
High Efficient Consistency Maintenance Strategy of Real-time String
Text Editing Systems

Liping Gao, Wenfeng Tang

School of Optical-Electrical and Computer Engineering, University of Shanghai for
Science and Technology, Shanghai, 200093, China. Email:

lipinggao@ usst.edu.cn;wenfengtang@st.usst.edu.cn

Abstract

Replicated architecture is widely used in the field of real-time collaborative text editor. The

idea of address space transformation provides a new way for concurrency control. During

concurrent processing, it retraces the document status back to the state when the operations are

generated to maintain consistency. However the previous concurrency processes strategy is

based on single characters, the transmission cost during processing is too high since every

character is packaged and broadcasted to remote sites after they are created by local site. When

the network load is high, especially when the network is unstable, this shortage will be even more

obvious. Due to this problem, this paper presents a consistency maintenance strategy based on

string editing operations, and proposes the string splitting mechanism combined with the idea of

the address space transformation in order to maintain consistency. This strategy increases the

transmission efficiency while guaranteeing the consistency of the shared document.

Keywords: consistency maintenance, address space transformation, string operation, splitting

mechanism

1. Introduction

 The rapid development of computer technology and the wide application of network

communication have a profound impact on people’s production and daily life. Human society

becomes more and more collaborative and distributed. Remote collaboration becomes more and

more prevalent. The distributed collaborative systems provide a possible solution to achieve this

goal [1] [2] [14] [15].Users geographically separated can interact via the network, and the

response time is an important evaluation parameter of the interactive network. Since quick

response time will improve the user’s experience. However the delay of network communication

is high and uncertainly. Thus how to ensure a quick respond time in coordination system becomes

a factor to be considered in the case of high network latency. Given the current development of

the communication network, it is impossible to eliminate the network latency, and we can only

improve the response speed on the system level. The emergency of the data replication

technology provides a good solution to the problem. By replicating the remote data to the local,

users can perform the operations locally without considering the impact of network delay, which

ensures a good user’s experience [16][17].

An important field of the collaborative environment is the text editor field; multiple users edit

the same document freely through a network, and how to maintain all the intention of all the

multiple users while maintaining the consistency of the document is the focus of the study. In the

collaborative text editing field, there are causally dependent and concurrent relationships among

the operations. The causal dependence refers to a causal relationship between the operations and

the concurrency means independent relationship between the operations. How to handle the

concurrent relationship between the operations, and how to maintain the operations’ intention, are

the focus of the research in the text editor field.

Most of the previous text editing systems are to process a single character, and provide

corresponding control strategies to maintain consistency and achieve some results, such as the

COT algorithm, GOTO algorithm, AST algorithm and so on[2][3][4][15], but few involve in the

string editing system.

The string text editing has practical examples, such as the copy and paste operations. In the

single character text editing system, a single character is transported between the sites; each site

receives a character from another site, and will call the control algorithm to handle it to achieve

the desired consistency. In the editing environment with little number of characters, the algorithm

can maintain consistency at all the sites successfully. However, when processing environment

with massive characters, the algorithm has an obvious shortage, because the transmission

efficiency is not so high, especially in the case that network is unstable. If the strings are

transported between the various sites, the transmission efficiency will have an effective

improvement, especially in environment with huge amount of characters.

This paper is divided into the following sections: The second chapter describes some related

work in the field of text editors, the third chapter arises the consistency maintenance issues, the

fourth chapter describes the storage structure of the nodes in the string text editor, the fifth

chapter gives consistency maintenance strategies and algorithms, the sixth chapter gives specific

examples to verify the correctness of the algorithm, the seventh chapter analysis the efficiency of

algorithm, the eighth chapter gives the acknowledgement from the practical aspects, and the final

chapter give a summary and outlook of article.

2. Related works

2.1. Consistency maintenance strategy

Data replication technology is widely used in group editing systems [1]; a group of users share

the document and edit the text freely. Due to the operations from multiple users may appear

concurrently in the same region or the same characters and different execution order may lead to

different execution results without the concurrency control algorithm. Consistency means that the

document of all users is all the same finally after the editing of multiple users. In an ideal group

system, whether the operations are concurrent or not, what the execution order is, the document

gets the same result, which meets the CCI consistency model [4].

In the single character text editing system, previous works propose special strategies to solve

the inconsistency caused by the concurrent operations, including operation transformation (OT)

and address space transformation (AST). The former starts from the operation itself, transforms

the operation to the execution form properly through a series of conversions, and achieves

consistency maintenance; while the latter starts from the document status, and by the mark and

retrace strategy, and execute the operation. Both of them will solve the inconsistency caused by

concurrency.

