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A SIMPLER AND MORE REALISTIC SUBJECTIVE DECISION THEORY
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ABSTRACT. In his classic book Savage (1954, 1972) develops a formal system of ra-
tional decision making. It is based on (i) a set of possible states of the world, (ii) a set
of consequences, (iii) a set of acts, which are functions from states to consequences,
and (iv) a preference relation over the acts, which represents the preferences of
an idealized rational agent. The goal and the culmination of the enterprise is a
representation theorem: Any preference relation that satisfies certain arguably
acceptable postulates determines a (finitely additive) probability distribution over
the states and a utility assignment to the consequences, such that the preferences
among acts are determined by their expected utilities. Additional problematic
assumptions are however required in Savage’s proofs. First, there is a Boolean
algebra of events (sets of states) which determines the richness of the set of acts.
The probabilities are assigned to members of this algebra. Savage’s proof requires
that this be a σ-algebra (i.e., closed under infinite countable unions and intersec-
tions), which makes for an extremely rich preference relation. On Savage’s view we
should not require subjective probabilities to be σ-additive. He therefore finds the
insistence on a σ-algebra peculiar and is unhappy with it. But he sees no way of
avoiding it. Second, the assignment of utilities requires the constant act assumption:
for every consequence there is a constant act, which produces that consequence in
every state. This assumption is known to be highly counterintuitive. The present
work contains two mathematical results. The first, and the more difficult one,
shows that the σ-algebra assumption can be dropped. The second states that, as
long as utilities are assigned to finite gambles only, the constant act assumption
can be replaced by the more plausible and much weaker assumption that there
are at least two non-equivalent constant acts. The second result also employs a
novel way of deriving utilities in Savage-style systems – without appealing to von
Neumann-Morgenstern lotteries. The paper discusses the notion of “idealized
agent” that underlies Savage’s approach, and argues that the simplified system,
which is adequate for all the actual purposes for which the system is designed,
involves a more realistic notion of an idealized agent.

1. INTRODUCTION

Ramsey’s groundbreaking work “Truth and Probability” (1926) established the
decision theoretic approach to subjective probability, or, in his terminology, to
degree of belief. Ramsey’s idea was to consider a person who has to choose between
different practical options, where the outcome of the decision depends on unknown
facts. One’s decision will be determined by (i) one’s probabilistic assessment of the
facts, i.e., one’s degrees of belief in the truth of various propositions, and (ii) one’s
personal benefits that are associated with the possible outcomes of the decision.
Assuming that the person is a rational agent – whose decisions are determined
by some assignment of degrees of belief to propositions and utility values to the
outcomes – we should, in principle, be able to derive the person’s degrees of belief
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and utilities from the person’s decisions. Ramsey proposed a system for modeling
the agent’s point of view in which this can be done. The goal of the project is a
representation theorem, which shows that the rational agent’s decisions should be
determined by the expected utility criterion.

The system proposed by Savage (1954, 1972) is the first decision-theoretic system
that comes after Ramsey’s, but it is radically different from it, and it was Savage’s
system that put the decision-theoretic approach on the map.1 To be sure, in the
intervening years a considerable body of research has been produced in subjec-
tive probability, notably by de Finetti (1937a,b), and by Koopman (1940a,b, 1941),
whose works, among many others, are often mentioned by Savage. De Finetti
also discusses problems related to expected utility. Yet these approaches were
not of the decision-theoretic type: they did not aim at a unified account in which
the subjective probability is derivable from decision making patterns. It might be
worthwhile to devote a couple of pages to Ramsey’s proposal, for its own sake and
also to put Savage’s work in perspective. We summarize and discuss Ramsey’s
work in Appendix A.

The theory as presented in Savage (1954, 1972) has been known for its compre-
hensiveness and its clear and elegant structure. Some researchers have deemed
it the best theory of its kind: Fishburn (1970) has praised it as “the most brilliant
axiomatic theory of utility ever developed” and Kreps (1988) describes it as “the
crowning glory of choice theory.”

The system is determined by (I) The formal structure, or the basic design, and
(II) The axioms the structure satisfies, or – in Savage’s terminology – the postu-
lates. Savage’s crucial choice of design is to base the model on two independent
coordinates: (i) a set S of states (which correspond to what in other systems is the
set possible worlds) and (ii) a set of consequences, X, whose members represent the
outcomes of one’s acts. The acts themselves, whose collection is denoted here as
A, constitute the third major component. They are construed as functions from S
into X. The idea is simple: the consequence of one’s act depends on the state of
the world. Therefore, the act itself can be represented as a function from the set of
states into the set of consequences. Thus, we can use heuristic visualization of two
coordinates in a two-dimensional space.

S is provided with additional structure, namely, a Boolean algebra B of subsets of
S, whose members are called events (which, in another terminology, are propositions).
The agent’s subjective, or personal view is given by the fourth component of the
system, which is a preference relation, <, defined over the acts. All in all, the
structure is:

(S, X,A,<,B)
We shall refer to it as a Savage-type decision model, or, for short, decision model.
Somewhat later in his book Savage introduces another important element: that of
constant acts. It will be one of the focus points of our paper and we shall discuss it
shortly. (For contrast, note that in Ramsey’s system the basic component consists of
propositions and worlds, where the latter can be taken as maximally consistent sets
of propositions. There is no independent component of “consequences.”)

Savage’s notion of consequences corresponds to the “goods” in vNM – the
system presented in von Neumann and Morgenstern (1944). Now vNM uses

1“Before this [Savage’s 1954 book], the now widely-referenced theory of Frank P. Ramsey (1931) was
virtually unknown.” (Fishburn, 1970, p. 161)
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gambles that are based on an objective σ-additive probability distribution. Savage
does not presuppose any probability but has to derive the subjective probability
within his system. The most striking feature of that system is the elegant way of
deriving – from his first six postulates – a (finitely additive) probability over the
Boolean algebra of events. That probability is later used in defining the utility
function, which assigns utilities to the consequences. The definition proceeds along
the lines of vNM, but since the probability need not be σ-additive, Savage cannot
apply directly the vNM construction. He has to add a seventh postulate and the
derivation is somewhat involved.

We assume some familiarity with the Savage system. For the sake of com-
pleteness we include some additional definitions and a list of the postulates in its
equivalent form in Appendix B.

As far as the postulates are concerned, Savage’s system constitutes a very suc-
cessful decision theory, including a decision-based theory of subjective probability.
Additional assumptions, which are not stated as axioms, are however required: (i)
in Savage’s derivation of subjective probability, and (ii) in his derivation of personal
utility. These assumptions are quite problematic and our goal here is to show how
they can be eliminated and how the elimination yields a simpler and more realistic
theory.

The first problematic assumption is the σ-algebra assumption: In deriving the
subjective probability, Savage has to assume that the Boolean algebra, B, over which
the probability is to be defined is a σ-algebra (i.e., closed under countable infinite
unions and intersections). Savage insists however that we should not require
subjective probability to be σ-additive.

He fully recognizes the importance of the mathematical theory, which is based
on the Kolmogorov axioms according to which B is a σ-algebra and the probability
is σ-additive; but he regards σ-additivity as a sophisticated mathematical concept,
whose comprehension may lie beyond that of our rational agent. Rationality need
not require having the abilities of a professional mathematician. In this Savage
follows de Finetti (it should be noted that both made important mathematical
contributions to the theory that is based on the Kolmogorov axioms). It is therefore
odd that the Boolean algebra, over which the finitely additive probability is to
be defined, is required to be a σ-algebra. Savage notes this oddity and justifies
it on grounds of expediency, he sees no other way of deriving the quantitative
probability that is needed for the purpose of defining expected utilities:

It may seem peculiar to insist on σ-algebra as opposed to finitely
additive algebras even in a context where finitely additive measures
are the central object, but countable unions do seem to be essential to
some of the theorems of §3 – for example, the terminal conclusions
of Theorem 3.2 and Part 5 of Theorem 3.3. (p. 43)

The theorems he refers to are the places where his proof relies on the σ-algebra
assumption. The σ-algebra assumption is invoked by Savage in order to show that
the satisfaction of some axioms regarding the qualitative probability implies that
there is a unique finitely additive probability that agrees with the qualitative one.
We eliminate it by showing that there is a way of defining the finitely additive
numeric probability, which does not rely on that assumption. This is the hard
technical core of the paper, which occupies almost a third of it. We develop for this
purpose a new technique bases on what we call tri-partition trees.
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Now this derived finitely additive probability later serves in defining the ex-
pected utilities. Savage’s way of doing this requires that the probability should
have a certain property, which we shall call “completeness” (Savage does not give it
a name). He uses the σ-algebra assumption a second time in order to show that the
probability that he defined is indeed complete. This second use of the σ-algebra as-
sumption can be eliminated by showing that (i) without the σ-algebra assumption,
the defined probability satisfies a certain weaker property “weak completeness”
and (ii) weak completeness is sufficient for defining the expected utilities.

The second problematic assumption we address in this paper concerns constant
acts. An act f is said to be constant if for some fixed consequence a ∈ X, f (x) = a, for
all x ∈ S. Let ca denote that act.2 Note that, in Savage’s framework, the utility-value
of a consequence depends only on the consequence, not on the state in which it
is obtained. Hence, the preorder among constant acts induces a preorder of the
corresponding consequences:3

a ≥ b ⇐⇒ Df ca < cb

where a, b range over all consequences for which ca and cb exist. The Constant Acts
Assumption (CAA) is:

CAA: For every consequence a ∈ X there exists a constant act ca ∈ A.
Savage does not state CAA explicitly, but it is clearly implied by his discussion and
it is needed in his proof of the representation theorem. Note that if CAA holds then
the above induced preorder is a total preorder of X.

By a simple act we mean an act with a finite range of values. The term used by
Savage (1972, p. 70) is ‘gamble’; he defines it as an act, f, such that, for some finite
set, A, f−1(A) has probability 1. It is easily seen that an act is a gamble iff it is
equivalent to a simple act. ‘Gamble’ is also used in gambling situations, where
one accepts or rejects bets. We shall use ‘simple act’ and ‘gamble’ interchangeably.
Using the probability that has been obtained already, the following is derivable
from the first six postulates and CAA.

Proposition 1.1 (simple act utility). We can associate utilities with all consequences,
so that, for all simple acts the preference is determined by the acts’ expected
utilities.4

CAA has however highly counterintuitive implications, a fact that has been
observed by several writers.5 The consequences of a person’s act depend, as a rule,
on the state of the world. More often than not, a possible consequence in one state is
impossible in another. Imagine that I have to travel to a nearby city and can do this
either by plane or by train. At the last moment I opt for the plane, but when I arrive
at the airport I find that the flight has been canceled. If a and b are respectively the
states flight-as-usual and flight-canceled, then the consequence of my act in state a is
something like ‘arrived at X by plane at time Y.’ This consequence is impossible –

2Savage’s notion of constant act can be seen as a structural equivalent of “degenerate lotteries” in the
vNM model, where a degenerate lottery δa assigns probability 1 to a given outcome a.
3Preorders are defined at the end of this section, where terminologies and notations are discussed.
4In order to extend that proposition to all acts, Savage adds his last postulate, P7. See also Fishburn
(1970, Chapter 14) for a detailed presentation.
5Fishburn (1970) who observes that CAA is required for the proof of the representation theorem, has
also pointed out its problematic nature. This difficulty was also noted by Luce and Krantz (1971), Pratt
(1974), Shafer (1986), Joyce (1999), Liu (2015), among others.
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logically impossible, given the laws of physics – in state b. Yet CAA implies that
this consequence, or something with the same utility-value, can be transferred to
state b.6 Our result shows that CAA can be avoided at some price, which – we
later shall argue – is worth paying. To state the result, let us first define feasible
consequences: A consequence a is feasible if there exists some act, f ∈ A, such that
f−1(a) is not a null event.7 It is not difficult to see that the name is justified and that
unfeasible consequences, while theoretically possible, are merely a pathological
curiosity. Note that if we assume CAA then all consequences are trivially feasible.
Let us replace CAA by the following much weaker assumption:

2CA: There are two non-equivalent constant acts ca and cb.
(Note that 2CA makes the same claim as postulate P5; but this is misleading: while
P5 presupposes CAA, 2CA does not.) Having replaced CAA by 2CA we can prove
the following:

Proposition 1.2 (simple act utility*). We can associate utilities with all feasible
consequences, so that, for all simple acts, the preference is determined by the act’s
expected utilities.

