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A Introduction

Two-dimensional semantics, which can represent a distinction between apriority and necessity,
has wielded considerable influence in the philosophy of language. In this paper, I axiomatize
the logic of the t operator of Stalnaker (1978) in the context of two-dimensional modal logic.
This operator traces its ancestry through Segerberg (1973) and Aqvist (1973).

In two-dimensional modal logic, the truth of a formula ¢ in a model M is relativized
to two parameters: a parameter representing the world-as-actual, which in our semantic
notation (as in (@), (1), and (M), below) appears first, and a parameter representing the
world of evaluation, which we write second.! My exposition leans on Stalnaker’s notion
of diagonalization, and his characterization of a priori/necessary (A/M) distinction as the
contrast between the truth of Mt ¢ and the truth of l¢. The Kripke models used for this
result are shown to be equivalent to Stalnaker’s matrix models, which are well known in
philosophy of language.

I call this proof system B2D, for “basic two-dimensionalism”. The object language contains
both “actually” (@) and the { operator.

(@) M,y,z Qo iff M,y,yF ¢
(1) My, z 1o iff M,z zF ¢

The language also contains a global S5 modality B common in discussions of two-dimensional
semantics (Crossley & Humberstone, 1977; Davies & Humberstone, 1980; Fritz, 2013, 2014):

(W) M,y,x E W iff for all 2’: M,y,2" E ¢

*This paper benefited from the input of many people. Warm thanks to Peter Fritz, Shawn Standefer,
Thomas Icard, Lloyd Humberstone, Jarek Macnar, Michael Nielsen, Wes Holliday, Yifeng Ding, Sridhar
Ramesh, Larry Moss, James Walsh, and especially Arc Kocurek.

IThere is considerable variation in terminology for the first parameter, and indeed whether it should be
thought of as a world, or something else (usually richer). Prominently, this parameter corresponds to the
world of the contert in Kaplan (1989), and to the scenario parameter in Chalmers (2004).
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The focus on t, and the gloss on apriority as Bf, marks a contrast with the classic literature
on two-dimensional modal logic, which is centered on @.23

Despite this traditional focus, the dagger maintains its unique interest. It is useful to
have separate representations of  and B, for example, to model the distinctive maneuvers
of “diagonalizers” (Stalnaker, 1978) and “supervaluers” (Thomason, 1970) in cases where the
indeterminacy of the open future affects both the content and the truth-conditions of future-
directed discourse (MacFarlane, 2009; Fusco, 2019). In a quite different context, the notion
of diagonalization—the interpretation of ¢ as f¢p—been used in formal epistemology to model
subtleties of Bayesian learning. Stalnaker (2010)’s discussion of the Sleeping Beauty prob-
lem (Elga, 2000), for example, suggests that there is a proposition Beauty learns when she
wakes up after the coin-toss experiment which is distinct from a superficially indistinguishable
proposition she knew before—the key difference being that the first proposition is the diago-
nalization of the second.* These applications are conceptually at home in a framework which
treats t on a par with A. Other {-centric work in the literature includes a brief discussion of {
in Ch. 10 of Sider (2010), under the name ‘x’; and the discussion in Cresswell (2012), under
the name ‘Ref’. Closer to the present study, a completeness theorem for tableau systems
featuring @, A, and { (under the name ‘®’) appears in Lampert (2018).

In the final section of the paper, I discuss the relationship between the proof system
presented here and Aquist logics (Aqvist, 1973; Segerberg, 1973, pg. 77), which intuitively
privilege the space of worlds over the space of world-pairs—and hence the space of propositions
over the space of general dipropositions studied here.’

A.1 Two Dimensionalism via {: an outline

Stalnaker’s classic discussion in “Assertion” introduces two-dimensional semantics by injecting
uncertainty into a situation where speakers express thoughts using context-sensitive language.

Let me give a simple example: I said you are a fool to O’Leary. O’Leary is a fool,
so what I said was true, although O’Leary does not think so. Now Daniels, who
is no fool and who knows it, was standing near by, and he thought I was talking
to him. So both O’Leary and Daniels thought I said something false: O’Leary
understood what I said, but disagrees with me about the facts; Daniels, on the
other hand, agrees with me about the fact ..but misunderstood what I said. Just
to fill out the example, let me add that O’Leary believes falsely that Daniels is
a fool. Now compare the possible worlds i, j, and k. i is the world as it is ..j is
the world that O’Leary thinks we are in; and k is the world Daniels thinks we are
in...the following TWO-DIMENSIONAL matrix also represents the [first and] second
way(s] that the truth-value of my utterance is a function of the facts.

