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Abstract

The models of contingency in what propositions, properties and rela-
tions there are developed in Part 1 are related to models of contingency
in what propositions there are due to Robert Stalnaker. It is shown that
some but not all of the classes of models of Part 1 agree with Stalnaker’s
models concerning the patterns of contingency in what propositions there
are they admit. Further structural connections between the two kinds of
models are explored.

1 Introduction

Part 1 (Fritz and Goodman, 2016) explores models for the view that it is a
contingent matter what propositions, properties and relations there are, building
on work by Fine (1977) and Stalnaker (2012). Stalnaker (2012, Appendix A)
focuses in particular on the view that it is a contingent matter what propositions
there are, and develops two kinds of models for it. For brevity, I will use the label
“propositional contingency” for contingency in what propositions there are, and
“higher-order contingency” for contingency in what propositions, properties and
relations there are.

This paper investigates connections between the models of higher-order con-
tingency of Part 1 and Stalnaker’s models of propositional contingency. Because
of their complexity, the required definitions and results of Part 1 will not be re-
peated here; familiarity with them will be assumed. Stalnaker’s models will be
introduced in section 2, and familiarity with them is not required. For each of
the various classes of models of higher-order contingency investigated in Part 1,
the most important question is whether they agree with Stalnaker’s models on
the patterns of propositional contingency they admit. This issue is investigated
in section 3. The results obtained there are mainly positive: For several — but
not all — classes, it will be shown that the patterns of propositional contingency
they admit are precisely the patterns of propositional contingency Stalnaker’s
models admit. Some of Stalnaker’s models record not only patterns of proposi-
tional contingency, but also patterns of a kind of permutability of worlds. These
latter patterns can also be obtained from models of higher-order contingency,
and are explored in more detail in section 4. Section 5 concludes, and highlights
some consequences of the results obtained here.
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2 Equivalence Systems and Permutation Systems

The models of Stalnaker (2012, Appendix A) are developed in more detail in
Fritz (2016); as Stalnaker (2016, p. 725, fn. 15) notes, the latter also corrects
some errors of the former. This section summarizes the relevant definitions and
results of Fritz (2016); readers familiar with this article may skip this section,
and readers looking for a more in-depth discussion of the material presented
here may find it useful to consult the article.

Stalnaker develops two kinds of models. Models of the first kind will be called
equivalence systems. In such models, every member of a set of worlds is mapped
to an equivalence relation on the set of worlds:

Definition 2.1. For every set W, an equivalence system on W is a function
~ mapping every w € W to an equivalence relation ~,, on W.

One can think of these systems as representing which pairs of worlds are
indistinguishable at a given world. A proposition p C W is taken to exist at a
world w of an equivalence system = just in case p does not distinguish between
any worlds indistinguishable at w, i.e., just in case v ~,, u entails that v € p iff
u € p. Each equivalence system is therefore naturally mapped to a propositional
domain function, i.e., a function mapping worlds to sets of propositions; indeed,
it is easy to see that this mapping is a one-to-one correspondence between
equivalence systems and propositional domain functions mapping each world to
a complete atomic field of sets.

Some equivalence systems are implausible models of propositional contin-
gency, as they count some worlds v and u as indistinguishable at w, even though
v and u can intuitively be distinguished at w, e.g., in terms of the indistin-
guishability relations associated with them. To rule out these cases, a coherence
constraint is formulated using some basic algebraic notions. A permutation of a
set W is a bijection from W to W. An automorphism of an equivalence system
~ on a set W is a permutation f of W such that v =, u iff f(v) =¢w) f(u),
for all w,v,u € W. aut(=) is the set of automorphisms of =, and aut(=),, is the
set of automorphisms of ~ mapping w to itself. Both are permutation groups on
S, i.e., subgroups of the symmetric group Sw. (Sw is the set of permutations of
W its subgroups are its nonempty subsets which are closed under composition
and inverses.) aut(=2),, is called the stabilizer of aut(~) with respect to w.