Operation Transformation strategy has been developed rapidly during the past twenty years,

and now supports a variety of applications, including group undo[5][6][10][11], group awareness

[8], operation notification and compression [12], spreadsheet and table centric applications[14],

HTML/XML and tree structure document editing system[3][7], word processing and slide

creation [7][11][14], trans-parent and heterogeneous application-sharing [1][9][14], and mobile

replicated computing and database systems etc.

Operation transformation starts from the operation’s prospect, and the operation intention will

be retained through transformation correctly. From the initial dOPT algorithm, the operation

transformation technology have a great development, like ET and IT transformation algorithm,

COT algorithm, GOT algorithm [2][3][4][5].The series of the proposed algorithms can not only

solve the group do problem, but also provide better solutions to the group undo problem [5] [6]

[14].

The document status of the operation execution and that of the operations generation may be

not identical; while the prerequisite for the proper execution of the operation is that two states are

the same. AST is proposed to solve the problem from the view of document status; by retracing

the document back to the state when the operation is generated [4] [13] [16]. Compared with the

operation transformation, this strategy looks more intuitive. This article uses the address space

transformation technology to solve the string text editing problems.

2.2. Address space transformation

In this paper, AST is used to solve the problem. Thus, here we give a brief overview of the

strategy. AST algorithm is based on the mark and retrace algorithm and provides a new idea to

solve the complicated conflict. Different from operation transformation strategy, AST algorithm

starts from the status of the document to solve the consistency maintenance problem. State vector

timestamp is proposed to judge the causal relationship between the operations.

When an operation reaches a site, the document status may have been changed different from

the operation`s generating state, thus executing these operations directly may lead to

inconsistency. During the processing of the AST strategy, it hides the possible impact and retraces

the document status back to the status when the operation is generated by mark and retrace

process, and then the operation can be performed in the new document, After the execution of the

operation, the document status is then retraced to the concurrent status. In the implementation

process, the function “retracing” will hide the execution effect that may affect the operation, and

the function “rang-scan” is used to find a specific location for execution, and function “retrace” is

called to include the operation results into the document [4].

A document has a linear structure containing a number of characters, with each character be

associated with multiple operations, but each operation has only one character node. The

timestamp as well as the mark of the effective or ineffective are stored in corresponding character

node, which indicates whether the current node is visible or not at the current moment. Fig.1 is an

example of the address space strategy diagram, in this figure, there exists three nodes

corresponding to the operations a, b, c and the timestamp and effective or ineffective identifiers

are also depicted. In such a case, the document presented to the user is "ac ".

a a a

Insert(“a”,1)
(0,0,0)

Insert(“b”,1)
(1,0,0)

Insert(“c”,3)
(1,1,0)

effectiveineffectiveeffective

Fig.1 the address space strategy diagram

3. Consistency maintenance

3.1. Conflict problems

In the string text editor, the basic operations are Insert and Delete operations of strings or

characters. Compared to the single character editor, the Insert and Delete operations are relative

complex, and there exists large differences in the type of the operations. In the single character

text editor, the Insert position is nothing more than before or after a character, and the Delete

operation is only to delete a specific character, but in the presence of the string editor, the Insert

position is not only before or after a string, but also has the case that insert a string into an

existing string; the Delete operation may not only delete a particular string, but also deletes a

specific character from a string. For the situations that similar to the single character, the string

can be seen as a whole and transplant the single character processing strategies directly for the

concurrence control; as for the latter, the single character processing algorithms cannot solve the

problem, and need to find a new strategy.

Supposing that the operations O1 and O2 are from different sites, O1=insert ("hello", 1),

O2=insert ("world", 1), O1 and O2 want to insert different strings in the same position. Without

control strategy, the different execution sequences of the two operations will lead to different

results: if O1 completes first, the final document is "hello world", while if O2 completes first, the

result will be "world hello". Obviously violates the CCI model since different execution result is

achieved. Another example, assuming that there is a document "th a nice day", this is a bad

statement, There exists an operation intending to inserted the string "is" behind the "th" to fill the

statement to a whole statement, while there also exists another operation hoping to insert the

character "at" in the same location. It is clear that the two operations are also concurrent, and if

they are executed directly there will still be consistency puzzle; in addition, if an operation has

inserted a character "hello" before this statement, the document has changed, execute the

operation directly will lead to inconsistency, the solutions to these problems have not been totally

dependent on the strategy processing the signal character.

This paper proposes corresponding strategy for the cases above mentioned above that signal

character strategies cannot solve effectively and it can solve the problems in the string group

editing system basically.

3.2 Modified operation definition

Given the complexity of the string operations, the definitions of the operations need to be

modified to adapt to the new situations:

 Insert ("string", pos, left):"string" represents the string to be inserted;

"pos" represents the Insert position;

"left" is a symbol, there are two meanings: if left is 0, it means that there will be a string to be

inserted in the position "pos"; if left is not 0, it means that the string will be inserted into the

existing string, and the "left "represents that the string will be inserted in the position counting

from left.

