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Abstract

We show that the physical meaning of the wave function can be derived
based on the established parts of quantum mechanics. It turns out that
the wave function represents the state of random discontinuous motion
of particles, and its modulus square determines the probability density
of the particles appearing in certain positions in space.

The wavefunction gives not the density of stuff, but gives rather (on
squaring its modulus) the density of probability. Probability of what
exactly? Not of the electron being there, but of the electron being found
there, if its position is ‘measured’. Why this aversion to ‘being’ and
insistence on ‘finding’? The founding fathers were unable to form a
clear picture of things on the remote atomic scale. (Bell 1990)

The meaning of the wave function in quantum mechanics is often ana-
lyzed in the context of conventional impulse measurements. Although the
wave function of a quantum system is in general extended over space, an
ideal position measurement will inevitably collapse the wave function and
can only detect the system in a random position in space. Thus it seems nat-
ural to assume the wave function is only related to the probabilities of these
random measurement results as in the standard probability interpretation.
However, it has been widely argued that the probability interpretation is not
wholly satisfactory because of resorting to the vague concept of measurement
(Bell 1990). On the other hand, although the wave function is regarded as
a physical entity in some alternative formulations of quantum mechanics
such as the de Broglie-Bohm theory and the many-worlds interpretation (de
Broglie 1928; Bohm 1952; Everett 1957; De Witt and Graham 1973), it re-
mains unclear what physical entity the wave function really represents. One
of the main reasons, as we think, is that conventional impulse measurements
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can hardly provide useful information about the wave function of a single
quantum system beyond the probability interpretationlﬂ

Fortunately, it has been known that the physical state of a single quan-
tum system can be protectively measured (Aharonov and Vaidman 1993;
Aharonov, Anandan and Vaidman 1993; Aharonov, Anandan and Vaidman
1996; Vaidman 2009). A general method is to let the measured system
be in a nondegenerate eigenstate of the whole Hamiltonian using a suit-
able protective interaction (in some situations the protection is provided
by the measured system itself), and then make the measurement adiabati-
cally so that the state of the system neither changes nor becomes entangled
with the measuring device appreciably. In this way, such protective mea-
surements can measure the expectation values of observables on a single
quantum system without disturbing its state, and in particular, the mass
and charge density of a quantum system as one part of its physical state, as
well as its wave function, can be measured as expectation values of certain
observables. Since the principle of protective measurement is irrelevant to
the controversial process of wavefunction collapse and only based on the
linear Schrodinger evolution and the Born rule, which are two established
parts of quantum mechanics, its results as predicted by quantum mechanics
can be used to investigate the real meaning of the wave functio

According to protective measurement, the charge of a charged quantum
system (e.g. the basic charge of an electron) is distributed throughout space,
and the charge density in each position is proportional to the modulus square
of the wave function of the system there. The key to unveil the meaning of
the wave function is to find the origin of the charge distribution. The charge
distribution has two possible existent forms: it is either real or effective.
The charge distribution is real means that it exists throughout space at
the same time, and the charge distribution is effective means that there
is only a localized particle with the total charge of the system at every
instant, and its ergodic motion forms the effective charge distribution. If
the charge distribution is effective, then there will exist no electrostatic self-
interaction of the effective charge distribution, as there is only a localized
charged particle at every instant. By contrast, if the charge distribution
is real, then there will exist electrostatic self-interaction of the real charge
distribution, as the charge distribution exist throughout space at the same
timeﬂ Since the superposition principle of quantum mechanics prohibits the

1For a recent interesting result based on conventional impulse measurements see Pusey,
Barrett and Rudolph (2011).

It can be expected that protective measurement will be realized in the near future
with the rapid development of quantum technologies.

3That a real charge distribution has electrostatic self-interaction has been confirmed
not only in the classical domain but also in the quantum domain for many-body systems.
For example, two charged quantum systems such as two electrons have electrostatic inter-
action, and thus a real charge distribution containing these two charges has electrostatic
self-interaction.



existence of electrostatic self-interaction, and especially, the existence of the
electrostatic self-interaction of the charge distribution of an electron already
contradicts experimental observations (Gao 2011), the charge distribution
of a quantum system cannot be real but must be effective. This means that
for a charged quantum system, at every instant there is only a localized
particle with the total charge of the system, while during a time interval the
time average of the ergodic motion of the particle forms the effective charge
distribution, and the charge density in each position is proportional to the
modulus square of the wave function of the system there.