Definition 2.2. An equivalence system = on a set W coheres if for all w,v,u €
W such that v /2, u, there is an f € aut(x),, such that f(v) =u and f C =,,.

Models of Stalnaker’s second kind will be called permutation systems. In such
models, every member of a set of worlds is mapped to a permutation group on
the set of worlds:

Definition 2.3. For every set W, a permutation system on W is a function F
mapping every w € W to a permutation group F, on W.

One can think of these systems as representing how the worlds can be per-
muted in ways indistinguishable at a given world. As in the case of equivalence
systems, structurally implausible permutation systems are ruled out by a con-
dition of coherence. Formulating this condition requires a couple of additional
basic group-theoretic concepts. For any permutations f and g of a set W, let f.g



be fgf~! (the conjugation of g by f), and for any set of permutations G C Sy,
let f.G be {f.g: g € G}. Let a permutation f of a set W be an automorphism
of a permutation system F on W if f.F, = Fy(,) for all w € W. Let aut(F')
be the set of automorphisms of F and aut(F),, the stabilizer of aut(F') with
respect to w, i.e., the set of automorphisms of F which map w to itself.

Definition 2.4. A permutation system F' on a set W coheres if for allw € W,
Fy, Caut(F)y,.

Permutation systems determine equivalence systems in a straightforward
way, since worlds v and v may be counted as indistinguishable at w just in
case there is a way of permuting worlds indistinguishably at w which maps v
to u. Via the equivalence systems they determine, permutation systems thus
also model propositional contingency. Indeed, the coherence constraints on the
two kinds of systems agree on the patterns of propositional contingency they
admit, as it can be shown that an equivalence system is coherent just in case it
is determined by a coherent permutation system. However, equivalence systems
and permutation systems are not interchangeable, since there are distinct co-
herent permutation systems which determine the same (coherent) equivalence
system. This is not surprising: which pairs of worlds are indistinguishable at a
given world is plausibly determined by how the worlds can be permuted overall
in ways which are indistinguishable at a given world, but there is no reason to
expect the latter to be determined by the former. If we say that equivalence
systems record patterns of local indistinguishability, and permutation systems
record patterns of global indistinguishability, this observation can be summed up
by saying that global indistinguishability goes beyond local indistinguishability.

The following two sections derive these two kinds of patterns of indistin-
guishability from the models of Part 1, comparing the resulting classes of equiv-
alence and permutation systems to those identified as coherent.

3 Local Indistinguishability

Recall that a structure in the sense of Part 1 is a tuple & = (W, I, D), where W
is the set of worlds, I the set of individuals, and D a variable domain function
mapping each w € W and type ¢ to a set D,. For any w € W, fix(&,w) is the
set of automorphisms of & mapping w and all the elements of the domains (of
the different types) of w to themselves; here, an automorphism of a structure is
a pair consisting of a permutation of worlds and a permutation of individuals.
The elements of fix(&,w) can therefore be understood as recording the ways
modal space can be permuted in ways indistinguishable at w in &. So, similar
to the determination of equivalence systems by permutation systems, a structure
determines an equivalence system by letting v and w be indistinguishable at w
just in case there is an automorphism in fix(&, w) mapping v to u:

Definition 3.1. For any structure & = (W, I, D), the equivalence system de-
termined by & is the function (&) such that for all w,v,u € W,

ve(&)wu iff there is a € € fix(G,w) such that {.v = u.
Equivalence systems derived in this way are always coherent:

Proposition 3.2. For any structure &, (&) is a coherent equivalence system.