Delete (pos, n, left):

"pos" indicates the position of the strings to be deleted;

"left" is the symbol, if it is 0, it means to delete the string at the position "pos";if left is not 0, it

means to delete n characters from the string at the position "pos" from the position "left" .

 For example, there is a document "hello world", O1=insert ("hello", 2,0) represents the string

"hello" will be inserted after the string "hello", and the document becomes "hello hello world";

O2=insert ("China ", 1,2) represents to insert the string "China" in the string "hello", the

document will be "hChinaello world"; O3=delete(1,2,0) means to delete the first position string

"hello", the document becomes "world"; O4=delete(1,2,2) means to delete two characters from

the first string "hello" from the second character, the document becomes "hlo world".

3.3 Analysis of operation execution cases

According to the previous definition of the operations, the Insert operation has two parameters,

one representing the location to be inserted, and another representing the string to be inserted.

Thus, there will be the following situations to be considered: if “left” is 0, the treatment is

relatively simple; while when "left" is not 0, two situations will be considered, the parameter

"pos" is equal or not equal. If equal, that means to operate in the same string, if not that means to

operate in different strings. The following examples corresponding to the discussion above are

given for better understandings.

O1:insert(“hello”,1,0)
(0,0)

O1:insert(“world”,2,0)
(1,0)

O1:insert(“CHINA”,1,0)
(2,0)

O1:insert(“hello”,1,0)
(0,0)

site1 site2

Fig.2 the overall string insertion

In Fig.2, the string is inserted between strings other than the internal string. Based on the

definition of the previous operation, all the operations are the whole string operation, all of the

insertion is executed between strings, and the integrity of the string is not destroyed. Operations

O1 and O2 are to insert string in the document, O3 inserts the string "CHINA" in the first position

of the document, and O4 inserts the string "USA" in the first position, too.

O1:insert(“hello”,1,0)
(0,0)

O2:insert(“world”,2,0)
(1,0)

O3:insert(“CHINA”,1,2)
(2,0)

O4:insert(“hello”,1,2)
(2,0)

site1 site2

Fig.3 Insert string into the same string

In Fig.3, this situation corresponds to the case that the parameter "pos" is equal. O1 and O2 are

the same to the situation described above, and intend to insert the strings between the strings. O3

and O4 are to insert the string internal the specific string. O3 means to insert the string "CHINA"

in the second position of the first string, O4 means to insert the string "USA" in the second

position of the first string.

O1:insert(“hello”,1,0)
(0,0)

O2:insert(“world”,2,0)
(1,0)

O3:insert(“CHINA”,1,2)
(2,0)

O4:insert(“hello”,2,2)
(2,0)

site1 site2

Fig.4 Insert string into different strings

In Fig.4, the situation is the case the parameter "pos" is unequal, and is in different strings. O3

inserts the string "CHINA" in the second position of the first string; O4 inserts the string "USA"

in the second position of the second string.

O1:insert(“hello”,1,0)
(0,0)

O2:insert(“world”,2,0)
(1,0)

O3:delete(1,0,0)
(2,0)

O4:insert(“hello”,2,2)
(2,0)

site1 site2

Fig.5. Delete the entire string

O1:insert(“hello”,1,0)
(0,0)

O2:insert(“world”,2,0)
(1,0)

O3:delete(2,2,2)
(2,0)

O4:insert(“hello”,2,2)
(2,0)

site1 site2

Fig.6 Delete a specific character from a string (a)

O1:insert(“hello”,1,0)
(0,0)

O2:insert(“world”,2,0)
(1,0)

O3:delete(1,4,3)
(2,0)

O4:insert(“hello”,2,2)

(2,0)

site1 site2

Fig.7 Delete particular character from a string (b)

Now consider the more complex situations that the insertion and deletion are mixed, such as

the two cases above. In Fig.5, O3 deletes string at the first position. In Fig.6, O3 aims to remove

two characters from the second position from the first string. At site 1, if O3 completes first, the

address space will be changed when O4 executes. In Fig.7, O3 means to delete characters

spanning in two strings.

4. Storage structure

After the execution, the operations need to be stored for latter processing and comparisons,

such storage structure is called history buffer (HB) [1]. AST is proposed to give a new solution to

the concurrent operations to maintain consistency, and also propose a new storage structure to

store the operations. The linear storage structure is a good solution to the store the single

characters [4]; this paper uses a similar storage structure to store the strings on string level.

While handling the string, this paper adopts such an approach: when the users of each site edit

the document, when a word is completed, each character of the word is packaged and then

broadcasted to all the other sites; this is different from the traditional way that produces a signal

character and then broadcasts it soon. In this way it is possible to improve the transmission

efficiency and reduce the error. The space or punctuation between words is the separators.

