
and Condition 3) builds deductions by putting sentenc
sequences.

The above account of deduction squares with

. every demonstration will be through three terms
more, . ... (Pr. An. 41b36)

Note that {x, y} |3 z figures in each clause of the recursive

Definition 4.3: If (x;,...x,) is a deduction of x, from Y
(Xq,...X,) are X; to X,_1.

Theorem 4.1: If 6 is a deduction of x from Y and Y has n
0 has 2n — 2 premises and 2n — 1 members.

Proof. Basis step: n=2. Trivial. Recursion steps: If
deduction of y from Y, where & has 2n — 2 premises and
where Y has n members, is used together with Conditions
is a deduction of y’ from Y’ then & has 2n—2+2 (
premises and Y’ has 2n — 1 + 2 (that is, 2(n + 1) — 1) mem

Aristotle also counts conclusions:

The conclusions will be half as many as the number ¢
42b1-4).

Definition 4.4: If (x;,...x,) is a deduction of x, from Y
of (Xq,...X,) are the members of {x;,...X,) that are not

Corollary 1 of Theoremd4.1: If § is a deduction of y fi
members (n=2) then 6 has n — 1 conclusions (half of 2
premises.).

Corollary 2 of Theorem 4.1: If 6 is a deduction of x from
even number of members, then the number of membe
members of Y is odd, and (ii) if the number of membs
members of Y is even, then Y has an odd number of memt

At the end of A25 Aristotle says that there are many 1
premises, which is in apparent conflict with preceding T
Aristotle was considering alternative deductions and the va
these alternative deductions, taken collectively. So, for
deductions, with 12 “‘conclusions added’, in virtue of w
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1 f e v d b

€n €n
n T €n €n Tt ¢n €n
0 Ce s ¢, €, €, ¢,

"« i a chain that does not have an I-form, o* has a Smiley-form,
more than twice in «, then « is 3-satisfiable.

e the antecedent. If & is a chain with more than two occurrences
be any chain that results from deleting all but two occurrences of
either an a™ or an & chain has one of the forms mentioned in
nd 2.3. (For example, if o* has I-form 11 and LO occurs in « then

has form 1MM1.) So « is 63-satisfiable, since Qab F MQab, as
roof of Lemma 2.3,

4. Deductions

ing account of deduction is motivated by Aristotle’s discussion of
Pr. An A25. So, for example, we attempt to accommodate the
1, using Smith’s 7989, pp. 39-41, translations here and below:

eductions by their main premises . . . every deduction will be from
mber of premises and an odd number of terms [sentences] (for the

ences] are more in number by one than the number of premises).
'b1-4)

stotle used two types of deducibility relationships —those of one
the valid two-premised syllogisms, and those of the other type
alid polysyllogisms from the valid two-premised syllogisms. For
of deducibility relationship the even-premised feature, mentioned
hough it does not hold for the former.

{x, ¥} k3 iff {{x,y},z) is a Vs-syllogism.

1) If {y1,y2} F3ys then (yi,v,,y3) is a deduction of y3 from
(Y1 - - - ¥n» - - - X i3 a deduction of x from Y, if {x, W} sz, and if
1w does not occur in a member of {y,.. .Yu}, then
X, W, z) is a deduction of z from Y, w; 3) If (y,, . . Vns ... X) 18
x from Y, if {w,z} I3 y;, and if a term in w and z occurs in no
then (yi, ... W,2,¥i,...yn, ...X) is a deduction of x from
; 4) 8 is a deduction of x from Y only if & is a deduction of x
e of the conditions 1 to 3.

mple, (Aab, Abc, Aac) is a deduction of Aac from {Aab, Abc}
\ab, Abc, Aac, Acd, Aad) is a deduction of Aad from {Aab,
~2), since {Aac, Acd} |3 Aad and ‘d’ does not occur in {Aab,
b, Abe, Aec, Abc, Aac, Acd, Aad) is a deduction of Aad from
¢, Acd} (by 3), since {Abe, Aec} |3 Abc and ‘e’ does not occur
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in {Aab, Abc, Acd}. In contrast, note that (Aab, Abc, Aac, Acb, Aab) is not a
deduction of Aab from {Aab, Abc}. This is one of the “circular deductions”
eschewed by Aristotle. (See Pr. An. B5.)

Conditions 2) and 3) are in line with the following comment:

... the term [sentence] will be put either outside or in the middle . ... (Pr.
An. 42b8)

Condition 2) builds deductions by putting sentences on the right of sequences
and Condition 3) builds deductions by putting sentences in the middle of
sequences.

The above account of deduction squares with

. every demonstration will be through three terms [sentences], and no
more, . ... (Pr. An. 41b36)

Note that {x, y} |3 z figures in each clause of the recursive definition.