It is perhaps possible to extend this result to all acts whose consequences are
feasible. This will require a modified form of P7. But our proposed modification of
the system does not depend on there being such an extension. In our view the goal
of a subjective decision theory is to handle all scenarios of having to choose from
a finite number of options, involving altogether a finite number of consequences.
Proposition 1.2 is therefore sufficient. The question of extending it to all feasible
acts is intriguing because of its mathematical interest, but this is a different matter.

The rest of the paper is organized as follows. In what immediately follows we
introduce some further concepts and notations which will be used throughout
the paper. Section 2 is devoted to the analysis of the notions of idealized rational
agents and what being “more realistic” about it entails. We argue that, when carried
too far, the idealization voids the very idea underlying the concept of personal
probability and utility; the framework then becomes, in the best case, a piece of
abstract mathematics. Section 3 is devoted to the σ-algebra assumption. It consists
of a short overview of Savage’s original proof followed by a presentation of the
tri-partition trees and our proof, which is most of the section. In Section 3.3, we
outline a construction by which, from a given finite decision model that satisfies
P1-P5, we get a countable infinite decision model that satisfies P1-P6; this model is
obtained as a direct limit of an ascending sequence of finite models. In Section 4,
we take up the problem of CAA. We argue that, as far as realistic decision theory
is concerned, we need to assign utilities only to simple acts. Then we indicate
the proof of Proposition 1.2. To a large extent this material has been presented in
Gaifman and Liu (2015), hence we contend ourselves with a short sketch.

6 Fishburn (1970, p. 166-7), went into the problem at some detail. He noted that, if W(x) is the set of
consequences that are possible in state x, then we can have W(s) 6= W(s′), and even W(s) ∩W(s′) = ∅.
He noted that, so far there is no proof that avoids CAA, and suggested a line of research that would
enrich the set of states by an additional structure, (see also Fishburn, 1981, p. 162). The decision model
in Gaifman and Liu (2015) (also sketched in Section 4) avoids the need for an additional structure, as far
as simple acts are concerned.
7A null event is an event B, such that, given B, all acts are equivalent. These are the events whose
probability is 0. See also Appendix B.
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Some Terminologies, Notations, and Constructions. Recall that ‘<’ is used for the
preference relation over the acts. f < g says that f is equi-or-more preferable to g;
4 is its converse. < is a preorder, which means that it is a reflexive and transitive
relation; it is also total, which means that for every f , g either f < g or g < f . If
f < g and f 4 g then the acts are said to be equivalent, and this is denoted as f ≡ g.
The strict preference is defined by: f � g which is defined as f < g and g 6< f , and
its converse is denoted as ≺.

Cut-and-Paste: If f and g are acts and E is an event then we define

( f |E + g|E)(s) =Df

{
f (s) if s ∈ E
g(s) if s ∈ E,

where E = S− E = the complement of E.8

Note that f |E + g|E is obtained by “cutting and pasting” parts of f and g, which
results in the function that agrees with f on E, and with g on E. Savage takes it
for granted that the acts are closed under cut-and-paste. Although the stipulation
is never stated explicitly, it is obviously a property of A. It is easily seen that
by iterating the cut-and-paste operations just defined we get a cut-and-paste that
involves any finite number of acts. It is of the form:

f1|E1 + f2|E2 + . . . + fn|En

where {E1, . . . , En} is a partition of S.
Recall that, for any given consequence a ∈ X, ca is the constant act whose

consequence is a for all states. This notation is employed under the assumption
that such an act exists. If ca < cb then we put: a ≥ b. Similarly for strict preference.
Various symbols are used under systematic ambiguity, e.g., ‘≡’ for acts and for
consequences, ‘≤’, ‘<’ for consequences as well as for numbers. Later, when
qualitative probabilities are introduced, we shall use � and �, for the “greater-or-
equal” relation (or “weakly more probable” relation) and its converse, and � and
≺ for the strict inequalities. Note that, following Savage, we mean by a numeric
probability a finitely additive probability function. If σ-additivity is intended it will
be clearly indicated.

2. THE LOGIC OF THE SYSTEM AND THE ROLE OF “IDEALIZED RATIONAL
AGENTS”

The decision theoretic approach construes a person’s subjective probability in
terms of its function in determining the person’s decision under uncertainty. The
uncertainty should however stem from lack of empirical knowledge, not from one’s
limited deductive capacities. One could be uncertain because one fails to realize
that such and such facts are logically deducible from other known facts. This type
of uncertainty does not concern us in the context of subjective probability. Savage
(1972, p. 7) therefore posits an idealized person, with unlimited deductive capacities
in logic, and he notes (in a footnote on that page) that such a person should know
the answers to all decidable mathematical propositions. By the same token, we
should endow our idealized person with unlimited computational powers. This
is of course unrealistic; if we do take into account the rational agent’s bounded
deductive, or computational resources, we get a “more realistic” system. This is

8Some writers use ‘ f ⊕E g’ or ‘( f , E, g)’ or ‘ f Eg’ or ‘
[

f on E, g on E
]
’ for this definition.
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what Hacking (1967) meant in his “A slightly more realistic personal probability;”
a more recent work on that subject is Gaifman (2004). But this is not the sense of
“realistic” of the present paper. By “realistic” we mean conceptually realistic; that is,
a more realistic ability to conceive impossible fantasies and treat them as if they
were real.

We indicated in the introduction that CAA may give rise to agents who have such
extraordinary powers of conceiving. We shall elaborate on this sort of unrealistic
abilities shortly. The σ-algebra assumption can lead to even more extreme cases in
a different area: the foundation of set theory. We will not go into this here, since
this would require too long a detour, but we shall discuss it briefly in Section 3.1.

It goes without saying that the extreme conceptual unrealism, of the kind we are
considering here, has to be distinguished from the use of hypothetical mundane
scenarios – the bread-and-butter of every decision theory that contains more than
experimental results. Most, if not all, of the scenarios treated in papers and books
of decision theory are hypothetical, but sufficiently grounded in reality. The few
examples Savage discusses in his book are of this kind. The trouble is that the
solutions that he proposes require that the agent be able to assess the utilities of
physical impossibilities and to weigh them on a par with everyday situations.

Let us consider a simple decision problem, an illustrative example proposed by
Savage (1972, p. 13-14), which will serve us for more than one purpose. We shall
refer to it as Omelet. John (in Savage (1972) he is “you”) has to finish making an
omelet started by his wife, who has already broken into a bowl five good eggs. A
sixth unbroken egg is lying on the table, and it must be either used in making the
omelet, or discarded. There are two states of the world good (the sixth egg is good)
and rotten (the sixth egg is rotten). John considers three possible acts, f1: break
the sixth egg into the bowl, f2: discard the sixth egg, f3: break the sixth egg into a
saucer; add it to the five eggs if it is good, discard it if it is rotten. The consequences
of the acts are as follows:

f1(good) = six-egg omelet f1(rotten) = no omelet and five
good eggs wasted

f2(good) = five-egg omelet and
one good egg wasted

f2(rotten) = five-egg omelet

f3(good) = six-egg omelet and a
saucer to wash

f3(rotten) = five-egg omelet and a
saucer to wash

Omelet is one of the many scenarios in which CAA is highly problematic. It
requires the existence of an act by which a good six-egg omelet is made out of five
good eggs and a rotten one.9 Quite plausibly, John can imagine a miracle by which
a six-egg omelet is produced from five good eggs and a rotten one; this lies within
his conceptual capacity. But this would not be sufficient; he has to take the miracle
seriously enough, so that he can rank it on a par with the other real possibilities,
and eventually assign to it a utility value. This is what the transfer of six-egg omelet
from good to rotten means. In another illustrative example (Savage, 1972, p. 25), the
result of such a miraculous transfer is that the person can enjoy a refreshing swim
with her friends, while in fact she is “. . . sitting on a shadeless beach twiddling a
brand-new tennis racket” – because she bought a tennis racket instead of a bathing

9“Omelet” obviously means a good omelet.
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suit – “while her friends swim.” CAA puts extremely high demands on what the
agent, even an idealized one, should be able to conceive.

CAA is the price Savage has to pay for making the consequences completely
independent of the states.10 A concrete consequence is being abstracted so that
only its personal value remains. These values can be then smoothly transferred
from one state to another. Our suggestion for avoiding such smooth transfers is
described in the introduction. In Section 4 we shall argue that the price one has to
pay for this is worth paying.

Returning to Omelet, let us consider how John will decide. It would be wrong
to describe him as appealing to some intuitions about his preference relation, or
interrogating himself about it. John determines his preferences by appealing to
his intuitions about the likeliness of the states and the personal benefits he might
derive from the consequences.11 If he thinks that good is very likely and washing
the saucer, in the case of rotten, is rather bothersome, he will prefer f1 to the other
acts; if washing the saucer is not much of a bother he might prefer f3; if wasting a
good egg is no big deal, he might opt for f2.

If our interpretation is right, then a person derives his or her preferences by
combining subjective probabilities and utilities. On the other hand, the represen-
tation theorem goes in the opposite direction: from preference to probability and
utility. As a formal structure, the preference relation is, in an obvious sense, more
elementary than a real valued function. If it can be justified directly on rationality
grounds, this will yield a normative justification to the use probability and utility.