This paper extends the storage structure and the operation is stored based on the following

agreement: when the Insert operation is carried out between the strings ,the string is directly

stored as a node, and if the Insert operation is carried out in a string, the operation will be

attached to the node representing the string; as for the Delete operation, this paper adopts a

similar strategy, and the Delete operation is attached to a specific string; as for the delimiters

between strings, this paper treats them as independent node.

According to the agreement above, assuming two sites, Site1 and Site2, and a set of operations

O1, O2, O3, O4, O5, and the execution procedure is shown in Fig.8, a diagram will be got and

shown in Fig.9, the final status of the document shall be "hello world! “.

O1:insert(“hello”,1,0)
(0,0)

O2:insert(“ ”,2,0)
(1,0)

O5:delete(“el”,1,2)
(3,1)

O4:insert(“!”,4,0)

(3,0)

site1 site2

O3:insert(“world”,3,0)
(2,0)

Fig.8 Operation example

hlo

O1:insert(“hello”,1,0)
(0,0)

O2:insert(“ ”,2,0)
(1,0)

O3:insert(“world”,3,0)
(2,0)

 world !

O4:insert(“!”,4,0)

(3,0)

O5:delete(“el”,1,2)
(3,1)

Fig.9 diagram of operation storage

For each node, the structure is shown below:

String flag ptonext ptodown

Fig.10 node structure

"string" indicates the content of the node ;

"flag" is the node’s identifier and indicates whether the node is effective or not and its value is

"effective" or "ineffective";

"ptonext" indicates a pointer to the next node , if the next node do not exist, it will be null;

"ptodown" indicates a pointer pointing to a node associating with it, if the associating node do

not exist, it will be null too;

For example, , the first node in Fig8 is "hllo". It’s flag is "effective", "ptonext" points to the

node "e", "ptodown" points to a node " " (This is a space).

5. Control strategies

5.1 analysis of operation relationship

This paper has extended the operation previously and the traditional definition of concurrency

is not suitable for the string text editing system, and it needs to be redefined.

Assuming that there are two operations, O1=insert ("string1", pos1, left1), O2=insert ("string2",

pos2, left2), and then there should be three conditions as follows:

1. pos1 = pos2 ,left1 = left2

2. pos1 = pos2 ,left1 != left2

3. pos1!= pos2

Now the relationship is defined as follows:

Assuming that operation O1 = insert ("string1", pos1, left1), O2 = insert ("string2", pos2, left2),

then O1 || O2, if and only if pos1 = pos2, left1 = left2.

In the cases above, there exists concurrency in case 1, and there not exist concurrency in case

2 and case 3. As for the causal dependency, this paper continues the previous definitions and

symbols.

Then, according to the definition, it should be O1-> O2, O3 || O4 in Fig.2.

5.2 Analysis of operation execution

In the single character transmission processing system, the document refers to the view of the

current state, and that is a series of characters presented to the user, and the operations are based

on the concurrent character. But in the string processing, the user’s operation is based on strings,

and the AST transplantation strategy is an algorithm that replaces the single character with the

whole string.

This paper proposes the splitting strategy to resolve the inconsistencies that may appear. When

there exists operation involving in internal insertion, split the string basing on the operation

parameters and then use the AST algorithm to solve the problem. Because AST algorithm and the

timestamp is inseparable ,and the timestamp represents the causal or concurrency relationship

between operations, in order to keep the causal relationship between the characters after

splitting ,the timestamp of the character after the split remains the same to that divided before.

5.3 Design of consistency maintenance algorithm

For the case shown in Fig.2, this paper modifies AST algorithm to adapt to the new

environment. When handling these operations, the string is viewed as an indivisible unit; each

operation maintains the original time-stamp. It should be noted that, because the operations have

been modified to adapt to the string algorithm, there needs an appropriate conversion here to

adapt the AST algorithm by discarding the parameter "left". For example, the operation "insert

("hello", 1, 0)" is converted into "insert ("hello", 1)", and the time stamp remains the same.

For the case shown in Fig.3, this paper views the string in the position "pos" as a new text

document and operate the operations at the new document. Since it is an internal Insert operation,

the string is split based on the Insert position, and then two substrings are got and the substrings

get the same stamp of the string split before. For example, O3 and O4 intend to insert "hello" in

the document, and both mean to insert in the second position. In such a case the second string

“hello” will be split to substrings "h" and "ello", and then the operations are executed, and then

the case is similar to insert a new string between two strings, then adopt the strategy in case 1.

Of course, there exists Insert operations at different positions, as shown in Fig.4, the strategy is

similar to case 2, and the difference is that the inserte is not in the same document and there

exists no concurrency.

The case shown in Fig5 and Fig6 can be handled by using similar strategies, too. In Fig.5, the

string to be deleted is viewed as a whole and then the AST strategy is transplanted directly. In

Fig6, the string "world" will be split at the position "left" and "left+n" respectively.

