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Abstract
Gottfried Leibniz embarked on a research program to prove all the Aristotelic cate-
gorical syllogisms by diagrammatic and algebraic methods. He succeeded in proving
them by means of Euler diagrams, but didn’t produce a manuscript with their al-
gebraic proofs. We demonstrate how key excerpts scattered across various Leibniz’s
drafts on logic contained sufficient ingredients to prove them by an algebraic method
–which we call the Leibniz-Cayley (LC) system– without having to make use of the
more expressive and complex machinery of first-order quantificational logic. In addi-
tion, we prove the classic categorical syllogisms again by a relational method –which
we call the McColl-Ladd (ML) system– employing categorical relations studied by
Hugh McColl and Christine Ladd. Finally, we show the connection of ML and LC
with Boolean algebra, proving that ML is a consequence of LC, and that LC is
a consequence of the Boolean lattice axioms, thus establishing Leibniz’s historical
priority over George Boole in characterizing and applying (a sufficient fragment of)
Boolean algebra to effectively tackle categorical syllogistic.

KEYWORDS
algebra of logic; categorical syllogistic; Leibniz’s logic; Christine Ladd-Franklin;
Hugh MacColl; O.H. Mitchell; Arthur Cayley’s logic; William Stanley Jevons’
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1. Introduction

This paper is about some interesting ways, aligned with the “algebra of logic” tradi-
tion, one can prove the 24 classic categorical syllogistic moods. It offers the following
contributions:

(1) A reproduction of short diagrammatic proofs of the categorical syllogisms, pi-
oneered by Leibniz (ca. 1686a) and didactically expressed in modern form by
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Piesk (2017). (This is not a novel contribution1 of this paper, but is useful to
introduce key concepts and motivate the following sections, which contain novel
contributions.)

(2) The compilation in two Tables (1a and 1b) of the various ways one can al-
gebraically represent the fundamental Aristotelic relations (and De Morgan’s
extensions) by means of elementary algebraic operations and relations: union, in-
tersection, complementation; the empty class, the universe; equality, subset and
superset, disjointness and exhaustion, and the negation of those relations.

(3) The characterization of two symbolic axiomatic systems, LC (for Leibniz-Cayley)
and ML (for McColl-Ladd), and the systematic proof of all the 24 classic categori-
cal syllogistic moods in them. LC, an algebraic system, is built upon intersection,
complementation, identity, non-identity, and the empty class. ML, a relational
system, is built upon complementation and the subset and conjointness relations.

(4) Tables pointing out which syllogistic moods require which axioms of LC and ML
(Sections 6.4 and 7.4).

(5) A discussion of key excerpts of Leibniz’s drafts which demonstrates that, in the
late 17th century, he presented nearly all building blocks for algebraically proving
the 24 classic categorical from axioms – doing away with the misconception that
the solution of categorical syllogistic in the algebra of logic tradition had to wait
the invention of Boolean algebra in the 19th century.

(6) A proof that ML is strictly less expressive than LC, which itself is strictly less
expressive than Boolean algebra – thus forming a hierarchy of logical systems
based on expressiveness.

(7) Historical notes throughout the text, which can guide History of Logic researchers
to key primary literature for their investigations.

The categorical syllogism proofs expressed by means of Euler and Venn diagrams by
Piesk (2017) (reproduced in Section 3) sparkled our motivation for the research that
led to this paper. Faced with those elegant diagrammatic proofs, we were irresistibly
attracted to the intellectual exercise of proving the same 24 categorical syllogisms in
the (Boolean) algebra of (term2) logic. As we delved deep into the literature of the
field of algebraic term logic, we learned that this is one of the historical goals of the
Leibnizian-Boolean research program –a research goal which dates back to at least April
1679 (Leibniz, 1679b, pp. 43-44)–, which is, surprisingly, only partially completed to
this day – by neglect, not because (with tools available nowadays) it is a tough problem.
We stand on the shoulders of giants to comprehensively document solutions to this goal
by employing modern notation and concepts refined and matured over centuries of hard
work by symbolic logicians.