The next question is which sort of ergodic motion the particle under-
goes. If the ergodic motion of the particle is continuous, then it can only
form the effective charge distribution during a finite time interval. However,
the charge density of a particle, which is proportional to the modulus square
of its wave function, is an instantaneous property of the particle. In other
words, the ergodic motion of the particle must form the effective charge den-
sity during an infinitesimal time interval (not during a finite time interval)
at a given instant. We can also reach this conclusion by analyzing a specific
example. Consider an electron in a superposition of two energy eigenstates
in two boxes. Even if the electron can move with infinite velocity, it cannot
continuously move from one box to the other due to the restriction of box
walls. Therefore, any type of continuous motion cannot generate the effec-
tive charge density proportional to the modulus square of the superposition
stateﬂ In conclusion, the ergodic motion of the particle cannot be contin-
uous but must be discontinuous. Moreover, in order to form the charge
distribution predicted by quantum mechanics, the probability density of the
particle appearing in each position must be equal to the modulus square of
its wave function there.

The above result implies that the wave function of a quantum system
describes the state of random discontinuous motion of a localized particle
representing the system, and the modulus square of the wave function gives
the probability density of the particle appearing in certain position in space.
However, there may exist a deeper level of meaning of the wave function.
From a logical point of view, for the random discontinuous motion of a
particle, there should exist a probabilistic instantaneous condition that de-
termines the probability density of the particle appearing in every position
in space; otherwise it would not “know” how frequently it should appear in
each position in space. This condition cannot come from otherwhere but
must come from the particle itself. In other words, the particle must have
an instantaneous property that determines its motion in a probabilistic way.
This property is usually called indeterministic disposition or propensity in
the literatureﬂ Therefore, at a deeper level, the wave function of a quantum

4For a more detailed argument for the discontinuity of the ergodic motion see Gao
(2011).
5The propensity here denotes single case propensity. In addition, it is worth stress-



particle represents the dispositional property of the particle that determines
its random discontinuous motion, and its modulus square determines the
probability density of the particle appearing in certain position in space. In
this sense, we may say that the motion of a particle is “guided” by its wave
function in a probabilistic way.

The picture of random discontinuous motion of a single particle can be
extended to the motion of many particles. For a many-particle system, its
wave function represents the propensity property of the whole system, and
the modulus square of the wave function determines the probability density
of the particles appearing in certain positions in space. In addition, the
picture of random discontinuous motion may exist not only for position but
also for other dynamical variables such as momentum and energy, and thus
the above interpretation of the wave function in position space may also
apply to the wave function in momentum space etc. Due to the randomness
of motion for each variable, the probability distributions of all variables for
an arbitrary wave function can be consistent with quantum mechanicsﬁ

To sum up, we have shown that quantum mechanics already spells out
the real meaning of the wave function. There are three steps to reach this
conclusion. First, protective measurement, which is based on the established
parts of quantum mechanics, shows that the charge of a charged quantum
system is distributed throughout space, and the charge density in each posi-
tion is proportional to the modulus square of its wave function there. Next,
the superposition principle of quantum mechanics requires that the charge
distribution is not real but effective, that is, it is formed by the ergodic
motion of a localized particle with the total charge of the system. Lastly,
in order to form the charge distribution predicted by quantum mechanics,
the ergodic motion of the particle must be discontinuous and random, and
the probability density of the particle appearing in every position must be
equal to the modulus square of its wave function there. Therefore, accord-
ing to quantum mechanics, the wave function describes the state of random
discontinuous motion of particles, and at a deeper level, it represents the
dispositional property of the particles that determines their random discon-
tinuous motion. In particular, the modulus square of the wave function
determines the probability density of these particles appearing in certain
positions in space.

ing that these propensities possessed by the particles relate to their objective motion,
not to measurements on them (as in the existing propensity interpretations of quantum
mechanics).

5Note that for random discontinuous motion the properties (e.g. position) of a quantum
system in a superposed state are indeterminate in the sense of usual hidden variables,
though they do have definite values at every instant. This makes the theorems that
restrict hidden variables such as the Kochen-Specker theorem irrelevant.



Appendix: Protective measurement of the charge
distribution of a quantum system

Since the existence of the charge distribution of a charged quantum system
is the basis of our derivation of the meaning of the wave function, we will
briefly illustrate this important result here. For a more detailed analysis see
Gao (2011).