The similarity of applying the splitting strategy in the Delete and the Insert operation is the

maintenance of the time stamp, and the time stamps of all the substrings are same to the previous

string. The difference is that the split in delete may obtain more than two substrings. The length

of the string to be removed will be considered, just like the cases shown in Fig.6 and Fig.7. If the

delete operation is done in one string, split the string into three substrings according to the

position parameters "left" and "left + n", and the substring in the middle is the string to be deleted

and will be marked as ineffective. If two or more strings are involved, split the string according

to the parameter "left" first and get two substrings, and find the last string to be deleted according

the length of the to-be-removed string and split the string, and the strings between the second

substring of the first string and the first substring of the last string all set to be ineffective.

Assuming that there is a document "welcome to shangghai", and an operation means to delete

the character "g" from "shangghai", and then the string “shangghai” is split into three substrings

"shang", "g", and "hai", the substring "g" is marked as ineffective. Another example is that an

existing document "thank youu vvery much", and an operation wants to correct the mistakes by

deleting the string "u v", and then the string "youu" will be split into two substrings "you" and

"u", the string "vvery" will be split into two substrings "v" and "very" respectively, and then the

substrings "u" and "v" is marked as ineffective. The timestamp is taking the strategy above.

As for the copy-paste operation, the user means to paste the specific content at a specific

location, and to follow the Insert operation strategy to handle with it. The similarity between the

Insert and copy-paste is that both need to find the insert position, and the difference is the

complexity of the paste content. If the paste string targets only one string, it can be solved

according to the strategy discussed previous, but if the paste targets more than one string, there

needs to split the operation into more insert by the non-word character. For example, an operation

means to paste the "hello world", there needs to spilt the string into three insertions, and each

insertion have the same timestamp, which is the same with the entire string split before.

The operation will be executed according to the following algorithm: Firstly, judge the type of

the operation, if it is Insert and the Insert position is between two strings, then call the function

“Insert_Execute” to insert the string into the document; if the Insert position is in one string, then

call the function “Divide_Insert” to insert the string into a specific string; for the Delete, the

operation’s type also needs to be considered, when deleting the entire string, call the function

“Delete_Execute” to delete the entire string; when deleting some characters from one string, the

function ”Divide_Delete” will be called to delete the specific characters; if it is a paste operation,

the function “Divide_Paste” will be called to paste the strings.

According to the analysis above, the basic algorithm is presented as follows:

Procedure1：String_Execute(S, O) // Handling operations, S represents the current document

status, and O is the operation to be executed.

Begin

If (O is insertion)

 If（O.left=0） //insertion is among the strings

 Insert_Execute(S, O)

 Else //insertion is internal the string

 S=HB.pos //get the string at position “pos” as the document S

 Divide_Insert(S, O)

Else if (O is deletion) //O is deletion

 If（O.left=0） //delete the entire string

 Delete_Execute(S, O)

 Else //delete characters internal the string

 Divide_Delete(S, O)

Else if (O is paste) //O is copy-paste

 Divide_Paste(S, O);

End

The implementation of the Insert is similar to the single character insert process, but the

operations in the AST algorithm only have two parameters: the insert character and insert

position. This paper redefines the operation, it is necessary to convert the operation to a form

suitable for AST algorithms, the function “Convert” achieves this goal, after that the AST control

algorithms can be called. The algorithm is described as follows:

Producer2：Insert_Execute(S, O) // Function for insertion between the strings, the document

status is S, insertion O

Begin

O’ <- Convert (O) //convert the operation into a form suitable for AST

Control-Algorithm (S, O’) //call the AST control algorithms

End;

 The case that inserts a string into an existing string is more complex, and there needs to split

the string based on the insert position, the timestamps are the same to that split before. After the

division, the substrings are viewed as a new document, and then the situation is equal to the

situation that inserts strings between strings, and then the strategy that inserts the string as a

whole can be used. The algorithm is described as follows:

Producer3：Divide_Insert(S,O) //Function is inserting the string internal the string S and

O.string is to be inserted

Begin

s1, s2 <- Divide(S) //split the string basing on the insertion position and get two substrings

S’= {s1, s2}

Insert_Execute(S’, O)

End

The strategy that deletes the entire string adopts the single character strategy, that is the mark

and retrace strategy, and the characters are marked ineffective. The algorithm is described as

follows:

Producer4：Delete_Execute(S, O) // Function for deleting a string, the document status is S, O is

deletion

Begin

Set HB.pos ineffective // mark the characters to be deleted ineffective

End

When there needs to delete some characters from a string, first judge whether the Delete

involves multiple strings: if not, the string at the delete position is split into three substrings, and

the middle substring is just the string that needs to be deleted and is marked ineffective; if so,

judge the number of the involved string firstly, and then find the first and the last string involved,

then split them, and all the characters involved should be set ineffective. The algorithm is

described as follows:

