Exclusive Disjunction and the Biconditional: An Even-Odd Relationship

JOSEPH S. FULDA Mount Sinai School of Medicine New York, NY 10029-6574

An elementary truth table argument shows that exclusive disjunction is just the negation of the biconditional: $(P \oplus Q) \equiv \neg (P \Leftrightarrow Q)$. This relationship is sometimes used to explain why inclusive, rather than exclusive, disjunction is the standard disjunction. Either disjunction can be formed from the other $((P \lor Q) \equiv ((P \oplus Q) \oplus (P \land Q)))$; $(P \oplus Q) \equiv ((P \lor Q) \land \neg (P \land Q)))$, but only exclusive disjunction is the negation of another simple connective.

However, while $P \oplus Q$ is logically equivalent to the *negation* of $P \Leftrightarrow Q$, $P \oplus Q \oplus R$ is logically equivalent to $P \Leftrightarrow Q \Leftrightarrow R$ itself. (One can omit all parentheses in logical expressions involving only \oplus or \Leftrightarrow , since both connectives are commutative and associative.) The reason for this is that \oplus is a mutual exclusivity connective, whereas \Leftrightarrow is an identity connective. Hence, $P \oplus Q \oplus R$ is true precisely when $P \oplus Q$ and R have opposite truth values, which occurs precisely when $P \Leftrightarrow Q$ and R have identical truth values. Generalizing this pattern gives strings of propositions connected by \oplus or \Leftrightarrow that alternate in accordance with the following identities:

(A)
$$\bigoplus_{i=1}^{n} P_i \equiv \stackrel{n}{\underset{i=1}{\Longleftrightarrow}} P_i$$
, for n odd;

(B)
$$\bigoplus_{i=1}^{n} P_i \equiv \neg \left(\stackrel{n}{\underset{i=1}{\Longleftrightarrow}} P_i \right)$$
, for n even.

We now prove these identities by mathematical induction on the number of propositions.

Proof. Basis: The logical equivalence $P_1 \oplus P_2 \equiv \neg (P_1 \Leftrightarrow P_2)$ follows directly from the truth tables for the two expressions.

Induction Step: Assume the identities true for an integer $n \ge 2$. We will show them true for n + 1.

- (A) n is odd. We begin with $\bigoplus_{i=1}^{n+1} P_i$, which can be rewritten $(\bigoplus_{i=1}^n P_i) \oplus P_{n+1}$. By the basis, this is equivalent to $\neg((\bigoplus_{i=1}^n P_i) \Leftrightarrow P_{n+1})$. By the induction hypothesis, this is equivalent to $\neg((\Leftrightarrow_{i=1}^n P_i) \Leftrightarrow P_{n+1})$. This, in turn, is just $\neg(\Leftrightarrow_{i=1}^{n+1} P_i)$, which concludes the induction step for case (A) and with it the proof of case (A).
- (B) n is even. We begin with $\bigoplus_{i=1}^{n+1} P_i$, which can be rewritten $(\bigoplus_{i=1}^n P_i) \oplus P_{n+1}$. By the basis, this is equivalent to $\neg((\bigoplus_{i=1}^n P_i) \leftrightarrow P_{n+1})$. By the induction hypothesis, this is equivalent to $\neg(\neg(\Leftrightarrow_{i=1}^n P_i) \leftrightarrow P_{n+1})$. Since $\neg(\neg P \leftrightarrow Q)$ is true just when P and Q have identical truth values (i.e., $\neg(\neg P \leftrightarrow Q) \equiv (P \leftrightarrow Q)$), this in turn yields $(\Leftrightarrow_{i=1}^n P_i) \leftrightarrow P_{n+1}$, which is just $\Leftrightarrow_{i=1}^{n+1} P_i$. This concludes the induction step for case (B) and with it the proof of case (B).

Acknowledgments. I would like to acknowledge the comments of an anonymous referee. I also wish to dedicate this note to Mr. Samuel Block, an outstanding teacher of mathematics, from whom I first learned to appreciate identities and their proofs.