Definition 4.3: If (x(,...x,) is a deduction of x, from Y then the premises of
(X1, ...%X,) are X; 10 X,_;.

Theorem 4.1: If J is a deduction of x from Y and Y has n members (n = 2) then
0 has 2n — 2 premises and 2n — 1 members.

Proof. Basis step: n=2. Trivial. Recursion steps: If the fact that 8 is a
deduction of y from Y, where 6 has 2n — 2 premises and 2n — 1 members, and
where Y has n members, is used together with Conditions 2 or 3 to show that &'
is a deduction of y’ from Y’ then &' has 2n—2+2 (that is, 2(n+ 1) — 2)
premises and Y’ has 2n — 1 + 2 (that is, 2(n + 1) — 1) members.

Aristotle also counts conclusions:

The conclusions will be half as many as the number of premises. (Pr. An.
42b1-4).

Definition 4.4: If (x;,...x,) is a deduction of x, from Y then the conclusions
of (x{,...x,) are the members of (X, ...x,) that are not members of Y.

Corollary 1 of Theorem4.1: If & is a deduction of y from Y and Y has n
members (n=2) then & has n — 1 conclusions (half of 2n — 2, the number of
premises. ).

Corollary 2 of Theorem 4.1: If 6 is a deduction of x from Y then: (i) if Y has an
even number of members, then the number of members of § that are not
members of Y is odd, and (ii) if the number of members of & that are not
members of Y is even, then Y has an odd number of members.

At the end of A25 Aristotle says that there are many more conclusions than
premises, which is in apparent conflict with preceding passages. I think that
Aristotle was considering alternative deductions and the variety of conclusions in
these alternative deductions, taken collectively. So, for example, we list 10
deductions, with 12 “‘conclusions added”, in virtue of which {Iba, Abc, Acd,
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Ede} |- Oae, where conclusions are put in square brackets: (Iba, Abc, [lac or
Ica], Acd, [Tad or Ida], Ede, [Oae]); (Abc, Acd, [Abd], Ede, [Ebe or Eeb],
Iab, [Oae]); and (Acd, Ede, [Ece or Eec], Abc, [Ebe or Eeb], Iba, [Oae]). Note
that in each of these 10 deductions ‘conclusions added will be one fewer in
number than the terms [sentences] which were already present’ (Pr. An. 42b18).
Note, for example, that for the first of the 10 deductions mentioned above, the
four sentences present are Iba, Abc, Acd, and Ede, and the three conclusions
added are Iac, Iad, and Oae.

According to the interpretations by Ross 1949, p. 381, and Smith 1989,
p. 147, of the last paragraph of A25, the number of conclusions should be 6
instead of 12 for the example cited. I think that Ross and Smith are mistakenly
treating Aristotle’s reference to conclusions as a reference to term pairs
(intervals) that may appear in various deductions. (For the example cited there
are 6 intervals—ac, ad, ae, bc, be, ce—represented in the 12 conclusions
added.). Certainly our interpretation fits more comfortably with Aristotle’s claim
that conclusions will be much greater in number than the premises.

But the last paragraph of A25 suggests that, for Aristotle, if there is a
deduction of y from Y then there is a deduction in which each term interval not
represented in a premise occurs in a conclusion. This is false, given the above
account of deduction. For example, (LAca, Abc, [LAba], LObd, LOad) is a
deduction of LOad from {LAca, Abc, LObd}. But there is no deduction in
which a conclusion occurs which represents a cd interval. So, for example, the
following attempt at such a deduction is blocked: (Abc, LObd, [Ocd],
LAca, xxx). Though Oad may be entered after LAca, LOad may not be, since
Bocardo-XLL is not a Vj-syllogism. (For Aristotle, Bocardo-XLL is clearly
invalid.)

Definition 4.5: x is deducible from Y (Y | x) iff there is a deduction of x
from Y.

Decision procedure 4.1 (corollary of Theorem4.1): A decision procedure for
determining whether Y |- x is obtained by considering the (2n — 1)-membered
sequences that contain no terms other than those in Y U {x}, where n is the
number of terms in Y.

Theorem 4.3 (Completeness): If (Y, x) is a V,-syllogism, for n > 3, then Y }- x.
Proof. The following two lemmas will be used:

Lemma 1: If Y, X/LAab | x then Y, X/LAa — ¢, X/LAcb |- x.

Lemma2: If Y, LAab} x then Y, X/LAa —c, LAcb |- x.

Prove these lemmas by using induction on the number n (n = 0) of members
of X/1.LAa — ¢ and by using the relevant Barbaras.