Producer5：Divide_Delete(S, O) // function deletes some characters from the strings; the string

need to be deleted is O.string

Begin

If (O.left+O.n <= S.len) //delete some strings internal the string

 s1, s2, s3 <- divide(s) //split the string basing on the insertion position and get three

substrings

Set s2 ineffective

Else //deletion involves more than one string

s1, s2 <- divide(s)

If (n-(S.len-left+1) < HB. (pos+1).len) // deletion involves two non-null strings

 s’ = HB.(pos+1)

 s3, s4 <- divide(s’)

 Set s3 ineffective

 Else // deletion involves two non-null strings

 Count = judge (n-(S.len-left+1)) //counting the involved number

 S’ = HB. (pos +count+1) //find the last string involved

 s3, s4 <- divide(S’)

 Set HB.pos, HB.pos+1 ...HB. (pos + count+1) ineffective

 Set S3 ineffective

End

While handling copy-paste, the strings will be split into multiple Inserts and then be inserted

into the document orderly. When inserting, the function “Insert_Execute” will be called and the

algorithm is as follows:

Producer6：Divide_Paste(S, O) // function to achieve pasting a string in a document

Begin

O1, O2...Oi <- divide (O) // operation is split into three of insertions, and executed orderly

Repeat

Insert_Execute(S,Oj)

Until j=i

End

6. Case analysis

Suppose that there is a blank document, three users and a set of operations and the operation

sequences is shown in Fig11, now this section will adopt the algorithm above to solve a real case.

O1:insert(“hello”,1,0)
(0,0,0)

O2:insert(“ ”,1,0)
(0,0,0)

O3:insert(“world”,1,0)
(0,0,0)

O4:delete(1,1,0)
(1,1,1)

O5:insert(“hi”,1,0)
(1,1,1)

O6:delete(2,2,2)
(2,2,1)

O7:insert(“USA”,2,2)
(2,2,1)

O8:insert(“CHINA”,2,2)
(2,2,1)

site1 site2 site3

Fig.11 operation execution example

Assume that the initial state of the document is of site1 is S0, by observation, the operations

will be executed in three stages: at the first stage, the operations O1, O2, O3 are executed

respectively at each site to obtain the document S1; at the second stage, O4, O5 are executed to get

the document S2; at the third stage, O6, O7, O8 are executed to get the last final document. The

following is the execution process of each stage.

Firstly, let’s analyze the execution of the first stage. According to the definition of concurrency,

all the inserts are to insert strings between strings and O1 || O2, O2 || O3, O1 || O3. At site1, O1 is

executed immediately. When O2 arrives, the document at this time has changed compared to that

when O2 generates, and the function "insert_Execute" is then called to find the correct location of

O2, and thenO3 is executed in the similar way. After executing O3, the document state at site 1 is

"hello world". Similarly, after all the operations are executed at site2 and site3, the document is

same to that at site1. So at the first stage, after the completion of O1, O2 and O3, the document of

each site reaches "hello world".

Secondly, at the second stage, both O4 and O5 are conducted internal a string; at site1, O4

deletes the first string "hello" firstly, and the document becomes "world ". When O5 arrives, since

the document has changed, the function "insert_Execute" is called to retrace the state back to the

state S1 when O5 generates. After the retrace process, the string "hi" is inserted into the document,

and then retrace process is called to retrace to current document status to contain all the results.

As last, the document becomes "hi world". The handling of the operations at site2 and site3 is

similar with that at Site1 in a similar way, thus we don’t give detailed description here. The final

results are the same with that at site1.

Finally, at third stage, all the operations are concurrent with each other and all the operations

are executed in the second string of the document. The second string is viewed as a new

document S. At site1, O6 is executed firstly, and the function "Divide_Delete" is called to split the

string into three substrings "w", "or" and "ld" firstly basing on the parameters "n" and "left" ,and

then the execution of the operation at this moment is similar to that in second stage. At last the

string at the second position becomes "wUSACHINAld", and the final document at site1 is "hi

wUSACHINAld". The operations at site2 and site3 execute similarly, and after execution, the

documents are the same with that at the site1.

Here exist more complex cases, as is shown in Fig.6. At site1, since O4 || O5 and the characters

O5 targets to delete are involved in two strings, when O5 is executed, the function

"Divide_Delete" will find the position of the string firstly. Since the string to be deleted has

surpassed the two strings, the string "hello" is split to "he" and "llo" firstly, and "llo" is set to be

ineffective. There are still characters that are not deleted, and then the next non-empty string

"world" is split into "w" and "orld", and the "w" is set to be ineffective. When O4 is executed, the

function "insert_execute" will find the position of the string "USA" and the final document of the

site is "heUSA orld". Similarly, the results of site2 and site3 are the same to that at site1 after

their execution.