Most elements required to establish the axioms for all the diagrammatic and alge-
braic systems we describe here were anticipated in unpublished drafts by Gottfried
Wilhelm Leibniz in the 17th century – long before George Boole (1847) and his intel-
lectual successors came to the scene. A few of these elements had already been pub-
lished and were in principle accessible to 19th century mathematical logic researchers

1We provide a minor contribution here by suggesting that interpreting the boundaries (and not only the
shaded areas) of classes in Euler and Venn diagrams as the empty class is convenient, as it perfectly fits some
elementary laws of the algebra of sets.

2In this paper, we use “term” to designate an extensional class, which secondarily happens to be associated
to a linguistic entity such as subject or predicative. A (classificatory) term is a reference –a label– to a class in
extension. We follow De Morgan’s (1846) extensional approach: “A term, or name, is merely the word which
it is lawful to apply to any one of a collection of objects of thought [...].”. (For a dissenting view on “terms” in
logic, see Waragai and Oyamada (2007, pp. 124,125-126), Kulicki (2012), and Łukasiewicz (1957, p. 130).)
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(Erdmann, 1840; Gerhardt, 1890; Peckhaus, 2018), but others came to the public eye
thanks to Louis Couturat’s examination and publication, in the 20th century, of se-
lected drafts on logic which were on Leibniz’s Nachlass in Hanover (Couturat, 1903),
which have fortunately been preserved to the present day. Because many relevant drafts
of Leibniz’s were unknown in the 19th century, there were a lot of independent rein-
ventions of his ideas by various pioneers in the Boolean research program3.

The tradition of term logic was initiated circa 350 BCE by the founding master
Aristotle of Stagira (ca. 350 BCEa)(ca. 350 BCEc), who introduced four fundamental
categorical relation forms and enumerated (and proved by means of logical methods)
most of the classic categorical syllogisms we algebraically prove in this paper. Aristotle
had key insights such as earliest recorded use of literal placeholders (“variables”) in
what would millennia later be recognized as a branch of algebra4 (Łukasiewicz, 1957,
pp. 7-8)(Patzig, 1968, p. 12)(Bar-Am, 2008, pp. 23,34,39)(Braem, 1475).

The 24 classic categorical syllogisms employ four possibilities of fundamental cat-
egorical relations originally investigated by Aristotle in [gr] “Peri Hermeneias” / [la]
“De Interpretatione” / [en] “On Interpretation” (ca. 350 BCEa, Chapter 7) and in [gr]
“Analytica Protera” / [la] “Analytica Priora” / [en] “Prior Analytics” (Aristotle of Sta-
gira, ca. 350 BCEc), and popularized by Boethius (Parsons, 2021) through linguistic
expressions loosely similar to the following:

• bA c: Every b is c.
• bE c: No b is c. (Every b is not c.)
• b I c: At least one5 b is c.
• bO c: At least one b is not c.

Aristotle’s syllogistic was the earliest simultaneous treatment of generality (“Every b
is c.”) and existence (“At least one b is c.”) in logic, and he had already recognized how
those notions are intimately related in that generality means the lack (or non-existence)
of a counterexample (von Plato, 2021)67.

3Leibniz explored both extensional and intensional interpretations of the same abstract, deductive log-
ical system. The intensional interpretation, actually favored by the rationalist Leibniz across many of his
manuscripts (Lewis, 1918, pp. 13-18,32,35-37,73-74,186-187,213-215,231,322-323,327-330,377,382-385)(Leibniz,
1679a, points 11-12,7,17), is very interesting in itself. In this paper, however, we are concerned with character-
izing noteworthy properties of (fragments of) purely deductive, formal, extensional term logics, supportive of
arbitrarily assembled classes, whose constituent elements are left implicit in the systems.

The brand of algebra of extensional categorical syllogistic we discuss at length in this paper assumes the
existence of logical classes/“categories”. Some philosophers find them problematic and sometimes don’t accept
(or at least attempt to work around) them (Boolos, 1985; Ongley and Carey, 2013; Klement, 2010).

4The use of literal placeholders in numerical algebra would have to wait the independent reinvention by
Jordanus de Nemore circa 1,225 CE, that is, approximately 1,600 years after Aristotle (de Nemore, ca. 1225;
Turner, 1983).

5We follow Béziau (2012, pp. 6-11,18) in adopting “At least one” rather than “Some”. It represents the
set-theoretically precise notion of “inhabitation” or “presence” (often miscalled “existence”, even –by habit– in
this paper.). Moreover, unlike “Some”, “At least one” invites the generalization toward numerical syllogisms
(Pratt-Hartmann, 2023, pp. 5-6,225-228,249), an exciting and active research topic pioneered by De Morgan
(1846, pp. 384,406).