2For other work centered around @, see, inter alia, Crossley & Humberstone (1977); Gregory (2001);
Blackburn & Marx (2002); Hazen et al. (2013); Fritz (2013, 2014).

31t is worth noting, in this respect, that apriority (A) can also be expressed via the compound “fixedly
actually” (F@) operator discussed by Davies & Humberstone (1980). The semantic entry for F is:

(F) M,y,zE Foiff for all y': M,y ,xzF ¢

4See the exposition in Magidor (2010). Similar arguments play a role in screening-off arguments in decision
theory (Ahmed, 2014, Ch. 4.1, Fusco, 2018).

5The term diproposition comes from Humberstone (1981), whereas propositional concept is used by Stal-
naker op. cit..
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p= "You are a fool

Figure 1: A two-dimensional matrix (figure from
Stalnaker (1978)).

In Stalnaker’s 3x3 diagram, the vertical axis represents different values of the world-as-
actual parameter, while the horizontal axis represents different values of the world of eval-
uation parameter. In this particular example, the vertical axis disambiguates different res-
olutions of the context-sensitive expression “you”, and the horizontal axis shows worlds i, j,
and k in their role as arguments to the relevant propositions expressed. Stalnaker points out
that the diagram represents the speaker and O’Leary as agreeing on what proposition was
expressed by the utterance (since the same row of truth-values, T, F, T, appears to the right
of both 7 and j), even though O’Leary believes what was said was false.® That is, the proposi-
tion O’Leary thinks was expressed (i — T, j — F, k — T) is false in the world he thinks he is
in (viz., 7). The fact that the same column appears under ¢ and k represents that the speaker
and Daniels agree on who is a fool and who isn’t: both the-world-according-to-the-speaker
(viz., i) and the-world-according-to-Daniels (viz., k) agree, for each context-insensitive dis-
ambiguation of the “you” in you are a fool (respectively: O’Leary in worlds ¢ and j, and
Daniels in world k), on whether the proposition expressed by that disambiguated claim is
true or false.

The “you are a fool” example involves a misunderstanding of an utterance (on Daniels’s
part). But sometimes a failure to know how context sensitivity is to be resolved is recognized
by all parties. When several candidate worlds are thus ineliminable, a sentence ¢ can be
rationally (re)interpreted as f¢: as Stalnaker puts it, the { takes the diagonal of a matrix and
“projects” it into the horizontal (op. cit., pg. 82). This is diagonalization.

i 7 k T j k

i+ | T|F|T i | T|F|F

GTTTFET i [TIF[F

k|F|T|F k| T|F|F
2D matrix for "you are a fool” 2D matrix for 1 (you are a fool)™

Figure 2: Diagonalization.

A diagonalized matrix satisfies the condition that the same proposition—the same “hori-
zontal” function from worlds to truth-values—is expressed relative to every candidate for
actuality (op. cit., pg. 88).” This is a precondition of identifying the context change po-
tential, or update of the conversational common ground, associated with the information
intuitively carried by an assertion of ¢ (Heim, 1982; Stalnaker, 2002). The terminology of

6As is common in the literature, I will move freely between characterizing propositions as sets of possible
worlds and as characteristic functions of those sets.

"Hawthorne & Magidor (2009) call this feature “Uniformity”, noting that diagonalization does not restore
Uniformity in non-S5 frameworks (p. 382). Stalnaker himself relates the principle to Tractatus Proposition
2.0211 (Wittgenstein, 1974).



the a priori and the a posteriori applies because Bt ¢ represents update on the proposition
expressed by t¢, which—unlike the proposition expressed by ¢—is something interlocutors
are in a position to know prior to working out exactly which world they are in. Stalnaker
goes on to apply this treatment to the contingent a priori sentence “This bar [the meter bar]
is one meter long” (op. cit., pp. 83-84; see Kripke, 1980; Wittgenstein, 1953); the proposition
expressed by the sentence might have been false, but since the sentence cannot be falsely
uttered, it does not rule out any worlds as candidates for actuality.

Here, we investigate the logic of the two-dimensional language of Crossley & Humberstone
(1977), augmented by . A completeness result, with respect to a class of matrix models for
the proof system introduced in the next section, follows closely the strategy of Fritz (2014),

§2.

B The logic B2D

Definition 1. Language:

L:=At|(pA@)| 0| T¢|Q0 | M
¢, V, = and = defined as usual; A¢ (it is a priori that ¢) defined as B 1 ¢.