Proof. Let w € W. That £(&), is an equivalence relation follows from the
fact that fix(&,w) is a permutation group, as noted in Part 1, p. 668. So £(&)
is an equivalence system. For coherence, consider any w,v,u € W such that
ve(&),u. Then there is an automorphism (f, g) € fix(&, w) such that f(v) = u.
f C &(6)y by construction of €(&), and f(w) = w by construction of fix(&, w).
To show that f € aut(e(&)), consider any x,y,z € W such that ye(&), 2. Then
there is a £ € fix(6, x) such that {.y = z. With Part 1, Lemma 1 (i), (f,g).§ €

fix(&, f(x)). Further, ((f, 9).€)-f(y) = (£, 9)¢(f 1.7 )-f(y) = (f. 96y = (f,9)2

f(2). Thus f(y)e(&) () f(2). The converse follows by a symmetric argument for
L O

Conversely, it will now be shown that every coherent equivalence system
is determined by some structure. Indeed, it will be shown that the relevant
structures can be required to be xclosed, where x may be any sign, i.e., either
— or +. This result will then be extended to the analogous claim for Finely
generated structures, defined in Part 1, Definition 18. Finally, internally —closed
structures and internally +closed structures will be considered, proving that the
analogous claim does not hold in the former case, and leaving the issue for the
latter case open.

Proposition 3.3. For any sign X, every coherent equivalence system is deter-
mined by a X closed structure.

To keep it readable, the proof will be split into several lemmas. Let x be a
sign and =~ a coherent equivalence system on a set W. Let § be the frame (W, 0)).
For any w,v € W, define P}, = ([v]~,, )5 (recall Part 1, Definition 22); this can
be thought of as the propositional intension corresponding to the equivalence
class of v under the indistinguishability relation at w. The basic idea of the
proof is that = can be recovered from these equivalence classes, so that one
can use the structure xgenerated from the structure which contains only the
corresponding propositional intensions in its higher-order domains. So define
first & = (W, 0, B) to be the structure such that Bf, = @ for all types t # ()
and BY = {PY:veW}forall we W. Let @5 = (W, ), D). It will be shown
that ~ = £(®6). As in Part 1, let f? be (f,0) for all f € Sy .

Lemma 3.4. Let w,v € W and f € Sy such that f C ~,,. Then f*.PY = PY.

U)

Proof. Let u € W. (fO.Py)(f(u)) = fO.(Py(w) = fO({() : u € [v]~,}) = {(
u€ [~} = {() : fu) € []~, } = P (f(u)). So f*.P} = Py, O
Lemma 3.5. Let f be an automorphism of . Then for any w,v € W, fw.Pﬁj =
Pf('“)

fw)”
Proof. Consider any v € W. (f2.P2)(f(v)) = f2.(Pi(u)) = f°.{(
W} ={0 v mw u} = {0 : f(0) mp) f(w)} ={0: flu) €[f (v)]zf(w>} =

PIO (f(w)). O

Lemma 3.6. BC D.

m

Proof. Consider any w € W and p € BL. Then p € Bﬁ?, so DX p. Also, for any
¢ € ix(6,w), &.p =p, sopeDg. O



Lemma 3.7. For any w,v,u € W, v =, u iff there is an f € Sw such that
1P € fix(26,w) and f(v) = u.

Proof. Assume first that v /2, u. By coherence, there is an f € aut(=),, such
that f(v) =u and f C ~,,. By Lemma 3 (ii) of Part 1, fix(6,w) C fix(®6, w),
so it suffices to show that f? € fix(&,w). To show that f? € aut(&), it has to
be shown that for all z € W and types t, f?.B. = B}(x). The claim is trivial for

all types t # (). fO.BY = fO.{PY :y e W} = {f9.PY : y € W}. By Lemma 3.5,

this is the set {P]‘f((f)) (Y € W} = {P}’(I) (Y € W} = B]Q(z). Since f € aut(~).,

f(w) = w. Consider any p € BL. Then p = P2 for some x € W. By Lemma 3.4,
fPp=p. So f? € fix(&,w), as required.

Assume now that there is an f € Sy such that f? € fix(®6,w) and
f(v) = u. By Lemma 3.6, P’ € D{, so f%.PY = PY. First, (f°.P?)(u) =
(FO-PL)(.0) = [O.(Po(w)) = fO40) : v € [o]en} = {0} Second, Pi(u) =
{O) :uea,t So{O} ={(: u e v]a,]}, and therefore u € [v]~,, whence
vV Ry U O

Proof of Proposition 3.3. Let w,v,u € W. ve(®8),u iff there is a (f,g) €
fix(®6, w) such that f(v) = u, which in turn is the case iff there is an f € Sy
such that f? € fix(®6,w) and f(v) = u. By Lemma 3.7, this is the case iff
UV Ry U. SO &= = £(R6). O

Thus, the patterns of local indistinguishability among worlds — which pairs
of worlds are indistinguishable at a given world — admitted by all structures, by
—closed structures, and by +closed structures all exactly correspond to coherent
equivalence systems.