7. Efficiency analysis

The analysis of the algorithm shows that the cost of the algorithm is mainly in two aspects,

one is the retracing process, and the other is the execution of the operation. As for the attaching

process of the operation to the corresponding node and the change of node identifier they can be

completed in O (1). Thus the following part focuses on the two main aspects.

The first section is the analysis of the execution efficiency. In order to execute the operation,

the algorithm needs to find the position of the operation first. For Insert operation the function

"range-scan" selects the Inserte position, and for the Delete operation, there only needs to modify

the effective or ineffective flag of the nodes, and it is completed in time O(1), the complexity of

the function "range-scan" is O (m), where m is the number of ineffective nodes [4]. For the

document has a linear structural organization, the process seeking the position is the process of

traversing the list and the complexity is O(n), where n is the number of the nodes in the list.

The following is the analysis of the efficiency of retracing process. Retracing process is to

retrace the document back to the status corresponding to the time stamp SV when the operation is

generated by changing the node’s identifier, only when all the operations attaching to nodes are

causally before the operation at SV, the node’s identifier will not be changed, and if not, it will be

changed. The operations that have not been executed are stored in the request queue Q, and will

be removed from the queue after their execution. Assuming that the length of Q is h, that’s to say

the retracing process will modify at most h nodes’ identifier. Assuming that the number of

operations attaching to each node is d, then the complexity of first retracing process is O (d*h).

The first retracing changes the identifier of the node, and will recover them in the second

retracing; the complexity of recovery process is O (h +d).

Based on the above analysis, the actually complexity of the execution of the Insert operation is

O (m +d* h+ h +d), and the Delete is O (d*h+ h +d).

Assuming that there are k strings, with each probabilistic length of the string is n, h and d are

consistent with the definition previous. In the single character editing system, the complexity of

Insert operation is O (m*n +d*h*n +h*n + d*n), and the Delete operation is O (d*h*n + h*n +

d*n). And in a string text editing system, the Insert operation complexity is O (m +d*h + h + d),

and the Delete operation is O (d*h +h +d). Obviously the latter will be more efficient.

8. Experiments

To verify the algorithm, an experiment is made. The experiment simulates a document editing

process; three users edit the same document simultaneously. First simulates the single character

mode. Each user generates a character, and each insert is randomly inserted into a specific

position in the document and the delete is also the same. Then the users simulate the string mode,

the same three users, reading strings from the previous document, and write to a new document,

and finally the two documents are consistent. The time of the completion of the same document

is recorded in both editing modes. Five groups are experimented; each group has a different

number of characters.

The experimental environment is described in the following:

Platform: ubuntu11.10

Language: Linux C

CPU clock speed: 2.26GHz

Memory: 2G

The following chart presents the experiments results.

Fig12 consuming comparison between character mode and string mode

From Fig.12, we can see that the string mode is a less time consuming mode in the completion

of the same document compared to the signal character mode, and it is more efficient, especially

when there are a large number of characters, the advantage is more obvious. This experiment

verifies the efficiency improvement of the new algorithm.

9. Conclusions and future work

The AST algorithm used in the single character text editing system has been proved to be a

good solution to the single character editing problems [4], but it is powerless in the string text

editing system. This paper proposes a splitting strategy combined with AST to solve the problem,

and compared to the previous strategy, it improves the processing efficiency greatly and at the

same time meets the CCI consistency model [5].

This article firstly analyses various issues that need to be considered in the string text editing

system, and lists various situations that may appear in string handling, including the overall

strings Insert and Delete, Insert and Delete internal strings, as well as the more complex cases

where delete involves more than one string, as well as copy-paste operations. Then it discusses

the solutions to these problems and finds that when handling the whole string operations, in some

circumstances, the single character processing strategy still works, such as the whole strings

Insert and Delete, because the single character is the string whose length is one. But when it

comes to the operation involving the string internal strings, the previous strategy becomes

powerless. The next part of the paper details a lot of solutions to such problems and proposes an

algorithm based on splitting strategy, and also analyses the efficiency of the algorithm to prove

the efficiency improvement of the algorithm.

This paper extends the definitions of operations; both the Insert and Delete operations have a

mark to distinguish the different types of the operation, that is the operation targeted at the

overall string or the operation targeted at the internal string, and considers them separately in

algorithm design section. At the same time the paper continues the logic of the dependent and

concurrent operations, but to the concurrent relationship, the paper redefines it to make the

0.00233
0.00348

0.00442

0.01156

0.01856

0.00107 0.00141
0.00196

0.00325

0.00542

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

3000 7500 15000 45000 90000

t

i

m

e

s(

s)

character number

signal character mode

string mode

definition be more complete after the introduction of mark attaching to it. In the algorithm design

phase, this paper analyses the questions raised at the beginning of the article respectively, and

verifies it through specific examples and practical experiment.

A complete text editing system is not only able to execute the operations, but also should have

error modification. All the contents in this article only settle the process to execute the operation,

but do not involve the undo operations, this is the work needs to be done later.

