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Causal models provide us with a formal tool for representing the net-
works of determination in which causes and effects are embedded.
They tell us how some token features of the world—represented in
the model with variables—determine others. They tell us whether
one variable determines another along a single path or along multi-
ple paths. They tell us whether two variables determine a third; and,
if so, whether they do so along independent or intersecting paths. And
it has been hoped that they can also tell us whether one variable is a
token cause of another.1 To this end, a number of authors have devel-
oped theories of token causation within the causal modelling frame-
work.2 Lots of good work has been done on this front, but most of
the theories developed to date have an awkward consequence: adding
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of Science at the University of Pittsburgh, and the Causal and Explanatory Reasoning
conference at Venice International University. I am especially indebted to two anony-
mous reviewers whose generous feedback and watchful eyes helped make this paper
much better than it would otherwise have been.

1. Token causation is sometimes called ‘singular causation’ or ‘actual causation’. Token
causal relations are the causal relations described with token causal claims—sentences
of the form ‘c ’s F -ing caused e toG ’ or ‘c ’s F -ing was a cause of e ’sG -ing’, where c ’s F -
ing and e ’sG -ing are token events (e.g., ‘Chris’s drinking was a cause of his esophageal
cancer’). These are to be contrasted with type, or general, causal claims like ‘Drinking
causes esophageal cancer’. So too should they be contrasted with the relations of
causal determination represented in a causal model. (Looking ahead to section 1, in
figure 1, whether B fires causally determines whether E does, but B ’s failure to fire is
not a token cause of E ’s firing.) Throughout, ‘cause’ should be understood to mean
‘token cause’.

2. See, e.g., Halpern and Pearl (2001, 2005), Hitchcock (2001, 2007a), Woodward (2003),
Menzies (2004, 2006), Hall (2007), Halpern (2008, 2016), Beckers and Vennekens
(2017, 2018), Weslake (forthcoming), and Andreas andGünther (forthcominga, forth-
comingb).
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A Model-Invariant Theory of Causation

or removing an inessential variable from a model will lead these theo-
ries to revise their verdicts about whether two variables are causally re-
lated.3 Attend to an additional, inessential, variable interpolated along
the path leading fromC toE, and these theories will change their mind
about whether C caused E. Attend to an additional, inessential, vari-
able feeding into the path from C to E, and these theories will likewise
change their mind about whether C caused E.4

I believe that this should concern us. In several instances, these the-
ories are only able to agree with intuition through a judicious choice
of which variables to include in the model. For just one example: in
section 1.1 below, we’ll encounter two systems which appear to dif-
fer causally, but which may be modeled with isomorphic variables and
equations. Nonetheless, Hitchcock (2001) treats them differently by
including an inessential variable in his model of one system while omit-
ting the corresponding variable from his model of the other. There is
a serious worry that, in the absence of some more general guidance
about when variables can be ignored, and when not, ad hoc decisions
like this can be used to effectively shield a theory from refutation.
A theory whose verdicts about whether C caused E don’t change as
inessential variables are added or removed—amodel-invariant theory—
would protect us from this kind of special pleading. Such a theory
would have the added virtue of making it easier to determine whether
C caused E. With such a theory, we needn’t consider all possible cor-
rect causal models, nor decide which is most appropriate or apt for the
present context; we need only check whether C caused E in a single
correct model.

Below, I will provide amodel-invariant a theory of causation. Along
the way, we’ll see reason to think that an adequate theory of causation
must distinguish between states which are normal, default, or inertial,
and events which are abnormal, deviant departures therefrom (sec-
tion 1.1). This is striking even after you have been persuaded it is
true. Why should a distinction between default and deviant behavior
play a role in our causal thought and talk? The theory developed here
suggests an answer. In rough outline, the theory says that C caused E

3. The theory of Beckers and Vennekens (2017, 2018) is a notable exception—modulo
some finicky issues related to their ‘timings’. Unfortunately this theory says that a
preemptive overdeterminer (see section 4) is not a cause. Beckers and Vennekens
recognize and embrace this consequence of their theory, but it is not one that I am
willing to endorse.

4. See Gallow (ms). I’ll get more precise about the term ‘inessential’ in section 2 below.
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whenever bothC and E are deviant or non-inertial events, and there is
an uninterrupted process which transmitsC ’s deviancy to E (this will be
made more precise below). That is, according to this theory, a cause
is something which transmits aberrational behavior to its effect; and,
if this is what a cause is, then it is no surprise to find the distinction
between the default and the deviant, the normal and the abnormal, or
the inertial and the non-inertial showing up in our theorizing about
causation.

In section 1, I will introduce causal models, explain how they can
be used to provide a semantics for causal counterfactuals, and explain
why I’ve been persuaded that these models must include information
about which variable values are more default, normal, or inertial than
which others. Then, in section 2, I’ll explain more carefully what I
mean when I call a theory of causation formulated in terms of these
causal models model-invariant. Sections 3–5 develop the notion of a
causal network. This is a formal characterization of what I called above
“an uninterrupted process which transmits C ’s deviancy to E”. Causal
networks are the heart of my theory of causation, and they are model-
invariant. In section 6.1, I will give some further motivation for think-
ing of causal networks as transmitting deviancy from cause to effect. In
section 6.2, I will give a precise statement of the theory and apply it to
some additional cases.

A few words of forewarning: in what follows, I will for themost part
confine my attention to some simple ‘neuron systems’ (see section 1
below)—though, along the way, I’ll provide ‘real world’ cases which ex-
emplify similar causal structures. All of these systems will be determin-
istic. This narrow focus will allow me to sidestep some thorny issues—
for instance, which kinds of variables can be included in a causalmodel,
when a system of equations is correct,5 and when one variable value is
more or less default, normal, or inertial than another. By focusing on
neuron systems, I will be able to get by with a small number of rela-
tively uncontroversial assumptions about these contentious questions.
Any complete theory of causation must say more about these issues
than I will say here, just as it must be extended to cover indetermin-
istic systems. Accordingly, the story I’ll tell here is a central part of a
full theory of causation, but it is not yet a complete theory.

5. I’ve said a bit about this in Gallow (2016), and I’ll say a bit more in section 2 below,
though there remains more to be said.
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A Model-Invariant Theory of Causation

1 Causal Models

As I’ll be using the term here,6 a causal model consists of 5 components:
a collection of exogenous variables,U, an assignment of values to those
variables, u, a collection of endogenous variables, V,7 a system of struc-
tural equations, one equation for each endogenous variable in V, and a
specification of which variable values are more normal, typical, inertial,
or default than which other variable values.8

Causal Models
A causal modelM = (U,u,V,E, ≽) is a 5-tuple of
(a) An m-tuple,U = (U1,U2, . . . ,Um), of exogenous variables;

(b) An assignment of values, u = (u1,u2, . . . ,um), to U;

(c) An n-tuple V = (V1,V2, . . . ,Vn), of endogenous variables;

(d) A system of structural equations, E = (ϕV1, ϕV2, . . . , ϕVn ),
one equation for each endogenous variableVi ∈ V; and

(e) A specification, ≽, of which values of each variable in
U ∪ V are more default, normal, typical, or inertial than
which others.

To see how a causal model represents structures of causal deter-
mination, consider the Lewisian system of neurons shown in figure 1.
Here’s how to read the diagram in figure 1: for every time listed at the
bottom, the neurons above it can either fire or not fire at that time. If

6. This terminology is somewhat idiosyncratic. Many authors do not include either ≽ or
u in their definition of a ‘causal model.’

7. As I understand them, variables are functions from some domain to the real line—
in my view, this domain is a set of possible spacetime regions. So, a variable will tell
you what its possible values are (these are just the real numbers in the image of the
function). The reader may think about variables differently; but they should ensure
that a causal model tells us which values each variable may take on.

8. Aword on notation: variables will be denoted with uppercase italic letters (A,B,C, . . . ),
while their values will be denoted with the corresponding lowercase italic letters
(a, b, c, . . . ). Tuples will be indicated with boldface. I will use uppercase for a tuple
of variables and lowercase for a tuple of their values. The Greek letter ϕ, subscripted
with a variable, will stand for a function, and I will often use just pϕV q to stand for
an entire structural equation like V := ϕV (X ,Y,Z ). Throughout, I will apply set-
theoretic notation to tuples of variables. Thus,U ∪ V is a tuple containing all and only
the variables in either U or V, V \ X is a tuple containing all and only the variables
in V, except for those in X, and so on. There will in general be many such tuples,
depending upon an arbitrary choice of order. It won’t matter which of these an ex-
pression like ‘U ∪ V’ denotes. In sections 3–6, I will use calligraphic letters (P,N ) to
stand for sets of directed edges.

4



1. Causal Models

U1 : (A,C )

u1 : (1, 1)

V1 : (B,D,E)

E1 :
©­«
E := B ∨D
D := C
B := A ∧ ¬C

ª®¬
Figure 1: On the left, the neuron system Preemptive Overdetermination. On
the right, the canonical model, M1, of this neuron system. (For all variables,
the value 0 is default, and the value 1 is deviant.)

a neuron actually fires at its designated time, then it is colored gray.
Otherwise, it is colored white. The arrows represent stimulatory con-
nections between neurons. If the neuron at the tail of the arrow fires
at its designated time, then, ceteris paribus, the neuron at the head will
fire at its designated time. Thus, if either B or D in figure 1 fires at t2,
then E will fire at t3. The circle-headed lines represent inhibitory con-
nections between neurons. If the neurons at their base fire, then the
neurons at their head definitely won’t fire. In figure 1, for instance, if
C fires at t1, then B won’t fire at t2, no matter whether A fires or not.

Parenthetically, it is not uncommon to see diagrams like these used
to represent the causal scenarios described in vignettes—scenarios in-
volving rock throwings, coffee poisonings, and the like. This is not
how I will be using them here. Rather, I will be understanding these
diagrams as representing hypothetical mechanical systems obeying the
simple causal laws described above. These systems consist of a small
number of parts, the neurons, with two potential states: being dormant,
which is a neuron’s inertial state, the state in which it will remain unless
acted upon fromwithout, and firing, which a neuron will only do when
another neuron connected to it with a stimulatory connection fires.9

You could think of these diagrams as representing an appropriately
constructed electrical circuit,10 neurons in the brain, connected with
appropriate excitatory and inhibitory synapses,11 or a boring possible
world containing no more than a few objects, the ‘neurons’, and gov-
erned by simple laws of nature specifying when these neurons will and
will not fire. I’ll be using these neuron systems, not as representational
tools, but rather as the reality to be represented with a causal model.12

9. Some neuron systems I introduce later on will have more potential states than these.
I’ll explain the additional complications then.

10. Cf. Armstrong (2004, p. 446)

11. This is how Lewis (1986) thought of them (see, e.g, p. 196).

12. See Hitchcock (2007b, p. 392).
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A Model-Invariant Theory of Causation

To represent the neuron system shown in figure 1, we may assign
a variable to every neuron: A,B,C,D, and E. These variables take on
the value 1 if their associated neurons fire at their designated times,
and take on the value 0 if their associated neurons remain dormant
at their designated times. (Thus, I use ‘A’ for both the neuron and
the variable which represents whether A fires at t1. Context will dis-
ambiguate.) Both A and C are exogenous variables—variables whose
values are not causally determined by the values of the other variables
in the model. Since both of those neurons fire at t1, the exogenous
assignment will tell us that A = C = 1. B , D , and E will be endogenous
variables—variables whose values are causally determined by the val-
ues of the other variables in the model. The structural equations in E
tell us exactly how the values of the endogenous variables are causally
determined. The equation E := B ∨ D tells us, firstly, that whether E
fires is causally determined by whether B does and whether D does,
and secondly, that E will fire iff either B or D does.13 Similarly, the
equation D := C tells us that whether D fires is causally determined
by whether C does, and that D will fire iff C does. The structural
equations, together with the exogenous variable assignment, allow us
to solve for the value of every variable in the model. For instance,
in the model M1, the structural equation B := A ∧ ¬C , together with
the exogenous assignment A = C = 1, tells us that B = 0. Similarly,
the structural equation D := C , together with the exogenous assign-
ment C = 1, tells us that D = 1. And, finally, the structural equation
E := B ∨ D , together with the values B = 0 and D = 1, tells us that
E = 1.

Because the equations in E encode information about the direction
of causal determination, we cannot re-arrangeD := C to getC := D , as
we could with an ordinary equation. A structural equationV := ϕV (U )

tells us more than just that the value ofV is a function, ϕV , of the value
ofU . It additionally tells us that the value ofV is causally determined
by the value ofU , in a way that the value ofU is not causally determined
by the value of V . This is why we use ‘:=’, rather than the symmetric
‘=’, in structural equations.