Definition 2. Let B2D be the proof system axiomatized by Modus Ponens and Uniform
Substitution; all Boolean tautologies; the K Axiom and Necessitation for each primitive
modal operator; and the following axioms:

(Tm) Wp —p (Fy) tp=~1-»

(5m) #p — Hep (X5) f(p — @p)
(@54) €#@p — @p (Y5) @(p— tp)

(G) Wp — @p (44) Mip—>HiWip
(Fa) @p=-@Q-p (54) #tp—Midip

Notation: Fpgop ¢ holds if ¢ belongs to the smallest set of formulas that contains all the
axioms and is closed under the rules of inference.

While £ augments the language of Crossley & Humberstone (1977) and Fritz (2013, 2014), it
is a fragment of the larger language of Segerberg (1973). First we prove some Facts in B2D
that are familiar from this literature.

Fact 1. FBQD T(p = @p)

Proof. The right-left direction of the embedded biconditional is an axiom.

We reason with the following equivalences:

1. f(-p— @-p) instance of (X_,)

2. f(-@Q-p—p) from (1), Contraposition

3. f(@p— p) from (2), (Fa), DNE

4. 1(@p=p) from (3), (X, ), Necessitation and K Axiom for }

Call this theorem (X) and call the theorem {(@Qp — p), which was proved at Step 3 above,
(Xo). 0



Fact 2. FBQD @(p = ‘i‘p)

Proof. The right-left direction is an axiom. The left-right direction is immediate from a proof
similar to the proof of Fact 1. Call this theorem (Y), and call the theorem Q(fp — p), which
was proved at Step 3 in the analogous proof to the proof of Fact 1 above, (Y.). O

Fact 3. Fpop @Qp — HQp
Proof. From (@54) and (Fg). Call this theorem (Q5g) (Crossley & Humberstone, 1977, pg.
14).8 O

Fact 4. Fpop T Tp=@1p

Proof. The left-right direction is immediate from (4,) and (Tm). The right-left direction is
immediate from (5,) and (Tm). Call this biconditional ({41), or the columnarity of Rm. O

Fact 5. |_BQD 'I"i‘pE 'i'p

Proof. We reason with the following equivalences:

1. f@p=ip from Fact 1, K axiom for
2. Qtp=a@p from Fact 2, K axiom for @
3. fQip=1ttp from (1) (substituting p with fp)
4. 1Q@Tp=T1Qp from (2), Necessitation with {
5 tip=tp from (1), (3), (4), Transitivity
Call this (Redt). O

Fact 6. Fpop @Qp = @p
Proof. This can be proven analogously to the proof of Fact 5. O

Call this (Reda).
Fact 7. Fpop B {p— @p

Proof. From (G) and (Y) (viz., Fact 2). By instantiating ‘tp’ for p, we get Bip — Q1 p
from (G). By distributing the @ operator over (Y), we get @ p = @Qp. Hence B{p — @p by
transitivity of —.

Call this (AQ). O

Summarizing these facts:

8Because Crossley & Humberstone use ‘A’ for “actually” and ‘7’ for our M, their version is called ‘(A54)".



(X) t(p=Qp) (416) T6tp=@tp
(X)) t(@p—p) (Red;) T1p=1p
(Y) Q(p = 1p)
(Y) Q(tp — p) (Reda) @@p =@p
(@5m) @p — HQp (AQ) B ip— @p

B.1 The class Frgop

Definition 3. A Kripke frame is a tuple K = (W,{Ry, : ¢ € I}) where W is a set of points
and Ry,,? € I are binary relations on W.

Fact 8. The formulas in B2D have the following global first-order correspondents in Kripke
frames (where ‘uRm o R{v’ abbreviates relation 3z : uRmzR;v):

(Tm) R is reflexive (Fa) Ra is a function
(5m) Rm is Euclidean (X-) Yw,v,u: (wRiw AvRau — v =u)

)

(@54) Yw,v,u: (wRmu A wRav) = uRav (V=) Yw,v,u: (wRev A vRtu — v =)
)
)

(44) Rmo Ry is transitive
(G) Rq is a subrelation of Rm

(54) Vz,y,a,b[(zRmy N xRma A aRib) —
(Fy) Ry is a function de(bRme A Vd(cRid — yR+d))]

Fact 9. Additionally, theorems (X, ), (X), (Y), (Y), and (@54) (c.f. Facts 1-3) have the
following local first-order correspondents in Kripke frames:

(X)) within Img(R;), Ra is reflexive (X) within Img(R;), Ra is the identity re-
lation
(Y_) within Img(Ra), Rt is reflexive
(Y) within Img(Ra), Rt is the identity re-
(@5m) Rmo Rae C Rao lation

Definition 4. A basic matrix frame M is a Kripke frame <WX,R).(,Ré,Rf), where
WX = X x X for some nonempty set X and:

o (y,2)Ra(y. ') if y =y
o (y,m)RI (Y, ') iff y =2’ =y.
o (y,)RF (Y, 2') ity =2 =a.