Consider the spatial wave function of a single quantum system with
negative charge Q:

w(xvt) - awl(mvt) + b¢2(x7t)7 (1)

where 91 (z,t) and 9(x,t) are two normalized wave functions respectively
localized in their ground states in two small identical boxes 1 and 2, and
la|?> + [b|*> = 1. An electron, which initial state is a small localized wave
packet, is shot along a straight line near box 1 and perpendicular to the line
of separation between the boxes. The electron is detected on a screen after
passing by box 1. Suppose the separation between the boxes is large enough
so that a charge Q in box 2 has no observable influence on the electron. Then
if the system were in box 2, namely |a|? = 0, the trajectory of the electron
wave packet would be a straight line as indicated by position “0” in Fig.1.
By contrast, if the system were in box 1, namely |a|?> = 1, the trajectory
of the electron wave packet would be deviated by the electric field of the
system by a maximum amount as indicated by position “Q” in Fig.1.

Q |a?*Q 0

Jaf? of?

Fig.1 Scheme of a protective measurement of the charge density of a
single quantum system

We first suppose that ¢ (z,t) is unprotected, then the wave function of
the combined system after interaction will be

¢($a l‘/, t) = apl (l‘l, t)wl (:L‘, t) + bWQ(m/a 75)%(% t)’ (2)



where 1 (2/,t) and pa(2/,t) are the wave functions of the electron influenced
by the electric fields of the system in box 1 and box 2, respectively, the tra-
jectory of p1(2,t) is deviated by a maximum amount, and the trajectory of
pa(2’,t) is not deviated and still a straight line. When the electron is de-
tected on the screen, the above wave function will collapse to 1 (2, )11 (x, t)
or a(a, t)a(x,t). As a result, the detected position of the electron will be
either “Q” or “0” on the screen, indicating that the system is in box 1 or
2 after the detection. This is a conventional impulse measurement of the
projection operator on the spatial region of box 1, denoted by A;. Aj has
two eigenstates corresponding to the system being in box 1 and 2, respec-
tively, and the corresponding eigenvalues are 1 and 0, respectively. Since the
measurement is accomplished through the electrostatic interaction between
two charges, the measured observable A;, when multiplied by the charge
Q, is actually the observable for the charge of the system in box 1, and its
eigenvalues are ) and 0, corresponding to the charge ) being in box 1 and
2, respectively. Such a measurement cannot tell us the charge distribution
of the system in each box before the measurement.

Now let’s make a protective measurement of A;. Since ¢ (zx,t) is degen-
erate with its orthogonal state ¥’ (x,t) = b*yy (x,t) — a*iha(x, ), we need an
artificial protection procedure to remove the degeneracy, e.g. joining the two
boxes with a long tube whose diameter is small compared to the size of the
boxﬂ By this protection ¥ (z,t) will be a nondegenerate energy eigenstate.
The adiabaticity condition and the weakly interacting condition, which are
required for a protective measurement, can be further satisfied when assum-
ing that (1) the measuring time of the electron is long compared to i/AFE,
where AF is the smallest of the energy differences between ¢ (z,t) and the
other energy eigenstates, and (2) at all times the potential energy of inter-
action between the electron and the system is small compared to AE. Then
the measurement of Ay by means of the electron trajectory is a protective
measurement, and the trajectory of the electron is determined by the ex-
pectation value of the charge of the system in box 1. In particular, when
the size of box 1 can be ignored compared with the separation between it
and the electron wave packet, the wave function of the electron will obey
the following Schrodinger equation:

= 2 2
WU () - kmw(ﬁ D), (3)
where m, is the mass of electron, k is the Coulomb constant, r{ is the position
of the center of box 1, and |a|?Q is the expectation value of the charge @
in box 1. Correspondingly, the trajectory of the center of the electron wave

"It is worth noting that the added protection procedure depends on the measured state,
and different states need different protection procedures in general.



packet, 7.(t), will satisfy the following equation by Ehrenfest’s theorem:

jl27“ﬁc e - |J’2Q
= — . 4
e dtQ ‘Tc — 7’1’(7‘c — 7’1) ( )

Then the electron wave packet will reach the position “|a|?Q” between “0”
and “Q” on the screen as denoted in Fig.1. This shows that the result of
the protective measurement is the expectation value of the charge @) in the
state 11 (x,t) in box 1, namely the integral of the charge density Qv (z)[?
in the region of box 1.