Given a causal model, M, we may construct a causal graph which
displays the causal determination structure amongst the variables in
U ∪ V, as follows: if a variable U appears on the right-hand-side of
V ’s structural equation ϕV , then place a directed edge betweenU and

13. Notation: x ∧y , x ∨y , and ¬x are the Boolean functions min{x, y}, max{x, y}, and 1−x ,
respectively.
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1. Causal Models

V , with its tail at U and its head atV , U → V . Thus, given the causal
model shown in figure 1, we may construct the following causal graph.

(Note: I have additionally decorated the graph with the values the
variables take on in the model.) This graph tells us that the variables
A and C are exogenous, that B ’s value is causally determined by the
values of A and C , that D ’s value is causally determined by the value
of C , and that E ’s value is causally determined by the values of B and
D . While it tells us by which other variables each endogenous variable
is directly causally determined, the graph on its own does not tell us
how the values of the endogenous variables are causally determined.
For that information, we must look to the structural equations in E.

It is common to use the metaphor of genealogy to describe the
causal determination relations between variables displayed in a graph.
For instance, B and D are E ’s causal parents, and C ’s causal children.
Similarly, B , D , and E are C ’s causal descendants. Throughout, I will
assume that no variable is among its own causal descendants—that is,
I will assume that there are no causal loops.14 I will use ‘PA(V )’ to
denote a tuple ofV ’s causal parents.

Finally, our causal model should specify, for each variable, which
values of that variable are more default, inertial, or normal than which
others. In the case of the neuron system from figure 1, I will assume
that remaining dormant is the default, normal state of a neuron—it
is the state in which the neuron will remain unless it is acted upon
by some other, stimulatory neuron. And I will assume that firing is a
more abnormal deviation from that default, inertial state. I will assume
likewise for every other neuron system in this paper.15 The readermay

14. I make this assumption in the interests of simplicity, not out of necessity. Local depen-
dence (see section 4) is well-defined in cyclic models; so causal networks (see section
5) are well-defined in cyclic models; so the theory of causation I’ll present in section
6 can be applied straightforwardly to cyclic models.

15. Formally, we can understand ≽ as a function from the variablesV ∈ U∪V to a partial
pre-order over their values, ≽V . If v ≽V v∗, then v is no more default, normal, or in-
ertial than v∗ (cf. Halpern (2008, 2016) and Halpern and Hitchcock (2015)). Perhaps
which variable values are more inertial than which others should be relativized to the
values of some other variables in the model. Taking for granted that your food is poi-
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Figure 2: Short Circuit

be curious why this kind of information is included in a causal model.
I’ll explain in section 1.1 below.

1.1 Defaults and Deviancy

The neuron system shown in figure 1 gives a case of preemptive overde-
termination. There, either A’s firing or C ’s firing would have been
enough, on its own, to make E fire. Both A and C fired, so the firing
of E was overdetermined. But the overdetermination is not symmet-
ric. Though the causal process initiated with C runs to completion,
the causal process initiated with A is preempted by C ’s firing. A would
have caused E to fire, were it not for C ; but as it happens, A is merely
a backup would-be cause. C , on the other hand, is a genuine cause of
E ’s firing.

Consider the neuron system shown in figure 2. (I followHall (2007)
in calling this neuron system a ‘short circuit’.16) There, the neuron C
fires, causing B to fire; and B ’s firing threatens to make E fire. But,
at the same time that C initiates this threat to E ’s dormancy, it also
makes D fire. And D ’s firing prevents E from firing. So C both creates
a threat to E ’s dormancy and, at the same time, neutralizes that very
threat. For a case with a similar causal structure, consider:17

soned, your death may be inertial, even though, when we don’t take this for granted,
death is an abnormal departure from inertial behavior (cf. Halpern (2016)). Perhaps
we should further distinguish variable values which are inertial from those which are
deviant, saying that, conditional on the poisoning, your death is inertial, but deviant.
I’m sympathetic to these thoughts; but I’ll put them aside for the nonce. We will be
able to say many interesting things without worrying too much about the particulars
of the default/deviant distinction.

16. See also Lewis (2004, p. 97–99), in which the same structure is called an inert network.

17. This case is attributed to an early draft of Hall (2004) by Hitchcock (2001). In assum-
ing that Boulder and Short Circuit have similar causal structures, I am in part assuming
that the boulder’s fall is a deviant, non-inertial event, and that Matthew’s survival is a
default, inertial state.
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1. Causal Models

Boulder
Matthew hikes through the Scottish highlands. Above him,
a large boulder becomes dislodged and careens down the
hillside. He sees the boulder coming and jumps out of the
way at the last second, narrowly escaping death.

The boulder’s becoming dislodged creates a threat to Matthew’s life.
However, at the same time that it creates this threat, it also alerts him to
its presence, causing him to jump out of the way. So the boulder both
creates a threat to Matthew’s life and, at the same time, neutralizes
that very threat. I take it that the boulder’s becoming dislodged did
not cause Matthew to survive, nor did C ’s firing cause E to remain
dormant in the neuron system from figure 2.

As Hall (2007) notes, we may write down a system of structural
equations for Short Circuit which is isomorphic to the canonical model
of Preemptive Overdetermination from figure 1. Let A be a variable which
takes on the value 1 if the neuronA doesn’t fire, and takes on the value 0
if it does fire. Similarly, let B and E be variables which take on the value
1 if their associated neurons don’t fire, and take on the value 0 if they
do fire. And let C and D be variables which take on the value 1 if their
associated neurons fire, and take on the value 0 if they don’t. Then,
the following system of equations will correctly describe the causal de-
termination structure amongst these variables.

E := B ∨D
D := C
B := A ∧ ¬C

E won’t fire just in case either B doesn’t fire or D does; D will fire just
in case C does; and B won’t fire just in case neither A nor C do.

These are isomorphic to the equations we wrote down for the case
ofPreemptive Overdetermination. Moreover, the exogenous variables take
on precisely the same values. In Preemptive Overdetermination, C ’s firing
caused E to fire (that is, C = 1 caused E = 1). But, in Short Circuit, C ’s
firing did not cause E to not fire (that is, C = 1 did not cause E = 1).
So, if we wish to use causal models to determine which variable values
caused with other variable values, then we will need to know more
than a true system of structural equations and an assignment of values
to the exogenous variables is capable of telling us.

It is natural to think of the dormancy of a neuron as a kind of de-
fault, normal, or inertial state. It is the state in which the neuron will
remain unless it is acted upon by some other, stimulatory neuron. And
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the event of a neuron’s firing is a deviation from that default, normal,
inertial state. Several authors18 have thought that this distinction, be-
tween default, normal, or inertial states and events which are abnormal,
non-inertial deviations therefrom, must be incorporated into a theory of
causation. And appealing to this distinction allows us to distinguish
Preemptive Overdetermination from Short Circuit. For, in our model of
Preemptive Overdetermination, A = 1, B = 1, and E = 1 stand for the
deviant, abnormal, non-interial events of neurons firing; while, in our
model of Short Circuit, A = 1, B = 1, and E = 1 stand for the default,
normal, inertial states of neurons remaining dormant. It is for this rea-
son that a causal model includes ≽, which tells us which variable values
are more deviant, abnormal, or non-inertial than which others.

No theory of causation incorporating this kind of information is
complete until it provides an independent characterization of which
variable values are more or less default than which others.19 How-
ever, insofar as we keep our focus on simple neuron systems, the only
assumption I will need is that a neuron’s remaining dormant is more
default than its firing. When additional assumptions about the de-
viancy of a variable’s values are needed, I will explicitly state them.

The focus on simple neuron systems will also allow me to get by
with just one, relatively weak, assumption abouut when a causal model
is correct. To understand this assumption, return to the neuron sys-
tem shown in figure 1. To construct the causal model M1 from this
neuron system, we assigned a variable to every neuron, with a value
of 1 standing for the neuron firing at its designated time, and a value
of 0 standing for the neuron remaining dormant at that time. The
variables for the neurons without any stimulatory or inhibitory con-
nections coming into them were made exogenous, and assigned the
values corresponding to the actual state of their neurons. We then
wrote down equations describing how the state of each endogenous
neuron is directly causally determined by the other neurons in the
system, and we assumed that firing is a more deviant state of a neuron
than remaining dormant. Let’s call the causal model that we construct
in this way from a given neuron system the canonical model of that neu-

18. See in particular Kahneman and Miller (1986), Thomson (2003), McGrath (2005),
Maudlin (2004), Hall (2007), Hitchcock (2007a), Halpern (2008, 2016), Hitchcock
and Knobe (2009), Paul and Hall (2013), and Halpern and Hitchcock (2015).

19. For some attempts, see Kahneman and Miller (1986), Maudlin (2004), McGrath
(2005), Hall (2007), Hitchcock (2007a), Hitchcock and Knobe (2009), and Wolff
(2016).
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1. Causal Models

ron system. Then, the assumption I’ll need about model correctness
going forward is this: the canonical model of any neuron system is
correct.

1.2 Counterfactual Causal Models

Given a causal model M = (U,u,V,E, ≽), with some tuple of variables
A ⊆ U∪V, we may construct a counterfactualmodel, in which the vari-
ables in A have been intervened upon so as to hold their values fixed
at a, as follows: We remove any endogenous variables in A from the
endogenous variables V, and add them to the exogenous variables, U.
Next, we remove the structural equations of any endogenous variables
in A from the system of structural equations E, and change the exoge-
nous assignment u so that it assigns the values in a to the variables in
A. The information in ≽ will remain unchanged.

Counterfactual Causal Model
Given a causal modelM = (U,u,V,E, ≽), including the vari-
ablesA, and given the assignment of values a toA, the coun-
terfactual model

M[A→ a] = (U∗,u∗,V∗,E∗, ≽∗)

is the model such that:

(a) U∗ = U ∪ A
(b) u∗ = u+ a20

(c) V∗ = V \ A
(d) E∗ = E \ (ϕA | A ∈ A)
(e) ≽∗ = ≽

For instance, figure 3 displays the counterfactual modelM1[D → 0] in
which we have intervened so as to setD ’s value to 0. Notice that, in this
model, it is no longer the case that D ’s value is causally determined by
C . Rather, D has been ‘exogenized’, and it has been given the exoge-
nous assignment 0. In this new model, when we solve for the values of
the variables as before, we find that E = 0.

20. Here, I use ‘u+a’ to refer to the result of adding the assignment a to u (if the variable
from A was not already exogenous) or revising the assignment u to match a (if the
variable from A was already exogenous).
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A Model-Invariant Theory of Causation

U∗1 : (A,C,D)

u∗1 : (1, 1, 0)

V∗1 : (B,E)

E∗1 :
(
E := B ∨D
B := A ∧ ¬C

)
Figure 3: On the right, the counterfactual model M1[D → 0] (for all vari-
ables, 0 is default, and 1 is deviant). On the left, its associated causal graph.

We can use these counterfactual models to provide a semantics for
causal counterfactuals.21 According to this semantics, a counterfactual
“Had A taken on the values a, then it would have been that C” (where
C is any Boolean combination of variable values) is true in a causal
modelM just in case C is true in the counterfactual model in which you’ve
intervened so as to set A to the values a,M[A→ a].

Causal Counterfactuals
If C is a proposition about the values of the variables in a
causal model M, and M contains the variables in A, then
the causal counterfactual A = a �→ C is true in M iff C is
true in the counterfactual modelM[A→ a],22

M |= A = a �→ C ⇐⇒ M[A→ a] |= C

Thus, because E = 0 is true in the counterfactual model M1[D → 0],
the counterfactual D = 0 �→ E = 0 is true in the modelM1.

2 Model Invariance

Like any other vehicle of representation, a causal model may be ap-
praised for accuracy. The model tells us that the world is a certain
way, and what it tells us could be either true or false. In the former
case, the model is correct. In the latter case, it is incorrect. A causal
model which says that the rain is causally determined by the state of my
umbrella is not correct; it gets the causal structure of the world back-
wards. Amongst the correct causal models, some are more detailed,
some less so. One correct model tells us that whether the match lights

21. For more on this semantics, see Galles and Pearl (1998), Briggs (2012), and Huber
(2013).

22. I use ‘M |= S’ for ‘the sentence S is true in the model M’. For sentences of the form
pV = v q, and Boolean functions of these sentences, the definition of truth in a model
is just what you would expect.
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2. Model Invariance

is causally determined by whether it is struck. Another tells us that
whether the match lights is causally determined both by whether it is
struck and whether there is oxygen present. Both models tell us true
things about the world’s causal structure, though the second tells us
strictly more. Other correct causal models may tell us which variables
causally determine whether the match is struck, which are causally de-
termined by whether the match is lit, and which are causally interme-
diate between the match’s striking and its lighting.