This result can be extended to the class of structures satisfying the con-
straints on generation imposed in Fine (1977); see Part 1, section 4.4:

Proposition 3.8. Every coherent equivalence system is determined by a Finely
generated structure.

Proof. Consider any a coherent equivalence system ~ on a set W. Let & =
(W,I,B), where I = {[v]n,, : w,v € W}, B, =0 for all types ¢ ¢ {e, (e)}, and
for all w € W, B, = {[v]x,, :v € W} and B = {E}, where E(v) ={pel:
v € p} for all v € W. &6 is Finely generated, and analogous to the proof of
Proposition 3.3, it can be shown that it determines ~. O

The final result of this section shows that the previous results does not extend
to the case of internally —closed structures:

Proposition 3.9. Some coherent equivalence system is not determined by any
internally —closed structure.

Proof. Let =~ be the equivalence system on W = {1,2,3} such that for all
w,v,u € W, v a2y, uiff (v=w iff u=w). It is easy to see that = is coherent.
Assume for contradiction that there is an internally —closed structure & =
(W, 1, D) such that £(&) = ~. Since 2 =~ 3, 2&/7[) ¢ D§>, so there must be a
€ € fix(6,w)|.6 such that £.1 =1 and £.2 # 2, and therefore £.2 = 3. So there
must be a cumulative representation of (23) in D1<,[<,> ’<>>, and hence by negativity

of & awe W such that {2}, .30y, } € DI ¢. 0



The analogous question concerning internally +closed structures seems more
difficult, and is left open.

4 Global Indistinguishability

For any structure & and world w, fix(&,w) is the set of automorphisms corre-
sponding to the ways in which modal space can be permuted indistinguishable-
bly at w in &. Since these automorphisms are pairs of permutations of worlds
and permutations of individuals, it is straightforward to derive a corresponding
permutation system: we only have to forget about permutations of individuals.

Definition 4.1. For any structure & = (W, I, D), the permutation system
determined by &, written w(&), is the function m(&) which maps every w € W
to

(&) = {f : for some g, {f,g) € fix(6,w)}.

As in the case of equivalence systems, every permutation system determined
by a structure is coherent:

Proposition 4.2. FEvery structure determines a coherent permutation system.

Proof. Let & = (W, I, D) be a structure. That 7(&) is a permutation system in
which each member of 7(&),, maps w to itself follows from the fact that for all
w € W, fix(6, w) is a subgroup of aut(&),,, as noted in Part 1, p. 668. To show
that all such permutations are automorphisms of (&), it suffices to consider
any w,v € W, f € n(8),, and g € m(&),, and prove that f.g € 7(&)y(,,). Since
f € 7(8)y and g € w(&),, there are f/, ¢’ € St such that (f, f/) € fix(&,w)
and (g,¢') € fix(6,v). By Lemma 1 (ii) of Part 1, (f, f").(g,¢") € fix(S, f(v)).
(. )49,9') = £-9.£'-9'), 50 .9 € 7(S) 1. =

As in the case of equivalence systems, a converse can be established, showing
that every coherent permutation system is determined by some structure. A few
tools are needed. First, a strict total order of a set W is a binary relation <
which is irreflezive (not w < w), transitive (if w < v and v < w then w < )
and total (if w # v then w < v or v < w). Such a relation is a strict well-
ordering if it is also well-founded (every non-empty set W/ C W has a least
element, i.e., there is a w € W’ such that for all v € W', v £ w). By the
conventions on extending functions to sets and sequences adopted in Part 1, a
permutation f of W can be applied to a strict well-ordering < of W: for all
w,v € W, f(w)f(<)f(v) if and only if w < v. Similarly, for any set © of strict
well-orderings, f(©) = {f(<) : < € ©}. For any permutation group G on W
and strict well-ordering < of W, let G(<) be {f(<) : f € G}; this is called the
orbit of <. If f is a permutation of W, then fG is defined as {fg: g € G} and
called a left coset of G.