The guiding spirit of the completeness proof for the class of basic matrix frames comes
from Fritz (2014, §1-2). Following that proof, we identify three types of structure, M C R C
FrB2D-

1. Frgop, the class of Kripke frames on which B2D is valid;

2. R, an intermediate class of “B-Restall frames”;

9S0-called because of their similarity to the frames in Restall (2012).



3. M (the target class), the class of basic matrix frames.

Freop is the class of Kripke frames for which soundness and completeness for the B2D axioms
is immediate via Sahlqvist’s Completeness Theorem (Blackburn et al., 2002, Ch. 4). The
second class, R, is the class of point-generated subframes of Frgop. The smallest class, M, is
the class of basic matrix frames, identical to those used by Stalnaker in his discussion of the
“you are a fool” and “this bar is one meter long” cases.

We seek to show that these classes are modally equivalent (Frgop «~ R «~ M): that
is, that the same sets of formulas are satisfiable in each. To do so, we use two invariance
results for modal models: (i) Frgop «~ R because modal satisfaction is invariant under
generated submodels; and (ii) R e~ M because modal satisfaction is invariant under bounded
morphisms.

gen. submodel bounded morphism

Notation: for a relation Ry that is a function, I will use “fy(x)” for the unique y s.t. xRyy.
Let D = Img(Ra). I will use dy, ds, etc. for arbitrary worlds in D.

Now for some additional frame conditions, imposed by the axiom schemata on F € Frgyp:

Fact 10 (Alternative characterization of diagonal points). Img(Ra) = Img(R;).

Proof. Let u € Img(Ra). Hence by (Y_), u € Img(R;). Conversely, let u € Img(R;). Hence
by (X.), u € Img(Ra). O

Fact 11. Rgo R; is Euclidean.

Proof. For brevity, let R4 := Rm o R;. Suppose xRy and xR 4z. Thus, there is a y' and 2’
such that xRmy’ and y'Rty, and also xRmz’ and z’'R;z. Since xRmy’ and xRmz’ and 2z’ R;z,
by (54), there is a 2 such that zRmz” and for all u, if 2" Ryu, then y'Ryu. Now, within
Img(Ry), Ry is the identity relation (by (X) and Fact 10.) Hence, if ¥’ Riu, then v = y.
Therefore, if 2" Ryu, then u = y. Since R; is a total function, that means z” R+y. Hence, we
have zRmz" and 2z Rty. So, zRay. O

Fact 12 (Square Completion (Symmetry) in Img(Ra)). Vdi,ds € Img(Ra): if di Rmo Rida,
then doRg o Rle.

Proof. Suppose di € Img(Ra). Then 3z : dRmzR+di: Rm is reflexive and R; is reflexive
within Img(Ra). By assumption, 3z : d; RmzR;ds. It follows by (5,4), the Euclideanness of
Rm o Ry, that Hz’ng.z'Rle. O

Fact 13 (Rm o Rt an equivalence relation on Img(Ra)). Rm o Rt an equivalence relation on

Img(Ra).

Proof. This follows from the fact that within Img(Ra), Rm o Rt is symmetric (by Fact 12),
transitive, and reflexive. O
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Figure 3: Facts 12 (Square completion) and 14
(Mirror points).

Fact 14 (At Mirror Points). Suppose wRad; and wR;ds. Then 3w’ s.t. w’Rads and w' Rid;.

Proof. Suppose wRad; and wRtdy. It follows (from (X)) that both di,d> € Img(Ra).
Because wRad;, wRmd; and so d; Rgw by symmetry of Rg. Hence 3z : diRmzR;ds as
witnessed by w. By Fact 12, 3z : doRmzRidi. Let w’ be the z such that doRmz A zR+d;.
Since w'Rmds and daRads, by (Q54) w' Rads. Hence w' Rads and w’'Ryd;. O

Theorem 1. B2D is sound and strongly complete with respect to Frgop, the class of B2D-
frames.

Proof. By the Sahlqvist Completeness Theorem (Blackburn et al., 2002, Ch. 4).

B.2 The class R

We seek to show that this class is modally equivalent to the class of B-Restall frames—that
a set of formulas is satisfiable on Frgop iff it is satisfiable on R, the class of B-Restall Frames.
To do so, it will be helpful to prove a Lemma concerning the point-generated universe.

Notation: in general, we write R[Y] for the image of a set Y under R.