If we wish to theorize about causation in terms of causal models,
then it is important for us to distinguish between correct and incorrect
models; for it is only the verdicts issued about correct models which
are commitments of our theory. Without some way of distinguishing
correct models from incorrect models, a theory of causation tells us
nothing at all about which variable values are token causes of which
others.

For my purposes, I won’t need to supply a complete account of
when a causal model is correct. I will only need to endorse three,
rather weak, conditions on the correctness of a causal model (viz, that
the canonical model of a neuron system is correct, and the principles
Exogenous and Endogenous Removal, to be introduced below). How-
ever, just to orient the reader, let me say a few things here about what
I think it takes for a causal model to represent the world correctly.

On my view, in order to be correct, a causal model must entail
only true counterfactuals about the values of the variables appearing
in the model. If a causal model entails a false counterfactual, then
the model is incorrect. But entailing only true counterfactuals is not
sufficient for a model being correct; some incorrect models entail only
true counterfactuals. Return to the case of Preemptive Overdetermination
from figure 1, and consider a model which contains only the variables
C and E, both of which are exogenous and take on the value 1. This
model tells us, truly, that E ’s firing is counterfactually independent of
C ’s firing. But it also tells us, falsely, that whether E fires is causally
independent of whether C fires. So this model is not correct, even
though it entails only true counterfactuals. Or consider a model of
Preemptive Overdetermination which contains only the variables A,C, and
E, where A and C are exogenous and both take on the value 1, and a
single structural equationwhich tells us thatE := A∨C . Thismodel will
entail only true counterfactuals. However, in this model, the variables
A andC are perfectly symmetric. So any theory of causation presented
with this model will tell us that A = 1 caused E = 1 iff C = 1 caused
E = 1. Since C = 1 caused E = 1 and A = 1 did not, this model
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cannot be correct. My diagnosis is that this too-simple model tells us,
falsely, that A and C determine the value of E along non-intersecting
paths. So, on my view, causal models don’t just represent patterns of
counterfactual dependence between variable values—they also tell us
something about the paths by which variables causally determine the
values of their descendants.23

In general, my view is that a causal model tells us how each of the
values of each endogenous variable,V ∈ V, are causally determined by
the values ofV ’s ancestors in the model—whether by a single path or
multiple paths, and whether by independent or intersecting paths—
and it tells us that those values are not causally determined byV ’s non-
ancestors. From these facts, we can determine which variable values
counterfactually depend upon which others, as described in section
1.2. So, if a model entails false counterfactuals, then the model must
have told us something false. But the model tells us strictly more
than those counterfactuals do. (I will expand upon this view when
discussing some examples below.)

2.1 Exogenous Removal

In order to be correct, a causal model needn’t include a variable for ev-
ery factor which is potentially causally relevant. The model which says
that whether the match lights is causally determined by whether it is
struck and whether there’s oxygen in the room is correct. But, so long
as the oxygen is present, the variable for oxygen is not needed. We
could remove it, and the causal model left behind—the one which tells
us that whether the match lights is causally determined by whether it’s
struck—would be correct, also. (This model no longer tells us whether
there’s oxygen in the room, but no model will tell us everything about
the world, just as no map tells us everything about where things are
located. A map of London is not incorrect simply because it doesn’t
tell us where Sabeen’s flat and the Eiffel tower are located. Likewise,
a causal model is not incorrect simply because it doesn’t tell us some-
thing about the values of omitted variables.) Or consider the neuron
system displayed in figure 4. The canonical model of this neuron sys-
tem, M4, includes a variable for A,C , and E (with 1 corresponding to

23. Again, this is my diagnosis of why the model is not correct; but if the reader disagrees
with it, this disagreement won’t make any difference to anything else I have to say
here. My goal in this section is just to defend the principles Exogenous and Endoge-
nous Reduction (see below). And you can accept these principles while disagreeing
with me about why this simple model of Preemptive Overdetermination is correct.
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Figure 4: Omission Figure 5: Prevention

firing and 0 corresponding to not firing). Its exogenous assignment
tells us that A = 1 and C = 0, and it includes the structural equation
E := A ∧ ¬C . The canonical model M4 is correct; but, so long as C
doesn’t fire, the variable for C isn’t necessary. Just as we can take the
presence of oxygen for granted, so too can we take the non-firing of
C for granted. So we can pluck the variable C out of this model and
replace it with its actual value, 0, in the structural equation. We will
be left with a model—call it ‘M−C4 ’—which contains the sole exogenous
variableA, the sole endogenous variable E, and the structural equation
E := A ∧ ¬0, or just E := A.

In general, if M = (U,u,V,E, ≽) is a causal model with the exoge-
nous variable U ∈ U, then let M−U be the model that you get by (a)
removing U from U; (b) removing U ’s value from u; (c) ‘exogenizing’
any variables in V whose only parent wasU ;24 (d) replacingU with its
value in every structural equation in E; and (e) removing information
about the deviancy of U ’s values from ≽.

In my view, removing an exogenous variable from a correct causal
model in this way will not always leave a correct causal model behind.
For instance, consider the neuron system in figure 5. This is just like
the neuron system from figure 4, except that, in figure 5, C fires, and
therefore, E doesn’t. The canonical model of this neuron system,M5,
will be exactly like M4, except that the exogenous assignment will tell
us that C = 1, rather than C = 0. In my view, this makes a difference
with respect to whether the variable C can be ignored. For if we try to
replace C with its actual value inM5, we will be left with the structural
equation E := A ∧ ¬1, which is a constant function of A. Whether A is
0 or 1, E will take on the value 0. This equation tells us, falsely, that E
andA are causally independent. So the modelM−C5 is not correct, even

24. ‘Exogenizing’ a variable V ∈ V means (a) moving V from V to U; (b) enriching the
exogenous assignment u so that it assignsV the value it takes on in the original model
M; and (c) removingV ’s structural equation from E.
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though M5 is. So removing an exogenous variable does not always
preserve correctness.

In my view, in order for a structural equation V := ϕV (PA(V )) to
be correct, it must tell us how each of V ’s values are causally deter-
mined by the values of V ’s causal parents. So ϕV must be a surjective
function of all of the right-hand-side variables. That is: for every value
v of the left-hand-side variable V , there must be some assignment of
values to the right-hand-side variables PA(V ) which gets mapped to v
by the function ϕV . If ϕV is not surjective, then the structural equation
for V cannot tell us how each of V ’s values could be causally deter-
mined by the values of V ’s parents. So, if ϕV is not surjective, then
the structural equation forV cannot be correct.25 Additionally: on my
view, a structural equation ϕV tells us that the left-hand-side variable
V has its value causally determined by all of the right-hand-side vari-
ables. So ϕV must be a function of all ofV ’s causal parents P a ∈ PA(V ).
That is: for each P a ∈ PA(V ), there must be some assignment of val-
ues to the other variables in PA(V ) such that, when they take on those
values, the value V takes on depends upon which value P a takes on.
So, if V is not a function of all of the right-hand-side variables, then
the structural equation cannot be correct.

In general, ifU is exogenous inM, and if every structural equation
ϕV inM−U is both (a) a surjective function and (b) a function of all ofV ’s
remaining causal parents, then I will say thatU is an inessential exoge-
nous variable in M.26 Though removing exogenous variables will not
always preserve correctness, I believe that removing inessential exoge-
nous variables will. That is, I believe we should endorse the following
principle.27

25. Or so it seems to me. You may not agree that structural equations must be surjec-
tive. If so, this shouldn’t prevent you from accepting anything else I have to say here.
By imposing this requirement, I strengthen the antecedent of my principle Exoge-
nous Removal (see below). Strengthening the antecedent weakens the conditional. I
think that this weakening is necessary; but, even if you think the principle is weaker
than it needs to be, this is no reason for you to worry about its truth. (Readers who
worry about this surjectivity requirement should also note that it is not required at
any point in the proof of my theory’s model-invariance in appendix A; so the theory
would still be model-invariant even if Exogenous Removal were strengthened. In-
deed, the theory would bemodel-invariant even if we say that every exogenous variable
is inessential.)

26. To be clear: V ’s remaining causal parents in M−U are just V ’s causal parents in M,
minus U .

27. To be clear: I think that Exogenous Removal is a substantive claim; you could very
well disagree with me about it (if, for instance, you thought that removing any exoge-
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Exogenous Removal If a causal model M = (U,u,V,E, ≽) is correct,
and U ∈ U is inessential, thenM−U is also correct.

2.2 Endogenous Removal

In order to be correct, a causal model need not include a variable
for every factor which is causally intermediate between two variables.
Whether the room is illuminated is causally determined by whether
the switch is up. There are ever so many variables causally interme-
diate between these two—whether current is flowing, whether the fil-
ament in the bulb is heated, etc. Nevertheless, a model which omits
them all is still correct. So, just as we may remove inessential exoge-
nous variables from a causal model, so too may we remove inessential
endogenous variables. Consider again the modelM1, shown in figure
1. This model tells us that whether E fires is determined by whether
D does, and that whether D does is determined by whether C does.
Here, the variable for D is not necessary. We could pluck it out of the
model by replacing it with the left-hand-side of its structural equation,
C , wherever it appears. We will be left with a model—call it ‘M−D1 ’—
which contains the following system of structural equations.

E := B ∨C
B := A ∧ ¬C

This model won’t tell us howD fits into the causal determination struc-
ture of the neuron system, but it tells us about the causal determination
structure amongst the variablesA,B,C, andE, and what it tells us about
them is all correct.

In general, ifM = (U,u,V,E, ≽) is a causal model with the endoge-
nous variableV ∈ V, then letM−V be themodel that you get by (a) leav-
ingU and u alone; (b) removingV from V; (c) removingV ’s structural
equation V := ϕV (PA(V )) from E; (d) replacing V with ϕV (PA(V ))

whereverV appears on the right-hand-side of a structural equation in
E; and (e) removing information aboutV from ≽.

Inmy view, removing an endogenous variable from a correct causal
model in this way will not always leave a correct causal model behind.
As with exogenous variables, removing some endogenous variables
won’t leave behind surjective, functional structural equations. Those

nous variable with a deviant value wouldn’t leave a correct model behind); Exogenous
Removal is not an implicit partial definition of what I mean by ‘correctness’.
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variables are not inessential. But they are not the only ones. Con-
sider again the model M−D1 . If we pluck the variable B out of this
model in themanner specified above, we will arrive at amodel,M−D,−B1 ,
which contains the sole structural equation E := (A ∧ ¬C ) ∨C , or just
E := A ∨ C , and the exogenous assignment A = C = 1. This model
treats the variables A and C symmetrically; yet A and C differ causally.
So the causal modelM−D,−B1 cannot be correct. As I remarked above, in
my view, this is becauseM−D,−B1 tells us that A andC causally determine
the value of E along non-intersecting paths, which is not true.

Suppose that, in M, V has a single parent, P a, and a single child,
Ch,

P a →V → Ch

and suppose that P a is not also a parent of Ch. If that’s so, then say
that V is an interpolated variable in M.28 If V is interpolated, then I’ll
say that it is an inessential endogenous variable. Though removing en-
dogenous variables will not always preserve the correctness of a causal
model, I believe that removing inessential endogenous variables will.
That is, I think we should endorse the following principle.

Endogenous Removal If a causal model M = (U,u,V,E, ≽) is correct,
andV ∈ V is inessential, thenM−V is also correct.

2.3 Model-Invariance

We want a theory which will tell us whether two variable values, C = c
and E = e , are causally related; and we wish to formulate that theory
within the framework of causal models. (Notation: throughout, I will
use ‘C ’ and ‘E ’ for the cause and effect variables of interest, and I will
use ‘c ’ and ‘e ’ for the actual values of C and E.) This theory will say
whether C = c caused E = e relative to a given causal model. For
an arbitrary C and E, there will be a great many correct causal models
containing bothC and E. It would be nice if our theory did not require
us to survey them all. It would be nice if it said whether C caused E
relative to a single causal model, and if its verdicts did not change from
correctmodel to correctmodel.29 That is, it would be nice if our theory

28. Note that, if V is interpolated, then all of the equations in M−V will automatically
be surjective functions of all of their right-hand-side variables, so long as all of the
equations inM are.