The proof strategy is to construct, for a given coherent permutation system
F, a structure which determines it. On the one hand, this requires including
enough in the domain of the structure at a given world w to rule out all au-
tomorphisms whose world-permutation is not in F,. To do so, the individual
domain will be constructed to be empty and the higher-order domains will be
constructed to include, for some strict well-ordering < of the worlds, the repre-
sentation of the property of being a well-ordering to which < is mapped by some



member of F,, — this representation is mapped to itself by an automorphism if
and only if its world-permutation is in F,,. (From a group-theoretic perspective,
this follows from the fact that by letting the permutations of a set W act in the
natural way on orders on W, for every strict well-ordering < of W, every permu-
tation group on W becomes the set-wise stabilizer of its own orbit of <.) On the
other hand, it has to be ensured that the condition of being an automorphism of
the overall structure does not rule out too many permutations for the structure
to determine F'. It turns out that this can be done by including in the domain
of a given world w the representations of properties of being a well-ordering to
which < is mapped by some member of F,, for all strict well-orderings of W.

To implement this strategy, the following defines representations of proper-
ties of relations among worlds. As for similar cases in Part 1, the upper type
index in representations will be dropped where it is clear from context; see, e.g.,
Definition 24.

Definition 4.3. Let § = (W, I) be a frame. For any set © of binary relations
on W, define @é(()-())) € L%«)’O)) such that for all w € W:

L0 () = [RY) . R e o)

Lemma 4.4. Let § = (W, I) be a frame, (f,g) € aut(F), and © a set of strict
well-orderings of W. Then (f, 9).0z = (f(0))z.

Proof. Routine, using Lemma 5 (iv) of Part 1. O
Theorem 4.5. Every coherent permutation system is determined by a structure.

Proof. Consider any coherent permutation system F on a set W. To specify
the domain of the structure & which will be shown to determine F, let [<]g =
{f(«) : f e G}g,%()))) for any permutation group G on W and strict well-

ordering < of W. Let & be the structure (W, 0, D) such that for all types t #
({0, 0)), Dy, =0, and for all w € W,

DY = {[<]F, : < is a strict well-ordering of W}.

It remains to prove that F' = 7(&). Consider any f € Sy and w € W. To prove
that f € F,, iff f € 7(&),, note the following consequence of Lemma 4.4: For
any strict well-ordering < of W, f%.[<]p, = [<];F,. Call this observation (x).
Assume first that f € Fy,. To show that f € 7(&),, it has to be shown
that f? € fix(&,w), which is the case if (i) f? € aut(6&), (i) f(w) = w, and
(iii) f°.[<]F, = [<]F, for any strict well-ordering < of W. For (i), consider any
v € W3 it will be shown that f(z’.Df,«)’<>>> = D;(((y))ﬁ)). For C, consider any strict
well-ordering < of W. By (%), f’.[<|r, = [<]fr, = {f9(<) : g € F.Yowgy =

{£-9(f(<)) : g € Fo}away = {9£(<) : g € Fyyhway = [F(<lry,,, € DI
(for the penultimate identity, note that f is an automorphism of F). D can be
derived using inverses. (ii) follows from the coherence of F. For (iii), consider
any strict well-ordering < of W. As observed in (), f2.[<|r, = [<]fr, = [<]F,
(for the last identity, note that since f € F,, fF, = Fy).