To prove the theorem we use the I-forms to show how a deduction can be
constructed for each V,-syllogism generated by that I-form. We categorize
I-forms by categorizing x* in a set of sentences with an I-form. x* may or may
not be “indicated by an expression X/LAx —y or LAx —y.” So, for example,
given the set of sentences {Aaja,, Aayas, Oajaz} with I-form 11, if x* is Aaja,
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or Aa,a; then x* is indicated by X/LAa — b, but if x* is Oaja;z the
indicated by an expression X/LAx —y or LAx —y.

If x* is indicated by X/LAx—y or LAx —y, we shall say tt
category X/L or category L, respectively, otherwise, x* is in categor
‘basic’). So, given the set of sentences {LLAa;a,, LAaja;, MOaj a3}
13, if x* is LAaja, then x* is in category X/L, and if x* is LAa,a;
then x* is in category B.

If x* is in category L, indicated by LAx — y, then x* is either in
or category Ly (‘r’ for ‘right,” and ‘I’ for ‘left’) depending upon w]
obtained by substituting a term for y. So, for example, given the
LAaya;, MAasa,, LAaja;, LAasag, LOajag} with I-form 12, if x*
LAayas then x* is in category L;, and if x* is LAaya; or LAasag t
category L,.

When considering the I-forms we assume that, for each expressic
and LAx — y used to express I-forms, x * y. Arguments for the sim
in which x = y will be omitted.

When constructing the required deductions it is useful to recogni
Y|Fx and {x,y} |z then Y, y| z, provided a term in y does nof
member of Y; and i) if Y, x|y and {w,z} Fx, then Y, w, z}-y,
term in w and z does not occur in Y.

In the discussion of the following I-forms the category of x* is m
each case.

I-form 11. Casel: x* has form X/LOab (B). X/LAac, X/LAcl
(Barbara). So X/LAa — b} X/MAab (Lemma 1). Case2: x* has fo
(X/L, part of X/LAa —b). Since X/LAdb, X/LOab |- Oad (Barocc
X/LAac | X/MOcd (Bocardo), it follows that X/LAac, X/LAdb
X/MOcd. So X/LAa — ¢, X/LAd — b, X/LOab | X/MOcd (Lemma 1

I-form 12. Casel: x* has form MAcd (B). LAac, LAdb, L
(Baroco, Bocardo). So LAa—c¢, LAd-Db, LOab}| LOcd
Case 2: x* has form LOab (B). LAac, MAcd, LAdb | MAab (B
LAa—~c, MAcd, LAd — b}FMAab (Lemma2). Case3.1: x* has
(L,, part of LAa — ¢). X/LAae, MAcd, LAdb, LOab } MOec. So
MAcd, LAd - b, LOab }- MOec (Lemmas 1 and 2). Case 3.2: x* ha:
(L, part of LAd —b). LAac, MAcd, X/LAdf, LOab } MOfb. ¢
MAcd, X/LAd —f, LOab } MOfb (Lemmas 1 and 2). Case4.1: 3
X/LAef (L, part of LAa — ¢). X/LLAae, LAfc, MAcd, LAdb, LOat
So X/LAa —e, LAf — ¢, MAcd, LAd — b, LOab | X/MOef (Lemm
Case 4.2: x* has form X/LAgh (L, part of LAd — b). LAac, MAc
LAhb, LOab | X/MOgh. So LAa—c¢, MAcd, X/LAd — g, LAh -
X/MOgh (Lemmas 1 and 2).

To complete the arguments for the cases listed for the following
a step that uses Lemma 1. So, for example, for case 1 of I-form
step is X/LLAa — ¢, MOab |- MOcb.

TI-form 13. Case 1: x* has form LAcb (B). X/l.Aac, MOab | MOct

| has form MOab (B). X/LAac, LAcbF LAab. Case3: x* has fo
|| (X/L, part of X/LAa - ¢). X/LAad, X/LAec, LAcb, MOab |- X/MC
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where conclusions are put in square brackets: (Iba, Abc, [Iac or
I or Ida], Ede, [Oae]); (Abc, Acd, [Abd], Ede, [Ebe or Eeb],
nd (Acd, Ede, [Ece or Eec], Abc, [Ebe or Eeb], Iba, [Oace]). Note
of these 10 deductions ‘conclusions added will be one fewer in
the terms [sentences] which were already present’ (Pr. An. 42b186).
mple, that for the first of the 10 deductions mentioned above, the
5 present are Iba, Abc, Acd, and Ede, and the three conclusions
, Iad, and Oae.

to the interpretations by Ross 7949, p. 381, and Smith 1989,
> last paragraph of A25, the number of conclusions should be 6
for the example cited. I think that Ross and Smith are mistakenly
otle’s reference to conclusions as a reference to term pairs
t may appear in various deductions. (For the example cited there
1§—ac, ad, ae, bc, be, ce—represented in the 12 conclusions
iinly our interpretation fits more comfortably with Aristotle’s claim
ns will be much greater in number than the premises.