29. Of course, in order for a theory of causation to tell us whether C = c caused E = e ,
we will have to provide it with a correct model which contains the variables C and E.
There will be many correct models which don’t contain C or E. If you want to know
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satisfied the following constraint.30,31

Model Invariance For any two causal models M and M′ which both
contain the variablesC and E, if bothM andM′ are correct, then
C = c caused E = e inM iff C = c caused E = e inM′.

Let’s call a theory of causation which is consistent with the prin-
ciples Model Invariance, Exogenous Removal, and Endogenous Re-
moval a model-invariant theory of causation.32 If the theory is inconsis-
tent with these principles, then let’s say that it is a model-variant theory
of causation. It would be nice to have a model-invariant theory. If our
theory is model-invariant, then, when we ask whether C = c caused
E = e , we needn’t worry about our causal verdicts changing as we in-
clude additional variables lying along, or feeding into, paths from C
to E. Nor need we worry about the theory being shielded from refu-
tation by ad hoc choices about which variables to include and which
to ignore. Unfortunately, almost all of the extant theories of causa-
tion situated in the framework of causal modelling are model-variant.
In particular, the accounts of Hitchcock (2001, 2007a), Halpern and

whether C caused E, those other models are like maps of Paris when you’re lost in
London—they’re not inaccurate, just unhelpful.

30. There are alternatives to accepting Model Invariance. In general, a theory of cau-
sation formulated with causal models will specify when a causal model is a witness to
C = c causing E = e . We might go on to say that C = c caused E = e iff there is some
witness to C = c causing E = e (and therefore, C = c didn’t cause E = e iff there is
no witness). Or we might say that C = c caused E = e iff all correct causal models are
witnesses to C = c causing E = e (and therefore, C = c didn’t cause E = e iff some
correct causal model fails to witness C = c causing E = e ). The first alternative makes
it easy to establish causation but difficult to establish non-causation (we must estab-
lish non-causation in all of the correct causal models). Likewise, the second makes it
easy to establish non-causation, but difficult to establish causation. Model-invariance
makes it easy to establish causation and non-causation both.

31. Cf. Halpern (2016, §4.4), who shows that his theory of causation will not reverse its
verdicts of non-causation as endogenous variables are removed, though it may reverse
its judgments of causation. (Note that this result requires strong assumptions about
normality. Given the assumption that the dormancy of a neuron is default, while the
firing of a neuron is deviant, Halpern’s theory will reverse its verdicts about non-
causation as well. See Gallow (ms).)

32. Notice that a theory’s verdicts about causation will be preserved when inessential vari-
ables are removed iff that theory’s verdicts about non-causation are preserved when
inessential variables are added. And a theory’s verdicts about non-causation will be
preserved when inessential variables are removed iff that theory’s verdicts about cau-
sation are preserved when inessential variables are added. So, if we are able to show
that a theory’s verdicts don’t change as inessential variables are removed, we will have
also thereby shown that its verdicts don’t change as inessential variables are added.
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Pearl (2001, 2005), Woodward (2003), Halpern (2008, 2016), Weslake
(forthcoming), and Andreas and Günther (forthcominga, forthcom-
ingb) will all reverse or suspend their verdicts when inessential vari-
ables are removed from a causal model.33

In sections 3–6, I will introduce a theory of causation which is
model-invariant. If this theory says thatC = c caused E = e in a causal
modelM, then it will continue to say this after any inessential variables
are removed from M. And, if the theory says that C = c didn’t cause
E = e in a causal model M, then it will continue to say this after any
inessential variables are removed fromM. I will build the theory up by
walking through some standard cases from the literature—symmetric
overdetermination (section 3), preemptive overdetermination (section
4), and counterexamples to transitivity (section 5). According to this
theory, a cause must be connected to its effect by what I will call a
‘causal network’—in rough outline, a causal network represents an
uninterrupted process, each stage of which depends upon its prede-
cessors, and which transmits the cause’s deviant, non-inertial behavior
to the effect. The definition of a causal network will be developed in
section 5. Then, in section 6, I will consider some additional cases and
suggest that, if we should understand causation in terms of causal net-
works, then we should understand a cause as something which trans-
mits deviant or non-inertial behavior to its effect.

3 Symmetric Overdetermination

A simple case of symmetric overdetermination is shown in figure 6.
Either A or C ’s firing would have been enough, on its own, to make E
fire. Both A and C fired, so the firing of E was overdetermined, and
symmetrically so. There’s nothing that A’s firing has that C ’s firing
lacks; nor anything C has that A lacks. If either of them caused E to
fire, then both of them did. For another case with a similar structure,
consider Pay Raise.34

33. See Gallow (ms).

34. Cf. Livengood (2013). Note: when I say that Pay Raise has a similar causal structure,
I am in part assuming that the ‘yea’ votes and the proposal’s passing are deviant. (Of
course, the causal structure is similar, not exactly the same. In Symmetric Overdetermi-
nation, E would still have fired, even if either A or C had not fired; and in Pay Raise,
the proposal would still have passed, even if either Franny, Sammy, or Tammy had
not voted ‘yea’.)
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Figure 6: Symmetric Overdetermination

Pay Raise
Franny, Sammy, and Tammy vote on a proposal to raise
legislators’ salaries. The proposal requires two out of three
votes in order to pass. All three vote in favor, and the pro-
posal passes.

The passing of the proposal was overdetermined by the three votes
in favor, and symmetrically so. There’s nothing that any one vote has
that the others lack. If any vote caused the motion to pass, then all of
them did.

In cases like these, the effect is overdetermined. The world supplied
more than enough for the effect to obtain. There is some appeal to the
idea that the world did this by supplying more than enough causes—
that is, there is some appeal to the idea that each of the overdetermin-
ers are individually causes of the effect. For instance: C individually
caused E to fire; and Franny individually caused the proposal to pass.
At the same time, there is some appeal to the idea that C ’s firing didn’t
all by itself cause E to fire, and that Franny didn’t all by herself cause
the proposal to pass. Perhaps she is a part of a cause—perhaps she
contributed to the proposal’s passing—but, we may think, she did not
cause it to pass all by herself, given that the proposal would have had
a two-vote majority even without her support.

Mackie (1965)35 andLewis (1986)36 were both happywith the judg-
ment that C ’s firing did not cause E to fire in figure 6. According to
both, in cases of symmetric overdetermination, intuition is split and
a theory of causation could reasonably answer with either verdict. I

35. “Our ordinary concept of cause does not deal clearly with cases of this sort.” (Mackie,
1965, p. 251).

36. “Such cases can be left as spoils to the victor, in D. M. Armstrong’s phrase. We can
reasonably accept as true whatever answer comes from the analysis that does best on
the clearer cases.” (Lewis, 1986, p. 194)
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agree withMackie andLewis.37 An adequate theory of causation needn’t
say that C ’s firing caused E to fire. However, it should not say that E ’s
firing was uncaused. If neither A nor C individually causes E to fire,
then they must do so jointly. I will formally represent A and C ’s jointly
causing E to fire by allowing not just individual variable values, but
also tuples of variable values, to be causes. In the canonical modelM6,
to say that A’s firing and C ’s firing jointly caused E to fire is to say that
(A,C ) = (1, 1) caused E = 1.38

My theory will not say that C ’s firing individually caused E to fire.
So I will take the lesson of symmetric overdetermination to be this: we
should want a theory to tell us more than when an individual variable
value C = c caused another variable value E = e . We should also
want it to tell us when some collection of variable values, C = c, caused
a variable value E = e . That is: we should want a theory not just of
individual causation, but of joint causation as well.39

Throughout, by the way, I will draw no distinction between a vari-
able,V , and a 1-tuple containing that variable, (V )—nor will I distin-
guish between a variable value, V = v , and a 1-tuple variable value,
(V ) = (v). This conflation allows a theory of joint causation to cover
individual causation as a special case.

Once we allow tuples of variables to be causes, we should generalize
Model Invariance. So generalized, the principle will tell us that, if both
M andM′ are correct and contain the variables in C ∪ (E), then C = c
caused E = e in M iff C = c caused E = e in M′. This is how I will
understand the principle, and the corresponding property of model-
invariance, from here on out.

Are joint causes causes simpliciter? Did Franny cause the proposal
to pass? We could go either way. While the formalism will distinguish
causes which are 1-tuples from causes which are n-tuples, for n > 1, we
could decide to interpret this formalism by saying that, if some n-tuple

37. This view is increasingly unpopular. Halpern and Pearl, Hitchcock, Woodward, and
Weslake, inter alia, take it as a desideratum of a theory of causation that it say that C ’s
firing caused E to fire all by itself. See also the arguments in Schaffer (2003).

38. ‘(A,C )’ is a pair whose first component is the variable A and whose second component
is the variable C ; ‘(1, 1)’ is a pair whose first and second components are the value 1.
‘(A,C ) = (1, 1)’ thus says that A = 1 and C = 1.

39. We could try to generalize further by asking when one tuple of variable values, C = c,
caused another, E = e. From my perspective, allowing collections of variable values
to be effects in this way does not purchase any additional generality; for I am inclined
to say that C = c caused E = e iff C = e caused Ei = ei , for each Ei ∈ E and its
corresponding value ei ∈ e.
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C caused E, then eachC ∈ C counts as a cause of E in its own right. Or
we could decide to say that each C ∈ C is merely part of a cause, and
distinguish joint from individual causation. My own inclination is to
say that neither Franny nor Sammy individually caused the proposal
to pass, even though, together, they did; but if the reader balks at this,
they should feel free to go the other way.

4 Preemptive Overdetermination

The neuron system shown in figure 1 provides a case of preemptive
overdetermination. For another case with a similar causal structure, con-
sider Tax Cut.40

Tax Cut
The proposal to lower corporate taxes requires one more
vote to pass. Tammy’s constituents will be angry if she votes
in favor, but it is important to her campaign contributors
that the proposal pass, so she is prepared to deal with the
constituents’ ire if her vote is needed. Fortunately for Tammy,
Sammy votes ‘yea’, the proposal passes by a single vote, and
Tammy is free to vote ‘nay’.

The proposal’s passing was overdetermined—the corporate donors
bought more than enough influence. Still, the overdetermination is
not symmetric. Though the causal process initiated with donations to
Sammy runs to completion, the causal process initiated with donations
to Tammy is preempted by Sammy’s voting ‘yea’. Tammy would have
caused the proposal to pass, were it not for Sammy; but, as it happens,
Tammy is merely a backup would-be cause of the proposal’s passing.
Sammy, on the other hand, is a genuine cause of the proposal’s pass-
ing.

Preemptive overdetermination serves as a counterexample to a sim-
ple counterfactual theory of causation which says that counterfactual
dependence is both necessary and sufficient for causation. Consider
the canonical model of the neuron system from figure 1, M1. In that
model, it is not true that, had C not fired, E wouldn’t have fired. For,
had C not fired, B would have, and E would have fired all the same.
(In the counterfactual model M1[C → 0] in which we intervene so as

40. Note: when I say that Tax Cut has a similar causal structure, I assume that the corpo-
rate donations, the ‘yea’ votes, and the proposal’s passing are all deviant.
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to set C ’s value to 0, E takes on the value 1.) But C ’s firing caused E to
fire. So counterfactual dependence is not necessary for causation.

Lewis (1973) dealt with cases of preemptive overdetermination by
taking causation to be, not counterfactual dependence, but rather the
ancestral, or the transitive closure, of counterfactual dependence. While
E ’s firing doesn’t counterfactually depend upon C ’s firing directly, it
does counterfactually depend upon D ’s firing, and D ’s firing counter-
factually depends upon C ’s firing. So Lewis says that C ’s firing caused
E to fire. This Lewisian transitivity maneuver allows us to correctly
say that, in the model M1, C ’s firing caused E ’s firing. Unfortunately,
if we straightforwardly import the Lewisian maneuver into the frame-
work of causal models, the resulting account will bemodel-variant. For
suppose we remove the variable D fromM1, in the manner described
in section 2. We will get the causal model, M−D1 , in which there is no
variable intermediate between C and E.

