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Abstract: A norm of local expert deference says that your credence in an arbi-

trary proposition A, given that the expert’s probability for A is n, should be n.
A norm of global expert deference says that your credence in A, given that the

expert’s entire probability function is E, should be E(A). Gaifman (1988) taught

us that these two norms are not equivalent. Stalnaker (2019) conjectures that

Gaifman’s example is “a loophole”. Here, I substantiate Stalnaker’s suspicions by

providing characterisation theoremswhich tell us preciselywhen the two norms

give different advice. They tell us that, in a good sense, Gaifman’s example is the

only case where the two norms differ. I suggest that the lesson of the theorems

is that Bayesian epistemologists need not concern themselves with the differ-

ences between these two kinds of norms. While they are not strictly speaking

equivalent, they are equivalent for all philosophical purposes.

1 | introduction

Principles of expert deference play a prominent role in Bayesian epistemology.
1
For

an example of a principle of expert deference: Lewis (1980)’s Principal Principle tells
you that, in the absence of an extraordinary form of evidence, you should defer to

the future objective chances. That is, given that the objective chance of an arbitrary

proposition, A, is n, your own subjective probability, or credence, in A should be n,

too. That is, if C is your credence function, and ⟨Cht(A) = n⟩ is the proposition that
the time t chance of A is n, then you should satisfy the equality:

2

C(A | ⟨Cht(A) = n⟩) = n

That’s one principle of expert deference. For another: Rational Reflection says that
you should defer to the ideally rational credences for someone with your evidence to
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1. Principles of expert deference are discussed by Gaifman (1988), Talbott (1991), Lewis (1994), Hall (1994, 2004),

Thau (1994), Hall & Arntzenius (2003), Arntzenius (2003), Ismael (2008, 2015), Briggs (2009), Pettigrew (2012),

Christensen (2010), Lasonen-Aarnio (2015), Dorst (2020), Dorst et al. (2021), and Levinstein (forthcoming),

among several others.

2. Or, maybe more carefully, we should say: C(A | ⟨Cht(A) = n⟩) should be n whenever it is defined. To
avoid interrupting the exposition with constant reminders about this proviso, I’ll adopt the non-standard

convention of treating an equality as trivially true whenever one side is undefined. Thus, even whenC(A |
E) is undefined, I will treat the equality C(A | E) = n as true for all n.
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local and global deference

have. (For discussion, see Christensen, 2010, Elga, 2013, and Lasonen-Aarnio, 2015.)

That is, given that the rational credence function for you to have is R, your credence

in any proposition A should be R(A).

C(A | ⟨R = R⟩) = R(A)

(Here, ‘⟨R = R⟩’ says that the rational credence function for someone with your evi-

dence is R.)

These principles both tell you to defer to some expert probability function, but

they take different forms. The first tells you to defer to the expert conditional on

their views about any proposition; whereas the second tells you to defer to the expert
conditional on their views about every proposition (that is: conditional on their entire
probability function). We can call the first a norm of local expert deference, and the

second a norm of global expert deference.

Local Deference You locally defer to an expert, E , iff, for any proposition, A, and
any number n, your credence in A, given that E ’s probability for A is n, is n.

C(A | ⟨E(A) = n⟩) = n

Global Deference You globally defer to an expert, E , iff, for any proposition A, and
any probability functionE, your credence inA, given thatE ’s entire probability
function is E, is whatever probability E gives to A.

C(A | ⟨E = E⟩) = E(A)

It’s not obvious what the relationship is between these two different ways of showing

deference to an expert. It’s natural to think that they’re equivalent, in the sense that

you will globally defer to an expert function E if and only if you locally defer to

E . However, as we’ll see in §2 below, this isn’t quite right. While globally deferring

to E entails locally deferring to E , an example from Gaifman (1988) teaches us that

the converse is not true. In some cases, you can locally defer to E without globally

deferring to E .
Stalnaker (2019, pp. 111–12) speculates that Gaifman’s example is “a loophole—a

contrived case where [a principle of local deference] is satisfied without its usual mo-

tivation”. Here, I will substantiate Stalnaker’s suspicions. I’ll argue that the differ-

ences between local and global deference are so incredibly slight as to be philosoph-

icaly negligible—there is no good reason to accept the weaker local deference norm

without accepting the stronger global deference norm. To that end, I will precisely

characterise the situations in which global and local deference principles come apart.

This characterisation will show us that Gaifman’s original example of an expert who

may be deferred to locally but not globally is—in a good sense—the only expert like
this. So the kinds of situations in which it is possible to defer locally without de-

ferring globally are incredibly singular and fragile. And there is no reason to think

2 of 8



§2 how local and global deference norms differ

that these kinds of cases are epistemologically singular. The upshot is that Bayesians

should have no qualms about moving freely back and forth between global and local

formulations of principles of expert deference. While they are not strictly speaking

equivalent, they are equivalent for all philosophical purposes.

2 | how local and global deference norms differ

I’m going to take for granted here that your credence function, C , is a countably

additive probability function, defined over subsets of a space of possible worlds,W .

For the sake of simplicity, I’m going to assume thatW is at most countably infinite.

I’ll call any A ⊆W a ‘proposition’, and sinceW is at most countably infinite, we can

suppose that C gives a probability to every proposition.

I’ll suppose that you are certain that the expert’s probability function is defined

over exactly the same algebra of propositions as your own, namely the powerset of

W , P(W ). And I’ll suppose that we have a function from worlds inW to probability

distributions over P(W ), which I’ll write ‘E ’. The value of this function, given the

argument w—which I’ll write ‘Ew ’—will be interpreted as the probability function

the expert has at theworldw. With this function, we can form the proposition that the

expert’s probability function is E (for some probability distribution E), by gathering

together all the worlds w ∈W such that Ew = E.

⟨E = E⟩ def= {w ∈W | Ew = E}

We may likewise form the proposition that E ’s probability for A is n by gathering

together all of the worlds w ∈W such that Ew(A) = n.

⟨E(A) = n⟩ def= {w ∈W | Ew(A) = n}

Given this setup, if you defer to E globally, then you will defer to E locally as

well. To appreciate this, just notice that ⟨E(A) = n⟩ is partitioned by the set of all

propositions of the form ⟨E = E⟩, for some E that gives a probability of n to A. It

then follows from conglomerability that, if C(A | ⟨E = E⟩) = n for each E such that

E(A) = n, then C(A | ⟨E(A) = n⟩)must also be n.3

So global deference implies local deference. But the converse is false.