st paragraph of A25 suggests that, for Aristotle, if there is a
from Y then there is a deduction in which each term interval not
| a premise occurs in a conclusion. This is false, given the above
duction. For example, (LAca, Abc, [LAba], LObd, LOad) is a
LOad from {LAca, Abc, LObd}. But there is no deduction in
usion occurs which represents a cd interval. So, for example, the
-mpt at such a deduction is blocked: (Abc, LObd, [Ocd],
‘hpugh Oad may be entered after LAca, LOad may not be, since
15 not a Vi-syllogism. (For Aristotle, Bocardo-XLL is clearly

X is deducible from Y (Yl x) iff there is a deduction of x

dure 4.1 (corollary of Theorem4.1): A decision procedure for
hether Y | x is obtained by considering the (2n — 1)-membered

- contain no terms other than those in Y U {x}, where n is the
ns in Y. '

“ompleteness): If (Y, x) is a V,-syllogism, for n >3, then Y Fx.
lowing two lemmas will be used:

, X/LAab | x then Y, X/LAa — ¢, X/LAcb F x.

, LAabFx then Y, X/LAa —c, LAcb | x.

lemmas by using induction on the number n (n = 0) of members
ind by using the relevant Barbaras.

le theorem we use the I-forms to show how a deduction can be
r ea.lch Vyp-syllogism generated by that I-form. We categorize
gorizing x* in a set of sentences with an I-form. x* may or may
ed by an expression X/LAx —y or LAx — y.” So, for example,
f sentences {Aaja,, Aaya;, Oaja;} with I-form 11, if x* is Aaja,

Apodeictic Syllogisms: Deductions and Decision Procedures 15

or Aa,a; then x* is indicated by X/LAa — b, but if x* is Oa;a; then x* is not
indicated by an expression X/LAx —y or LAx —y.

If x* is indicated by X/LAx —y or LAx —y, we shall say that x* is in
category X/L or category L, respectively, otherwise, x* is in category B (‘B’ for
‘basic’). So, given the set of sentences {L.Aaja,, LAaya;, MOajaz} with I-form
13, if x* is LAaja, then x* is in category X/L, and if x* is LAaya; or MOaja,
then x* is in category B.

If x* is in category L, indicated by LAx —y, then x* is either in category L,
or category L; (‘r’ for ‘right,” and ‘I’ for ‘left’) depending upon whether x* is
obtained by substituting a term for y. So, for example, given the set {Aa;a,,
LAaya;, MAasa,, LAajas, LAasag, LOajag} with I-form 12, if x* is Aaja; or
LAajas then x* is in category Ly, and if x* is LAaya; or LAasas then x* is in
category L. ’

When considering the I-forms we assume that, for each expression L/Ax —y
and LAX — y used to express I-forms, x # y. Arguments for the simpler I-forms
in which x = y will be omitted.

When constructing the required deductions it is useful to recognize that: i} if
Y|l x and {x,y} 2z then Y, y} 2z, provided a term in y does not occur in a
member of Y; and ii) if Y, x}y and {w,z} }I-x, then Y, w, z} y, provided a
term in w and z does not occur in Y.

In the discussion of the following I-forms the category of x* is mentioned for
each case.

Iform 11. Casel: x* has form X/LOab (B). X/LAac, X/LAcb| X/MAab
(Barbara). So X/LLAa — b} X/MAab (Lemma 1). Case2: x* has form X/LAcd
(X/L, part of X/LAa —b). Since X/LAdb, X/LOab | Oad (Baroco) and Oad,
X/LAac |- X/MOcd (Bocardo), it follows that X/LAac, X/LLAdb, X/L.Oab}
X/MOcd. So X/LAa — ¢, X/LAd — b, X/LOab } X/MOcd (Lemma 1).

I-form 12. Casel: x* has form MAcd (B). LAac, LAdb, LOab| LOcd
(Baroco, Bocardo). So LAa-c¢, LAd-b, LOab| LOcd (Lemma?2).
Case 2: x* has form 1.Oab (B). LAac, MAcd, LAdb} MAab (Barbara). So
LAa —c, MAcd, LAd - bFMAab (Lemma?2). Case3.I: x* has form LAec
(L, part of LAa — ¢). X/LAae, MAcd, LAdb, LOab |- MOec. So X/LAa — e,
MAcd, LAd — b, LOab | MOec (Lemmas 1 and 2). Case 3.2: x* has form LAfb
(L, part of LAd —b). LAac, MAcd, X/LAdf, LOab | MOfb. So LAa —c,
MAcd, X/LAd — f, LOab |- MOfb (Lemmas 1 and 2). Case4.1: x* has form
X/LAef (L, part of LAa — ¢). X/LAae, LAfc, MAcd, LAdb, LOab |- X/MOef.
So X/LAa — e, LAf — ¢, MAcd, LAd — b, LOab | X/MOef (Lemmas 1 and 2). -
Case 4.2: x* has form X/LAgh (L,, part of LAd — b). LAac, MAcd, X/LAdg,
LAhb, LOab } X/MOgh. So LAa—c, MAcd, X/LAd—g, LAh—b, LOab |
X/MOgh (Lemmas 1 and 2).