E := B ∨C
B := A ∧ ¬C

Even though, given the causal model M1, a Lewisian theory will say
that C = 1 caused E = 1, given the model M−D1 , it will say that C = 1

didn’t cause E = 1. So the theory will be model-variant.
The treatment of preemptive overdetermination favored by almost

every author in the causal modeling literature41 appeals to either A or
B . Though E = 1 does not counterfactually depend upon C = 1 in
the modelM1, it does counterfactually depend upon C = 1 in the coun-
terfactual model where we’ve intervened so as to hold B fixed at its
actual value of 0—that is, M1[B → 0] |= C = 0 �→ E = 0. Likewise,
E = 1 counterfactually depends upon C = 1 in the counterfactual
modelM1[A → 0]. And according to these authors, counterfactual de-
pendence in counterfactual models like these is sufficient to show that
C = 1 caused E = 1. No solution which appeals to the variables A or B
in this way will be model-invariant. For note that the exogenous vari-

41. See, in particular, Halpern and Pearl (2001, 2005), Hitchcock (2001), Woodward
(2003), Halpern (2008, 2016), and Weslake (forthcoming). See Yablo (2002, 2004)
for similar ideas. Andreas and Günther (forthcominga) have a different treatment
of preemptive overdetermination which also appeals to the variable B . (Beck-
ers and Vennekens (2017, 2018) have a radically different treatment of preemptive
overdetermination—according to them, preemptive overdeterminers are not causes.)

24



4. Preemptive Overdetermination

able A is inessential inM1. So, by Exogenous Removal, we may pluck
it out, and we will be left with a model,M−A1 , in which the endogenous
variable B is (now) inessential.

E := B ∨D
D := C
B := ¬C

Since B is inessential, Endogenous Removal tells us that we may pluck
it out. Doing so leaves us with a model,M−A,−B1 , in which neither A nor
B appears.

E := ¬C ∨D
D := C

So, if we want our theory of causation to be model-invariant, then we
will want a treatment of preemptive overdetermination which does not re-
quire the variables A or B .

Return to the causal modelM−D1 . For a moment, ignore the struc-
tural equation for B , focus just on E ’s structural equation, and treat
this isolated structural equation as if it were a causal model unto itself—
what we can call the local model at E.

E := B ∨C

Notice that, in the local model, there will be counterfactual depen-
dence between E = 1 and C = 1. Since this is so, I’ll say that E = 1

locally counterfactually depends upon C = 1.

In general, given a causal model M = (U,u,V,E, ≽), with E ∈ V,
let’s define the local model at E, which we can write ‘M(E)’, to be the
causal model in which (a) the exogenous variables are just the par-
ents of E, PA(E), in the original modelM; (b) the exogenous variables
PA(E) are assigned whatever values they take on in M; (c) the sole
endogenous variable is E; (d) the sole structural equation is E ’s struc-
tural equation in M; and (e) the information about the deviancy of E
and PA(E)’s values is the same as inM. Then, we may say that, in the
modelM, E = e , rather than e ∗, locally counterfactually depends upon
C = c , rather than c ∗, iff, in the local model at E,M(E):

M(E) |= C = c ∗ �→ E = e ∗
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In contrast, if
M |= C = c ∗ �→ E = e ∗

then I will say that E = e , rather than e ∗, globally counterfactually de-
pends upon C = c , rather than c ∗, in the model M.42 (If C is a causal
parent of E and there is only one path leading from C to E, then
there won’t be any difference between local and global dependence—
in those cases, I will allow myself to say simply: ‘E = e , rather than e ∗

depends upon C = c , rather than c ∗’.)
To properly classify C = 1 as a cause of E = 1 in M−D1 , I will sug-

gest that we focus on local, as opposed to global, counterfactual depen-
dence. Turning our attention to local counterfactual dependence may
help withM−D1 , but it will not, on its own, help us to say that C ’s firing
caused E ’s firing in the canonical model M1. For in this model, E ’s
firing does not locally counterfactually depend upon C ’s firing (the
variable for C is not even included in the local model M1(E)). I be-
lieve that we should handle this case roughly as Lewis (1973) did: by
focusing, not on local dependence, but rather on something like the
transitive closure of local dependence. However, there are a number of
counterexamples to the thesis that a chain of dependence is sufficient
for causation. Let’s turn to those counterexamples now.

5 Causal Networks

Suppose you’ve traced out a sequence of states or events, where each
state or event in the sequence depends upon its predecessor. When
can you go on to conclude that the state or event at the start of the
sequence caused the one at the end? Lewis gave the answer: ‘always’.
This answer allowed him to deal with cases of preemptive overdeter-
mination, but it came at a cost. Chris smokes, contracts cancer, un-
dergoes chemo, and survives. The survival depends upon the chemo;
the chemo depends upon the cancer; and the cancer depends upon
the smoking. Lewis concludes that smoking caused Chris to survive.
This is difficult to swallow, no matter how it’s seasoned. The answer
to give is ‘sometimes, but not always’, and the difficulty lies in working
out just when.

In this section, I will try to lay down conditions specifying when a
directed path running from C to E, P : C → D1 → D2 → · · · → DN →

42. Of course, in order for these dependence claims to be true, it must also be that C =

c ∧ E = e . Throughout, I am using ‘c ’ and ‘e ’ for the actual values of C and E. I will
say more about the contrastive ‘rather than’ clauses in section 5.1 below.
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E, is what I will call a causal path. Actually, I will try to do something
slightly more general. In section 3, I explained that I will provide a
theory of causation which allows tuples of variable values to be causes.
But there won’t be a single directed path from a tuple of variables C
to an effect variable E. So I will begin by generalizing the notion of a
directed path—I’ll call the generalization a network—and then I’ll try
to lay down conditions specifying when a network from C to E is what
I will call a causal network. My theory will say that causal networks are
necessary for causation: ifC’s values are to be a cause of E ’s, then there
must be a causal network leading from C to E.

First, let me explain what I mean by a network. We may think of a
directed path, P, from C to E, as a collection of directed edges gener-
ated by the following procedure: begin with C , and select exactly one
of its causal children, D , to be its P-child. Then, include the directed
edge between C and D , C → D , in P. Next, selected exactly one of D ’s
causal children to be its P-child, and proceed in this manner until you
reach E. Now, we can define what I will call a network, N ,43 from the
sequence of variables C to E, as a collection of directed edges gener-
ated by the following procedure: begin with each variable C ∈ C, and
select some of its causal children, D1,D2, . . . ,DN (you needn’t choose
just one), to be itsN -children.44 Next, for each of theDi , select some of
their causal children to be their N -children, and proceed in this man-
ner until E is the only variable lying in N without an N -child. That is,
a network from C to E is just a union of directed paths from someC ∈ C
to E—and where, for each C ∈ C there is some directed path leading
from C to E included in the union. For instance, inM6, A → E ← C is
a network from (A,C ) to E, and inM1,

C
B

D
E

is a network from C to E (remember, I don’t distinguish between the
variable C and the 1-tuple (C )). Note that every path is a network,
though not every network is a path.

43. Cf. Hitchcock (2007a)

44. Terminology: if there is a directed edge C → D in a network N , then I say that D is
one of C ’sN -children, and that C is one of D ’sN -parents. Note that being one of D ’s
N -parents is not the same as being a parent of D lying in the network N . Consider
the network N : C → B → E in the modelM−D1 . C is a parent of E lying in N , but C
is not one of E ’s N -parents.

27



A Model-Invariant Theory of Causation

(a) (b)

Figure 7

To reiterate: in this section, I will be trying to lay down conditions
specifying when a network is causal. And according to the theory I’ll
present in section 6, causal networks are necessary for causation. In
order for C to be a cause of E, there must be a causal network leading
from C to E. In these terms, a Lewisian view says that a network N
is causal whenever the value of each variable in N depends upon the
values of its N -parents. I believe that we should impose additional
constraints on a network being causal. I’ll introduce these constraints
by surveying some representative counterexamples to this Lewisian
view.

5.1 Causal Networks and Contrasts

One class of counterexamples to the Lewisian view is well illustrated by
the neuron system illustrated in figure 7.45 In this neuron system, the
octogonal neurons A and B are special. They can either fire weakly
(indicated with light grey coloring) or strongly (indicated with dark
grey). The connection between C and B is a special kind of inhibitory
connection—if the neuron at its base fires, then this will diminish the
strength with which the neuron at its head would otherwise have fired.
So, e.g., if A fires strongly andC doesn’t fire, as in figure 7b, then B will
fire strongly; but if A fires strongly and C fires, as in figure 7a, then B
will only fire weakly. Neuron E is a regular neuron, so if B fires, no
matter whether weakly or strongly, E will fire. In figure 7a, E ’s firing
(rather than not) depends upon B ’s firing weakly (rather than not fir-
ing). And B ’s firing weakly (rather than strongly) depends upon C ’s
firing (rather than not). But C ’s firing did not cause E to fire. So this
neuron system provides a counterexample to the Lewisian view that
causation is the transitive closure of dependence.

45. Cf. Paul and Hall (2013, figure 17), and also Lewis (1986, p. 210).
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For another case with a similar structure: a dog bites Michael’s
right hand. With his right hand on the mend, Michael uses his left
hand to hail a taxi. The taxi’s stopping depends upon Michael’s hail-
ing the taxi with his left hand (rather than not hailing the taxi), and
Michael’s hailing the taxi with his left hand (rather than his right) de-
pends upon the dog bite. But the dog bite did not cause the taxi to
stop.46

I follow Maslen (2004) and Schaffer (2005) in thinking that cases
like these illustrate the importance of paying attention to contrasts in
chains of dependence.47 There is a difference between saying that (a)
E = e , rather than e ∗, depends upon C = c , rather than c ∗, and saying
that (b) E = e , rather than e ∗∗, depends upon C = c , rather than c ∗,
or that (c) E = e , rather than e ∗, depends upon C = c , rather than c ∗∗.
The first claim, (a), is made true by a counterfactualC = c ∗ �→ E = e ∗;
the second, (b), is made true by a counterfactual C = c ∗ �→ E = e ∗∗;
and the third, (c), is made true by a counterfactualC = c ∗∗ �→ E = e ∗.
The lesson of figure 7 is this: in order for a network to be causal, it
is not enough that the value of each variable in the network depend
upon the value of its parents in the network. The relevant contrasts
also have to ‘match up’.

As a preliminary account, we may say:

Causal Network (preliminary)
A networkN , from C to E, is a causal network only if there is
an assignment of contrasts to the variables in N such that:

(a) E ’s contrast is distinct from its value;

(b) For eachD < C in the network,D ’s value, rather than its
contrast, locally depends upon D ’s N -parents’ values,
rather than their contrasts.48

And our preliminary theory is that C = c caused E = e only if there is a
causal network leading from C to E. Note that there is no one contrast
we could assign to B in figure 7a such that E ’s firing, rather than not,
depends upon B ’s firing weakly, rather than that contrast; and such

46. SeeMcDermott (1995), as well as the counterexamples to transitivity discussed in Paul
(2004).

47. See Hitchcock (1996b,a) and Schaffer (2012a) for more on contrasts in causal claims.

48. Recall: there is a difference between a variable’sN -parents and its causal parents lying
in N . See fn 44.
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that B ’s firing weakly, rather than that contrast, depends upon C ’s fir-
ing, rather that not. So C → B → E is not a causal network, and our
preliminary theory tells us that C ’s firing was not a cause of E ’s firing.

Note that, because we require the contrasts to ‘match up’, once we
have chosen contrasts for the variables in C, the choice of every other
contrast is outside of our hands. Pick any D < C in the network, let P
be its N -parents, and let p∗ be their contrasts. Then, clause (b) tells us
that D ’s contrast must be the value d ∗ such that P = p∗ �→ D = d ∗

is true in the local model at D . There will only be one such d ∗, so we
have no choice about what contrast to assign to D . (D was arbitrary, so
the same goes for every variable in the network, except for those in C.)

Paying attention to contrasts has other benefits, as well. For in-
stance, it allows us to handle cases of trumping preemption.49 Suppose
that the troops always follow the orders of the highest ranked officer.
The Major and the Sergeant both order the troops to advance, and
they advance. Since the Major outranks the Sergeant, it is natural to
want to say that it was the Major, and not the Sergeant, who caused
the troops to advance. Use a variable, M , to represent the Major’s or-
ders. Let M take on the value 2 if the Major orders to advance, 1 if
he orders to stay put, and 0 if he gives no order at all. Similarly, use
the variable S for the Sergeant’s orders. S is 2 if the Sergeant orders
to advance, 1 if he orders to stay put, and 0 if he gives no orders at all.
And, finally, use a variable, A, for whether the troops advance. A = 2 if
they advance, and A = 1 if they do not. I’ll assume that the structural
equation A := ϕA(M,S ) is correct, where

ϕA(M,S ) =


M if M , 0

S if M = 0 and S , 0

1 if M = 0 and S = 0

That is: the soldiers will do whatever the Major orders, so long as the
Major gives an order. If he does not, then they will follow the orders of
the Sergeant. If neither the Major nor the Sergeant give orders, then
they will not advance. In this model, notice that, even though the
soldier’s advance doesn’t depend upon the Major’s giving the order
to advance, rather than giving no orders at all (M = 0 �→ A = 2),
it does depend upon the Major’s giving the order to advance, rather
than giving the order to stay put (M = 1 �→ A , 2). SoM → A will be
a causal path. Since the soldiers’ advance does not depend upon the

49. See Schaffer (2004).
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Figure 8 Figure 2

Sergeant’s orders, no matter which contrast we choose, S → A will not
be a causal path, and the Sergeant’s orders will not count as a cause of
the soldier’s advance.50

5.2 Causal Networks, Defaults, and Deviancy

Schaffer (2005) holds that this kind of contrastivism allows us to handle
all counterexamples to the Lewisian view, but in the present context,
this would be an overreach.51 Consider again the neuron system of
preemptive overdetermination from figure 1, but suppose that C doesn’t
fire, as in figure 8. In this neuron system, E ’s firing depends upon
B ’s firing (rather than not). And B ’s firing (rather than not) depends
upon C ’s dormancy. So we have a chain of dependence with matching
contrasts leading from C to E, but C ’s dormancy didn’t cause E to
fire.52

Or consider again the neuron system from figure 2 (reproduced
here). There, E ’s remaining dormant depends upon D ’s firing (rather
than not); andD ’s firing (rather than not) depends uponC ’s firing. So
again we have a chain of dependence with matching contrasts leading
from C to E; but C ’s firing did not cause E to remain dormant.