The result of the above protective measurement can tell us the charge
distribution of the system in each box before the measurement. Suppose
we can continuously change the measured state from |a|?> = 0 to |a|> = 1
(and adjust the protective interaction correspondingly). When |a|> = 0,
the single electron will reach the position “0” of the screen one by one,
and it is incontrovertible that no charge is in box 1. When |a|*> = 1, the
single electron will reach the position “Q” of the screen one by one, and
it is also incontrovertible that there is a charge @ in box 1. Then when
la|? assumes a numerical value between 0 and 1 and the single electron
reaches the position “|a|?Q” between “0” and “Q” on the screen one by one,
the result will similarly indicate that there is a charge |a|?@ in the box by
continuity. The point is that the definite deviation of the trajectory of the
electron will reflect that there exists a definite amount of charge in box 1F]
Moreover, the above equation that determines the result of the protective
measurement, namely Eq. , gives a more direct support for the existence
of a charge |a|?@Q in box 1. The r.h.s of Eq. is the formula of the
electric force between two charges located in different spatial regions. It is
incontrovertible that e is the charge of the electron, and it exists in position
7. Then |a|?>Q should be the other charge that exists in position 77. In other
words, there exists a charge |a|?@Q in box 1.

In conclusion, protective measurement shows that the charge of a charged
quantum system is distributed throughout space, and the charge density in
each position is proportional to the modulus square of its wave function
there. This conclusion is based on two established parts of quantum me-
chanics, namely the linear Schrédinger evolution and the Born rule. In the
above example, the linear Schrédinger evolution determines the deviation of
the electron wave packet, and the Born rule is needed to obtain the infor-
mation about the center of the electron wave packet detected on the screen.

8 Any physical measurement is necessarily based on certain interaction between the
measured system and the measuring system. One basic form of interaction is the electro-
static interaction between two electric charges as in our example, and the existence of this
interaction during a measurement, which is indicated by the deviation of the trajectory
of the charged measuring system, means that the measured system also has the charge
responsible for the interaction. Note that the arguments against the naive realism about
operators and the eigenvalue realism in the quantum context are irrelevant here.



References

1]

2]

[9]

[10]

[11]

Aharonov, Y., Anandan, J. and Vaidman, L. (1993). Meaning of the
wave function, Phys. Rev. A 47, 4616.

Aharonov, Y., Anandan, J. and Vaidman, L. (1996). The meaning of
protective measurements, Found. Phys. 26, 117.

Aharonov, Y. and Vaidman, L. (1993). Measurement of the Schrédinger
wave of a single particle, Phys. Lett. A 178, 38.

Bell, J. (1990) Against measurement, in A. I. Miller (ed.), Sixty-Two
Years of Uncertainty: Historical Philosophical and Physics Enquiries
into the Foundations of Quantum Mechanics. Berlin: Springer, 17-33.

Bohm, D. (1952). A suggested interpretation of quantum theory in
terms of “hidden” variables, I and II. Phys. Rev. 85, 166-193.

de Broglie, L. (1928). in: Electrons et photons: Rapports et discus-
sions du cinquime Conseil de Physique Solvay, eds. J. Bordet. Paris:
Gauthier-Villars. pp.105. English translation: G. Bacciagaluppi and
A. Valentini (2009), Quantum Theory at the Crossroads: Reconsid-
ering the 1927 Solvay Conference. Cambridge: Cambridge University
Press.

DeWitt, B. S. and Graham, N. (eds.) (1973). The Many-Worlds In-
terpretation of Quantum Mechanics, Princeton: Princeton University
Press.

Everett, H. (1957). Relative state formulation of quantum mechanics.
Rev. Mod. Phys. 29, 454-462.

Gao, S. (2011). Interpreting Quantum Mechanics in Terms of Random
Discontinuous Motion of Particles. http://philsci-archive.pitt.edu/8874/.

Pusey, M., Barrett, J., and Rudolph, T. (2011). The quantum state
cannot be interpreted statistically. arXiv:1111.3328 [quant-ph)].

Vaidman, L. (2009) Protective measurements, in Greenberger, D.,
Hentschel, K., and Weinert, F. (eds.), Compendium of Quantum Physics:
Concepts, Experiments, History and Philosophy. Springer-Verlag, Berlin.
pp-505-507.