Lemma 1. For any point-generated subframe F,, = (W', Rg, R}, Rg) € Frgop: W' =
Ru[R;i[Ra[{w}]].

Proof. We let X := Rm[R:[Rm[{w}]]]. We show (1) w € X and (2) that for each operator Vv
that Ry[X] C X.

(1) Let u = fa(w). By (G), wRmu. By (Y), uR+u. By symmetry of Rm, uRgw. Hence via
u, it follows that w € X.

(2-W). Since Rp is transitive and reflexive, Rm[X] = X.

(2-1). Let v € R+[X]. Now R:[X] = Ri[Rm[R:[Rm[{w}]]]], by the definition of X. By (4,),
Ri[Rm[R{Rm[{w}]]]] = R{[Rm[{w}]. Hence it suffices to show that if v € R;[Rm[{w}], then
v € Rm[R{[Rm[{w}]]]. This follows immediately from (Tmw): viz., from the fact that vRgv.
(2-@). Let v € Ra[X]. By Fact 7, v € R{[Rm[X]] and so v € R;[Rm[Rm[R:Rm[{w}]]]]].
By Transitivity of Rm, v € R{[Rm[R[Rm[{w}]]]]. By (44), v € Ri[Rm[{w}]. From (Tm), we
again conclude that v € Rm[R;[Rm[{w}]]. O



Definition 5. A B-Restall Frame is a frame R = (W, Rm, Ra, Rt) satisfying three condi-
tions:

1. Rm is an equivalence relation
2. Ra is a function such that

(i) wRav - wRmv

(ii) Ra maps any two Rg-related worlds to the same point
3. R; is a function such that

(i) for any w: R;[Rm[{w}]] = Img(Ra)
(i) Ry is reflexive over Img(Ra)

Let R be the class of B-Restall frames. Let D be the set Img(Ra) in a B-Restall frame.

Theorem 2. Frgop «~ R.

Theorem 2 is an consequence of the Lemmas 2 and 3, below. By Lemma 2, any formula
falsifiable in R € R is falsifiable in some F € Frgop. By Lemma 3, any formula falsifiable in
a point-generated subframe F,, € Frgyp is falsifiable in some R € R.

Because modal satisfaction is invariant under point-generated submodels (Blackburn et al.,
2002, Proposition 2.6.), the formulas falsifiable in R € R are ezactly the formulas falsifiable
in F € Frgop.

Lemma 2. R C Frgop.

Proof. To verify this, it suffices to go through the first-order correspondents of B2D. I include
the proof of (X_,) because it is not straightforward. Suppose wR+v and vReu. Since Ry is
reflexive, w € Rm[{w}]. Hence, v € R;[Rm[{w}]], which means v € I'mg(Ra) by Condition
3-(i). So for some z € W, zRqv. By Condition 2-(i), zRgv. So by Condition 2-(ii), zRau iff
vRau; but by supposition, we have vRaqu, so zRqu. Since Rq is a function and zRqv, we
have u = v.

O

Lemma 3. Every point-generated subframe F,, € Frgop is a B-Restall frame.

Proof. Where F,, = (W', R, ’T7R’.> is a w-generated subframe in Frgyp, we want to es-
tablish that F,, satisfies Conditions 1-3 of B-Restall frames. Condition 1 is immediate from
(Tm) and (5m). Condition 2 follows from three axioms: (1) (Fa), which guarantees that Ry
is functional on {w € W'}; (2) (G), which guarantees that R, is always a subrelation of Ryg;
and (3) (@5m), which guarantees that Rg o Ry C Rj.""

Finally, we want to establish that JF, satisfies Conditions 3-(i) and 3-(ii) of B-Restall
frames. For Condition 3-(ii): this follows from Fact 9 (Y._). We begin with Condition 3-(i):
Ri[Rg[{v}]] = Img(Rg). The C direction follows from (X.). For the O direction, let v be an
arbitrarily chosen world in W’ and let d be an arbitrary world in Img(R,). Let & = fa(w).

10Conditions 1-2 on B-Restall frames are identical to Fritz’s (op. cit., pg 392), and the argument identical
as well.



We show: (a) vRg o R and (b) wRyg o Rid. It will follow by the transitivity of Rg o R}
that vRyg o Rid and, since d is arbitrary, that Ri[Rg[{v}]] 2 Img(Rg).

For (a), we note again that by Lemma 1, Ju,? s.t. wRgu and uR’T{) and vRgv. Since
(by Condition 2) wRgw and Rg is an equivalence relation, it follows that @wRgu and uRﬁrf)
and vRgv. By Fact 10, both ¢ and @ are in D, so by Fact 12 (square completion), Ju’ s.t.
ORgu'Riw. But since Ry is an equivalence relation and 9 Rgu/, it follows that v Rgu'. Hence
vRgu' Rib.