The Boolean algebra in Omelet is extremely simple; besides S and ∅ it consists of
two atoms. The preference relation implies certain constraints on the probabilities
and the utility-values, but it does not determine them. This, as a rule, is the case
whenever the Boolean algebra is finite.12 Now the idea underlying the system is
that if the preference relation is defined over a sufficiently rich set of acts (and
if it satisfies certain plausible postulates) then both probabilities and utilities are
derivable from it. As far as probability is concerned, the consequences play a minor
role. We need only two non-equivalent constant acts, say ca, cb, and we need only
the preferences over two-valued acts, in which the values are a or b. But B has to
satisfy P6′, which implies that is must be infinite, and, in Savage’s system, which
includes the σ-algebra assumption, the set of states, as well as Boolean algebra,

10This price is avoided in (Ramsey, 1926) because for Ramsey the values derive from the propositions
and, in the final account, from the states. CAA is also avoided in Jeffrey (1965, 1983), because the
Jeffrey-Bolker system realizes, in a better and more systematic way, Ramsey’s point of view. That system
however is of a different kind altogether, and has serious problems of its own, which we shall not
address here.
11 The preference relation is not “given” in the same way that the entrenched notion of probability, with
its long history, is. The preference relation is rather a tool for construing probability in a decision theoretic
way. John can clarify to himself what he means by “more probable” by considering its implications
for making practical decisions. In a more operational mood one might accord the preference relation a
self-standing status. Whether Savage is inclined to this is not clear. He does appeal to intuitions about
the probabilities; for example, in comparing P6′ to an axiom suggested by de Finetti and by Koopman,
he argues that it is more intuitive, (and we agree with him). This is even clearer with regard to P6 – the
decision-theoretic analog of P6′ which implies P6′.
12This is the case even if the number of consequence is infinite. There are some exceptions: if ca and cb
are non-equivalent and if E and E′ are two events then the equivalence: ca|E + cb|E′ ≡ cb|E′ + ca|E
implies that E and E′ have equal probabilities. Using equivalences of this form makes it possible to
determine certain probability distributions over a finite set of atoms.
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should have cardinalities that are 2ℵ0 at least. Our result makes it possible to get a
countable Boolean algebra, B, and a decision model (S, X,A,<,B) which is a direct
limit of an ascending sequence of substructures (Si, X,Ai,<i,Bi), where the Si’s are
finite, and where X is any fixed set of consequences containing two non-equivalent
ones. This construction is described briefly at the end of the next section.

3. ELIMINATING THE SIGMA-ALGEBRA ASSUMPTION

3.1. Savage’s derivation of numeric probabilities. Savage’s derivation of a nu-
meric probability comprises two stages. First, he defines, using P1-P4 and the
assumption that there are two non-equivalent constant acts, a qualitative probability.
This is a binary relation, � , defined over events, which satisfies the axioms pro-
posed by de Finetti (1937a) for the notion of “X is weakly more probable than Y.”
The second stage is devoted to showing that if a qualitative probability, � , satisfies
certain additional assumptions, then there is a unique numeric probability, µ, that
represents �; that is, for all events E, F:

E � F ⇐⇒ µ(E) ≥ µ(F) (3.1)

Our improvement on Savage’s result concerns only the second stage. For the sake
of completeness we include a short description of the first.

3.1.1. From preferences over acts to qualitative probabilities. The qualitative probability,
�, is defined by:

Definition 3.1. For any events E, F, say that E is weakly more probable than F, written
E � F (or F � E), if, for any ca and cb satisfying ca � cb, we have

ca|E + cb|E < ca|F + cb|F. (3.2)

E and F are said to be equally probable, in symbols E ≡ F, if both E � F and F � E.

Savage’s P4 guarantees that the above concept is well defined, i.e., (3.2) does
not depend on the choice of the pair of constant acts. The definition has a clear
intuitive motivation and it is not difficult to show that � is a qualitative probability,
as defined by de Finetti (in an equivalent formulation used by Savage):

Definition 3.2 (qualitative probability). A binary relation � over B is said to be a
qualitative probability if the following hold for all A, B, C ∈ B:

i. � is a total preorder,
ii. A � ∅,

iii. S � ∅,
iv. if A ∩ C = B ∩ C = ∅ then

A � B ⇐⇒ A ∪ C � B ∪ C. (3.3)

For a given decision model, which satisfies P1-P4 and which has two non-
equivalent constant acts, the qualitative probability of the model is the qualitative
probability defined via Definition 3.1. If that qualitative probability is representable
by a quantitative probability, and if moreover the representing probability is unique,
then we get a single numeric probability and we are done.13 The following postulate

13Some such line of thought has guided de Finetti (1937a). Counterexamples were however found
of qualitative probabilities that are not representable by quantitative ones. First to be found were
counterexamples in which the Boolean algebra is infinite. They were followed by counterexamples for
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ascribes to the qualitative probability the property which Savage (1972, p. 38)
suggests as the key for deriving numeric probabilities.

P6′: For any events E, F, if E � F, then there is a partition {Pi}n
i=1 of S such

that E � F ∪ Pi for all i = 1, . . . , n.
Note that P6′ is not stated in terms of a preference relation (<) over acts. But, given
the way in which the qualitative probability has been defined in terms of <, P6′ is
obviously implied by P6 (see Appendix B). As Savage describes it, the motivation
for P6 is its intuitive plausibility and its obvious relation to P6′.

Before proceeding to the technical details that occupy most of this section it
would be useful to state for comparison the two theorems, Savage’s and ours, and
pause on some details regarding the use of the probability function in the derivation
of utilities.

3.1.2. Overview of the main results. We state the results as theorems about qualita-
tive probabilities. The corresponding theorems within the Savage framework are
obtained by replacing the qualitative probability � by the preference relation over
acts <, and P6′ by P1-P6.

Theorem 3.3 (Savage). Let � be a qualitative probability defined over the Boolean
algebra B. If (i) � satisfies P6′ and (ii) B is a σ-algebra, then there is a unique
numeric probability µ, defined over B, which represents �. That probability has
the following property:

(†) For any event A and any ρ ∈ (0, 1), there exists an event B ⊆ A such that
µ(B) = ρ · µ(A).

Theorem 3.4 (main theorem). Let � be a qualitative probability defined over the
Boolean algebra B. If � satisfies P6′, then there is a unique numeric probability µ,
defined over B, which represents �. That probability has the following property:

(‡) For every event, A, every ρ ∈ (0, 1), and every ε > 0 there exists an event
B ⊆ A, such that (ρ− ε) · µ(A) ≤ µ(B) ≤ ρ · µ(A).

Remark 3.5. (1) Probabilities satisfying (†) were called in Section 1 “complete” and
those satisfying (‡) were called “weak complete.”

(2) Given a numeric probability µ, let a ρ-portion of an event A be any event B ⊆ A
such that µ(B) = ρ · µ(A) . Then (†) means that, for every 0 < ρ < 1, every
event has a ρ-portion. (‡) is a weaker condition: for every A, and for every
ρ ∈ (0, 1), there are ρ′-portions of A, where ρ′ can be strictly smaller than ρ but
arbitrarily close to it.

(3) For the case A = S, (†) implies that the set of values of µ is the full interval
[0, 1]. But (‡) only implies that the set of values is dense in [0, 1]. Obviously, the
satisfaction of P6′ implies that the Boolean algebra is infinite, but, as indicated
in Section 3.3 it can be countable, in which case (†) must fail.

(4) That the constructed probability is complete, i.e., satisfies (†), is proven in
Chapter 3 of Savage (1972), which is devoted to probabilities. This property
is used much later in the derivation of expected utilities in Chapter 5. In
Section 3.2.4 below we will show that the probability that is constructed without
assuming the si-algebra assumption is weakly complete, and in Section 4 we will
show that weak completeness is sufficient for assigning utilities to consequences.

the finite case, in particular, a counterexample in which the qualitative probability is defined over the
Boolean algebra of all subsets of a set consisting of 5 members, (cf. Kraft et al., 1959).
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As remarked in (3), (†) implies that the set of values of is the real interval [0, 1],
implying that the Boolean algebra must have the power of the continuum.
There are however examples of countable models that satisfy all the required
postulates of Savage (Theorem 3.3.5). Therefore, one cannot prove that the
probability satisfies (†), without the σ-algebra assumption.

3.1.3. Savage’s original proof. The proof is given in the more technical part of the
book (Savage, 1972, p. 34-38). The presentation seems to be based on working notes,
reflecting a development that led Savage to P6′. Many proofs consists of numbered
claims and sub-claims, whose proofs are left to the reader (some of these exercises
are difficult). Some of the theorems are supposed to provide motivation for P6′,
which is introduced (on p. 38) after the technical part: “In the light of Theorems
3 and 4, I tentatively propose the following postulate . . . .” Some of the concepts
that Savage employs have only historical interest. While many of these concepts
are dispensable if P6′ is presupposed, some remain useful for clarifying the picture
and are therefore used in later textbooks (e.g., Kreps, 1988, p. 123). We shall use
them as well.

Definition 3.6 (fineness). A qualitative probability is fine if for every E � ∅ there
is a partition {Pi}n

i=1 of S such that E � Pi, for every i = 1, . . . , n.

Definition 3.7 (tightness). A qualitative probability is tight, if whenever E � F,
there exists C � ∅, such that E � F ∪ C � F.

Obviously the fineness property is a special case of P6′, where the smaller set is ∅.
It is easy to show that P6′ ⇐⇒ fineness + tightness, and in this “decomposition,”
tightness is “exactly” what is needed in order to pass from fineness to P6′.

Remark 3.8. (1) Savage’s definition of “tight” (p. 34) is different from our notion of
tightness given above – it is more complicated and has only historical interest,
although the two are equivalent if we presuppose fineness.

(2) Let us say that the probability function µ almost represents � (in Savage’s termi-
nology “almost agrees with” �) if, for any E, F:

E � F =⇒ µ(E) ≥ µ(F). (3.4)

Since E 6� F ⇒ F � E it is easily seen that if µ almost represents � then it
represents � iff

E � F =⇒ µ(E) > µ(F) (3.5)
Savage’s proof presupposes fineness, and its upshot is the existence of a unique
µ that almost represents�. Now fineness implies that if E � ∅, then µ(E) > 0.14

With tightness added, this implies (3.5). Hence, under P6′, µ is the unique
probability representing �.

Savage’s proof can be organized into three parts. Part I introduces the concept
of an almost uniform partition, which plays a central role in the whole proof, and
proves the theorem that links almost uniform partitions to the existence of numeric
probabilities. Before proceeding recall the following:
1. A partition of B is a collection of disjoint subsets of B, referred to as parts, whose

union is B. We presuppose that the number of parts is > 1 and is finite and that
B is non-null, i.e., B � ∅.

14To see this, let P1, . . . , Pn be a partition of S such that Pi � E for all i = 1, . . . , n. Then, for some i,
µ(Pi) > 0, otherwise µ(S) = 0. Hence µ(E) > 0.
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2. It is assumed that no part is a null-event, unless this is explicitly allowed.
3. By an n-partition we mean a partition into n parts (this is what Savage calls n-fold

partition).
4. We adopt self-explanatory expressions, like “a partition A = A1 ∪ · · · ∪ An”

which means that the sets on the right-hand side are a partition of A.

Definition 3.9. An almost uniform partition of an event B is a partition of B into a
finite number of disjoint events, such that the union of any r + 1 parts is weakly
more probable than the union of any r parts. An almost uniform n-partition of B is a
n-partition of B which is almost uniform.

The main result of Part I comprises what in Savage’s enumeration are Theorem
1 and its proof, and the first claim of Theorem 2 (on the bottom of p. 34), and its
proof. The latter consists of steps 1-7 and ends in the middle of p. 36. All in all, the
result in Part I is:

Theorem 3.10. If, for any n < ∞, there is an almost uniform n-partitions of S, then
there exists a unique numerical probability µ which almost represents �.

The proof of this result consists mainly of direct computational/combinatorial
arguments; it is given with sufficient details and does not use the σ-algebra assump-
tion. We shall take the theorem and its proof for granted.