6This ancient observation by Aristotle is precisely formalized (with some abuse of notation) in modern
first-order logic as
∀

x∈I
: x ∈ b⇒ x ∈ c |=| ∃

x∈I
: x ∈ b ∧ x /∈ c

In term logic, it is expressed much more simply as
bA c |=| bOc
that is, A and O are contradictory.

7In this paper, we decided to adopt the following notation:
• “|=|” is the metalogical relation of equivalence, which indicates that the syntactic derivation is

bidirectionally valid. It was intentionally chosen to be an “equals” symbol sandwiched between two
vertical bars. It is most often expressed in sequent calculus and proof theory by the “⊣⊢” symbol.
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More than two millennia after Aristotle, Leibniz, knowledgeable in both numerical
algebra and term logic, decided to research the possibility of turning term logic into
an algebra, making use of the fact that both exact sciences already employed literal
placeholders back in his days. These were pioneering feats in what we nowadays call
“Boolean algebra”.

Key ideas beyond Leibniz’s for achieving a symbolic algebra of term logic powerful
enough to offer various insightful ways to prove classic categorical syllogisms were
advanced by Cayley (1871), McColl (1877), Ladd (1883), and Mitchell (1883), and are
summarized in this paper.

Our terminology divides the categorical syllogism proof methods into:

(1) Diagrammatic, where representations and proofs are topologically visual rather
than symbolic;

(2) Algebraic, where transformations involving “=”, “ ̸=” and dyadic operations (func-
tions) on classes are employed in a way somewhat familiar to numerical algebra
students at middle school;

(3) Relational, where axioms involving dyadic relations among classes other than “=”
and “ ̸=” are used, and proofs employ either free-form logical entailment (from
logic) or strict-form composition of relations (from relation algebra);

(4) Refutatory, where concepts and tools typical in propositional logic or involving
the Theorem K from relation algebra predominate;

(5) Quantificational, where concepts and tools from first-order monadic quantifica-
tional logic are employed.

Aristotle was the earliest to prove many classic categorical syllogisms, using logical
refutatory methods involving consequence denial such as “reductio ad absurdum” and
what was later called “proof by regression”8. Leibniz proved some categorical syllogisms
with diagrammatic methods (Leibniz, ca. 1686a) and beautifully explained Aristotle’s
method of proof by regression (Leibniz, 1682), where a premise and the conclusion of
a valid assertion are transposed, generating a new valid assertion. De Morgan (1847,
pp. 87-89) repeated this application of regression to categorical syllogistic. An evolved
variant of regression is the method of “inconsistent triads” or “antilogisms” by Ladd

• “|=” is the metalogical relation of unidirectional syntactic derivation, most often expressed in sequent
calculus and proof theory by the turnstile symbol (“⊢”). The previous symbol (“|=|”) was a “sandwich”;
this one (“|=”) is “half a sandwich”. We find it an unfortunate historical accident that the double
turnstile symbol (“⊨”), that visually looks like our “|=”, is commonly used in the model theory literature
to indicate semantic, not syntactic entailment. It would have been nice if the denotation of “⊢” and “⊨”
were swapped.

• “,” is the metalogical “and” operation.

• “ |∨|” is the metalogical “or” operation, following our convention of going to the meta, metameta,
metametameta level and so on by progressively adding vertical bars around a symbol.

Hilbert (1922, pp. 174-175) employed the term “metamathematics”, back then in the narrow sense of (finitary)
proof theory (“Beweistheorie”). In the Polish school of logic, Łukasiewicz and Tarski (1930) Łukasiewicz and
Tarski (1930) employed the words [de]“Metalogik ” ([en]“metalogic”) and [de]“metalogischen” ([en]“metalogical”)
as synonyms to “metamathematics” and “metamathematical”, in the wider sense of “(pertaining to the) theory
of deduction”. The “object language vs. metalanguage” distinction was made explicit by Tarski (1933, pp. 167-
168,154{fn. 1}), who, in a later article (1936, p. 402), credited his doctoral advisor Stanisław Leśniewski with
pioneering it. Moreover, in the latter article, the words “metalogical” and “metalanguage” appear in the same
page: 407.