As we’ve already seen (in section 1.1), were it not for the informa-
tion about which variable values are default, inertial states and which
are deviant, non-inertial events, we could model the neuron system in
figure 2 with amodel isomorphic to the canonical model of preemptive
overdetermination from figure 1. So we should expect an explanation
of whyC = 1 didn’t cause E = 0 to make use of this additional informa-
tion. Note also that Exogenous Removal and Endogenous Removal

50. Cf. the treatments of trumping preemption in Lewis (2004), Halpern and Hitchcock
(2010), and Hitchcock (2011).

51. Schaffer is working in a different theoretical framework; and it affords him a response
to the kinds of counterexamples raised below (see p. 342).

52. Cf. Sartorio (2005, 2016)’s Causes as Difference Makers principle, which entails that C ’s
dormancy cannot cause E to fire, as long as C ’s firing would have.
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allow us to remove every variable other than C and E from M2. A is
inessential, so Exogenous Removal tells us that the modelM−A2 is cor-
rect. In the modelM−A2 , B is inessential, so Endogenous Removal tells
us that the modelM−A,−B2 is correct. And similarly, in the modelM−A2 ,D
is inessential, so Endogenous Removal tells us that the model M−A,−D2

is correct. If we want our theory of causation to be model-invariant,
then it had better tell us that C = 1 didn’t cause E = 0 in each of these
models. So we have good reason to think that the verdicts of our the-
ory should not depend upon the default information of any variables
other than C and E themselves.53

In both figure 2 and figure 8, it is noteworthy that either C or
E takes on a value representing a default, normal, or inertial state.
Whereas, in figure 1, both C and E take on values representing de-
viant, abnormal, non-inertial events. It is also noteworthy that, in both
M2 andM8, there are multiple directed paths from C to E. I will sug-
gest that these are the reasons why C does not cause E in either of
those neuron systems.

Suppose that we are given a network, N , from C to E, and in this
network are two variables, D and R. If there is a directed path from D
to R, O : D → O1 → O2 → · · · → ON → R, where none of the directed
edges inO are included inN , then I’ll say thatD is a departure variable,
and that R is one of its return variables (relative to the networkN ). For
instance, in the model M8, relative to the network C → B → E, C is a
departure variable, and E is its return. And, in the modelM2, relative
to the network C → D → E, C is a departure variable with return E.
In contrast, relative to the network A → B → E inM2, E is not a return
variable—and, relative to the network C → B → E ← D ← C , C is not
a departure variable.

Take some network, N , with a departure variable D , and one of
its returns, R. D potentially affects R both via N and via some other
path or paths external to N . It could be that, what D gives R through
N , it takes away along some other path or paths. If D gives a deviant
value to R throughN—that is, if both D and R take on deviant, rather
than default, values—then this will make no difference with respect to
whether N is a causal network. (Thus, in figure 1, C → D → E is

53. Every variable in the model besides C and E may be removed; but we may not re-
move every variable besides C and E. For D is not inessential inM−A,−B2 , and B is not
inessential in M−A,−D2 . So for all we’ve said, it could be that what ≽ tells us about D
should be relevant to the theory’s verdicts in M−A,−B2 , while what ≽ tells us about B
should be relevant to the theory’s verdicts inM−A,−D2 .
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Figure 9

causal.) But if D does not give deviant value to R, thenN is not causal.
(This, in figure 2, C → D → E is not causal.)

Let us add this to our account: a network is causal only if every
departure and return variable in the network takes on a value which
is more deviant than its contrast.54

Causal Network
A network N , from C to E, is a causal network if and only
if there is an assignment of contrasts to the variables in N
such that:

(a) E ’s contrast is distinct from its value;

(b) For eachD < C in the network,D ’s value, rather than its
contrast, locally depends upon D ’s N -parents’ values,
rather than their contrasts.

(c) every departure and return variable in N has a value
which is more deviant than its contrast.

This completes my account of when a network is causal.
Note that, while Causal Network requires E ’s contrast to be dis-

tinct from its value, it does not require that the other variables in the
network have contrasts which are distinct from their values.55 For in-
stance, consider the neuron system in figure 9. This is a case of double
prevention. F is a potential preventer of E ’s firing; and C ’s firing pre-
vented F from preventing E. In the canonical modelM9,

54. Couldn’t a departure variable have a value no more deviant than its contrast, yet still
not take away along other paths what it gives R along N ? Yes, but in that case, the
additional paths from D to R may simply be incorporated into the network N , and
the resulting network will be causal. See the discussion of figure 9 below.

55. If d∗ is D ’s actual value, it’s a bit odd to call d∗ a contrast value, but I’ll stick to this
terminology nonetheless.
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C
B

D
EF

is a causal network from C to E. For we may assign C , B , D , and E
the contrast value 0 (note that B ’s contrast is the same as its value) and
F the contrast value 1. Then, E = 1, rather than 0, locally depends
upon F = 0, rather than 1. F = 0, rather than 1, locally depends
upon (B,D) = (0, 1), rather than (0, 0). D = 1, rather than 0, locally
depends upon C = 1, rather than 0. And B = 0, rather than 0, locally
depends upon C = 1, rather than 0. (For, in the local model at B ,
M9(B), the counterfactual C = 0 �→ B = 0 is true.) It can seem that
the variable B is an idle wheel in this network, but it is important that
it be included. For, relative to the network C → D → F → E, F is
a return variable with a default value and a deviant contrast. So the
network C → D → F → E is not causal. However, relative to the
network which includes B , F is not a return variable, and need not
have a deviant value, nor a default contrast.

Note that E ’s firing globally counterfactually depends uponC ’s fir-
ing. If we think that global counterfactual dependence between events
like these suffices for causation, and we wish to understand causation
in terms of causal networks, then it is for the good that we count as
causal the network which includes B . In fact, global counterfactual
dependence suffices for the existence of a causal network, not just for
the model M9, but in general. That is: in any causal model M, if there
is some assignment c∗ to the variables in C, such that the global coun-
terfactual C = c∗ �→ E , e is true, then there will be a causal network
leading from some sub-tuple of C to E inM. (See Proposition 1 in the
appendix for a proof.)

So defined, causal networks are model-invariant. Suppose we have
a causal modelM, with an inessential exogenous variableU < C. Then,
there will be a causal network from C to E in M if and only if there is
a causal network from C to E in M−U . Similarly, if we have a causal
model M with an inessential endogenous variable V < C ∪ (E), then
there will be a causal network from C to E in M if and only if there is
a causal network from C to E inM−V . (See the proof of Proposition 2
in the appendix.)

If we suppose that survival is an inertial state—the state in which
people normally remain unless they are acted upon from without—
then this proposal explains why the boulder’s becoming dislodged does
not causeMatthew to survive (section 1.1), even though his survival de-
pends upon his jumping out of the way (rather than staying put), and
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his jumping out of the way (rather than staying put) depends upon the
boulder’s getting dislodged. So too does it explain why Chris’s smok-
ing does not cause him to survive, even though his survival depends
upon the chemotherapy, and the chemotherapy depends upon the
smoking. Both cases have a causal structure similar to Short Circuit: a
threat is created along one path, and simultaneously neutralized along
another. If survival is an inertial state, then neither path will be causal.
(Nor will the network which consists of both paths be causal—for, while
the survival depends upon the neutralization of the threat, it does not
depend upon the threat and the neutralization both. If Chris had nei-
ther cancer nor chemo, he would still have survived; and, had the
boulder not fallen and Matthew not jumped, Matthew would still have
survived.)

6 Causation and the Transmission of Deviancy

Causal networks are the model-invariant heart of my theory of causa-
tion. On my view, in order for C to cause E, there must be a causal
network leading from C to E. In section 6.1, I’ll say a bit to moti-
vate thinking of a causal network as a process which transmits deviant,
abnormal, or non-inertial behavior. In section 6.2, I’ll provide my pre-
ferred theory of causation, according to which (roughly) C is a cause
of E iff there is a causal network leading from C to E, C has deviancy
to give, and E receives that deviancy via the causal network. I’ll go on
to apply this theory to cases from McGrath (2005) and Hall (2004).

6.1 Productive Networks

The distinction between the values of variables which represent de-
fault, normal, inertial states and those which represent deviant, ab-
normal, non-inertial events enters into my theory of causation at least
in clause (c) of Causal Network. It is natural to wonder about what
this distinction is doing in a theory of causation. I take the arguments
presented in section 1.1 to demonstrate that this distinction or some-
thing like it must be included in an adequate theory—but, even once
this is appreciated, it is natural to wonder: why should this distinction
play any role in our causal thought and talk? In this subsection, I want
gesture at an answer to this question. Roughly, I will suggest that a
cause is something which transmits abnormal, deviant, or non-inertial
behavior to its effect.

If causation is to be understood in terms of the transmission of de-
viancy, then what is it for this deviancy to be transmitted? One possi-
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ble answer is that deviancy is transmitted iff there is an uninterrupted
process leading from cause to effect, each stage of which receives its
deviancy from the preceding stage. Let’s try to make this a bit more
precise. Contrast a causal network (as defined in section 5 above), with
a productive network, as defined below. (The only difference is in clause
(c).)

Productive Network
A network, N , from C to E, is a productive network iff there
is an assignment of contrasts to the variables inN such that

(a) E ’s contrast is distinct from its value;56

(b) for eachD < C in the network,D ’s value, rather than its
contrast, locally depends upon D ’s N -parents’ values,
rather than their contrasts; and

(c) every variable in the network has a value which is more
deviant than its contrast.

Note that any productive network from C to E will automatically count
as a causal network from C to E. But not all causal networks are pro-
ductive networks. Being linked by a productive network is sufficient,
but not necessary, for being linked by a causal network.

A productive network is so-called because it provides a natural char-
acterization of the notion of a productive causal process in the terms
of causal models.57 So understood, a productive causal process is an
uninterrupted process by which deviant values are transmitted. And
what it is for this deviancy to be transmitted is for the deviancy of each
stage in the process to locally depend upon the deviancy of its imme-
diate predecessors.

Notice that there is a productive network leading from C to E in
the canonical model of preemptive overdetermination in figure 1. Simi-
larly, there is a productive network leading from A to E in the canon-
ical models of figures 4, 7, and 8—and from G to E in figure 9. In
general, it seems that, if there is a productive network from C to E in

56. Condition (a) is redundant in the presence of condition (c), but I include it to empha-
size that Productive Network is just a strengthened version of Causal Network.

57. The notion I am characterizing here is not the notion of a causal process provided by
authors like Fair (1979), Salmon (1984, 1994), and Dowe (2000)—those notions are
characterized in physical terms, rather than the terms of a causal model—but there
are some similarities. See also Hall (2004)’s characterization of causal production.
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Figure 10: Double Prevention

the canonical model, the judgment thatC caused E is intuitive and un-
controversial. There is little debate about whether C ’s firing caused E
to fire in figure 1, or whether A’s firing caused E to fire in figures 4, 7,
and 8. In contrast, in cases of double prevention like the one shown in
figure 10, there is a causal, but not a productive, network leading from
C ’s firing to E ’s firing. There, D is a potential preventer of E ’s firing.
C ’s firing prevents D from preventing E from firing. In the canonical
modelM10, C → D → E is a causal network. However, C → D → E is
not a productive network, since the intermediate variable D takes on a
default value. People’s causal judgments about figure 10 tend to be less
uniform. More generally, it seems that, when variables are connected
by causal, but not productive, networks, some (but by no means all)
are more hesitant to attribute causation.