For (b), we note that by Lemma 1, Ju, v s.t. wRgu and uR’Tu’ and u'Rgd. Since wRg
by Condition 2, it follows that wRguRiu'Rgd. By Fact 1, since v’ € Img(R}), u'Rgu';
since u' Rgd and d € Img(Ry,), it follows that «’ = d by Condition 2. We conclude that Ju:
W RguR}d.

Moving on to Condition 3-(ii): Ry is reflexive over Img(Ra). This follows from Fact 9
(Yeo).

O

The next step is use R € R to construct a matrix frame M’ which will support a bounded
morphism from M’ onto R. This construction follows the spirit of Fritz (2014), Lemma 2.8:
each row of the matrix is constructed from one cell of the Rg relation in R. (I adopt the
notational convention that [z]g is the equivalence class of z under the equivalence relation

Fritz’s construction, for R and M’ with only the Rm and Reg-relations, involves proving
for each w € Wg the existence of a surjection a,, : W — [w] Re> from v € Wx to somewhere
in w’s local Rg-cell, such that o, (w) = fa(w). Intuitively, the function a,,(-) constructs
a matrix model M’ row by row. As Fritz says, such an onto function exists for cardinality
reasons and because (by (@54 ) and (Fa)) there is a unique Ro-fixed point in each Rm-cell.
The homomorphism h from Wi to Wy is given by h({w, v)) = ay,(v) (see Figure 4.)

O‘io [w:] Rm

)
O O O (1] e

W xW

Figure 4: An example of the homomorphism in
Fritz (2014). Arrows in the B-Restall frame R show
the Rq relation.
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Our version will be similar, but will require a larger matrix for coordinating the R;-relations
as well the Rg- and Rg-relations. Lemmas 4-6 and Corollary 1 establish a matrix-like struc-
ture within R € R. For this purpose, it will be useful to introduce the following notation:
where R is a B-Restall frame, let C = {c4 : d € D} be the set of Rg-cells in R. T will use
i,7 ... as indices over D and y,x ... as indices over W.

Lemma 4. | J,cpci = W.

Proof. Immediate from the fact that Rg is an equivalence relation. O

Lemma 5. There is a unique Ra-fixed point in each Rm-cell ¢; CW.

Proof. Immediate from Condition 2 on B-Restall frames. Notation: call this Rq-fixed point
fa(ci). O

Lemma 6. For any ¢; and any c¢; C W, Jw € ¢;, v € ¢; s.t. wRyv.

Proof. Let d;, d; be the Ra-fixed points of ¢; and ¢;. By Condition 3 on B-Restall frames and
the fact that d; € Img(Ra), 3w € W s.t. d;Rmw and wRd;. By the definition of ¢;, w € ¢;.
By Lemma 5, d; is unique. O

More notation: where ¢; € C, let ¢! be the set {w € ¢; : v € ¢; such that wRyv}. Let fi(c])

be the unique v € ¢; s.t. Yw € ¢/, wRyv. That fi(c!) is a fixed point of Ry follows from Fact

D.

Corollary 1. Each ¢; can be partitioned into {cf 1J € D}, where each cZ is a nonempty
subset of ¢; s.t. Yw € ¢}, wRi(falc))). Hence U;cp cf = ¢i, and U p(Ujep cf) = W

Theorem 3. R «~ M.

Proof. For the right-left direction, we observe that M C R.

For the left-right direction: given a B-Restall frame R with domain W and I'mg(Ra) = D,
we will build a matrix frame M and construct, row-by-row, a surjective bounded morphism

g from M to R, from which modal equivalence follows (Blackburn et al., 2002, Proposition
2.14).

Let M be the matrix frame whose set of points is (D x W) x (D x W). For any i,j € D
and y € W, let A]  be the set {(i,y)} x {(j,x) : 2 € W}. Note that |A] |=[W].

For each i,j € D and y € W, fix some gfy : W — ¢, an onto function s.t. if i = j then

gl , () = fa(ci).

This condition maps the “diagonal” points of the matrix frame into D in the B-Restall
frame.

11



(dy,wy)

] L[]

WX =(Dx W) x (DxW)

d,

- /—\‘ |

Al C(DxW)x(DxW) JCw

Figure 5: Building a homomorphism F' from M to
R. Stars show the Rq-fixed points of R.

Such onto functions exist for cardinality reasons: \Afy| > |¢!| because W 2 ch.
Define F': (D x W) x (D x W) = W by F((i,y), (j,w)) = g/ ,(w).