To complete the arguments for the cases listed for the following I-forms, add
a step that uses Lemma 1. So, for example, for case 1 of I-form 13, the final
step is X/LAa — ¢, MOab |- MOcb.

I-form 13. Case I: x* has form LAcb (B). X/LAac, MOab |- MOcb. Case 2: x*
has form MOab (B). X/LLAac, LAcb}| LAab. Case3: x* has form X/LAde
(X/L, part of X/LAa — c). X/LAad, X/LAec, LAcb, MOab }- X/MOde.




16 Fred Johnson

I-form 21. Casel: x* has form X/LEab (B). X/LAca, X/LAcb | X/Mlab.
Case2.1: x* has form X/LAde (X/L, part of X/LAc —a). X/LAcd, X/LAea,
X/LLAcb, X/LEab} X/MOde. Case2.2: x* has form X/LAfg (X/L, part of
X/LAc — b). X/LAca, X/LAcf, X/LAgb, X/LEab |- X/MOfg.

I-form 22. CaseI: x* has form MAde (B). X/LLAca, X/l.Acd, X/LAeb, LEab
(or LEba) |- LOde. Case 2: x* has form LEab (or LEba) (B). X/LAca, X/LAcd,
MAde, X/LAeb |- Mlab (and Mlba). Case3.1: x* has form X/LAfg (X/L, part
of X/LAc —a). X/LAcf, X/LAga, X/LAcd, MAde, C/LAeb, LEab (or LEba)
F X/MOfg. Case3.2: x* has form X/LAhi (X/L, part of X/LAc — d). X/LAca,
X/LAch, X/LAid, MAde, X/LAeb, LEab (or LEba) | X/MOhi. Case3.3: x*
has form X/LAjk (X/L, part of X/LAe —b). X/LAca, X/LAcd, MAde, X/LAej,
X/LAkb, LEab (or LEba) |- X/MOjk.

I-form 23. Casel: x* has form LAdb (B). X/LAca, X/LAcd, MEab (or
MEDba) | MOdb. Case2: x* has form MEab (or MEba) (B). X/LAca, X/LAcd,
LAdb | LIab (and LIba). Case3.l: x* has form X/LAef (X/L, part of X/
LAc —a). X/LAce, X/LAfa, X/LAcd, LAdb, MEab (or MEba) |- X/MOef.
Case 3.2: x* has form X/LAgh (X/L, part of X/LAc —d). X/LAca, X/LAcg,
X/LAhd, LAdb, MEab (or MEba) |- X/MOgh.

I-form 31. Casel: x* has form X/Lled (B). X/LAca, X/LAdb, X/LEab (or
X/LEba)  X/MEcd. Case2: x* has form X/LEab (or X/LEba) (B). X/LAca,
X/LAdb, X/Llcd | X/Mlab (and X/MIba). Case 3.1: x* has form X/LAef (X/L,
part of X/LAc— a). X/LAce, X/LAfa, X/LAdb, X/Llcd, X/LEab (or
X/LEba)  X/MOef. Case 3.2: x* has form X/LAgh (X/L, part of X/LAd — b).
X/LAca, X/LAdg, X/LAhb, X/Llcd, X/LEab (or X/LEba) |- X/MOgh.

I-form 32. Casel: x* has form MAef (B). X/LAca, X/LAde, X/LAfb, X/LIcd
(or X/LIdc), LEab (or LEba) | LOef. Case 2: x* has form X/Llcd (or X/LIdc)
(B). X/LAca, X/LAde, MAef, X/LAfb, LEab (or LEba)} X/MEcd (and
X/MEdc). Case3: x* has form LEab (or LEba) (B). X/LAca, X/LAde, MAef,
X/LAfb, X/LIcd (or X/LIdc) - Mlab (and Mlba). Case 4.1: x* has form XLAgh
(X/L, part of X/LAc — a). X/LAcg, X/LAha, X/LAde, MAef, X/LAfb, X/LIcd
(or X/Lldc), LEab (or LEba) |- X/MOgh. Case4.2: x* has form X/LAij (X/L,
part of X/LAd —e). X/LAca, X/LAdi, X/LAje, MAef, X/LAfb, X/LIcd (or
X/Lldc), LEab (or LEba) F X/MOij. Case4.3: x* has form X/LAkl (X/L, part
of X/LAf—b). X/LAca, X/LAde, MAef, X/LAfk, X/LLAlb, X/Llcd (or
X/LIdc), LEab (or LEba) - MOKI.