Part II consists in showing that fineness and the σ-algebra assumption imply
that there exists an almost uniform n-partition for any n < ∞ (together with
the theorems of Part I this yields a unique probability that almost represents the
qualitative one). This part is done in Theorem 3. The latter consists of a sequence
of claims, referred to as “parts,” in which later parts are to be derived from earlier
ones. The arrangement is intended to help the reader to find the proofs. For the
more difficult parts, additional details are provided. Many claims are couched in
terms that have only historical interests. For our purposes, we need only to focus
on a crucial construction that uses what we shall call “iterated 3-partitions” (cf.
Section 3.1.4 below). This construction is described in the proof of Part 5 (on the
top of p. 35). As a last step it involves the crucial use of the σ-algebra assumption,
we shall return to this step shortly.

Part III of Savage’s proof consists in the second claim of the aforementioned
Theorem 2. It asserts that the numeric probability, which is derivable from the
existence of almost uniform n-partitions for arbitrary large n’s, satisfies (†). The
proof consists in three claims, 8a, 8b, 8c, the last of which relies on on the σ-algebra
assumption. The parallel part of our proof is the derivation of (‡) without using
the σ-algebra assumption. The proof is given in Section 3.2.4 below.

3.1.4. Savage’s method of iterated 3-partitions. In order to prove Part 5 of Theorem 3,
Savage claims that the following is derivable from the laws of qualitative probabili-
ties and fineness.

Theorem 3.11 (Savage). For any given B � ∅ there exists an infinite sequence of
3-partitions of B: {Cn, Dn, Gn}n, which has the following properties:15

15The proof of the existence of such a sequence was left to the reader. Fishburn (1970, p. 194–197)
reconstructs parts of Savage’s work, filling in missing segments. Part 5 of Theorem 3 is among the
material Fishburn covers. Fishburn presupposes however a qualitative probability that satisfies P6′ (F5 –
in his notation). Therefore his proof cannot be the one meant by Savage; the latter uses only fineness.
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(1) Cn ∪ Gn � Dn and Dn ∪ Gn � Cn
(2) Cn ⊆ Cn+1 , Dn ⊆ Dn+1, hence Gn ⊇ Gn+1
(3) Gn − Gn+1 � Gn+1

These properties imply that Gn becomes arbitrary small as n→ ∞, that is:
(4) For any F � ∅, there exists n such that Gm ≺ F for all m ≥ n.

Note. Condition (3) in Theorem 3.11 means that Gn is a disjoint union of two
subsets, Gn = Gn+1 ∪ (Gn − Gn+1), each of which is � Gn+1. In this sense Gn+1 is
less than or equal to “half of Gn”. Had the probability been numeric we could have
omitted the scare quotes; it would have implied that the probabilities of Gn tend
to 0, as n→ ∞. In the case of a qualitative probability the analogous conclusion is
that the sets become arbitrary small, in the non-numerical sense.

Savage provides an argument, based on fineness, which derives (4) from the
previous properties. The argument is short and is worth repeating: Given any
F � ∅, we have to show that, for some n, Gn ≺ F. Assume, for contradiction,
that this is not the case. Then F � Gn, for all ns. Now fineness implies that there
is a partition S = P1 ∪ · · · ∪ Pm such that Pi � F, for i = 1, . . . , m. If F � Gn,
then P1 � Gn, hence P1 ∪ P2 � Gn−1, hence P1 ∪ P2 ∪ P3 ∪ P4 � Gn−2, and so on.
Therefore, if 2k−1 ≥ m, then S � G1, which is a contradiction.

Definition 3.12. Call an infinite sequence of 3-partitions of B, which satisfies condi-
tions (1), (2), (3), a Savage chain for B. We say that the chain passes through a 3-partition
of B, if the 3-partition occurs in the sequence.

We presented the theorem so as to conform with Savage’s notation and the
capital letters he used. Later we shall change the notation. We shall use ordered
triples for the 3-partition and place in the middle the sets that play the role of the
Gn’s. The definition just given can be rephrased of course in terms of our later
terminology.

Figure 3.1 is an illustration of a Savage chain. Presenting the Savage chain
as a sequence of triples with the Gns in the middle, makes for better pictorial
representation. And it is essential when it comes to trees.

The fact that Dn ∪ Gn � Cn, Cn ∪ Gn � Dn, and the fact that Gn becomes
arbitrary small suggest that Gn plays the role of a “margin of error” in a division of
the set into two, roughly equivalent parts. Although the error becomes arbitrary
small, there is no way of getting rid of it. At this point Savage uses the σ-algebra
assumption, he puts:

B1 =
⋃
n

Cn and B2 =
(⋃

n
Dn

)
∪
(⋂

n
Gn

)
. (3.6)

Remark 3.13. The rest of Savage’s proof is not relevant to our work. For the sake
of completeness, here is a short account of it. B1, B2 form a partition of B, and⋂

n Gn ≡ ∅. Assuming P6′, one can show that B1 ≡ B2; but Savage does not use P6′

(a postulate that is introduced after Theorem 3), hence he only deduces that B1 and
B2 are what he calls “almost equivalent” – one of the concepts he used at the time,
which we need not go into. By iterating this division he proves that, for every n,

We believe that it should not be too difficult to make such a proof, or to modify Fishburn’s proof of
part 5, so as to get a proof from fineness only. The matter is not too important, since the problem of the
σ-algebra assumption concerns qualitative logic that satisfies P6′. Besides, we can trust Savage that his
claims are derivable from fineness alone.
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FIGURE 3.1. Savage’s error reducing partitions

every non-null event can be partitioned into 2n almost equivalent events. At an
earlier stage (Part 4) he states that every partition of S into almost equivalent events
is almost uniform. Hence, there are almost uniform n-partitions of S for arbitrary
large ns. This together with the first claim of his Theorem 2 (Theorem 3.10 in our
numbering) proves the existence of the required numeric probability.

We eliminate the σ-algebra assumption by avoiding the construction of (3.6). We
develop, instead, a technique of using trees, which generates big partitions, and
many “error parts,” which can be treated simultaneously. We use it in order to get
almost uniform partitions.

3.2. Eliminating the σ-algebra assumption by using tripartition trees. So far, try-
ing to follow faithfully the historical development of Savage’s system, we presup-
posed fineness rather than P6′. If we continue to do so the proof will be burdened
by various small details, and we prefer to avoid this.16 From now on we shall
presuppose P6′.17

First, we give the 3-partitions that figure in Savage’s construction a more sugges-
tive form, suitable for our purposes:

Definition 3.14 (tripartition). A Savage tripartition or, for short, a tripartition of a
non-null event, B, is an ordered triple (C, E, D) of disjoint events such that:

i. B = C ∪ E ∪ D
ii. C, D � ∅,

iii. C ∪ E � D and E ∪ D � C.

16Under P6′, E ≡ ∅ implies A ∪ E ≡ A; if only fineness is assumed this need not hold, but it is still true
that A ∪ E can be made arbitrary small, by making A arbitrary small.
17Our result still holds if we presuppose fineness only, provided that the unique numeric probability is
claimed to almost represent, rather than represent, the qualitative one. See (3.4) in Section 3.1.3 and the
discussion there.
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We refer to E as the error part, or simply error, and to C and D as the regular parts.

We allow E to be a null-set, i.e., E ≡ ∅, including E = ∅. The case E = ∅
constitutes the extreme case of a tripartition, where the error is ∅. In diagrams, ∅
serves in this case as a marker that separates the two parts.18

3.2.1. Tripartition trees. Recall that a binary partition tree is a rooted ordered tree
whose nodes are sets, such that each node that is not a leaf has two children that
form a 2-partition of it. By analogy, a tripartition tree, T , is a rooted ordered tree such
that: (1) The nodes are sets, which are referred to as parts, and they are classified
into regular parts, and error parts. (2) The root is a regular part. (3) Every regular part
that is not a leaf has three children that constitute a tripartition of it. (4) Error-parts
have no children.

Figure 3.2 provides an illustration of a tripartition tree, written top down, in
which the root is the event A, and the error-parts are shaded.

Note. No set can occur twice in a partition tree. Hence we can simplify the structure
by identifying the nodes with the sets; we do not have to construe it as a labeled tree.
(In the special cases in which the error is empty, ∅ can occur more than once, but
this should not cause any confusion.)

Additional Concepts, Terminologies, and Notations.
1. The levels of a tripartition tree are defined as follows: (1) level 0 contains the root;

(2) level n + 1 contains all the children of the regular nodes on level n; (3) level
n + 1 contains all error nodes on level n.

2. Note that this means that, once an error-part appears on a certain level it keeps
reappearing on all higher levels.

3. A tripartition tree is uniform if all the regular nodes that are leaves are on the
same level. From now on we assume that the tripartition trees are uniform,
unless indicated otherwise.

4. The height of a finite tree T is n, where n is the level of the leaves that are regular
nodes. If the tree is infinite its height is ∞.

5. A subtree of a tree is a tree consisting of some regular node (the root of the
subtree) and all its descendants.

6. The truncation of a tree T at level m, is the tree consisting of all the nodes of T
whose level is ≤ m. (Note that if m ≥ height of T , then truncation at level m is
the same as T .)

7. Strictly speaking, the root by itself does not constitute a tripartition tree. But
there is no harm in regarding it as the truncation at the 0 level, or as a tree of
height 0.

Remark 3.15. (1) An ordered tree is one in which the children of any node are
ordered (an assignment, which assigns to every node an ordering of its children,
is included in the structure). Sometimes the trees must be ordered, e.g., when
they are used to model syntactic structures of sentences. But sometimes an
ordering is imposed for convenience; it makes for an easy way of locating nodes
and for a useful two-dimensional representation. In our case, the ordering

18 Under P6′ the case E ≡ ∅ can, for all purposes, be assimilated to the case E = ∅, because we can add
E to one of the regular parts, say C, and C ∪ E ≡ C. But under fineness non-empty null-sets cannot be
eliminated in this way.
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makes it possible to locate the error-parts by their middle positions in the
triple.19

(2) The main error part of a tree is the error part on level 1.
(3) It is easily seen that on level k there are 2k regular parts and 2k − 1 error-parts.

We use binary strings of length k to index the regular parts, and binary strings
of length k− 1 to index the error-parts, except for the main error-part. Figure 3.1
shows how this is done. The main error-part of that tree is E. We can regard the
index of E as the empty binary sequence.

(4) We let T range over tripartitions trees and TA over tripartition trees of A. We
put T = TA in order to say that T is a tripartition tree with root A . To indicate
the regular and error parts we put: TA = (Aσ, Eσ), where σ ranges over the
binary sequences (it is understood that the subscript of E ranges over sequences
of length smaller by 1 than the subscript of A.) To indicate also the height
k, we put: TA,k = (Aσ, Eσ)k. Various parameters will be omitted if they are
understood from the context.

Definition 3.16 (total error). The total error of a tree T , denoted E(T ), is the union
of all error-parts of T . That is to say, if T = TA = (Aσ, Eσ), then E(T ) =Df

⋃
σ Eσ.

If T is of height k then E(T ) is the union of all error-parts on the k-level of T .
This is obvious, given that all error-parts of level j, where j < k, reappear on level
j + 1. For the same reason, if j < k, then the total error of the truncated tree at level
j is the union of all error-parts on level j.