Unlike causal networks, productivenetworks aremodel-variant. Take
the canonical model of the case of double prevention from figure 10,
M10,

E := B ∧ ¬D
D := A ∧ ¬C

In this model, the exogenous variablesA and B are both inessential. So
Exogenous Removal tells us that we may remove them both, leaving
behind the modelM−A,−B10 ,

E := ¬D
D := ¬C

In this model, the endogenous variable D is inessential, so Endoge-
nous Removal tells us that wemay remove it, leaving behind themodel
M−A,−B,−D10 ,

E := C
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And, in thismodel, there is a productive network leading from C to E.
So if we were to understand causation in terms of productive networks,
our causal verdicts would change as we attended to additional variables
lying along, or feeding into, the network from cause to effect.58

More generally, if we think about the transmission of deviancy as
Productive Network does—each variable intermediate between C
andE has a deviant (rather than amore default) value which locally de-
pends upon the deviancy of its causal parents—then whether deviancy
is transmitted from C to E will vary from model to model.

Causal Network is a model-invariant weakening of Productive
Network. It suggests a different way of understanding the transmis-
sion of deviancy. Suppose that E = e counterfactually depends upon
C = c, and suppose that c and e both represent deviant, non-inertial
events, rather than default, inertial states. In that case, let us say that
C has transmitted deviancy to E—we won’t concern ourselves, for in-
stance, with whether this transmission was accomplished by means of
double prevention or not. Because counterfactual dependence suffices
for a causal network, if E ’s deviancy counterfactually depends upon
C’s, then there will be a causal network leading from C to E. More-
over, if E globally counterfactually depends upon C, there will be a
causal network leading from (some sub-tuple of) C to E without any de-
parture and return variables—call this a ‘closed causal network’.59 So
another, equivalent, way of understanding the claim that counterfac-
tual dependence between deviant, non-inertial events suffices for the
transmission of deviancy is this: a closed causal network linking de-
viant, non-inertial events, rather than default, inertial states, suffices
for the transmission of deviancy.

In the case of Preemptive Overdetermination from figure 1, E ’s de-
viancy does not depend upon C ’s. This is because C affects E along
two separate paths. Along one path, C deprives E of deviancy; along
the other, it provides deviancy. In cases like these, too, let us say that
deviancy has been transmitted from cause to effect. More generally, if
there are departure and return variables in a network, then it may be

58. Schaffer (2000, 2012b) argues that, in many paradigm instances of productive causal
processes—pulling the trigger, thereby shooting the gun, thereby killing the target—
we may interpolate variables between cause and effect so as to reveal a case of double
prevention.

59. See the proof of Proposition 1 in the appendix to understand why, if E = e coun-
terfactually depends upon C = c, there will be a closed causal network leading from
(some sub-tuple of) C to E.
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that what D transmits to R through the network, it takes away along
some other path or paths. If D transmits deviancy to R through the
network (if D and R take on deviant, rather than more default, val-
ues), then this won’t matter. We should still say that C has transmitted
deviancy to E. That is: in general, we should allow deviancy to be
be transmitted through any causal network, and not just closed causal
networks.

6.2 Productive Causation

Causal Network does not say anything about C and E having deviant
values or (more) default contrasts. So if we think of causation in terms
of the transmission of deviancy in the way that I have been suggesting,
then we should impose this additional requirement. Doing so yields
the following relation, which I will call ‘productive causation’:

Productive Causation
Given a correct causal modelM containing the variables in
C and E, C = c is a productive cause of E = e iff there is a
minimal causal network leading from C to E in M which
assigns contrasts to C and E which are more default than
their values.

That is: C = c is a productive cause of E = e iff there’s a minimal
causal network leading from C to E and, additionally, C and E, like
any departure and return variables in the network, have values more
deviant than their contrasts. (I’ll explain what I mean by ‘minimal’
below.)

If causation just is productive causation, this would explain some
otherwise puzzling features of our causal thought and talk. To borrow
an example fromMcGrath (2005): Alice’s neighbor Bob promises Alice
that he will water her plant while she is away on vacation. He doesn’t,
and Alice’s plant dies. Many judge that Bob’s failure to water the plant
caused it to die. Only philosophers in the grip of theory judge that
Alice’s other neighbor, Carlos, caused the plant to die—though the
plant’s death counterfactually depends upon Carlos’s failure to water
it every bit as much as it depends upon Bob’s.60 If we suppose that
death and promise breaking are both deviant events, and that survival
and promise-keeping are (more) default, then Bob’s failure to water
the plant is a productive cause of its death. And if we suppose that

60. See also the pen case in Hitchcock and Knobe (2009).
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(a) S = 3 (b) S = 2

(c) S = 1 (d) S = 0

Figure 11: Switch. The neuron S can either be set to the left, or to the right.
If D fires, then it will be set to the right; if D doesn’t fire, then it will be set to
the left. S will fire iff M fires.

Carlos’s failure to water is a default state, then Carlos’s failure to water
is not a productive cause of its death.

If causation is productive causation, then this allows us to explain
why switches are not causes (see Hall (2004) and Sartorio (2005)). For,
while switches affect the route by which deviancy is transmitted to an
effect, they do not themselves transmit deviancy to the effect.

For a concrete case of a switch, consider the neuron system shown
in figure 11a. There, the neuron S is a switch, which can either be set
left (when the variable S is even, as in figures 11b and 11d) or right
(when the variable S is odd, as in figures 11a and 11c). D determines
whether the switch is set left or right. IfD fires, then S will be set right;
whereas, ifD does not fire, then S will be set left. D does not determine
whether S fires or not. M does that. If M fires, then S will fire; if M
does not fire, then S will not fire. If S fires while left, then L will fire.
If S fires while right, then R will fire. And, finally, E will fire iff either
L or R does.

For a case with a similar causal structure, consider:

Doorbells
There are two doorbells—one on the left, and one on the
right. The signal from the button outside passes through
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a switch, which can have one of two settings: left or right.
If the switch is set to the left and the button is pressed, the
signal will pass to the left, and the left bell will ring. If the
switch is set to the right and the button is pressed, the signal
will pass to the right, and the right bell will ring. If either
bell rings, Einstein will bark. Before leaving that morning,
Doc flipped the switch to the right. WhenMarty arrives, he
presses the button, the right bell rings, and Einstein barks.

In Doorbells, when Marty presses the button, Einstein will bark—no
matter whether the switch is set to the left or the right. Doc’s flip-
ping the switch to the right was not a cause of Einstein’s barking.61 In
contrast, Marty’s pressing the button was a cause of Einstein’s barking.
Likewise, in figure 11a, while D ’s firing was a cause of R’s firing, it was
not a cause of E ’s firing. In contrast,M ’s firing was a cause of E ’s firing.

I’ll assume that both of these systems can be modeled with the fol-
lowing system of structural equations:62

E := L ∨R
L := S = 2

R := S = 3

S := 2M +D

I will also assume that S = 2 is no more deviant or abnormal than
S = 3—being set to the left is no less normal than being set to the
right. With this assumption, we can show that, while there is a causal
network from M to E, there is no causal network from D to E.

First, let’s assume that S = 3 is more deviant than S = 1 and that
E = 1 is more deviant than E = 0—in the case of Switch, firing is more
deviant than remaining dormant, or, in the case of Doorbells, direct-
ing a signal to the right is more deviant than not directing any signal,
and barking is more deviant than not barking. With these assump-
tions, we can show that M → S → R → E is a causal path. For we
may assign M,R, and E the contrasts 0, and S the contrast 1. Then:
E = 1, rather than 0, depends upon R = 1, rather than 0; R = 1,

61. Of course, it was (along with Marty’s pressing the button) a cause of the right bell’s
ringing. And the right bell’s ringing was a cause of Einstein’s bark. So, like Boulder,
Short Circuit, and figures 7 and 8, Doorbells provides a counterexample to the transi-
tivity of causation. See Hall (2004) and Sartorio (2005). Cf. also Pearl (2000, example
10.3.6) and Halpern and Pearl (2005).

62. ‘L := S = 2’ says that L’s value will be the truth-value of ‘S = 2’: that is, L = 1 if S = 2

and L = 0 if S , 2. Likewise for ‘R := S = 3’.
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rather than 0, depends upon S = 3, rather than 1; and S = 3, rather
than 1, depends upon M = 1, rather than 0. Relative to this path, S
is a departure and R is its return, but both S and R have values which
are more deviant than their contrasts. So the path is causal.

The assumption that S = 3 is more deviant than S = 1 isn’t needed
to show that there’s a causal network fromM to E. Even if it is not, the
network

M S
L

R
E

will be causal. For we may assign M,R,L, and E the contrasts 0, and
assign S the contrast 1 (note that L’s contrast is the same as its value).
Then: E = 1, rather than 0, depends upon (L,R) = (0, 1), rather than
(0, 0); R = 1, rather than 0, depends upon S = 3, rather than 1; L = 0,
rather than 0, depends upon S = 3, rather than 1; and S = 3, rather
than 1, depends upon M = 1, rather than 0. In this network, there
are no departures or returns, so the network is causal.

In contrast, so long as S = 3 is no more deviant that S = 2, there
will be no causal network from D to E. We could assign D,R, and E
the contrasts 0, and assign S the contrast 2. Then: E = 1, rather than
0, depends upon R = 1, rather than 0; R = 1, rather than 0, depends
upon S = 3, rather than 2; and S = 3, rather than 2, depends upon
D = 1, rather than 0. But, relative to this network, S is a departure
variable. Since its contrast is no more default than its value, this net-
work is not causal. Nor is the network

D S
L

R
E

causal. If D were to be 0, then S would be 2, D = 0 �→ S = 2. And, if
S were 2, then L would be 1 and R would be 0. So, if the path is to be
causal, then (L,R) must be assigned the contrasts (1, 0). But, if L were
to be 1 and R were to be 0, then E would be 1. So E ’s contrast would
not be distinct from its value. So the network is not causal.

The upshot is this: if Marty’s pressing the button and Einstein’s
barking are both deviant, non-inertial events, then the deviancy of
Marty pushing the button will be transferred to Einstein’s barking, via
a causal network. So Marty’s pressing the button will be a productive
cause of Einstein’s barking. On the other hand, so long as the switch’s
directing a signal to the right is nomore deviant than its directing a sig-
nal to the left, Doc’s flipping the switch will not transfer any deviancy
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Figure 4: Omission Figure 5: Prevention

to Einstein’s barking. Instead, Doc’s flipping the switch merely diverts
the deviancy of Marty’s pushing the button to the right path. So Doc’s
flipping the switch will not be a cause of Einstein’s barking.

If productive causation just is causation, then default, inertial states
can be neither causes nor effects. Assuming that dormancy is the de-
fault state of a neuron, this means that C ’s dormancy does not cause
E to fire in the case of omission from figure 4, nor does C ’s firing cause
E to remain dormant in the case of prevention from figure 5 (both re-
produced here).63,64 If we find these consequences unacceptable,
and we wish to insist that prevention and omission are both species of
causation, then we may prefer the following theory of causation:

Given a correct causal modelM containing the variables in
C and E, C = c is a cause of E = e iff there is a minimal
causal network leading from C to E inM.

Alternatively, we could allow C, but not E, to take on default values
or more deviant contrasts. Or we could allow E, but not C, to take
on a default value a more deviant contrast. Because minimal causal
networks are model-invariant (see Proposition 2 in the appendix), any
of these accounts would be model-invariant. The kinds of values and

63. Both of these verdicts have defenders in the literature. Personally, I find the second
verdict less intuitive than the first. I am currently inclined towards classifying C ’s
firing as a productive cause of E ’s failure to fire by appealing to a more nuanced
account of when a variable value is non-inertial. By way of explanation: I’ve some
inclination to say that it would have been inertial for E to fire, given that A had fired;
and thus, that E ’s failure to fire was a departure from that inertial behavior. (See
footnote 15.) However, I won’t explore this proposal any further here.

64. I classify figure 4 as a case of omissionmerely because C ’s failure to fire is an omission,
and E ’s firing counterfactually depends upon this omission. I don’t mean for the label
‘omission’ to imply that this is an instance of causation. Similarly, I classify figure 5 as
a case of preventionmerely because E ’s failure to fire is an omission, and this omission
counterfactually depends upon C ’s firing. I don’t mean for the label ‘prevention’ to
imply that this is an instance of causation, either.
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Figure 12

contrasts we tolerate in our causes and effects is a free parameter of
the theory.