I-form 33. Casel: x* has form Mlcd (B). X/LAca, X/LAdb, LEab (or
LEba) | LEcd. Case2: x* has form LEab (or LEba) (B). X/LAca, X/LAdb,
Micd |- MIab (and Miba). Case3.1: x* has form X/LAef (X/L, part of X/
LAc —a). X/LAce, X/LAfa, X/LAdb, Mlcd, LEab (or LEba)} X/MOef.
Case 3.2: x* has form X/LAgh (X/L, part of X/LAd —b). X/LAca, X/LAdg,
X/LAhb, MIcd, LEab (or LEba) - X/MOgh.

I-form 34. Nothing to consider, since our discussion is limited to V-syllogisms
with at least two premises.
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I-form 35. Casel: x* has form LAeb (B). X/LAca, X/LA
X/LIdc), MEab (or MEba) - MOeb. Case2: x* has form X/L
(B). X/LAca, X/LAde, LAeb, MEab (or MEba) |- X/MEcd
Case 3: x* has form MEab (or MEba) (B). X/LAca, X/LAde
(or X/LIdc) |- LIab (and Llba). Case4.l: x* has form X/LAf
X/LAc — a). X/LAcf, X/LAga, X/LAde, LAeb, X/Llcd (or X/
MEba) | X/MOfg. Case4.2: x* has form X/LAhi (X/L, part
X/LAca, X/LAdh, X/LAie, LAcb, X/Lled (or X/LIdc), ME
X/MOhi.

Theorem 4.4 (Soundness): If Y |- x then Y Ez.

Proof. Basis step: Note that each of the Iy-forms is inconsi:

steps: If YEx and {x,y} Fzthen Y, yFz. Andif Y, xFy and {
W, zFYy.

Theorem 4.5: If (Y,x) is a syllogism and Y has two or mor
YExiff YEx.

Proof. Immediate consequence of Theorems 3.1, 4.3 and 4.4,

Decision procedure 4.2 (corollary of Theorem 4.5): If {Y,x) is
Y has two or more members, a decision procedure for dete:
X Fy is an immediate consequence of decision procedure 4.1 anc

5. Decision procedures for V,-syllogisms (n = 1)

There are exactly 4 Vi-syllogisms: (<, Aaa), (J,laa), (

(), MIaa). (These syllogisms are deducible in McCall’s L—X-M

is (&, LIaa). It should be noticed, that McCall 1963, p. 50, ass

axiom “for convenience”, not because he has any reasons fi
Aristotle regarded it as valid.)

Theorem 5.1: If (Y, x) is a V;-syllogism then Y F x.
Proof. Straightforward.

There are exactly 60 V,-syllogisms. We list the number
generated by each I-form, where no V,-syllogism generated by o
generated by another: 11: (8), 12: (2), 13: (2), 21: (16), 22:
(16), 32: (0), 33: (4), 34: (4), 35: (0). So, for example, I-for
({LAab}, Aab) and ({Oab},MOab). (All V,-syllogisms ar
McCall’'s L-X-M.)

Theorem 5.2: If (Y, x) is a V,-syllogism then Y F x.

Proof: Straightforward. Note that each I,-form is inconsistent.

Theorem 5.3: If (Y, x) is a syllogism, then Y Ex iff (Y,x) isa }
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Casel: x* has form X/LEab (B). X/LAca, X/LAcb F X/MIab.
* has form X/LAde (X/L, part of X/LAc - a). X/LAcd, X/LAea,
X/LEab |- X/MOde. Case2.2: x* has form X/LAfg (X/L, part of
). X/LAca, X/LAct, X/LAgb, X/LEab | X/MOfg.

Case 1: x* has form MAde (B). X/LAca, X/LAcd, X/LAeb, LEab
-LOde. Case2: x* has form LEab (or LEba) (B). X/LAca, X/LAcd,
-Aeb |- Mlab (and MIba). Case3.1: x* has form X/LAfg (X/L, part
-a). X/LAcf, X/LAga, X/LAcd, MAde, C/LAeb, LEab (or LEba)
Case 3.2: x* has form X/LAhi (X/L, part of X/LAc— d). X/LAca,
/LAid, MAde, X/LAeb, LEab (or LEba) F X/MOhi. Case 3.3: x*
'LAjk (X/L, part of X/LAe — b). X/LAca, X/LAcd, MAde, X/LAej,
Eab (or LEba) | X/MOjk.