Now recall that a Savage tripartition (C, E, D) has the property that C ∪ E � D
and C � E ∪ D (cf. Definition 3.14). This property generalizes to tripartition trees:

Theorem 3.17. Let TA be a partition tree of A of height k, then, for any regular parts
Aσ, Aσ′ on the kth level, the following holds;

Aσ ∪ E(TA) � Aσ′

Aσ′ ∪ E(TA) � Aσ
(3.7)

Proof. We prove the theorem by induction on k. For k = 1 the claim holds since
(A0, E, A1) is just a Savage tripartition. For k > 1, let T ∗A = (Aσ, Eσ)k−1 be the
truncated tree consisting of the first k− 1levels of TA. By the inductive hypothesis,,
for all regular parts Aτ , Aτ′ on the k− 1 level of T ∗A ,

Aτ ∪ E(T ∗A ) � Aτ′

Aτ′ ∪ E(T ∗A ) � Aτ
(3.8)

The rest of the proof relies on the following claim.

Claim. Assume that the following holds (as illustrated in Figure 3.3):
A1 ∪ E1 � B1 B1 ∪ E1 � A1

A2 ∪ E2 � B2 B2 ∪ E2 � A2
(3.9)

19Yet, the left/right distinction of the regular parts is not needed. Formally, we can take any regular part,
B, which is not a leaf, and switch around the two regular parts that are its children, keeping the error
part fixed: from Bl EBr to BrEBl ; at the same time we switch also the subtrees that are rooted in Bl and
Br . The switch can be obtained by rotating (in a 3-dimensional space) the two subtrees. Such a switch
can be considered an automorphism of the structure: Our tripartition trees can be viewed as ordered
trees, “divided” by the equivalence that is determined by the group of automorphisms that is generated
by these rotations. All the claims that we prove in the sequel hold under this transformation group.
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FIGURE 3.3. Claim in the proof of Theorem 3.17

and (
A1 ∪ E1 ∪ B1

)
∪ E �

(
A2 ∪ E2 ∪ B2

)
(

A2 ∪ E2 ∪ B2

)
∪ E �

(
A1 ∪ E1 ∪ B1

)
.

(3.10)

Then C1 ∪ (E1 ∪ E ∪ E2) � C2, where C1 is either A1 or B1 and C2 is either A2 or B2.
That is, the union of any regular part on one side of E with E1 ∪ E ∪ E2 is � any
regular part on the other side of E.

Proof of Claim. WLOG, it is sufficient to show this for the case C1 = A1 and C2 = A2.
The other cases follow by symmetry. Thus, we have to prove:

A1 ∪ (E1 ∪ E ∪ E2) � A2. (3.11)

Now, consider the following two cases:

(1) If B1 � A2, then we have

(A1 ∪ E1) ∪ E ∪ E2 � B1 ∪ E ∪ E2 � A2 ∪ E ∪ E2 � A2.

(2) Otherwise B1 ≺ A2. Suppose, to the contrary, that (3.11) fails, that is, A2 �
A1 ∪ (E1 ∪ E ∪ E2). Since A1, E1, E, E2, A2, B2 are mutually exclusive, we have:

A2 ∪ B2 � A1 ∪ (E1 ∪ E ∪ E2) ∪ B2

� A1 ∪ E1 ∪ E ∪ A2

� A1 ∪ E1 ∪ E ∪ B1.

The first inequality follows from the properties of qualitative probability. The
second inequality holds because E2 ∪ B2 � A2 in (3.9) and the third holds since
we assume that A2 � B1. But, again from (3.9), we have A1 ∪ E1 ∪ E ∪ B1 �
A2 ∪ E2 ∪ B2 � A2 ∪ B2. Contradiction. This proves (3.11).

By symmetry, other cases hold as well. This completes the proof of the Claim.

Getting back to the proof of the theorem, assume WLOG that in (3.7) Aσ is to
the left of A′σ. Now each of them is a regular part of a tripartition of a regular part
on level k− 1. Consider the case in which Aσ appears in a tripartition of the form
(Aσ, Eλ, Bσ) and A′σ appears in a tripartition of the form (Bσ′ , Eλ′ , Aσ′). There are
other possible cases, but they follow from this case by symmetry arguments. In
fact, using the the “rotation automorphisms” described in footnote 19, they can be
converted to each other. We get:
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Aσ ∪ Eλ � Bσ Bσ ∪ Eλ � Aσ

Aσ′ ∪ Eλ′ � Bσ′ Bσ′ ∪ Eλ′ � Aσ′ .
(3.12)

Since Aσ ∪ Eλ ∪ Bσ and Aσ′ ∪ Eλ′ ∪ Bσ′ are regular parts on the k− 1 level of TA,
the inductive hypothesis (3.8) implies:(

Aσ ∪ Eλ ∪ Bσ

)
∪ E(T ∗A ) �

(
Aσ′ ∪ Eλ′ ∪ Bσ′

)
(

Aσ′ ∪ Eλ′ ∪ Bσ′

)
∪ E(T ∗A ) �

(
Aσ ∪ Eλ ∪ Bσ

)
.

(3.13)

Clearly, (3.12) and (3.13) are a substitution variant of (3.9) and (3.10). Therefore the
Claim implies:

Aσ ∪
(
E(T ∗) ∪ Eλ ∪ Eλ′

)
� Aσ′

Aσ′ ∪
(
E(T ∗) ∪ Eλ ∪ Eλ′

)
� Aσ.

(3.14)

Since E(T ) is disjoint from both Aσ and Aσ′ and E(T ∗) ∪ Eλ ∪ Eλ′ ⊆ E(T ), we get
(3.7). �

3.2.2. The error reduction method for trees. Note that trees that have the same height
are structurally isomorphic and there is a unique one-to-one correlation that corre-
lates the parts of one with the parts of the other. We have adopted a notation that
makes clear, for each part in one tree, the corresponding part in the other tree. This
also holds if one tree is a truncation of the other. The indexing of the regular parts
and the error parts in the truncated tree is the same as in the whole tree.

Definition 3.18 (error reduction tree). Given a tree, TA = (Aσ, Eσ)k, an error-
reduction of T is a tree with the same root and the same height T ′A = (A′σ, E′σ)k,
such that for every σ, Aσ ⊆ A′σ. We shall also say in that case that T ′ is obtained
from T by error reduction.

Remark 3.19. (1) A is the union of all the regular leaves and the total error, E(TA).
If every regular part weakly increases, it is obvious that the total error weakly
decrease: E(T ′) ⊆ E(T ). Thus, the term ‘error-reduction’ is justified. The
reverse implication is of course false in general. The crucial property of error-
reducing is that, in the reduction of the total error, every regular part (weakly)
increases as a set.

(2) The reduction of E(T ) is in a weak sense, that is: that is, E(T ′) ⊆ E(T ). The
strong sense can be obtained by adding the condition E(T ′) ≺ E(T ). But,
in view of our main result, we do not need to add it explicitly as part of the
definition.

(3) Error reductions of Savage tripartitions (i.e., triples) is the simplest case of error
reduction of trees: each of the two regular parts weakly increases and the error
part weakly decreases – this is the error reduction in trees of height 1.

(4) It is easily seen that if T ′ is an error-reduction of T and T ′′ is an error-reduction
of T ′, then T ′′ is an error-reduction of T .

The proof of our central result is that, given any tripartition tree, there is an
error-reduction of it in which the total error is arbitrarily small. That is, for every
non-null set F, there is an error-reduction tree of total error � F. The proof uses a
certain operation on tripartition trees, which is defined as follows.
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Definition 3.20 (mixed sum). Let TA = (Aσ, Eσ)k and T ′A′ = (A′σ, E′σ)k be two
tripartition trees of two disjoint events (i.e., A ∩ A′ = ∅), of the same height, k.
Then the mixed sum of TA and T ′A′ , denoted TA ⊕T ′A′ , is the tree of height k, defined
by:

TA ⊕ T ′A′ = (Aσ ∪ A′σ, Eσ ∪ E′σ)k. (3.15)

The notation TA ⊕ T ′A′ is always used under the assumption that A and A′ are
disjoint and the trees are of the same height.

Lemma 3.21. (1) TA ⊕ T ′A′ is a tripartition tree of A ∪ A′ whose total error is
E(TA) ∪ E(T ′A′).

(2) If T ∗A and T +
A′ are, respectively, error reductions of TA and T ′A′ , then T ∗A ⊕ T

+
A′

is an error reduction of TA ⊕ T ′A′
Proof. The operation ⊕ consists in taking the union of every pair of corresponding
parts, which belong to tripartitions of two given disjoint sets. Therefore, the first
claim follow easily from the definitions of tripartition trees and the laws of qualita-
tive probability (stated in Definition 3.2). For example, for every binary sequence,
σ, of length < height of the tree, we have Aσ,0 ∪ Eσ � Aσ,1 and A′σ,0 ∪ E′σ � A′σ,1.
In each inequality the sets are disjoint, and every set in the first inequality is dis-
joint from every set in the second inequality. Hence, by the axioms of qualitative
probability we get: (

Aσ,0 ∪ A′σ,0
)
∪
(
Eσ ∪ E′σ

)
�
(

Aσ,1 ∪ A′σ,1
)

The second claim follows as easily from the definition of error-reduction and the
laws of Boolean algebra. �

Theorem 3.22 (error reduction). For any tripartition tree TA and any non-null event
F, there is an error-reduction tripartition T ∗A such that E(T ∗A ) � F.

Proof. We prove the theorem by induction on k, where k = height of TA. If k = 0,
then formally TA consists of A only. Hence the base case is k = 1, and the only
error part is on level 1. Let the tripartition on level 1 be (A0, E, A1). We now apply
the following result that is implied by Fishburn’s reconstruction of the proofs that
Savage did not include in his book:20

Claim. Given any tripartition (C0, E0, D0), there is a sequence of tripartitions
(Cn, En, Dn), n = 1, 2, . . . that constitute a Savage chain such that (C1, E1, D1) is an
error reduction of (C0, E0, D0).

Applying this Claim to the case (C0, E0, D0) = (A0, E, A1) we get an infinite
Savage chain that begins with (A0, E, A1). For some n, En � F. This proves the
base case.

Note. Before proceeding, observe that, for any integer m > 1, every non-null event
F can be partitioned into m disjoint non-null events. This is an easy consequence of
fineness.21 In what follows we use a representation of ordered partition trees of the

20See the proof of C8 (and the claims that lead to it) in Fishburn (1970, p. 195–198).
21 Since F � ∅ there exists a non-null subset F1 ⊆ F such that F � F1 � ∅. This is established by
considering an n-partition S = S1 ∪ ...∪ Sn such that Si ≺ F for all i = 1, ..n, and observing that there
must be two different parts, say Si , Sj, whose intersections with F are � ∅; otherwise, F 4 Sk , for some
k, contradicting Sk ≺ F. Put F1 = F ∩ Si ; then F1 and F− F1 are non-null, and we can apply the same
procedure to F− F1, and so on.
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form: [
TB1 , . . . , TBm

]
where m > 1 and the Bi’s are disjoint non-null sets. This includes the possibility
that some TBi ’s are of height 0, in which case we can replace TBi by Bi. The root of
the tree is the union of the Bi’s, and the Bi’s are its children, ordered as indicated
by the indexing. The whole tree is not necessarily a tripartition tree, but each of
the m subtrees is. For example, [B, B′, TC, TD] denotes a partition tree in which
(B, B′, C, D) is a 4-partition of the root, the root being the union of these sets, B and
B′ are leaves, and C and D are roots of the tripartition trees TC and TD.

Now, for the inductive step, assume that the induction hypothesis holds for k
and let TA be a tripartition tree of height k + 1. Then TA is of the form:[

TBl , E, TBr

]
where TBl and TBr are of height k. Given any F � ∅, we have to construct a tree-
partition of TA of total error ≺ F. Partition the given F into 5 non-null events:
F1, F2, F3, F4, F5; as observed above, this is always possible.