Assume now that f € 7(&),. Then f? € fix(&,w). Let < be any strict
well-ordering of W. Then f.[<]r, = [<]r,, o by (x), [<]tr, = [<]F,, and
therefore {fg(<) : g € Fu}lw,g = {9(<) : 9 € Fuw}w,p)- Since the mapping of



sets of strict well-orderings of W to their representations is injective, {fg(<) :
g€ F,}={g9(<):g € F,}. So there is a g € F,, such that f(<) = g(<). As <
is a strict well-ordering of W, f = g, and therefore f € F,. O

Once this result is in place, it is natural to go on asking whether it extends
to —/+closed structures:

Question 4.6. Is every coherent permutation system determined by a — /+closed
structure?

This is not obvious, and the question will be left open here. A positive answer
could easily be derived from the previous theorem with the claim that symme-
tries of modal space don’t change under generation; i.e., the claim that for all
signs X, structures & and worlds w: fix(6, w) = fix(®S, w). In Part 1, Lemma 3
(ii), it is shown that fix(&,w) C fix(®6, w), but it is unclear whether these sets
must in fact always be identical. To see how this may fail, note that while &
need not be a —/+structure, —/+generating imposes the being constraint or
its positive weakening; therefore, the domain of ®S need not include the do-
main of &, and consequently, there might be an automorphism in fix(®S, w)
not contained in fix(&, w).

This observation shows that even if not all coherent permutation systems
are determined by a —/+closed structure, then this is in a sense a relatively
fragile result. This is because the observation in the last paragraph shows that
the match established in Theorem 4.5 can be extended to closed structures in
a setting in which neither the being constraint nor its positive weakening are
imposed. As noted in Part 1, p. 659, fn. 17, this option is well worth exploring,
but beyond the scope of the present investigation; see also Fritz and Goodman
(forthcoming). Similarly, the match could be established for +closed structures
in a type hierarchy including types of relations of arbitrary ordinal arity. In such
a setting, the above proof could be adapted by representing a property of orders
of worlds using the corresponding |W|-ary relation among world-propositions
— the important difference is that such relations trivially satisfy the positive
weakening of the being constraint in closed structures.

While Question 4.6 seems difficult to answer, the further strengthening of
the hypothesis to internally +closed structures, defined in Part 1, Definition 26,
can easily be refuted:

Theorem 4.7. Not every coherent permutation system F is determined by an
internally +closed structure.

Proof. Let W = {1,2,3,4} and F the permutation system on W such that for
allw e W, F,, = (Sw)w- It is easy to see that F' is coherent. If & is a structure
such that F' = w(&), then for all w € W and f € (Sw)w, there is a g such that
(f,9) € fix(&,w). So in the sense of Definition 33 of Part 1, for all w € W,
the members of W\{w} are collectively indistinguishable from w, and so by
Proposition 21 of Part 1, G is not internally +closed. U

It seems very likely that an analogous result could be given for the class
of internally —closed structures, defined in Part 1, Definition 30, but this is
omitted here as such structures are found to be implausibly restrictive in Part 1,
Section 6.4.



5 Conclusion

The equivalence systems and permutation systems determined by structures
have all been shown to be coherent. Conversely, the more interesting results
established here answer questions of the following form:

Is every coherent ... system determined by a ... structure?

The answers obtained here are summed up in the following table:

equivalence permutation
v v
—closed v ?
+closed v ?
Finely generated v ?
internally —closed X 7
internally +closed ? X

Here, the first gap of the above question schema is filled in by a horizontal
item, and the second gap by a vertical item; v indicates Yes, x No, ? an open
question, and ?* a conjectured No.

The results on equivalence systems show that the constraints on patterns of
local indistinguishability imposed by all structures, —closed structures, 4+closed
structures, and Finely generated structures are the same, and correspond exactly
to the class of coherent equivalence systems; furthermore, it is shown that these
results cannot be extended to the class of internally —closed structures. One
consequence of this is that —closed structures, +closed structures, and Finely
generated structures all admit the same propositional domain functions. (Recall
that for any closed structure, a proposition is in the domain of a world w just
in case it is true in either both or neither of two worlds indistinguishable at
w.) Thus no differences between these classes of structures appear on the level
of propositional contingency. Furthermore, since equivalence systems uniquely
correspond to propositional domain functions, as noted in section 2, the class of
coherent equivalence systems provides a simple and useful way of characterizing
the propositional domain functions admitted by these three classes of structures.