To show that F' is a bounded morphism from M to R, it suffices to go through the Forth
and Back Conditions for v € {l, @, {} for each point ((i,y), (j,z)) € (D x W) x (D x W),
making repeated use of the facts that (i) g ,(z) € ¢, (ii) Yw € ¢, fa(w) € ¢; and fi(w) € ¢,

and (iii) Yw € ¢, if i = j, then fi(c]) = fa(cy).
Below, I show the Forth and Back conditions for v=M, Vv =1, and v = @.!!

W, Forth: we want to show that if (i, ), (j, 2)) R (i, ), (7', a")), then F({i, ), (j, =) RmF (i), (7', 2")).
This is immediate from the fact that both F((i,y), (4, z)) and F({i,y), (j',2')) are in ¢;; in
any B-Restall frame, all w € ¢; are Rg-related to one another.

B, Back: we want to show that if F((i,y), (j,z))Rmv’, then there is some v such that
F(v) = v and ((i,y), (j,z)) Rgv. By surjectivity, each v’ € ¢ is such that there is some
v such that: F({({i,y), (j',v))) = v'. Because F({{(i,y), (§',v))) € {(i,y)} x (D x W), it is
guaranteed for any such point that ((i,y), (j, z)) Rm{{(i,y), {4/, v)).

" The mapping F from M = (WX, Rg@(, Rf, R;f, VX) to R = (W, Ra, R;,Rm,V) is a bounded morphism
if it satisfies the following conditions (Blackburn et al., 2002, pg. 59):

1. w and F(w) satisfy the same proposition letters;

2. if wRX v then F(w)RyF(v) (the Forth condition);

3. if F(w)Ryv' then there exists some v s.t. wRY v and F(v) = v’ (the Back condition).

We can ensure that condition 1 is met for any valuation function V' on R by ensuring that F(w) satisfies the
same proposition-letters as w for any w € Wg.
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f, Forth: we want to show that ((i, y), (j, )) R ((j, ), (j, z)) entails F((i,y), (j, 2)) Rt F ((j, z), (j, z))-
By construction, F({i,y), (j,z)) € ¢; and F((j,z), (4, x)) € ¢}. Hence F((i,y), (§,z)) Ri F({j, z), (j, z))-

T, Back: we want to show that if F'({i,y), (j,x))Rsv’, then there is some v such that
F(v) =" and ((i,y), (4, x))Rfv. By construction, if F((i,y), (j,z))R+v’, then v = fa(c;).
A witness for the existential is ({j, ), (j, z)).

@, Forth: we want to show that ((i,y), (J, x))RX ((i,y), (i, y)) entails F({i,y), (4, x)) Ra F ({1, y), (i, y))-

For this, it suffices to show that g/, (x)Rag; ,(y). By construction, both g/ (x) and g; ,(y) €
¢i, and gi  (y) is the Ra-fixed point of ¢;. Hence F((i,y), (j,z))RaF((i,y), (i, y))-

@, Back: we want to show that if F'({i,y), (j,2)) Rav’, then there is some v such that F(v) =
v and {(i,y), (j, z)) Rav. By construction, a witness for this existential is ((i,y), (i,y)).

O

Theorem 4. B2D is sound and complete for M.

Proof. From Theorems 1-3. O

C Looking Ahead

The B operator is an S5 modal operator, and B2D is a conservative extension of a simple
S5 modal logic. In looking ahead to a two-dimensional treatment of other logics, we should
ask how two dimensions might be leveraged to upgrade a class of traditional Kripke models
whose original accessibility relation(s) capture features of various “flavors” of possibility and
necessity.

For example, there is a sense in which the l of B2D models an all-inclusive global modality,
where every world is accessible from every other. This implied globality is why the clause
for B¢ in §A required no R-restriction. But the accessibility relation for B in B2D is not, of
course, global on the space of world-pairs: for A to remain rigid in the scope of B, as (Q5g)
mandates, B cannot shift the world-as-actual parameter. Hence whether the two-dimensional
entry (H) expresses a truly global modality, or not, depends on which space—the space of
worlds, or the space of world-pairs—one takes to be fundamental to the model.

An Aquist logic (Aqvist, 1973; Segerberg, 1973, pg. 77) can be seen as taking the space of
worlds to be fundamental, in the following sense. It interprets the atoms of L as functions
from worlds to truth-values that are constant in the world-as-actual parameter—that is, as
propositions in Stalnaker’s sense.

The class At of atomics thus exhibits special features that arbitrary wifs in the full language
do not have. Atoms satisfy the restricted schema (#15):

Definition 6 (Segerberg’s Axiom (#15)).
(#15) a = ta, for a € At.