If E is a null set, then we apply the induction hypotheses to each of TBl and TBr ,
get error-reductions in which the total errors are, respectively, less-that-or-equal-to
F1 and F5, and we are done. Otherwise we proceed as follows.

Using again the Claim from Fishburn’s reconstruction, we get a tripartition of E:
(Cl , E∗, Cr), where E∗ � F3. Ignoring for the moment the role of E∗ as an error part,
we get: [

TBl , Cl , E∗, Cr, TBr

]
Note that in this partition the root, which is A, is first partitioned into 5 events; Bl
and Br are roots of tripartition trees of height k, and Cl , E∗, and Cr are leaves. Using
the induction hypothesis, get an error-reduction T ∗Bl

of TBl and an error-reduction
T ∗Br

of TBr , such that E(T ∗Bl
) � F1, and E(T ∗Br

) � F5. Get an arbitrary tripartition tree
TCl of Cl , and an arbitrary tripartition tree TCr of Cr each of height k (every non-null
set has a tripartition tree of any given height). Using again the inductive hypothesis,
get error-reductions, T ∗Cl

and T ∗Cr
, such that E(T ∗Cl

) � F2, and E(T ∗Cl
) � F4. This

gives us the following partition of A:[
T ∗Bl

, T ∗Cl
, E∗, T ∗Cr

, T ∗Br

]
.

Now, put TA0 = T ∗Bl
⊕ T ∗Cl

and TA1 = T ∗Br
⊕ T ∗Cr

, then[
TA0 , E∗, TA1

]
is a tripartition tree of A of height k+ 1. Call it T ∗A . By Lemma 3.21, E(TA0) � F1∪ F2
and E(TA1) � F4 ∪ F5. Since E∗ � F3, together we get: E(T ∗A ) � F. �

Theorem 3.22 is our main result and we shall refer to it as the error reduction
theorem, or, for short, error reduction. We shall also use error reduction for the process
in which we get tripartition trees in which the error is reduced.

Remark 3.23. In a way, this theorem generalizes the construction of monotonically
decreasing sequence of error-parts in Theorem 3.11. But, instead of reducing a
single error-part (the shaded areas in Figure 3.1), the method we use reduces
simultaneously all error-parts in a tripartition tree.
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3.2.3. Almost uniform partition. Recall that a partition {Pi}n
i=1 of a non-null event A

is almost uniform if the union of any r members of the partition is not more probable
than the union of any r + 1 members. In Theorem 3.10 we rephrased a result by
Savage, which claims that if, for arbitrary large values of n there are almost uniform
n-partitions of S, then there is a unique numeric probability that almost represents
the underlying qualitative one. We noted that Savage’s proof requires no further
assumptions regarding the qualitative probability, and that if we assume P6′ then
the probability (fully) represents the qualitative one (cf. Remark 3.8 above). Using
repeated error reductions, we shall now show that for arbitrary large ns there are
almost uniform n-partitions of S.

Definition 3.24. Given C � ∅, let us say that B � 1
n C if there is a sequence

C1, C2, . . . , Cn, of n mutually disjoint subsets of C, such that C1 � C2 � · · · � Cn
and B � C1.

The following are some simple intuitive properties of �. The first two are
immediate from the definition, and in the sequel we shall need only the first.

Lemma 3.25. (1) If B� 1
n C, and if A � B� 1

n C ⊆ D then A� 1
n D.22

(2) If B� 1
n C then B� 1

m C for all m < n.
(3) For any C, D � ∅, there exists n such that, for all B,

B� 1
n

C =⇒ B � D. (3.16)

Lemma 3.26. Let T = (Aσ, Eσ) be a tripartition tree of height k, then, given any n
and any regular part Aσ on the kth level of T , there is an error reduction, T ′, of T ,
such that

E(T ′A)�
1
n

A′σ. (3.17)

Here A′σ is the part that corresponds to Aσ under the structural isomorphism of the
two trees.

Proof. Fix Aσ and let {Ci}n
i=1 be a disjoint sequence of events contained in it as

subsets, such that C1 � C2 � . . . � Cn. Using error reduction, get a tree T ′ such
that E(T ′) � C1. Consequently, E(T ′A) �

1
n Aσ. Since the parts are disjoint and

under the error reduction each regular part in T is a subset of its corresponding part
in T ′, A′σ is the unique part containing Aσ as a subset, which implies (3.17). �

Lemma 3.27. Given any tripartition tree T = (Aσ, Eσ) of height k and given any n,
there is an error reduction T ′ = (A′σ, E′σ) of T such that, for every regular part A′σ
on the kth level, E(T ′)� 1

n A′σ.

Proof. Apply Lemma 3.26 repeatedly 2k times, as σ ranges over all the binary
sequences of length k. Since the regular parts can only expand and the total error
can only contract, we get at the end an error reduction, T ′, such that E(T ′)� 1

n A′σ,
for all σ. �

22Note however that from B � 1
n C and C � D we cannot infer B � 1

n D. The inference is true if we
assume C ≺ D; this can be shown by using the numeric probability that represents the qualitative one —
whose existence we are about to prove. There seems to be no easier way of showing it.
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Theorem 3.28. Let T be a tripartition tree of height k, then there is an error reduc-
tion T ′ of T such that the following holds: If Ξ1 and Ξ2 are any two sets of regular
parts of the kth level of T ′ that are of equal cardinality r, where r < 2k−1, and if Aτ

is any regular part on the kth level that is not in Ξ1 ∪ Ξ2, then we have⋃
Aσ∈Ξ1

Aσ ∪ E(T ′) �
⋃

Aσ∈Ξ2

Aσ ∪ Aτ . (3.18)

Proof. Apply Lemma 3.27 for the case where n = 2k−1 and get a reduction tree T ′
of T such that E(T ′)� 1

2k−1 Aσ for all regular parts Aσ on the kth level of T ′. Let
Ξ1 and Ξ2 and Aτ be as in the statement of the theorem, then we have:

E(T ′)� 1
2k−1 Aτ .

By Definition 3.24, this means that there is a sequence {Ci} of disjoint subsets of Aτ

of length 2k−1 such that:

E(T ′) � C1 � C2 � · · · � Cr � Cr+1 � · · · � C2k−1

2k−1⋃
i=1

Ci ⊆ Aτ

(3.19)

where r is the cardinality of Ξ1 and Ξ2.
Let A1, A2 . . . , Ar and B1, B2 . . . , Br be enumerations of the members of Ξ1 and

Ξ2, respectively. Obviously, we have E(T ′) � Ai and E(T ′) � Bi for all i = 1, . . . , r.
Since E(T ′) � C1, we get by Theorem 3.17:

Ai � Bi ∪ E(T ′) � Bi ∪ Ci for all i = 1, . . . , r.

Since all parts are disjoint, we get
⋃r

i=1 Ai �
⋃r

i=1 Bi ∪
⋃r

i=1 Ci, that is:⋃
Aσ∈Ξ1

Aσ ∪ E(T ′) �
⋃

Aσ∈Ξ2

Aσ ∪
r⋃

i=1

Ci �
⋃

Aσ∈Ξ2

Aσ ∪ Aτ (3.20)

which is what we want. �

Remark 3.29. The last theorem claims that for every tripartition tree T of height k,
there is an error reduction T ′ such that, for every two disjoint sets, Ξ1 and Ξ2 of
regular leaves (parts on level k) of equal cardinality, r < 2k−1, if A is a leaf that does
not belong to Ξ1 ∪ Ξ2, then

⋃
Ξ1 ∪ E(T ′) � ⋃

Ξ2 ∪ A. (Here
⋃

Ξ1 is the union of
all members of Ξ1.) It is not difficult to see that if A is any regular part of T ′, and if
Ai(i = 1, . . . , 2k − 1) are the rest of the regular leaves, then the following collection
of sets is an almost uniform partition of S:{

A ∪ E(T ′), A1, . . . , A2k−1
}

.

Note that in comparing the qualitative probabilities of unions of two subsets of
the family, we can assume that they have no common members, because common
members can be crossed out, via the qualitative-probability rules. This implies that
we need to compare only the union of r and r + 1 members, where 2r + 1 ≤ 2k,
which implies r < 2k−1. Hence, we can assume the restriction on r in the last
theorem. All in all, the last theorem implies that there are almost uniform partitions
of S of arbitrary large sizes. This, as explained before, implies the existence of a
unique finitely additive probability that represent the qualitative probability.
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3.2.4. The proof of the (‡) condition. Next we demonstrate that the (‡) condition
holds. As we shall show in Section 4, this property will play a crucial role in
defining utilities for simple acts, without using the σ-algebra assumption.

Theorem 3.30. Let µ be the probability that represents the qualitative probability
�. Assume that P6′ holds. Then, for every non-null event, A, every ρ ∈ (0, 1) and
every ε > 0 there exists an event B ⊆ A, such that (ρ− ε) · µ(A) ≤ µ(B) ≤ ρ · µ(A).

Proof. As stated by Savage, there is a Savage chain for A, that is, an infinite sequence
of 3-partitions of A: (A′n En A′′n)n, n = 1, 2, . . . such that:

(i) A′n ∪ En � A′′n and A′n ∪ En � A′′n
(ii) (A′n+1 ⊇ A′n), (A′′n+1 ⊇ A′′n), hence En+1 ⊆ En

(iii) En − En+1 � En+1.
This, as shown in Fishburn’s reconstruction, is provable without using the σ-algebra
assumption. Consequently we get:

(1) µ(A′n) + µ(En) ≥ µ(A′′n) and µ(A′′n) + µ(En) ≥ µ(A′n), which imply:
(a) |µ(A′n)− µ(A′′n)| ≤ µ(En).

(2) µ(En+1) ≤ (1/2) · µ(En), which implies:
(b) µ(En) ≤ (1/2)n−1.

Since µ(A) = µ(A′n) + µ(En) + µ(A′′n), we get from (a) and (b):

µ(A′n) −→ 1/2 · µ(A), µ(A′′n) −→ 1/2 · µ(A).

Since both A′n and A′′n are monotonically increasing as sets, µ(A′n) and µ(A′′n)
are monotonically increasing. Consequently, we get: µ(A′n) ≤ 1/2 · µ(A) and
µ(A′′n) ≤ 1/2 · µ(A). All these imply the following claim:

Claim 1. Let A be a non-null set. Then, for every ε > 0, there are two disjoint
subsets of A, A0 and A1, such that, for i = 0, 1:

1/2 · µ(A)− ε ≤ µ(Ai) ≤ 1/2 · µ(A).

Call such a partition an ε-bipartition of A. Call ε the error-margin of the bipar-
tition. We can now apply such a bipartition to each of the parts, and so on. By
“applying the procedure” we mean applying it to all the non-null minimal sets that
were obtained at the previous stages (the inductive definition should be obvious).

Claim 2. Let A be any non-null set. Then for every k > 1 and every ε > 0, there
are 2k disjoint subsets of A, Ai, i = 1, . . . , 2k, such that:

1/2k · µ(A)− ε ≤ µ(Ai) ≤ 1/2k · µ(A).