CaseI: x* has form LAdb (B). X/LAca, X/LAcd, MEab (or
Odb. Case2: x* has form MEab (or MEba) (B). X/LAca, X/LAcd,
b (and Llba). Case3.1: x* has form X/LAef (X/L, part of X/
X/LAce, X/LAfa, X/LAcd, LAdb, MEab (or MEba) - X/MOef.
~has form X/LAgh (X/L, part of X/LAc —d). X/LAca, X/LAcg,
Adb, MEab (or MEba) |- X/MOgh.

Case I: x* has form X/Lled (B). X/LAca, X/LAdb, X/LEab (or
{/MEcd. Case2: x* has form X/LEab (or X/LEba) (B). X/LAca,
Llcd | X/Mlab (and X/Mlba). Case3.1: x* has form X/LAef (X/L,
LAc— a). X/LAce, X/LAfa, X/LAdb, X/Llcd, X/LEab (or
X/MOef. Case3.2: x* has form X/LAgh (X/L, part of X/LAd — b).
LAdg, X/LAhb, X/Llcd, X/LEab (or X/L.Eba) |- X/ MOgh.

ase I: x* has form MAef (B). X/LAca, X/LAde, X/LAfb, X/LIcd

LEab (or LEba) |- LOef. Case2: x* has form X/Lled (or X/LIdc)
2, X/LAde, MAef, X/LAfb, LEab (or LEba)} X/MEcd (and
ase3: x* has form LEab (or LEba) (B). X/LAca, X/LAde, MAef,
ed (or X/LIdc) |- MIab (and MIba). Case4.1: x* has form XLAgh
( X/LAc —a). X/LAcg, X/LAha, X/LAde, MAef, X/LAfb, X/IIcd
LEab (or LEba) - X/MOgh. Case4.2: x* has form X/LAij (X/L,
Ad —e). X/LAca, X/LAdi, X/LAje, MAef, X/LAfb, X/Llcd (or
ab (or LEba) | X/MOij. Case4.3: x* has form X/LAK] (X/L, part
b). X/LAca, X/LAde, MAef, X/LAfk, X/LAlb, X/Licd (or
ib (or LEba) | MOKI.

Case I: x* has form Mlcd (B). X/LAca, X/LAdb, LEab (or
d. Case2: x* has form LEab (or LEba) (B). X/LAca, X/LAdb,
(and MlIba). Case3.1: x* has form X/LAef (X/L, part of X/
[LAce, X/LAfa, X/LAdb, Mled, LEab (or LEba)F X/MOef.
has form X/LAgh (X/L, part of X/LAd - b). X/LAca, X/LAdg,
d, LEab (or LEba) |- X/MOgh.

othing to consider, since our discussion is limited to V-

syllogisms
WO premises.
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I-form 35. Casel: x* has form LAeb (B). X/LAca, X/LAde, X/Llcd (or
X/LIdc), MEab (or MEba) - MOeb. Case2: x* has form X/Llcd (or X/LIdc)
(B). X/LAca, X/LLAde, LAeb, MEab (or MEba) |- X/MEcd (and X/MEdc).
Case 3. x* has form MEab (or MEba) (B). X/LAca, X/LAde, LAeb, X/LIcd
(or X/Lldc) |- LIab (and LIba). Case4.l: x* has form X/LAfg (X/L, part of
X/LAc - a). X/LAct, X/LAga, X/LAde, LAeb, X/Llcd (or X/Ldc), MEab (or
MEba) |- X/MOfg. Case4.2: x* has form X/LAhi (X/L, part of X/LAd — e).
X/LAca, X/LAdh, X/LAie, LAeb, X/Llcd (or X/LIdc), MEab (or MEba) |-
X/MOhi.

Theorem 4.4 (Soundness): If Y |- x then Y Fz.

Proof. Basis step: Note that each of the I;-forms is inconsistent. Recursion
steps: If YEx and {x,y} Fzthen Y, yFz. Andif Y, xFy and {w, z} Ex then Y,
w,zFy.

Theorem 4.5: If (Y,x) is a syllogism and Y has two or more members then
YFxiff YEx.

Proof. Immediate consequence of Theorems 3.1, 4.3 and 4.4.

Decision procedure 4.2 (corollary of Theorem 4.5): If (Y, x) is a‘syllogism and
Y has two or more members, a decision procedure for determining whether
Xy is an immediate consequence of decision procedure 4.1 and Theorem 4.5.

5. Decision procedures for V,-syllogisms (n = 1)

There are exactly 4 Vj-syllogisms: (<J, Aaa), (J,laa), (J, MAaa), and
(), MIaa). (These syllogisms are deducible in McCall’s L-X—M calculus, but so
is (J, LIaa). It should be noticed, that McCall 1963, p- 50, assumes.nga as an
axiom “for convenience”, not because he has any reasons for thinking that
Aristotle regarded it as valid.)