Example 1 (Gaifman, 1988). There are three worlds inW , which we will call ‘1’, ‘2’, and
‘3’. At world 1, the expert gives 50% probability to 1 and 50% probability to 2. At world 2,
the expert gives 50% probability to 2 and 50% probability to 3. At world 3, the expert gives
50% probability to 3 and 50% probability to 1.

We can represent the expert from example 1 with a square matrix, where the entry

3. Conglomerability tells us that, if Q is partitioned by {P1, P2, . . . }, and C(A | Pi ) = n, for each Pi , then
C(A |Q) = n as well. So long as we assume thatW is at most countably infinite, conglomerability follows

from our assumption that C is a countably additive probability.
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in the rth row and the cth column gives us the probability which the expert gives

to world c at the world r , Er (c). (Throughout, I’m going to adopt the convention of

using expressions like ‘E1(3)’ and ‘E2(1∨3)’ for E1({3}) and E2({1,3}), respectively.)


1 2 3

E1 1/2 1/2 0
E2 0 1/2 1/2
E3 1/2 0 1/2


Gaifman’s example is interesting because, if you spread your credences uniformly—

C(1) = C(2) = C(3) = 1/3, then you will defer to E locally, but not globally. For
instance, your credence in 1∨2, given ⟨E(1∨2) = 1/2⟩, is justC(1∨2 | 2∨3) (since
E ’s credence in 1∨ 2 is 1/2 at worlds 2 and 3), and if your credences are uniform,

then C(1∨2 | 2∨3) is 1/2. Moreover, as you can check for yourself, this works for

everyA ⊆ {1,2,3} and everyn. C(A | ⟨E(A) = n⟩) = nwhenever ⟨E(A) = n⟩ is given
a credence greater than 0. So, with the uniform credence distribution, you defer to

E locally. But you do not defer globally, since C(2 | ⟨E = E2⟩) = C(2 | 2) = 1, even
though E2’s credence in 2 is only 1/2.

We can pull the same trick with more worlds. For instance, ifW = {1,2,3,4,5},
and the expert function is given by this matrix,



1 2 3 4 5

E1 1/2 1/2 0 0 0
E2 0 1/2 1/2 0 0
E3 0 0 1/2 1/2 0
E4 0 0 0 1/2 1/2
E5 1/2 0 0 0 1/2


Then the uniform credence distribution (the one which gives credence 1/5 to every

world) will defer locally, but not globally, to this expert.

Another helpful way of looking at an expert function, E , is with a Kripke frame

(W ,R), where we stipulate that world w ‘sees’ a world, x, wRx, iff the expert at w

gives positive probability to x, Ew(x) > 0. For illustration, the expert from the 5

world model above gives rise to the following frame.

Call any collection ofworlds like this—a collectionC , containing at least 3worlds,

such that each world in C bears R to itself and exactly one other world, and every

w ∈ C bears R+
(the transitive closure of R) to every other world in C—a cycle. If
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§3 why the difference is philosophically negligible

C is a cycle and, moreover, for every w ∈ C , Ew gives exactly half of its probability

to w, then I’ll say that C is a ‘half-cycle’. Finally, if the frame E gives rise to contains
some half-cycle, then I’ll say that E is a half-cyclic expert.

Half-Cyclicity An expertE is half-cyclic if and only if the frame it generates contains

a cycle C such that, for every w ∈ C , Ew(w) = 1/2.

Whenever an expert is half-cyclic, it will be possible to defer to them locally but

not globally. In the appendix, I prove the following theorems:

Theorem 1. If E is half-cyclic, then C will defer to E locally but not globally if it spreads
its credence uniformly over each half-cycle and gives a probability of 0 to any world not
in a half-cycle.

Theorem 2. If E is half-cyclic, then C defers to E locally only if C is uniform over every
half-cycle.

When else is it possible to defer locally but not globally? Never. The half-cyclic
experts are the only ones to whom you can defer locally without deferring to them

globally. In the appendix, I offer a proof of the following theorem:

Theorem 3. If E is not half-cyclic, then C defers to E locally iff C defers to E globally.

This tells us that Gaifman’s example is incredibly singular. We can vary the size of the

half-cycles, but that’s it. In no other kind of case do the local and global norms pull

apart.

3 | why the difference is philosophically negligible

In my view, this theorem teaches us something helpful. It teaches us that we don’t

have to concern ourselves with the differences between local and global norms of

deference. For it teaches us that there is no philosophically plausible reason anyone

could have to endorse a norm of local deference while denying the corresponding

norm of global deference. I’ll give two independent reasons to think that such a po-

sition is implausible in §3.1 and §3.2 below.

3.1 | Drawing New Distinctions

Suppose thatwe beginwith themodel from example 1, andwe simply introduce a new

distinction. Perhaps, for each world w, we introduce two new worlds, wH and wT ,

wherewH is the possibility previously represented byw, plus the additional informa-

tion that a flipped coin landed heads, and wT is the possibility previous represented

by w, plus the additional information that the coin landed tails. And suppose that

each possible expert gives a probability of 1/2 to the coin landing heads and a prob-

ability of 1/2 to the coin landing tails, and takes the outcome of the coin flip to be

independent of whether 1,2, or 3. Then, including this additional distinction gives
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us the following expert:



1H 1T 2H 2T 3H 3T

E1H 1/4 1/4 1/4 1/4 0 0
E1T 1/4 1/4 1/4 1/4 0 0
E2H 0 0 1/4 1/4 1/4 1/4
E2T 0 0 1/4 1/4 1/4 1/4
E3H 1/4 1/4 0 0 1/4 1/4
E3T 1/4 1/4 0 0 1/4 1/4


And theorem 3 assures us that, while the half-cyclic expert from example 1 could be

deferred to locally, this non-half-cyclic expert cannot.
4
Attending to an additional

distinction like whether a coin landed heads or tails should only make a difference to

whether the expert E is deserving of epistemic deference if there is something irra-

tional about the probabilities E assigns to the coin landing heads or tails. But in this

case, there is nothing irrational about E ’s probabilities. The coin is fair and indepen-
dent of whether 1,2, or 3. So conditional on 1, conditional on 2, and conditional

on 3, the expert should divide their probability evenly between heads and tails. So,

if a half-cyclic expert is deserving of epistemic deference, then, after we introduce a

new, independent distinction—dividing each former possibility into an equally likely

‘heads’ and ‘tails’ possibility—the new expert should also be deserving of epistemic

deference.