(This claim is proved by considering k applications of the procedure above, where
the error-margin is ε/k.) Note that since Claim 2 is made for any ε > 0, and any
k > 1, we can replace ε by ε/2k · µ(A). Thus, the following holds:

(+) For every ε > 0, k > 1, there are 2k disjoint subsets, Ai, of A, such that:

1/2k · µ(A)− ε/2k · µ(A) ≤ µ(Ai) ≤ 1/2k · µ(A).

The following is a reformulation of (+)

(∗) For every ε > 0, k > 1, there are 2k disjoint subsets, Ai, of A, such that:

µ(Ai) ∈
[
1/2k ·

(
µ(A)− ε

)
, 1/2k · µ(A)

]
.
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Similarly, (‡) can be put in the form

(∗∗) Fix any non-null set A. Then for every ρ < 1, and any ε′ > 0, there is a set
B ⊆ A, for which

µ(B) ∈
[(

1− ε′
)
· ρµ(A), ρµ(A)

]
.

All the subsets that are generated in the process above are subsets of A. Therefore
A plays here the role of the “universe,” except that its probability, µ(A), which
must be non-zero, can be < 1. In order to simplify the formulas, we can assume
that A = S (the universe). The argument for this case works in general, except
that µ(A) has to be added as a factor in the appropriate places. Thus the proof is
reduced to proving that, of the following two conditions, (◦) implies (◦◦).

(◦) Given any ε > 0 and any k > 1, there are 2k disjoint subsets, Ai, such that,
for all i, µ(Ai) ∈

[
1/2k(1− ε

)
, 1/2k].

(◦◦) Given any 0 < ρ < 1 and any ε′ > 0, there is a set B such that µ(B) ∈[
ρ
(
1− ε′

)
, ρ
]
.

Now let ρ′ = ρ · (1− ε′); then (◦◦) means that given 0 < ρ′ < ρ < 1, there is
B such that µ(B) ∈ [ρ′, ρ]. Let θ < ρ. Since θ and ρ are infinite sums of binary
fractions of the form 1/2k, it is easily seen that there is a finite set of such fractions
whose sum is in the interval [θ, ρ]. Since, 1/2m = 2

(
1/2m+1), it follows that there

are k and l < 2k, such that l/2k ∈ [θ, ρ]. Let Ai be the disjoint sets that satisfy (◦)
and let B be the union of l of them. Then (1− ε) · ρ ≤ µ(B) ≤ ρ. �

Remark 3.31. It’s worth repeating that (‡) does not rely on the σ-algebra assump-
tion, but (†) does. That (†) cannot be obtained without the σ-algebra assumption is
shown by the existence of countable models, as shown in §3.3.

3.3. Countable models. The σ-algebra assumption implies that the Boolean alge-
bra of events has at least the cardinality of the continuum. Its elimination makes
it possible to use a countable Boolean algebra. All that is needed is a qualitative
probability, �, defined over a countable Boolean algebra, which satisfies P6′. There
are more than one way to do this. Here is a type of what we shall call bottom up exten-
sion. In what follows, a qualitative probability space is a system of the form (S,B,�),
where B is a Boolean algebra of subsets of S and� is qualitative probability defined
over B.

Definition 3.32. Let (S,B,�) be a qualitative probability space. Then a normal
bottom up extension of (S,B,�) is a pair consisting of a qualitative probability
(S′,B′,�′) and a mapping h : S′ 7→ S, of S′ onto S, such that for every A, B ∈ B,
h−1(B) ∈ B′ and A � B ⇐⇒ h−1(A) �′ h−1(B).

Remark 3.33. The extension is obtained by, so to speak, splitting the atoms (the
states in S) of the original algebra. This underlies the technique of getting models
that satisfy P6′. In order to satisfy P6′ we have, given A � B, to partition S into
sufficiently fine parts, Pi, i = 1, 2, . . . , n, such that A � B ∪ Pi for all i = 1, . . . , n. If
we start with a finite Boolean algebra, the way to do it is to divide the atoms into
smaller atoms. The intuitive idea is that our states do not reflect certain features of
reality, and that, if we take into account such features, some states will split into
smaller ones.
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This picture should not imply that P6′, which is a technical condition, should be
adopted. The intuitive justification of P6′, which has been pointed out by Savage,
is different.

We have shown that, starting from a finite qualitative probability space we can,
by an infinite sequence of normal extensions get a countable space (that is, both S
and B are countable) that satisfies P6′. We can also get models with other desired
features. The proof of the following theorem, which is not included here, uses
techniques of repeated extensions that are employed in set theory and in model
theory.

Theorem 3.34 (countable model theorem).

(1) Let (S0,B0,�0) be a finite qualitative probability space and assume that the
qualitative probability is representable by some numeric probability. Then there
is an infinite countable model, (S,B,�), which forms together with a mapping,
h : S→ S0 , a normal extension of (S0,B0,�0), and which satisfies P6′.

(2) Let Ξ be any countable subset of (0, 1) and let µ be the numeric probability
that represents � (which exists by (1) and by our main result). Then we can
construct the model (S,B,�) in such a way that µ(A) /∈ Ξ for every A ∈ B.

This theorem implies, for example, that for all n, no number of the form 1/n, where
n > 1, and no number of the form (1/2)n, where n > 0, are among the values of µ.
Now de Finetti and Koopman proposed axiom systems for subjective probability
that included an axiom stating that there are partitions of S into n equal parts for
arbitrary large ns. Our theorem shows that, without the σ-algebra assumption, P6’
does not imply the existence of a probability that satisfies that axiom. Savage found
P6′ more intuitive than their axiom (and indeed it is), but was somewhat puzzled
by the fact that it implies that axiom. Our last theorem solves this puzzle. It shows
that without the σ-algebra assumption it does not imply their axiom.

Remark 3.35. So far we have been dealing with the Boolean algebra only. But in
order to state the results within the full perspective of Savage’s system, we shall
state them as results about decision models, that is, about systems of the form
(S, X,A,<,B). This is done in the following theorem.

In what follows f ◦ g is the composition of the functions f and g, defined by
( f ◦ g)(x) = f (g(x)). It is used under the assumption that the domain of f includes
the range of g.

Theorem 3.36. Let (S, X,A,<,B) be a decision model that satisfies P1-P5 (where
P5 is interpreted as the existence of two non-equivalent constant acts, but without
assuming CAA). Assume that S is finite and there is a probability over B that
represents the qualitative probability. Then there is a Savage system, (S∗, X∗,A∗,<∗
,B∗), that satisfies P1-P6 and there is a function h that maps S∗ onto S such that the
following holds:

(i) S∗ and B∗ are countable,
(ii) for all A ∈ B, h−1(A) ∈ B∗,

(iii) X∗ = X,
(iv) f ∈ A∗ iff f ◦ h ∈ A,
(v) f ∗ <∗ g∗ iff f ◦ h < g ◦ h.
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As noted, the proofs of these theorems employs techniques of model-theory and
set-theory. Here is a rough idea of one basic techniques from set theory. At every
stage of the repeated extensions we ensure that a particular instance of P6′ should
be satisfied. As the model grows, there are more cases to take care of, but we can
arrange these tasks so that after the infinite sequence of extensions all are taken
care of. We shall not go into more detail here.

4. A SIMPLER UTILITY FUNCTION FOR SIMPLE ACTS

In discussing the possibilities of extending the utility to non-simple acts, Savage
remarks:

The requirement that an act has only a finite number of conse-
quences may seem, from a practical point of view, almost no re-
quirement at all. To illustrate, the number of time intervals that
might possibly be the duration of a human life can be regarded as
finite, if you agree that the duration may as well be rounded to the
nearest minute, or second, or microsecond, and that there is almost
no possibility of its exceeding a thousand years. More generally, it
is plausible that, no matter what set of consequences is envisaged,
each consequence can be particularly identified with some element
of a suitably chosen finite, though possibly enormous, subset. If
that argument were valid, it could easily be extended to reach the
conclusion that infinite sets are irrelevant to all practical affairs,
and therefore to all parts of applied mathematics. (Savage, 1972,
p. 76–77)

In the last sentence Savage claims that the argument in favor of restricting
ourselves to simple acts should be rejected; otherwise this argument would also
imply that in applied mathematics we need not consider infinite sets. But Savage’s
system main goal is to serve as a foundation for subjective (in his terminology,
personal) probability – clearly a philosophical goal, which makes it a different kind
of things than a piece of applied mathematics. In applied mathematics one uses,
as a rule, σ-additive probabilities, for reasons of convenience and efficiency; but
Savage avoids, because of philosophical qualms, the adoption of σ-additivity as an
axiom of his system.

In the continuation of the above quote Savage points out the very high bene-
fits that accrue in mathematics from the use of infinite sets, which “can lead to
great simplification of situations that could, in principle, but only with enormous
difficulty, be treated in terms of finite sets.” Yet, just noted, his system cannot be
treated merely as a piece of mathematics. As a mathematician, Savage is interested
in generalizing various concepts and theorems, for the sake of the mathematical
significance of the generalization. As we shall presently show, CAA can be avoided,
if we limit ourselves to simple acts, and, as far as the philosophical goal of his
system is concerned – this is all that matters. For, as we noted in the first two
Sections, CAA implies a rather dubious notion of “rational agent.”

Note that it is known, and anyone who follows Savage’s derivation can easily
check it, that in the Savage system all that is needed for defining the probabilities
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are two non-equivalent constant acts.23 That is, instead of using CAA we posit 2CA,
i.e., there are two non-equivalent acts. Assume that they are c0 and c1 and that their
corresponding consequences are a0 and a1. Assume, WLOG, that c0 ≺ c1. Savage’s
technique of getting qualitative probabilities can be now applied, so that for every
E, F ∈ B we define:

E � F ⇔Df c1|E + c0|E < c1|F + c0|F. (4.1)

Then � is a qualitative probability. We can now represent it by a uniquely deter-
mined numeric probability, µ. Under the σ-algebra assumption, Savage’s construc-
tion gives us a probability that satisfies (†). Without the σ-algebra assumption, our
construction gives us a probability that satisfies (‡).

Recall that a feasible consequence is a consequence, a, for which there is an act
f ∈ A, such that f−1(a) is not null. We shall now show, how, using the probability µ,
we can assign utility values to all to feasible consequences, so as to get an expected
utility function defined over all simple acts. This is done without assuming CAA.
Let u(x) the utility of consequence x. We start by putting u(a0) = 0, u(a1) = 1.
This means that the acts c0 and c1 fix the basic utility scale. Without appealing to
CAA we shall now assign utilities to all feasible consequences. To do this, we use
the probability µ, which we have derived already. The definition is simpler if µ
satisfies (†). Therefore we shall provide this definition first, and then point out
the modification that will give us the utility assignment, if the probability satisfies
(‡). At the end we get a utility assignment for all simple acts, where neither the
σ-algebra assignment nor CAA are assumed.

4.1. Constructing utilities under the (†) condition. Consider now any feasible
consequences a ∈ X and let g be an act such that g−1(a) is not null. Let A = g−1(a)
and let c∗A =Df g|A + c0|A. By definition, c∗A yields a if s ∈ A, status quo, i.e., 0,
otherwise. Let U( f ) be the utility value of the act f , which we have to define.