Acknowledgement

The work is supported by the National Natural Science Foundation of China(NSFC) under

Grant No. 61202376, Shanghai Natural Science Foundation under Grant No. 15ZR1429100,

Innovation Program of Shanghai Municipal Education Commission under Grant No. 13YZ075,

Shanghai Key Science and Technology Project in Information Technology Field under Grant No.

14511107902, Shanghai Leading Academic Discipline Project under Grant No. XTKX2012, and

Shanghai Engineering Research Center Project under Grant No. GCZX14014 and C14001.

References

[1] C.A. Ellis,S.J. Gibbs .Concurrency Control in Groupware Systems. 1989 ACMO-89791~317-

S/89/0005/0399.

[2] Chengzheng Sun, Clarence (Skip) Ellis. Operation Transformation in real-Time Group Editors: Issues,

Algorithms, and Achievements. In Proc of 1998 ACM Conference on Computer-Supported Cooperative

Work, Seattle, USA, Nov.14-18, 1998.

[3] David Sun, Chengzheng Sun. Operation Context and Context-based Operational transformation.

CSCW’06, November 4–8, 2006, Banff, Alberta, Canada.

[4] Ning Gu, Jiangming Yang and Qiwei Zhang. Consistency Maintenance Based on the Mark & Retrace

Technique in Groupware Systems. GROUP’05, November 6-9, 2005, Sanibel Island, Florida, USA

[5] Chengzheng Sun. Undo as Concurrent Inverse in Group. Editors ACM Transactions on Computer-

Human Interaction, Vol. 9, No. 4, December 2002.

[6] ABOWD, G. AND DIX, A. 1992. Giving undo attention. Interact. Comput. 4, 3, 317–342.

[7] S. Xia, D. Sun, C. Sun, D. Chen, and H.F. Shen. Leveraging single-user applications for multi-user

collaboration: the CoWord approach. In Proc. of the ACM Conf. on Computer-Supported Cooperative

Work, Nov. 2004.

 [9] N. Vidot, M. Cart, J. Ferrie, and M. Suleiman. Copies convergence in a distributed real-time

collaborative environment. In Proc. of the ACM Conf. on Computer-Supported Cooperative Work, pages

171-180, Dec. 2000.

[10] A. Prakash and M. Knister. A framework for undoing actions in collaborative systems. ACM Trans. on

Computer-Human Interaction, 4(1):295{330, Dec.1994.

[11] N. Preguica, M. Shapiro, and J. Legatheaux Martins. Automating semantics-based reconciliation for

mobile databases. In Proceedings of the 3th Conference Francaise sur les Systems d'Exploitation, Octo

2003.

[12] H.F. Shen and C. Sun. A flexible notification framework for collaborative systems. In Proc. of the

ACM Conf. on Computer-Supported Cooperative Work, pages 77-86, Nov. 2002.

[13] B. Lushman and G. Cormack. Proof of correctness of Ressels adOPTed algorithm. Information

Processing Letters, (86):303-310, 2003.

[14] D. Li and R. Li. Transparent sharing and interoperation of heterogeneous single-user applications. In

Proc. of the ACM Conf. on Computer-Supported Cooperative Work, pages 246-255, Nov. 2002

[15] Hansu Gu, Xing Xie, Qin Lv, Yaoping Ruan, and Li Shang. Etree: Effective and efficient event

modeling for real-time online social media networks. In Web Intelligence and Intelligent Agent Technology

(WI-IAT), 2011 IEEE/WIC/ACM International Conference on, vol. 1, pp.

300-307. IEEE, 2011.

[16] Hansu Gu, Mike Gartrell, Liang Zhang, Qin Lv, and Dirk Grunwald. AnchorMF: towards effective

event context identification. In Proceedings of the 22nd ACM international conference on Conference on

information & knowledge management, pp. 629-638. ACM, 2013.

[17] Hansu Gu, Haojie Hang, Qin Lv, and Dirk Grunwald. Fusing Text and Frienships for Location

Inference in Online Social Networks. In Web Intelligence and Intelligent Agent Technology (WI-IAT),

2012 IEEE/WIC/ACM International Conferences on, vol. 1, pp. 158-165. IEEE, 2012.

Authors

Liping Gao

She graduated from Fudan University, China with a PhD in 2009 in Computer

Science. She received her BSc and master degree in Computer Science from

Shandong Normal University, China in 2002 and 2005 respectively. She is doing

her research work in University of Shanghai for Science and Technology as an

assistant professor. Her current research interests include CSCW, heterogeneous

collaboration, consistency maintenance and collaborative engineering.

Wenfeng Tang

He is a postgraduate student in University of Shanghai for Science and

Technology. He obtained his BSc degree in Electronic Information

Engineering from Henan University of Science and Technology, China. His

current research interests include CSCW, collaborative design and

collaborative computer.