However, if you endorsed a local norm of deference while rejecting the corre-

sponding global norm of deference, you would be forced to disagree. For then, you

would think that introducing this new distinction doesmake a difference to whether

E is deserving of epistemic deference. I take that to be rather implausible; so I take

it to be rather implausible that a local norm of deference holds without the corre-

sponding global norm holding.

3.2 | Learning the Expert’s Evidence

In the introduction, I said that Lewis’s Principal Principle tells you to locally defer to
the future objective chances. That’s true, but it’s slightly misleading, because it also
tells you to globally defer to the future objective chances. Lewis’s principle has the

form of what we can call a conditional local deference principle. It says that your

initial or ur-prior credence function, C0, should locally defer to the future objective

4. To see this without slogging through the proof of theorem 3, note that your credence in {1H ,1T ,2H },
conditional on the expert’s credence in {1H ,1T ,2H } being 1/4, is your credence in {1H ,1T ,2H }, condi-
tional on {2H ,2T } (since these are the possibilities in which E({1H ,1T ,2H }) = 1/4). So, if you are going
to defer to E locally, then your credence in 2H must be 1/4 your credence in 2T . But then, take the propo-
sition {1H ,1T ,2T }. Since ⟨E({1H ,1T ,2T }) = 1/4⟩ is {2H ,2T }, you can defer to E locally only if your

credence in 2T is 1/4 your credence in 2H . But this can only happen if your credence in both 2H and 2T
is zero. But there was nothing special about 2. Run the same argument swapping ‘3’ for ‘2’, ‘2’ for ‘1’, and
‘1’ for ‘3’, and you get that your credence in both 3H and 3T must be zero. Swap the labels again, and the

same argument gets that your credence in both 1H and 1T must be zero. But then your credences aren’t

probabilistic.
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chances conditional on any admissible evidence. That is: for any proposition A, any

future time t, any number n, and any admissible evidence proposition F, you should

satisfy the equality

C0(A | ⟨Cht(A) = n⟩ ∩F) = n

If your total evidence is admissible, then conditionalisation says that C(−) should be
C0(− | F) , so this norm implies the one from the introduction.

Lewis thought (back in 1980, at least) that propositions about the time t chances

were themselves admissible. And he thought that admissibility was closed under con-

junction. So we can take any probability function ch such that ch(A) = n, and any

admissible evidence F, and the Principal Principle will require that

C0(A | ⟨Cht(A) = n⟩ ∩ ⟨Cht = ch⟩ ∩F) = n

Now, notice that ⟨Cht(A) = n⟩ ∩ ⟨Cht = ch⟩ is just ⟨Cht = ch⟩, and n is just ch(A),
so this is equivalent to a conditional global norm which requires that

C0(A | ⟨Cht = ch⟩ ∩F) = ch(A)

which is why, in his original 1980 article, Lewis was able to freelymove back and forth

between a local and a global version of the Principal Principle.
There’s a general lesson here. For we often don’t just want to suggest that you

should defer to an expert now, given the evidence you currently have. We generally

want to say that you should continue to defer to them, even after you’ve received

certain kinds of evidence. Taking Lewis’s lead, call this kind of evidence ‘admissible’.

Then, consider the following two ways of showing deference:

Conditional Local Deference You conditionally locally defer to an expert, E , iff,
for any proposition A, any number n, and any admissible evidence F, your

credence in A, given that E ’s probability for A is n, and given F, is n.

C(A | ⟨E(A) = n⟩ ∩F) = n

Conditional Global Deference You conditionally globally defer to an expert, E , iff,
for any propositionA, any probability functionE, and any admissible evidence

F, your credence inA, given that E ’s entire probability function is E, and given
F, is whatever probability E gives to A.

C(A | ⟨E = E⟩ ∩F) = E(A)

Intuitively, evidence F is admissible iff you should continue deferring to E even

after you have F as your total evidence. Here’s a general principle about admissible

evidence that we should want to accept in a wide variety of cases: if F might be the

expert’s total evidence, then F is admissible.

Admissibility of Expert Evidence For any possible world w such that C(w) > 0,
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E ’s total evidence at w is admissible.

In other words, if you should show epistemic deference to E , then for any possible

world w with positive credence, after learning E ’s total evidence at w, you should

continue to show epistemic deference to E .
If we accept the admissibility of expert evidence, then there will be no difference

between a norm of conditional local deference and a norm of conditional global def-

erence. To appreciate this, notice that a norm of conditional local deference says not

only that C(−) should locally defer to E , but also that, for any admissible F, C(− | F)
should locally defer to E , too. But theorem 3 teaches us that the only way it could be

possible forC(− | F) to defer to E locally but not globally is if E is a half-cyclic expert.
But then, E ’s evidence at every world w in a half-cycle is w∨wR, where ‘wR’ is w’s
successor in the cycle. If expert evidence is admissible, then for any world w with

positive credence, w ∨wR is admissible, and a norm of conditional local deference

will require that C(− | w ∨wR) locally defer to E . Since C(− | w ∨wR) only gives
positive probability to two worlds within a cycle, it does not spread its probability

uniformly over every cycle. So theorem 2 assures us that it does not locally defer to E .
So, if expert evidence is admissible, then it is impossible to conditionally locally defer

to a half-cycle expert. So, if expert evidence is admissible, then it is possible to condi-

tionally locally defer to all and only the experts it is possible to conditionally globally
defer to. And whenever you conditionally locally defer, you will also conditionally

globally defer.
That is: if expert evidence is admissible, then there is no difference between

a norm of conditional local deference and the corresponding norm of conditional

global deference. It is not plausible to think that some expert E is deserving of epis-
temic deference, but that E might not be deserving of deference, were you to learn

what E ’s evidence is. So it is not plausible to endorse a norm of local deference with-

out endorsing the corresponding global norm.
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a | proofs

Recall, an expert function E generates a Kripke frame (W ,R) where, for any two w,x ∈ W
wRx iff Ew(x) > 0. If wRx, I’ll say colloquially that w sees x.