To define utilities, we compare c∗A with c0. If c∗A ≡ c0, we put u(a) = 0. Otherwise
there are three possibilities:

(i) c1 < c∗A � c0 (ii) c∗A � c1 (iii) c0 � c∗A

In each one of these possibilities, the utility of c∗A and that of a can be defined as
follows. Let µ be the numeric probability derived under the (†) condition. Then for
case (i), let

ρ = sup
{

µ(B)
∣∣∣ B ⊆ A and c∗A < c1|B + c0|B

}
. (4.2)

Define
U[c∗A] = ρ and u(a) =

ρ

µ(A)
. (4.3)

For case (ii), let ρ = sup{µ(B) | B ⊆ A and c1 < c∗A|B + c0|B}; define U[c∗A] = 1/ρ
and u(c) = 1/[ρ · µ(A)]. Case (iii) in which the utility comes out negative is treated
along similar lines and is left to the reader.

This assignment of utilities leads to a representation of the utility of any simple
acts, f , as the expected utilities of the consequences, that appear as values of the

23This observation is also noted in (Fishburn, 1981, p. 161) where the author remarked that “[as far
as obtaining a unique probability measure is concerned] Savage’s C [i.e., the set of consequences] can
contain as few as two consequences” (see also Fishburn, 1982, p. 6). Fishburn (1970, §14.1–3) contains a
clean exposition of Savage’s proof of (3.1), and see especially §14.3 for an illustration of the role of P1–P6
played in deriving numerical probability.
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act, where, WLOG, we assume that each consequence a of f is feasible. As noted
by Savage, this definition works, if we assume that µ satisfied (†). The proof is
straightforward.

4.2. Constructing utilities under the (‡) condition. If µ satisfies the weaker con-
dition (‡) the definition has to be modified. Here is the modification for the case
c1 < c∗A � c0. From this it is not difficult to see what the modification is in the other
cases. Instead of (4.2), let

ρ = sup

{
µ(B)

∣∣∣∣∣ ∀ε > 0 ∃B′ ⊆ A
[
µ(B)− ε ≤ µ(B′) ≤ µ(B) and c∗A < c1|B′ + c0|B′

]}
.

Define utilities of cA and a as in (4.3), then we are done.

APPENDIX A. RAMSEY’S SYSTEM

The following is an overview of Ramsey (1926). All page numbers refer to this
publication.

Ramsey was guided by what he calls “the old-established way of measuring a
person’s belief,” which is “to propose a bet, and see what are the lowest odds which
he will accept” (p. 170). He finds this method “fundamentally sound,” but limited,
due to the diminishing marginal utility of money (which means that the person’s
willing to bet may depend not only on the odds but also on the absolute sums that
are staked). Moreover, the person may like or dislike the betting activity for its own
stake, which can be a distorting factor. Ramsey’s proposal is therefore based on
the introduction of an abstract scale, which is supposed to measure true utilities,
and on avoiding actual betting. Instead, the agent is supposed to have a preference
relation, defined over gambles (called by Ramsey options), which are of the form:

α if p, β if ¬p.

It means that the agent gets α if p is true, β otherwise; here p is a proposition and
α, β, . . . are entities that serve as abstract payoffs, which reflect their values for the
agent. Among the gambles we have: α if p, α if not-p, which can be written as: “α
for certain.” (Note that this does not imply that the agent gets the same value in
all possible worlds, because the possible world can carry by itself some additional
value.) If neither of the two gambles G1 and G2 is preferred to the other, the agent
is indifferent between them and they are considered to be equivalent.

Obviously, bets can be easily described as gambles of the above form. Ramsey
does not use the more general form (of which he was certainly aware) α1 if p1, α2 if
p2,. . . , αn if pn because, for his purpose, he can make do with n = 2. When he has
to define conditional degrees of beliefs he uses gambles with n = 3.

Concerning propositions Ramsey tells us that he assumes Wittgenstein’s theory,
but remarks that probably some other theory could be used as well (p. 177 Footnote
1). As for ‘α′, ‘β′, . . ., his initial explanation is somewhat obscure.24 But shortly
afterwards it turns out that the values are attached to the possible worlds and that
they can be conceived as equivalence classes of equi-preferable worlds:

24“[W]e use Greek letters to represent the different possible totalities of events between which our
subject chooses—the ultimate organic unities” (p. 176–177).
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Let us call any set of all worlds equally preferable to a given world
α value: we suppose that if a world α is preferable to β any world
with the same value as α is preferable to any world with the same
value as β and shall say that the value of α is greater than that of β.
This relation ‘greater than’ orders values in a series. We shall use α
henceforth both for the world and its value. (p. 178)

Obviously, the preference relation should be transitive and this can be imposed by
an axiom (or as a consequence of axioms). Also the equivalence relation mentioned
above should have the expected properties.25 We thus get an ordering of the
values, which Ramsey denotes using the standard inequality signs; thus, α > β
iff α for for certain is preferred to β for for certain. He also uses the Greek letters
ambiguously; thus, if α for certain is equivalent to β for certain, this is expressed in
the form: α = β. All in all, the Greek letters range over an ordered set.

The main task now is to “convert” this ordered set into the set of reals, under
their natural ordering. Ramsey takes his cue from the historical way, whereby real
numbers are obtained via geometry: as lengths of line segments.26 This requires
the use of a congruence relation, say ∼=, defined over segments. In our case, the
line comes as an ordered set, meaning that the line and its segments are directed;
hence αβ ∼= γδ also implies: α > β⇔ γ > δ. In Ramsey’s notation ‘=’ is also used
for congruence; thus he writes: αβ = γδ. (This agrees with Euclid’s terminology
and notation, except that in Euclid capital roman letters are use for points, so
that, “AB is equal to CD” means that the segment AB is congruent to the segment
CD.) Under the identification of α, β, γ, δ, . . . with real numbers, αβ = γδ, becomes
α − β = γ − δ. Ramsey’s idea is to define αβ = γδ by means of the following
defining condition, where the agent’s degree of belief in p is 1/2.

Cong Segments: α if p, δ if ¬p is equivalent to β if p, γ if ¬p.
The underlying heuristics seems to be this: If α, β, γ, δ are identified with real
numbers and if (Cong Segments) means that the expected utilities of the two
gambles are the same, then an easy computation of expected utilities, for the case
in which p is believed to degree 1/2, shows that (Cong Segments) is equivalent
to: α− β = γ− δ. This reasoning presupposes however that the truth (or falsity)
of p does not have, by itself, any positive or negative value for the agent. Ramsey
calls such propositions ethically neutral. The precise, more technical, definition is:
an atomic proposition p is ethically neutral ”if two possible worlds differing only in
regard to the truth of p are always of equal value” (p. 177); a non-atomic proposition
is ethically neutral if all its atomic components are. Now, if p is ethically neutral,
then the agent’s having degree of belief 1/2 in p is definable by the condition:

Deg Bel 1/2: For some α 6= β, α if p, β if ¬p is equivalent to β if p, α if¬p.
Hence, (Cong Segments) can be used to define αβ = γδ, provided that p is an
ethically neutral proposition believed to degree 1/2.

Ramsey’s first axiom states that such a proposition exists. Using which, he
defines the congruence relation between directed segments and adds further ax-
ioms, including the axiom of Archimedes and the continuity axiom, which make it
possible to identify the values α, β, γ, . . . with real numbers. Applying systematic

25For example, axiom 3 (p. 179) says that the equivalence relation is transitive. Additional properties
are implied by the axioms, on the whole.
26Or rather, as the ratios of a line segments to some fixed segment chosen as unit.
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ambiguity, Ramsey uses the Greek letters also for the corresponding real numbers
(and we shall do the same).

Having established this numeric scale of values, Ramsey (p. 179-180) proposes
the following way of determining a person’s degree of belief in the proposition p:
Let α, β, γ be such that the following holds.

p(α, β, γ): α for certain is equivalent to β if p, γ if ¬p.27

Then the person’s degree of belief in p is (α− γ)/(β− γ). Of course, the definition
is legitimate iff the last ratio is the same for all triples (α, β, γ) that satisfy p(α, β, γ).
Ramsey observes that this supposition must accompany the definition, that is, we
are to treat it as an axiom. A similar axiom is adopted later (p. 180) for the definition
of conditional degrees of belief, and he refers to them as axioms of consistency.

Now the only motivation for adopting the consistency axiom is expediency. The
axiom states in a somewhat indirect way that the Greek letters range over a utility
scale. Consider the two following claims:

Consist Ax: There is x, such that, for all α, β, γ, p(α, β, γ) IFF (α− γ)/(β−
γ) = x.

Utility Scale: There is x, such that, for all α, β, γ, p(α, β, γ) IFF α = x · β +
(1− x) · γ.

In both claims ’p’ is a free variable ranging over propositions, which has to be
quantified universally. The second claim states that the value scale established
using all the previous axioms is a utility scale – where the number x, which is
associated with the proposition p is its subjective probability; (i.e., there is no
problem of marginal utility and the acceptance of a bet depends only on the betting
odds). Now, by elementary algebra, the two claims are equivalent. This means that
the consistency axiom is a disguised form of the claim that there is a function that
associates with each proposition a degree of belief, such that the value scale over
which the Greek letters range is a utility scale.

Ramsey goes on to define conditional probability, using conditional gambles,
which comes with its associated consistency axiom. This is followed by a proof that
the degrees of belief satisfy the axioms of a finitely additive probability, and some
other properties of conditional probability.

To sum up, Ramsey’s goal was to show how subjective probabilities can, in
principle, be derived from betting behavior (where the stakes are are defined in
terms of a suitable utility scale). His excessively strong axioms are motivated largely
by this goal.

APPENDIX B. ADDITIONAL DEFINITIONS AND SAVAGE’S POSTULATES

We provide a list of Savage’s postulates. They are stated using the concepts
and notations introduced in Section 1 and Section 3.1 together with the following
notions of conditional preference and null events:

Definition (conditional preference). Let E be some event, then, given acts f , g ∈ A,
f is said to be weakly preferred to g given E, written f <E g, if, for all pairs of acts
f ′, g′ ∈ A, if

(1) f agrees with f ′ and g agrees with g′ on E, and

27If p is not ethically neutral then the gamble is supposed to be adjusted already, so that β contains the
contribution of p and γ – the contribution of ¬p.
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(2) f ′ agrees with g′ on E, then
(3) f ′ < g′.

That is, f <E g if, for all f ′, g′ ∈ A,

f (s) = f ′(s), g(s) = g′(s) if s ∈ E
f ′(s) = g′(s) if s ∈ E.

}
=⇒ f ′ < g′. (B.1)

Definition (Null events). An event E is said to be a null if, for any acts f , g ∈ A,

f <E g. (B.2)

That is, an event is null if the agent is indifferent between any two acts given
E. Intuitively speaking, null events are those events that the agent believes the
possibility they occur can be ignored.

Savage’s Postulates.
P1: < is a weak order (complete preorder).
P2: For any f , g ∈ A and for any E ∈ B, f <E g or g <E f .
P3: For any a, b ∈ X and for any non-null event E ∈ B, ca <E cb if and only if

a < b.
P4: For any a, b, c, d ∈ C satisfying a < b and c < d and for any events E, F ∈ B,

ca|E + cb|E < ca|F + cb|F if and only if cc|E + cd|E < cc|F + cd|F.
P5: For some constant acts ca, cb ∈ A, cb � ca.
P6: For any f , g ∈ A and for any a ∈ C, if f � g then there is a finite partition
{Pi}n

i=1 such that, for all i, ca|Pi + f |Pi � g and f � ca|Pi + g|Pi.
P7: For any event E ∈ B, if f <E cg(s) for all s ∈ E then f <E g.
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