Call the constraint imposed by (#15) barcodeness: if fi(w) = fi(w’), then for atomic a:
w F o iff w' F «. Intuitively, this corresponds to atomic matrices which are their own
diagonalizations.
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This commitment, at the level of atoms, to the fundamentality of worlds and propositions
is attractive in considering the question in this section: the question of how to upgrade a class
of non-S5, one-dimensional Kripke models into stereco. On the Aqvist view, a 1D frame is
“lifted” into two dimensions—that is, into the space of matrices—in a way that conservatively
extends its profile throughout the one-dimensional fragment of the original language, which
is then enriched by A and . A way to do this is to duplicate any one-dimensional Ry relation
in the W x W plane, preserving its frame conditions across the horizontal, and to incorporate
axiom schema (#15) into the relevant proof system, thus disallowing non-barcode atoms. The
confinement of Ry to the horizontal respects (@54 ), the inability of box-diamond modalities
to shift the world-as-actual parameter. (#15) limits the expressive power of the propositional
fragment to the expressive power of an arbitrary valuation function paired with the original,
pre-lifted frame. (#15)’s limitation on closure under substitution thus follows the spirit of e.g.
Williamson (2013), who remarks that “the obvious rationale for insisting on ...closure...under
uniform substitution in a propositional system is a reading of non-logical sentence letters as
propositional variables.”!?

Call such an enriched model a “2D lift” of a one-dimensional Kripke frame, and call the
lifted frame enriched with @ and t relations a “Matrix lift” of the same frame. Here, we
demonstrate that adding (#15) to our B2D completeness result fits the Aqvist mold for
simple S5 frames.

Definition 7. Let B2D + (#15) be the proof system axiomatized by Modus Ponens, Neces-
sitation for each primitive modal operator, Axiom (#15), and the axiom schema

(+B2D) ¢, where ¢ is a theorem of B2D.

Note that B2D + (#15) lacks the rule of Uniform Substitution.'?
Definition 8 (F', the matrix lift of a frame class F). Where F is a class of Kripke frames
(W, {Ry, : i € I}), the matrix lift of F, FT, is the class of matrix models MX = (WX {Rg, :
i€}, VX) st

e WX=WxW

« Ry ={{{y,w), (y, ) € WF x W¥ s wRy,w'}

« R ={{{y,w), (y/,w')) e WX x WX .y =y and y/ = w'}

o RY ={{{y,w), (¥, w)) € W x W 1w =w'and y' =w'}

o VX At (W) is such that (y,w) € VX(p) iff (v, w) € VX(p)

Notation: call such a valuation function VX a “vertically constant valuation function”.

Theorem 5. B2D + (#15) is sound and complete for S5', the matriz lift of the class of S5
Kripke frames.

Proof. Soundness: For (+B2D), since B2D is valid over M and S5T C M, every theorem of
B2D is valid over S5'. For (#15), suppose for some atom a that a = ta is false at some

2Williamson (2013, pg. 76, emphasis added); see also Burgess (1999, pg. 176).
13For discussion, see, inter alia, Smiley (1982); Holliday et al. (2013).
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(y,r) € Wrr, M € S5T. Then either M,y,z F a but M,x,z ¥ a, or M,y,z ¥ a but
M, z,z F a. Either way, M is not a matrix lifted Kripke frame.

As for the rules: the proof that Modus Ponens preserves validity is straightforward. For
Necessitation, suppose that ¢ is valid over S5T. Let M € S5" and let y,xz € W. Then since
¢ is valid over S5', that means for any 2/ € W: M,y,2’ E ¢, so (i) M,y,z = B¢; (ii)
M, y,y E ¢, s0 M,y,x E Qp; and (iii) M, z,z E ¢, so M,y,x E 1¢. Since y, x were arbitrary,
it follows that ¢, Q¢, and f¢ are all valid over S5". So all the rules preserve validity.

Completeness: suppose I' is a B2D + (#15)-consistent set of formulas. Take A D IT" such
that A is maximally B2D + (#15)-consistent. By Theorem 4, there is a matrix model M
and some y, z € W such that M,y,z F A. By Necessitation for B and |, B{B(a = fa) € A.
Hence, M,y,z £ B { B(a = fa), which means for any z,w € W: M,z,w E a = fa. So for
any 2,2 ,w e W:

(z,w) € VX(p) iff Mz,wEp
ifft M,z,wE1p
if M,w,wEp
iff M,z wktp
iff M,z wkp
iff (2, w) € V¥(p).

Hence, M € S5'.
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