Lemma 1. If C defers to E locally, then, for any world w ∈W , if C(w) > 0, then wRw.

Proof. Suppose otherwise. Then, w ∈ ⟨E(w) = 0⟩, so C(w | ⟨Ew(w) = 0⟩), is defined and not

equal to 0. So you don’t defer to E locally. Contradiction.

Theorem 1. If E is half-cyclic, thenC will defer to E locally but not globally if it spreads its credence
uniformly over each half-cycle and gives a probability of 0 to any world not in a half-cycle.

Proof. Assume that E is half-cyclic and that C gives only positive credence to the worlds in

some half-cycle. Suppose further than, for any two worlds in the same half-cycle, w and x,

C(w) = C(x). We will now show that C defers to E locally.

For every world in a half-cycle, w, and each A ⊆ W , there are only three possibilities for

the value of Ew(A): 0, 1/2, and 1. For take any A ⊆ W and any w in a half-cycle. Use ‘wR’

for the unique x , w such that wRx. Then, either (i) both w and wR are in A; (ii) exactly one

of w and wR are in A; or (iii) neither w nor wR are in A. If (i), then Ew(A) = 1. If (ii), then
Ew(A) = 1/2. And if (iii), then Ew(A) = 0.

Now, take any A ⊆W , any n ∈ {0,1/2,1}, and any half-cycle C . We will show that

(1) ∥A∩ ⟨E(A) = n⟩ ∩C ∥ = n · ∥⟨E(A) = n⟩ ∩C ∥

(where ‘∥A∥’ is the cardinality of A.)

Start with the case n = 0. For everyw ∈ ⟨E(A) = 0⟩ such that C(w) > 0,w < A by lemma

1, hence ∥A∩ ⟨E(A) = 0⟩ ∩C ∥ = 0, for every C .

Next, consider the case n = 1. For every w ∈ ⟨E(A) = 1⟩ such that C(w) > 0, w ∈ A by

lemma 1. So, for every half-cycle C , ∥A∩ ⟨E(A) = 1⟩ ∩C ∥ = ∥⟨E(A) = 1⟩ ∩C ∥.

Next consider the case n = 1/2. Every world with positive credence is in a half-cycle, so

for every w ∈ ⟨E(A) = 1/2⟩ such that C(w) > 0, exactly one of w and wR are in A. If w < A

but wR ∈ A, then call w an entrance world. If w ∈ A but wR < A, then call w an exit world.
As we travel around each half-cycle C , we must enter A as many times as we leave it, so for

each half-cycle C , there are as many entrance worlds in that cycle as there are exit worlds.

⟨E(A) = 1/2⟩ contains only entrance and exit worlds, and the exit worlds are exactly those

members of ⟨E(A) = 1/2⟩ which are in A. So, for each half-cycle C ,

∥A∩ ⟨E(A) = 1/2⟩ ∩C ∥ = 1/2 · ∥⟨E(A) = 1/2⟩ ∩C ∥

With (1) established, we can show that, ifC is uniform over every half-cycle, and gives only

positive credence to worlds in half-cycles, then C defers locally to E . For, in that case, there is
a collection of weights λC , one for each half-cycle C , such that, for every A ⊆W ,

C(A) =
∑
C

λC · ∥A∩C ∥

i



In particular, for n ∈ {0,1/2,1},

C(A∩ ⟨E(A) = n⟩) =
∑
C

λC · ∥A∩ ⟨E(A) = n⟩ ∩C ∥

and C(⟨E(A) = n⟩) =
∑
C

λC · ∥⟨E(A) = n⟩ ∩C ∥

By (1), then,

C(A∩ ⟨E(A) = n⟩) = n ·
∑
C

λC · ∥⟨E(A) = n⟩ ∩C ∥

So, for any A ⊆W , and any n,

C(A | ⟨E(A) = n⟩) = C(A∩ ⟨E(A) = n⟩)
C(⟨E(A) = n⟩)

=
n ·

∑
C λC · ∥⟨E(A) = n⟩ ∩C ∥∑

C λC · ∥⟨E(A) = n⟩ ∩C ∥
= n

So C defers to E locally.
But C does not defer to E globally, since, for any world w such that C(w) > 0, w is in a

half-cycle, and ⟨E = Ew⟩ = {w}, so C(w | ⟨E = Ew⟩) = 1 , Ew(w) = 1/2.

Theorem 2. If E is half-cyclic, then C defers to E locally only if C is uniform over every cycle.

Proof. For each half-cycle, use ‘C ’ for the set of worlds in the cycle, and for any world w, let

wR be the unique x , w such that wRx. Then, take any world w ∈ C . If C(w) > 0, then
C(⟨E(wR) = 1/2⟩) = C(w∨wR) > 0. So C(wR | ⟨E(wR) = 1/2⟩) is defined. Since C defers

to E locally, C(wR | ⟨E(wR) = 1/2⟩) = C(wR | w ∨wR) must be 1/2. So C(wR) must be

equal to C(w). The world w was arbitrary, so the credence of every world in the cycle must

be the same as the credence of the unique distinct world it ‘sees’. So every world in the cycle

must have the same credence. The cycle was arbitrary, so if C defers locally to a half-cyclic E ,
then C is uniform over every cycle.

Lemma 2. If C defers to E locally, then, for any two worlds w,x ∈ W , if wRx and C(w) > 0,
then Ew(x) = Ex(x).

Proof. Suppose, for reductio, thatC defers to E locally and that, for some twoworldsw,x ∈W ,

wRx, C(w) > 0, and Ew(x) , Ex(x). Then, x < ⟨E(x) = Ew(x)⟩. Since C(w) > 0, C(⟨E(x) =
Ew(x)⟩) > 0. So C(x | ⟨E(x) = Ew(x)⟩) is defined and equal to 0. Since C defers to E locally,
Ew(x)must be 0, which contradicts our assumption that wRx.

Lemma 3. If C defers to E locally, then, for any two worlds w,x ∈ W , if wRx and C(w) > 0,
then C(x) > 0.