I will say that a causal network, N , from C to E is minimal iff there
is no proper sub-network ofN , leading from any sub-tuple of the vari-
ables in C to E, which is itself a causal network. In order for C to cause
E, they must be connected by aminimal causal network. To understand
why, return again to the case of Switch from figure 11a. While there is
no causal network leading fromD to E, there is a causal network leading
from the pair (D,M ) to E:

M

D
S R E

Assign each of D,M,R,S and E the contrast 0. Then, E = 1, rather
than 0, locally depends upon R = 1, rather than 0; R = 1, rather
than 0, locally depends upon S = 3, rather than 0; and S = 3, rather
than 0, locally depends upon (D,M ) = (1, 1), rather than (0, 0). In
this network, S is a departure with return E, but both S and E have
values more deviant than their contrasts. So this is a causal network.
But D is not a joint cause of E, along with M . In M11a , the network
M → S → R → E is a sub-network of the causal network leading
from (D,M ) to E, and this sub-network is causal. So requiring a causal
network to be minimal prevents us from saying that D is a joint cause
of E. More generally, it prevents us from counting as a joint cause
any irrelevant factor ‘free riding’ on a causal network which they did
nothing to help forge; in order to share in a causal network as a joint
cause, you have to pull your weight.

Some theories impose a minimality condition on the variables in C.
They say that C caused E only if no proper sub-tuple of C caused E.65

These theories face difficulties with neuron systems like the one shown
in figure 12. There, C ’s firing is a joint cause of E ’s firing. It, together

65. See, for instance, Halpern and Pearl (2001, 2005) and Halpern (2016).
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with A, causes E to fire. However, if we were to impose a minimality
condition on the variables in C, our theory would disagree.66 For even
though there is a causal network from (A,C ) to E, namelyC → E ← A,
there is also a causal network fromA alone to E, namelyA → C → E ←
A. Though the tuple (A,C ) is not minimal, the network C → E ← A is
minimal. So our theory tells us, correctly, that A and C jointly caused
E to fire. (And also that A individually caused E to fire.)

A Technicalities

A notational convention: throughout the appendix, I will write things
like ‘⟨e, e ∗⟩ locally depends upon ⟨c, c∗⟩’ to mean that E = e , rather than
e ∗, locally depends upon C = c, rather than c∗.

Proposition 1. If M |= C = c∗ �→ E , e , then there is a causal network
leading from some sub-tuple of C to E inM.

Proof. LetN be the union of every directed path leading from a mem-
ber of C to E. We will show that, ifM |= C = c∗ �→ E , e , then N is a
causal network. (Since not every C ∈ C is guaranteed to be an ances-
tor of E, N may not be a causal network from C to E, but it will be a
causal network from some sub-tuple of C to E.) Firstly, note that there
are no departure or return variables on N . For suppose there were a
departure variable D with return R. Then, there would be a directed
path from D to R, D → O1 → · · · → ON → R which is not included
in N . But there is a directed path from some member of C to D , and
a directed path from R to E. So there is a directed path from some
member of C to E which goes by way of D → O1 → · · · → ON → R.
Since N includes every directed path from C to E, this path must be
included in N . Contradiction. So there can be no departure and re-
turn variables. For every variable V < C in the network N , let ‘v ’ be
its actual value, and let v∗ be the value it takes on in the counterfactual
model M[C→ c∗]. Since M[C = c∗] |= E , e , e ∗ , e , and E ’s contrast is
distinct from its value. Now, take an arbitrary D < C which lies in N .
We now show that D ’s value, rather than its contrast, locally depends
upon its N -parents’ values, rather than their contrasts. Let PN be the
parents of D which lie in the network N , and let PN be the parents of
D which do not lie in the network N . By the construction of N , PN
are not causal descendants of any member of C. So, in the counter-
factual model M[C → c∗], PN take on their actual values, pN . Since

66. Cf. Rosenberg and Glymour (forthcoming).
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M[C→ c∗] |= D = d ∗,
ϕD(p∗N ,pN ) = d ∗

So ⟨d,d ∗⟩ locally depends upon ⟨pN ,p∗N ⟩. D was arbitrary, so the same
goes for every variable in the network N , except for those in C. So
there is a causal network running from some sub-tuple of C to E. �

Remark. The proposition shows us that counterfactual dependence
suffices for a causal network, but this causal network need not be mini-
mal. If C is a singleton, however, then counterfactual dependence will
suffice fora minimal causal network. For counterfactual dependence
of E = e on C = c means that there is some causal network from C
to E. Perhaps this network is not minimal, but no matter—if it is not
minimal, then some sub-network of it will be both causal and minimal.
So there will be some minimal causal network from C to E.

Lemma 1. Given a causal model M = (U,u,V,E, ≽), with U ∈ U, C ⊂
U ∪ V, E ∈ V, and U < C, N is a causal network from C to E in M if and
only if N is a causal network from C to E inM−U .

Proof. Suppose that N is a causal network from C to E in M. The ex-
ogenousU ∈ Uwill not be in this network, so removing it will not affect
any of the local dependence relationships between any of the variables
inN . Nor will it affect whether any departure or return variables along
N have values more deviant than their contrasts. SoN will be a causal
network from C to E in M−U . Suppose, on the other hand, that N
was not a causal network from C to E in M. If N is a network from C
to E, then the exogenous U ∈ U is not on this network, and remov-
ing it will not affect the local dependence relationships between any of
the variables on N , nor whether any departure and return variables
have values more deviant than their contrasts. So removingU will not
make N into a causal network from C to E . So N will not be a causal
network from C to E inM−U . �

Definition 1. IfV is an interpolated variable inM with parent P a and child
Ch, andN is a network inM (which may or may not contain the directed edges
P a → V and V → Ch), then let N −V be the network in M−V defined as
follows: ifV lies alongN , thenN −V isN , minus the directed edges P a →V
andV → Ch, and plus the new directed edge P a → Ch; and ifV does not lie
along N , then N −V is just N .

Definition 2. IfV is an interpolated variable inM with parent P a and child
Ch, and N is a network in M−V (which may or may not contain the directed
edge P a → Ch), then let N +V be the network inM defined as follows: if N
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includes P a → Ch, then N +V is N , minus P a → Ch, and plus the directed
edges P a → V and V → Ch; and if N does not include P a → Ch, then
N +V is just N .

Lemma 2. Given a causal model M = (U,u,V,E, ≽), with V ∈ V, C ⊆
U∪V, E ∈ V, andV < C∪ (E), ifV is inessential, then: (a) if N is a causal
network from C to E in M, then N −V is a causal network from C to E in
M−V ; and (b) if N is a causal network from C to E inM−V , then N +V is a
causal network from C to E inM.

Proof. Start with part (a). Suppose that N is a causal network from C
to E in M. SinceV is inessential, it has a single parent, P a, and a sin-
gle child, Ch (and P a is not a parent of Ch). Let their actual values in
M be v, pa, and ch, respectively. There are two possibilities: either (A)
V does not lie on N ; or (B) V does lie on N . In case (A), removing
V may introduce new local dependence relationships between P a and
Ch, but it will not alter any local dependence relations between any of
the variables on N and their N -parents. Since, in M, each variable in
N , rather than its contrast, locally depends upon itsN -parents’ values,
rather than their contrasts, inM−V , each variable inN −V = N , rather
than its contrast, will still locally depend upon its N −V -parents’ val-
ues, rather than their contrasts. For any departure or return variable
in N , removing V will not affect whether these variables are depar-
ture/return variables, nor whether their values are deviant and their
contrasts default. So, in case (A), N −V will still be a causal network
in M−V . In case (B), V lies on N . Then, P a and Ch must lie on N as
well. Let RN be Ch’s parents other than V that lie in the network N
(if such there be); let their actual values be rN , and their designated
contrasts, r∗N . Similarly, let RN be Ch’s parents that don’t lie in the
network N (if such there be), and let their actual values be rN . Then,
inM, there are some v∗, pa∗, and ch∗ such that ⟨ch, ch∗⟩ locally depends
upon ⟨rN ∪ (v), r∗N ∪ (v∗)⟩ and ⟨v,v∗⟩ locally depends upon ⟨pa, pa∗⟩.
Since P a isV ’s only parent, we can conclude that

ϕV (pa∗) = v∗(1)

And since ⟨ch, ch∗⟩ locally depends upon ⟨rN ∪ (v), r∗N ∪ (v∗)⟩, we can
conclude that

ϕCh(v
∗, r∗N , rN ) = ch∗(2)

By the construction ofM−V , it contains the structural equation

Ch := ϕCh(ϕV (P a),RN ,RN )
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Note that (3) follows from (1) and (2).

ϕCh(ϕV (pa
∗), r∗N , rN ) = ch∗(3)

So, inM−V , ⟨ch, ch∗⟩ locally depends upon ⟨rN ∪ (pa), r∗N ∪ (pa
∗)⟩. Re-

movingV will not affect whether any variables are departure or return
variables, relative to N , nor whether departure and return variables
have deviant values or default contrasts. So N − V will be a causal
network inM−V .

To establish part (b), suppose that N is a causal network from C
to E in M−V . N either (A) includes the directed edge P a → Ch or
(B) doesn’t. If (A), then there must be some pa∗, ch∗, and r∗N such that
⟨ch, ch∗⟩ locally depends upon ⟨rN ∪ (pa), r∗N ∪ (pa∗)⟩. (RN are Ch’s
N -parents, other than P a, if such there be.) So

ϕCh(ϕV (pa
∗), r∗N , rN ) = ch∗(4)

(RN are the parents of Ch which do not lie on the causal network N .)
Let v∗ be the value ofV such that v∗ = ϕV (pa∗). Then, it follows from
(4) that ⟨ch, ch∗⟩ will locally depend upon ⟨rN ∪ (v), r∗N ∪ (v∗)⟩ in M.
IncludingV will not affect which variables are departure/return vari-
ables, nor whether their values are deviant rather than default. So
N + V will be a causal network in M. If (B), then N + V = V will
also be a causal network from C to E inM, since including the interpo-
lated variableV will not alter any of the local dependence relationships
amongst any of the variables other than P a and Ch, nor will it affect
which variables are departure/returns relative toN , nor whether their
values are deviant and their contrasts default. �

Proposition 2. Minimal causal networks are model-invariant. That is: (a)
given a causal model M = (U,u,V,E, ≽), with U ∈ U, C ⊆ U ∪ V, E ∈ V,
and U < C, there is a minimal causal network from C to E in M iff there is a
minimal causal network from C to E in M−U . And (b) given a causal model
M = (U,u,V,E, ≽), with C ⊆ U ∪ V, E,V ∈ V, and V < C ∪ (E), if V is
inessential, then there is a minimal causal network from C to E in M iff there
is a minimal causal network from C to E inM−V .

Proof. Begin with part (b): suppose there is a minimal causal network
from C to E in M. Then, there is a causal network, N , from C to E in
M, and there is no proper sub-network of N , from any sub-tuple of C
to E in M. By Lemma 2, N −V is a causal network in M−V . Suppose
(for reductio) that this causal network is not minimal. Then, there is
some proper sub-network of N −V , N ∗, from some sub-tuple of C to
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E inM−V which is causal. By Lemma 2, N ∗+V is causal inM. If N ∗ is
a proper sub-network of N −V inM−V , then N ∗ +V is a proper sub-
network of N inM. So inM there is a proper sub-network of N , from
some sub-tuple of C to E , which is causal. SoN is not a minimal causal
network in M. Contradiction. So N −V is a minimal causal network
inM−V .

Going in the other direction, suppose that there is a minimal causal
network from C to E inM−V . So there is a causal network, N , inM−V ,
and there is no proper sub-network of N , from any sub-tuple of C to
E in M−V . By Lemma 2, N +V is a causal network in M. Suppose
(for reductio) that this causal network is not minimal. Then, there is
some proper sub-network of N , N ∗, from some sub-tuple of C to E in
M which is causal. By Lemma 2,N ∗−V is a causal network from some
sub-tuple of C to E inM−V . If N ∗ is a proper sub-network of N +V in
M, thenN ∗−V is a proper sub-network ofN inM−V . So inM−V there
is a proper sub-network ofN , from some sub-tuple of C to E , which is
causal. So N is not a minimal causal network in M−V . Contradiction.
So N +V is a minimal causal network from C to E inM.

The proof of part (a) is exactly the same, with Lemma 2 swapped
out forLemma 1,M−V swapped out forM−U ,N−V andN+V swapped
out for N , and N ∗ −V and N ∗ +V swapped out for N ∗. �
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