Theorem 5.1: If (Y, x) is a V;-syllogism then Y E x.
Proof. Straightforward. |
There are exactly 60 V,-syllogisms. We list the number of Vz—syllggisinS ;
- -syllogism generated by one I-form is also
generated by each I-form, where no V,-sy . ' .
generated by another: 11: (8), 12: (2), 13: (2), 21: (16), 22: (4), 23: (4), 31:
(16), 32: (0), 33: (4), 34: (4), 35: (0). So, for examp}e, I-form 11 generates
({LAab}, Aab) and ({Oab},MOab). (All V,-syllogisms are deducible in
McCall’s L-X-M.)
Theorem 5.2; If (Y, x) is a V,-syllogism then Y Fx.

Proof: Straightforward. Note that each I,-form is inconsistent.

Theorem 5.3: If (Y, x) is a syllogism, then Y F x iff (Y, x) is a V-syllogism.
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Proof. Immediate consequence of Theorems 3.1, 4.5, 5.1, and 5.2.

Decision procedure 5.1 (corollary of Theorem 5.3): If (Y, x) is a syllogism, to
decide whether Y F x, ask whether (Y, x) is a V-syllogism.

Theorem 5.4: If (Y, x) is a syllogism, then Y Ex iff there is no €;-valuation that
assigns t to all members of Y and assigns f to x.

Proof. Tmmediate consequence of the proof of Theorem 3.1.

Décision procedure 5.2 (corollary of Theorem 5.4): If (Y, x) is a syllogism, to
decide whether Y £ x examine all of the 43*® matrices of form

) a; laz ‘ \% Ian+1
miq €
my
mj

where a; to a, are all and the only terms that occur in the sentences in Y U {x},
and each m;/a; cell (for 1<i=<3 and 1<j<n) is either empty or contains one
of the following three expressions: ‘e’, ‘e,’, or ‘¢,’. Ask whether any of these
matrices indicates an e-valuation that assigns t to all members of Y and assigns {
to x.

6. Final remark
The simplest of the above three decision procedures for determining the
validity of syllogisms is given by decision procedure 5.1. This decision procedure
generalizes Smiley’s 1973 simple decision procedure for determining the validity
of assertoric syllogisms.
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In 1951 C. I. Lewis published a logic of general terms (or properties) that he ca
predicates. Although this system is of less significance than Lewis’s earlier wor
modal logic, it has considerable historical interest and does not deserve the almost
received. My aim here is to situate this system in the context of Lewis’s earlier w
several of its central features. After sketching the historical background, 1 pre
Lewis’s system, discuss his reasons for preferring it to quantified modal log
semantics for it that is suggested by Lewis’s informal discussion of his system
general views on meaning. I then discuss Lewis’s sketchy extension of his
quantifiers and examine his claim that it can serve as a foundation for logic in ger
noting two minor changes in CP that, from today’s vantage point, would count as

In a series of works, from the year of his first published pape:
appearance of Symbolic logic in 1932, C. 1. Lewis developed sev
logics that laid the groundwork for modern propositional modal
well-known paper, ‘Notes on the Logic of Intension’, published
for his colleague Henry Sheffer in 1951, Lewis presented a logic
functions that he called the calculus of predicates. He believed t
could provide a foundation for logic in general; in particular,
afforded a way of combining modality and propositional func
superior to quantified modal logic. History has not vindicated Le
about the importance of his system, and its intrinsic interest cl
great as that of his earlier work. Still, Lewis’s calculus of predi
beyond the attempts of earlier thinkers to devise an intensional |
terms; it shows how the architect of modern propositional moc
have developed an alternative to quantified modal logic, an
several recent logics of properties. Hence, Lewis’s calculus of |
sufficient historical interest to deserve better than the almost totz
received. My aim here is to situate this system in the context of
work on propositional modal logic and to examine several of its c

In §1 T sketch the historical background of Lewis’s calculu
(CP, for short) and give an informal account of its central n
present the syntax of CP and in §3 consider why Lewis preferrec
quantified modal logic. Although the purely syntactical features o
great interest, since they so closely parallel those of one of Lewis
modal logics, S2, the sorts of interpretations he. envisioned fo
interesting and fundamental ways from those he had in mind f
tional modal logics. Accordingly, in §4 I supply CP with a se
suggested by Lewis’s informal discussion of his system (together v
views on meaning). In §5 T discuss Lewis’s sketchy extension of
quantifiers and in §6 I examine his claim that CP can serve as a
logic in general. In the final section I note two minor changes in
today’s vantage point, would count as improvements.
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