Proof. By lemma 2, Ew(x) = Ex(x) > 0. Since C(w) > 0, C(⟨E(x) = Ex(x)⟩) > 0. So C(x |
⟨E(x) = Ex(x)⟩) is defined. SinceC defers toE locally,C(x | ⟨E(x) = Ex(x)⟩) = C(x)/C(⟨E(x) =
Ex(x)⟩)must be equal to Ex(x) > 0, which requires that C(x) > 0.

Lemma 4. If C defers to E locally, then, for any world w in the support of C, and any world x, if
wRx, then xR+w. (R+ is the transitive closure of R.)

Proof. Take an arbitrary worldw in the support ofC. Ifw doesn’t see any world besides itself,

then the lemma is trivial. So suppose there’s some x such that wRx. Let A ≡ {y , w | xR+y}.
Since C(w) > 0, lemmas 3 and 1 tell us that xRx, so x ∈ A, and Ew(A) > 0. Since C defers
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locally to E , C(A | ⟨E(A) = Ew(A)⟩) = Ew(A) > 0. So A ∩ ⟨E(A) = Ew(A)⟩ must be non-

empty. But this is only possible if there are some worlds y ∈ A such that Ey (A) = Ew(A) < 1.
But the only way a world y ∈ A could have Ey (A) < 1 is if Ey (w) > 0—by the definition of A,

any world other thanw that y sees would itself be inA. So there’s some world y ∈ A such that

yRw. But if y ∈ A then xR+y. And if xR+y and yRw, then xR+w.

Lemma 5. If C defers to E locally and for some pair of distinct worlds w,x in the support of C,
wRx and xRw, then, for any world y in the support of C, yRw↔ yRx.

Proof. Suppose (for reductio) that C defers locally to E , C(w) > 0, wRx, and xRw, yet there’s

some world y in the support of C such that y sees one of w or x without seeing the other.

Without loss of generality, suppose that yRw and ¬yRx. By lemma 2, Ey (w) = Ew(w). And
since Ey (x) = 0, Ey (w ∨ x) = Ew(w). But Ew(w ∨ x) , Ew(w) and Ex(w ∨ x) , Ew(w). So
y ∈ ⟨E(w∨ x) = Ew(w)⟩ but w,x < ⟨E(w∨ x) = Ew(w)⟩. So

C(w∨ x | ⟨E(w∨ x) = Ew(w)⟩) = 0

and C doesn’t defer to E locally. Contradiction.

Lemma 6. If C defers to E locally, C(w) > 0, wRx, xRw, and xRy, then wRy,yRw, and yRx,
too (i.e., if w and x see each other and x sees y, then each of w,x, and y see all of w,x, and y).

Proof. Assume C defers to E locally, C(w) > 0, wRx,xRw, and xRy. We will first show that

either wRy or yRw. Suppose for reductio that ¬wRy and ¬yRw. Then, Ew(w∨ y) = Ew(w)
and Ey (w ∨ y) = Ey (y). But Ex(w ∨ y) = Ex(w) + Ex(y) = Ew(w) + Ey (y) (by lemma 2). So

x ∈ ⟨E(w∨ y) = Ex(w∨ y)⟩, but w,y < ⟨E(w∨ y) = Ex(w∨ y)⟩. So

C(w∨ y | ⟨E(w∨ y) = Ex(w∨ y)⟩) = 0

And C doesn’t defer to E locally. Contradiction.
So either (a) yRw or (b) wRy.

Suppose first that (a) yRw. Then, by lemma 5, yRx, too. So xRy and yRx. So, by lemma 5,

wRx↔ wRy. Since wRx, wRy. So each of w,x, and y sees all of w,x, and y.

Next, suppose that (b) wRy. Then, wRx,xRw,xRy, and wRy. Suppose for reductio that
¬yRw and ¬yRx. And let Rw ≡ {z , w,x,y | zRw ∧ ¬zRy}. Let Rwy ≡ {z , w,x,y |
zRw∧ zRy}. And let Ry ≡ {z , w,x,y | ¬zRw∧ zRy}. By lemma 5, every world in Rw and

Rwy sees x, and noworld inRy sees x (if it did, it would also seew by lemma 5, and so it would

be in Rwy , not Ry). Similarly, lemma 5 tells us that any world which sees x is either in Rw or

Rwy.

There are two cases to consider. Either (b1) Ey (y) = Ew(w∨x) or (b2) Ey (y) , Ew(w∨x).
Start with (b1). Then, since ¬yRw, Ey (w∨ y) = Ey (y), whereas for any z ∈ Rw, Ez(w∨ y) =
Ez(w) = Ew(w) by lemma 2. Since Ey (y) = Ew(w ∨ x) > Ew(w), for any z ∈ Rw, Ey (y) >
Ez(w ∨ y). So Rw ∩ ⟨E(w ∨ y) = Ey (y)⟩ = ∅. Likewise, for any z ∈ Rwy , Ez(w ∨ y) =
Ez(w)+Ez(y) = Ew(w)+Ey (y) by lemma 2. SoRwy∩⟨E(w∨y) = Ey (y)⟩ = ∅. So ⟨E(w∨y) =
Ey (y)⟩ = Ry ∪ {y}. So

(2) C(w∨ y | ⟨E(w∨ y) = Ey (y)⟩) =
C(y)

C(y) +C(Ry)
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And, by lemma 2, ⟨E(y) = Ey (y)⟩ = Rwy ∪Ry ∪ {w,x,y}, so

(3) C(y | ⟨E(y) = Ey (y)⟩) =
C(y)

C(y) +C(Ry) +C(Rwy) +C(w) +C(x)

But, sinceC defers toE locally, (2) and (3) together imply that eitherC(y) = 0 or elseC(Rwy) =
C(w) = C(x) = 0. Either possibility contradicts our assumption thatC(w) > 0 andwRy (since
lemma 3 then implies that C(y) > 0). So case (b1) leads to a contradiction.