As Stalnaker (2012) demonstrates, many of the philosophical issues of higher-
order contingency can be illustrated using examples of propositional contin-
gency. Since equivalence systems are vastly simpler than the structures of Part 1,
they will often be preferable as models of propositional contingency. To make
the transition from structures to equivalence systems, those who work with a
particular class of structures need a characterization of the corresponding class
of equivalence systems; this is what the above results provide for the classes of
—closed structures, +closed structures, and Finely generated structures.

A concrete application demonstrating the usefulness of equivalence systems
concerns the logic of propositional quantifiers: It is easy to show that the set of
sentences of higher-order modal logic valid on any of the classes of structures just
considered is not recursively axiomatizable. One may therefore wonder whether
a highly restrictive fragment, such as the fragment of sentences containing only
variables and constants of type () is recursively axiomatizable. This fragment
is straightforward to interpret on equivalence systems, and Fritz (forthcoming)
shows that the set of sentences in this fragment which are valid on all coherent
equivalence systems is recursively isomorphic to full second-order logic, and so



not recursively axiomatizable. With Propositions 3.2 and 3.3, it follows imme-
diately that the classes of —closed structures, +closed structures, and Finely
generated structures all agree with the class of coherent equivalence systems
concerning the validities in the propositional fragment of higher-order modal
logic, and so that their validities in this fragment are not recursively axiomati-
zable.

The results on permutation systems obtained here show that the patterns of
global indistinguishability admitted by all structures correspond exactly to the
coherent permutation systems; furthermore, it is shown that this result cannot
be extended to the class of internally +closed structures. As in the case of
equivalence systems, this shows that if we are only concerned with patterns of
global indistinguishability of arbitrary structures, we may work as well with the
simpler coherent permutation systems. Of course, the class of all structures will
usually be considered to be too wide. It would therefore be interesting to settle
Question 4.6, and in general, provide simple characterizations of the classes of
permutation systems determined by structures in one of the various classes of
structures considered here.

As noted in section 2, coherent permutation systems draw finer distinctions
than coherent equivalence systems. Given the results in the last two sections,
this can be used to conclude that in the class of all structures, the patterns of
global indistinguishability outrun the patterns of local indistinguishability: some
structures share the same pattern of local indistinguishability while displaying
different patterns of global indistinguishability. Since it has not been established
which permutation systems are determined by any of the other classes of struc-
tures, this insight cannot straightforwardly be extended to these classes. Espe-
cially for the highly restrictive class of internally +closed structures, it seems
possible that the difference between the patterns of global and local indistin-
guishability disappears. The following result shows that this is not the case.
Since all internally +closed structures are +closed (see Part 1, Proposition 13)
this result extends to +closed structures.

Proposition 5.1. There are internally +closed structures which determine the
same equivalence systems but different permutation systems.

Proof. Define & = (W, I, B) and & = (W, I, B’) such that W = {1,2,3,4,5},
I=1{2,3,4}, By, = Bil, =0 for all types ¢ ¢ {e, (e,e)} and

B¢ = Ble =

B¢ = Ble = I\{i} for all i € {2,3,4}

Bg = Bl =

B = and B/ = {<} for all i € W

where <€ Léf;)[) such that for all ¢ € W,

< (Z) = {<2»3>7 <374>7 <472>} n (B;e)Q

It will be shown that ®& and &G’ witness the claim to be established. Since
the representations of all permutations of both W and I are in the relevant
domain of 5 in both ®& and @&’, they are internally +closed. To see that
m(®6) # 7(®G’), note that (23) € m(®S); but (23) ¢ 7(&');. To see that
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e(®6) = e(®&'), note that both of them are identical to the equivalence system
~ such that ~z;= idy for all ¢ € {2,3,4,5}, and = is the equivalence relation
corresponding to the partition {{1},{2, 3,4}, {5}}. O
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