Next consider case (b2) Ey (y) , Ew(w ∨ x). Then, C(Rw) must be zero. For suppose

C(Rw) > 0. Then, by lemma 2, Rw ⊆ ⟨E(w ∨ x ∨ y) = Ew(w ∨ x)⟩. But Ew(w ∨ x ∨ y) ,
Ew(w∨ x), Ex(w∨ x∨ y) , Ew(w∨ x), and Ey (w∨ x∨ y) = Ey (y) , Ew(w∨ x). So

C(w∨ y ∨ x | ⟨E(w∨ x∨ y) = Ew(w∨ x)⟩)

is defined and equal to 0, and not Ew(w∨x). SoC doesn’t defer to E locally. Contradiction. So
it must be that C(Rw) = 0. But now, C(⟨E(w∨ x∨ y) = Ey (y)⟩) = C(Ry) +C(y). Neither w
nor x nor any world in Rwy is in ⟨E(w∨ x∨ y) = Ey (y)⟩, since all of them give a credence of

Ew(w) +Ex(x) +Ey (y) tow∨x∨ y (by lemma 2). And no world in Rw has positive credence.

So

(4) C(w∨ x∨ y | ⟨E(w∨ x∨ y) = Ey (y)⟩) =
C(y)

C(Ry) +C(y)

And, by lemma 2, ⟨E(y) = Ey (y)⟩ = Ry ∪Rwy ∪ {w,x,y}. So

(5) C(y | ⟨E(y) = Ey (y)⟩) =
C(y)

C(Ry) +C(y) +C(Rwy) +C(w) +C(x)

But, sinceC defers to E locally, (4) and (5) together imply that eitherC(y) = 0 or elseC(Rwy) =
C(w) = C(x) = 0. Either possibility contradicts our assumption thatC(w) > 0 andwRy (since
lemma 3 then implies that C(y) > 0). So case (b2) also leads to a contradiction.

So our assumption that ¬yRw and ¬yRx has led to a contradiction. So it must be that

either yRw or yRx. If yRw, then, by lemma 5, yRx, too. And if yRx, then, by lemma 5, yRw,

too. So either way, wRx,wRy,xRw,xRy,yRw, and yRx. So we have that each of w,x, and y

sees all of w,x, and y.

So, whether (a) or (b), each of w,x, and y sees all of w,x, and y.

Lemma 7. If C defers to E locally, C(y) > 0, wRx, xRw, and yRx, then xRy, wRy, and yRw,
too (i.e., if w and x see each other and y sees x, then each of w,x, and y see all of w,x, and y).

Proof. Suppose C defers to E locally, C(y) > 0,wRx, xRw, and yRx. Then, by lemma 5, yRw,

too. Now, let Ry ≡ {z , w,x,y | zRy ∧¬zRw}, let Rw ≡ {z , w,x,y | ¬zRy ∧ zRw}, and let
Rwy ≡ {z , w,x,y | zRy ∧ zRw}. By lemma 5, every world in Rwy and Rw sees x, and no

world in Ry sees x (if it did, it would also see w by lemma 5, and it would be in Rwy , not Ry).

Similarly, lemma 5 tells us that any world which sees x is either in Rwy or Rw.

Now, suppose for reductio that ¬wRy and ¬xRy. Then, by lemma 2, Ey (y ∨ w ∨ x) =
Ey (y)+Ew(w)+Ex(x), whereas Ew(y∨w∨x) = Ex(y∨w∨x) = Ew(w)+Ex(x) = Ew(w∨x).
So y < ⟨E(y ∨w ∨ x) = Ew(w ∨ x)⟩. For any z ∈ Ry , Ez(y ∨w ∨ x) = Ey (y). And for any

z ∈ Rwy , Ez(y∨w∨x) = Ey (y)+Ew(w)+Ez(z) , Ew(w∨x). So ⟨E(y∨w∨x) = Ew(w∨x)⟩ =
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Rw∪ {w,x}. So

C(y ∨w∨ x | ⟨E(y ∨w∨ x) = Ew(w∨ x)⟩) =
C(w) +C(x)

C(w) +C(x) +C(Rw)
(6)

Since any world which sees either w or x sees the other (by lemma 5), for any world in z ∈
Rwy∪Rw∪{y,w,x}, Ez(w∨x) = Ew(w)+Ex(x) = Ew(w∨x), by lemma 2. No other worlds

see either w or x. So ⟨E(w∨ x) = Ew(w∨ x)⟩ = Rwy ∪Rw∪ {y,w,x}. So

C(w∨ x | ⟨E(w∨ x) = Ew(w∨ x)⟩) =
C(w) +C(x)

C(w) +C(x) +C(y) +C(Rwy) +C(Rw)
(7)

But, sinceC defers locally to E , equations (6) and (7) together imply that eitherC(w) = C(x) =
0 or elseC(y) = C(Rwy) = 0. But either possibility contradicts our assumption thatC(y) > 0
and yRx (since lemma 3 then implies that C(x) > 0). So our assumption has led to a contra-

diction.

So eitherwRy or xRy. But then each ofw,x, and y sees all ofw,x, and y by lemma 6.

Definition 1. An S5 cluster is a non-empty setS ⊆W such that, for everyw ∈S , {x | wRx} =
S . An S5 cluster S is immodest iff Ew = Ex for every w,x ∈S . Else, S is modest.

Lemma 8. If C defers to E locally, then, for any world w in the support of C, if there are two
distinct worlds x,y ∈ wR+ ≡ {z | wR+z} such that xRy and yRx, then wR+ is an S5 cluster.

Proof. Suppose C defers locally to E , C(w) > 0, and for two distinct worlds x,y ∈ {z | wR+z},
xRy and yRx. Let wR+ ≡ {z | wR+z}. Fix an enumeration of the worlds in wR+ \ {x,y}
such that, if zi comes before zj in the enumeration, then the shortest R-chain5 from x to zi is

shorter than the shortest R-chain from x to zj . (We will eventually show that xRz and zRx,

for every z ∈ wR+
, but for now we only assume that there is some finite R-chain from x to

each z ∈ wR+
.)

Base Case: take z1. Since z1 begins the enumeration, either xRz1 or else z1Rx. By lemmas

6 and 7, everyworld in {x,y,z1} sees every otherworld in {x,y,z1}. Inductive Step: Assume that

every world in wRk ≡ {x,y,z1, z2, . . . , zk} sees every other world in wRk
. Take zk+1. Given

our choice of enumeration, there is some u ∈ wRk
such that either uRzk+1 or zk+1Ru. Take

any other world v ∈ wRk
(v , u). By the inductive hypothesis, uRv and vRu. So, by lemmas

6 and 7, zk+1Rv, zk+1Ru, uRzk+1, and vRzk+1. v was arbitrary, so zk+1 sees and is seen by

every world in wRk
. So every world in wRk+1 ≡ wRk ∪ {zk+1} sees every other world in

wRk+1
.

So every world inwR+
sees every other world inwR+

. They cannot see any other worlds,

else those worlds would also be in wR+
. So wR+

is an S5 cluster.

Lemma 9. If C defers to E locally, wRx and ¬xRw, then either every world which sees w also
sees x, or else Ew(w) = Ex(x).

Proof. Suppose that for some world, u, uRw and¬uRx. Then,C(w∨x | ⟨E(w∨x) = Eu(w∨
x)⟩) = Eu(w ∨ x) = Eu(w). By lemma 2, Eu(w) = Ew(w). But Ew(w ∨ x) , Ew(w), so w <

⟨E(w ∨ x) = Eu(w ∨ x)⟩. So in order for C(w ∨ x | ⟨E(w ∨ x) = Eu(w ∨ x)⟩) to not be 0, it

5. AnR-chain is any sequence of worlds such that, for any two adjacent worlds in the sequence,wi andwi+1 ,
either wiRwi+1 or else wi+1Rw.
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must be that x ∈ ⟨E(w ∨ x) = Eu(w ∨ x)⟩. So Ex(w ∨ x) = Ex(x) = Eu(w ∨ x) = Ew(w). So
Ex(x) = Ew(w).

Lemma 10. Suppose that C defers locally to E . Then, for any world w in the support of C and
any world x ∈W : if wRx and ¬xRw, then Ex(x) = Ew(w).

Proof. Suppose that C(w) > 0. If there’s no world x , w such that wRx, then the lemma is

trivially satisfied. So suppose there’s some x , w such that wRx and ¬xRw. Suppose further
(for reductio) that every world which sees w also sees x. Let Rw ≡ {y , w | yRw}. By Lemma

2, for every y ∈ Rw, Ey (w) = Ew(w). Then,

C(w | ⟨E(w) = Ew(w)⟩) =
C(w)

C(w) +C(Rw)

and C(w∨ x | ⟨E(w∨ x) = Ew(w∨ x)⟩) =
C(w)

C(w) +C(Rw)

(The second equality follows because every world which sees w also sees x and so, by lemma

2, for every y ∈ Rw, Ey (w∨x) = Ew(w)+Ex(x) = Ew(w∨x). And any world which sees only
x must give a probability of only Ex(x) to w∨ x.) Because C defers to E locally, it then must

be that Ew(w) = Ew(w∨ x), which contradicts our assumption that wRx. So our assumption

that every world which sees w also sees x has led to a contradiction. So lemma 9 tells us that

Ew(w) = Ex(x).

Lemma 11. If C defers to E locally, then, for every w in the support of C which is not in an S5
cluster, any every world x, if wRx, then Ex(x) = Ew(w) = Ew(x).

Proof. Suppose C defers to E locally, and take a world w not in an S5 cluster. Take any world

x such thatwRx. Sincew is not in an S5 cluster, lemma 8 tells us that¬xRw. So lemma 10 tells

us that Ex(x) = Ew(w). And lemma 2 tells us that Ew(x) = Ex(x).

Lemma 12. If S is an S5 cluster, C(w) > 0 for some w ∈S , and C defers to E locally, then S

is an immodest S5 cluster.

Proof. Suppose for reductio thatS ismodest, thatC(w) > 0 for somew ∈S , and thatC defers

locally to E . By lemma 3, C gives positive credence to every world in S . Since S is modest,

there are x,y,z ∈ S such that Ex(z) , Ey (z). Now, either Ez(z) , Ex(z) or Ez(z) , Ey (z).
Either way, there are two worlds u,z ∈ S such that Eu(z) , Ez(z). However, since u and z

are both in S , Eu(z) , 0. But since z < ⟨E(z) = Eu(z)⟩, C(z | ⟨E(z) = Eu(z)⟩)must be zero, if

defined. So it must not be defined. So C(u)must be zero. Contradiction.

Lemma 13. If C defers to E locally and C invests all its credence in S5 clusters, then C defers to E
globally.

Proof. Suppose that C defers to E locally and invests all of its credence in S5 clusters. Take

any S5 cluster S , and any worlds w,x ∈ S . By lemma 12, Ew = Ex , so x ∈ ⟨E = Ew⟩. x was

arbitrary, soS ⊆ ⟨E = Ew⟩. Moreover, for any world z <S , either Ez , Ew or elseC(z) = 0.
For, if Ez = Ew , then Ez(z) = 0, so ¬zRz, so C(z) = 0 by lemma 1. So C(S ) = C(⟨E = Ew⟩).

Take any A ⊆ S . Then, Ew(A) > 0; whereas, for any z < S , either Ez(A) = 0 or else

C(z) = 0. (For suppose that Ez(A) > 0. Then, z sees some world in S , but since z < S , no

world inS sees z. So z is not in an S5 cluster. SoC(z) = 0.) Either way,C(⟨E(A) = Ew(A)⟩) =
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C(S ). So, for any w ∈S , and any A ⊆S , C(S ) = C(⟨E = Ew⟩) and C(⟨E(A) = Ew(A)⟩) =
C(S ). So C(⟨E = Ew⟩) = C(⟨E(A) = Ew(A)⟩). So

C(A | ⟨E = Ew⟩) = C(A | ⟨E(A) = Ew(A)⟩) = Ew(A)

Moreover, for any B ⊆W , there will be some B∩S ⊆S , and C(B |S ) = C(B∩S |S ) =
C(B∩S | ⟨E = Ew⟩) = Ew(B∩S ) = Ew(B). S was arbitrary, so the same holds for any S5

cluster in the support of C. So C defers to E globally.

Theorem 3. If E is not half-cyclic, then C defers to E locally iff C defers to E globally.

Proof. Because global deference implies local deference, it is enough to show that, if E is not
half-cyclic and C defers to E locally, then C defers to E globally. So suppose, for reductio, that
E is not half-cyclic and that C defers to E locally without deferring to E globally.

Wewill first show that, for anyw in the support ofC which is not in an S5 cluster, Ew(w) ,
1/2. Suppose the negation: for some w such that C(w) > 0 and w is not in an S5 cluster,

Ew(w) = 1/2. Since Ew(w) = 1/2, there’s some x1 such that wRx1. By lemma 11, Ex1 (x1) =
1/2 and Ew(x1) = 1/2. Sow sees just itself and one other world, and Ew(w) = 1/2. This is the
base case. Inductive Step: suppose that, for some xi ∈ wR+

, xi sees only itself and xi+1, and

Exi (xi ) = Exi (xi+1) = 1/2. Then, lemma 11 tells us that Exi+1 (xi+1) = 1/2. So there’s some

xi+2 such that xi+1Rxi+2. So lemma 11 tells us that Exi+2 (xi+2) = 1/2 and Exi+1 (xi+2) =
1/2. So xi+1 sees only itself and xi+2, and Exi+1 (xi+1) = Exi+1 (xi+2) = 1/2. Completing

the induction: every x ∈ wR+
sees itself and one other world, and Ex(x) = 1/2. Since wRx1,

lemma 4 assures us that x1R
+w, so this sequence of worlds must loop back on itself, and we

have a half-cycle. Contradiction.

If every w in the support of C were in an S5 cluster, then lemma 13 tells us that C would

defer to E globally, contradicting our assumption. So it must be that there is some world u in

the support of C which is not in an S5 cluster. We’ve just learnt that every w ∈ uR+
is such

that Ew(w) , 1/2. Moreover, it must be that Ew(w) < 1/2. For if Ew(w) were greater than
1/2, it would either be 1 or between 1/2 and 1. If Ew(w) = 1, then w sees only itself, and is an

S5 cluster. Contradiction. If Ew(w) > 1/2 but Ew(w) , 1, then there would be some x such

that wRx and Ew(x) , Ew(w), contradicting lemma 11.

So, for every w ∈ uR+
, Ew(w) < 1/2. So, for every w ∈ uR+

, there’s some world x , w

such that wRx and Ew(x) = Ex(x) < 1/2, by lemma 11. So there must be at least three worlds

in wR ≡ {x | wRx}—w itself and at least two other worlds. And since no world in wR sees w

besidesw itself (otherwise, lemma 8 tells us that uR+
would be an S5 cluster), lemma 11 tells us

that every world inwR gives itself precisely the same credence, so Ew(w)must be 1/N , where

N is the number of worlds inwR. Moreover, by lemma 2, every world inwR gives every world

in wR that it sees a credence of 1/N .

There now must be a unique world in wR—call it ‘x1’—such that x1 , w and x1 sees

every world in A1 ≡ wR \ {w}. There must be one such world, otherwise no world in A1

would give a credence of Ew(A1) = (N − 1)/N to A1, and C(A1 | ⟨E(A1) = (N − 1)/N ⟩)
would be defined but equal to 0, not (N − 1)/N , so C wouldn’t defer to E locally. Moreover,

this world must be unique. For if there were two worlds in A1 which saw every world in A1,

then they would see each other, and uR+
would be an S5 cluster by lemma 8. So x1 is the

unique world in A1 which sees every world in A1.

Now, let RA1 ≡ {z < wR | ∀x ∈ A1 zRx} be the set of all worlds besides w and x1 which

see every world in A1. Then, every z ∈ RA1 gives a credence of 1/N to each world in A1,
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by lemma 2. So, for every z ∈ RA1, Ez(A1) = (N − 1)/N . w and x1 both give a credence of

(N − 1)/N to A1. And no other worlds not in A1 give a credence of (N − 1)/N to A1, since

all of those worlds see strictly fewer thanN −1 of the worlds in A1, and so by lemma 2 give a

credence of less than (N − 1)/N to A1. So ⟨E(A1) = (N − 1)/N ⟩ = RA1 ∪ {w,x1}. Since C
defers to E locally,

C(A1 | ⟨E(A1) = (N − 1)/N ⟩) = C(x1)
C(w) +C(x1) +C(RA1)

=
N − 1
N

So

C(x1) = (N − 1) ·C(w) + (N − 1) ·C(RA1)

SinceN > 2, C(x1) > C(w).
All of the above reasoning iterates. Turn to x1, and let x1R ≡ {z | x1Rz} be the set of

worlds which x1 sees. No world in x1R can see x1 besides x1 itself (else, lemma 8 tells us that

we’d have an S5 cluster). Since Ex1 (x1) = 1/N , lemma 10 tells us that every other world in

x1R gives itself the credence 1/N , and so lemma 2 tells us that every world in x1R gives every

world in x1R that it sees a credence of 1/N .

Now, there must be a unique world—call it ‘x2’—such that x2 , x1, x2 ∈ x1R, and x2
sees everyworld inA2 ≡ x1R\{x1}. Theremust be one suchworld, else noworld inA2 would

give a credence of Ex1 (A2) = (N − 1)/N to A2, and C(A2 | ⟨E(A2) = (N − 1)/N ⟩) would be
defined but equal to 0, not (N −1)/N , andC wouldn’t defer to E locally. Moreover, this world

must be unique, else there would be two worlds in A2 which saw every world in A2, so they

would see each other, and by lemma 8, uR+
would be an S5 cluster. So x2 is the unique world

in A2 which sees every world in A2.

As before, ⟨E(A2) = (N − 1)/N ⟩ = RA2 ∪ {x1,x2}, where RA2 ≡ {z < x1R | ∀x ∈
A2 zRx}. And, since C defers to E locally,

C(A2 | ⟨E(A2) = (N − 1)/N ⟩) = C(x2)
C(x1) +C(x2) +C(RA2)

=
N − 1
N

So

C(x2) = (N − 1) ·C(x1) + (N − 1) ·C(RA2)

SinceN > 2, C(x2) > C(x1).
Proceeding in this way generates an infinite sequence of worlds, w,x1,x2, . . . such that

C(w) < C(x1) < C(x2) < . . .

Since C(w) > 0, C(w) > 1/M for someM . Then, C(w∨ x1 ∨ · · · ∨ xM−1) = C(w) +C(x1) +
· · ·+C(xM−1) >M ·C(w) > 1. So C isn’t a probability. Contradiction.

So our assumption that E is not half-cyclic and C defers to E locally without deferring to
E globally has led to a contradiction. So, if E is not half-cyclic,C defers to E locally iffC defers

to E globally.

viii
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