8Useful in various contexts, for instance to show that modus ponens and modus tollens can be derived
from each other, and to establish alternative definitions for antisymmetric relation in order theory:

b ⪯ c, b ̸= c |= c ⪯̸ b
b ⪯ c, c⪯ b |= b = c
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(1883)(Lewis, 1918, pp. 108-110)(Green, 1991, pp. 2-3). In another evolutionary direc-
tion from proof by regression, De Morgan proved the Theorem K in relation algebra (De
Morgan, 1860, p. 344)(Maddux, 1991, pp. 434-435)(Schröder, 1895, pp. 242-243,416-
417). But all these methods intentionally use tools of propositional logic instead of
algebraic transformations.

Leibniz made across private drafts various insightful attempts to devise an algebraic
method for proving categorical syllogisms9, and even correctly proved the categorical
syllogism Barbara-1 in an algebraic fashion (Leibniz, ca. 1690, pp. 229-230, Axioma
1). With a masterful ability, he correctly identified most concepts and notions needed
for this task, and thus almost completed the goal on his own. Unfortunately, he missed
a small piece of the puzzle – one of the suitable algebraic representations of partic-
ular categorical relations which was provided almost two centuries later by Cayley
(1871)(Valencia, 2004, p. 473). Moreover, he identified individual axioms needed to
complete this task, but they are scattered across some of his manuscripts – we orga-
nize them in a centralized fashion in this paper.

The earliest relational system we could find whose explicit goal (successfully achieved
in the same paper) was to prove the set of classic categorical syllogisms was devised
by Hugh McColl (1877)10. Thus, McColl deserves the credit of being the earliest to
satisfactorily achieve this historical goal of the Leibnizian-Boolean research program
(though with a method different from the algebraic one elected by Leibniz and Boole).
Much remains to be said in this regard – McColl’s is not the only relational method
possible, as we will show. We can obtain further insights at the problem by looking at
other methods.

Proofs of all the 24 classic categorical syllogisms in monadic first-order quantifica-
tional logic are known; this exercise has been done countless times11. But we claim that
first-order logic is a too heavy machinery for tackling those simple 3-sentence argument
forms. Although insightful and very welcome to our portfolio of knowledge, we should
not feel satisfied by that solution; it feels like using a bazooka to kill a fly. Instead
of invoking all the power and complexity of quantificational-functional reasoning, we
offer alternative methods of algebraic proofs instead. According to Anellis, “[...] early
efforts” at algebraizing Aristotelic syllogistic after Gottfried Leibniz and before George
Boole “proved to be incomplete and abortive. Contemporary efforts to arithmeticize or
algebraize Aristotelic syllogistic still persist” to this day (Anellis, 2007). Ours is such
a solution, or rather a catalog of various alternative solutions.

Unlike the original Aristotelic tradition of term logic and Leibniz’s advanced at-
tempts at devising an algebra of term logic, we will adopt in this paper term logic
without existential import, rather than assuming that a “term” class is necessarily in-
habited by default. As a consequence, whenever a class is inhabited, we will have to
explicitly declare so through a premise.

Throughout the paper we provide copious citations and footnotes for historically rel-
evant materials as early as we could find to the origins of key insights and fundamental
building blocks to construct the symbolic approaches to classic categorical syllogistic
which we consider in this paper. Our remarks are not intended to present the history

9Leibniz not only algebraized Aristotelic logic; in fact, Leibniz’s logic goes beyond categorical syllogistic,
as Malink and Vasudevan (2019, p. 10-14,18-19,34,36,39) show.

10Almost one century later, Tamaki (1974) employed McColl’s relations {⊆, ⊈} and proved the classic
categorical syllogisms again, without adopting Boethius’ connexive thesis for “⊆” and assuming existential
import for the categorical relations {A, I} though not for {E, O}.

11See, for example, Tennant (2014) and Metamath (2021). We can even find an implementation of the proof
search of the first-order logic representation of categorical syllogistic in a programming language (Koutsoukou-
Argyraki, 2019).
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of the concepts, tools and ideas envisioned by the pioneers on their own terms for
achieving their own goals, but to record instead the origins of the ingredients we use
and repurpose for the categorical syllogistic theorems we have the goal of proving in
this paper. Here, historical remarks put into context the ingredients of our modernized
presentation of proofs in algebraic categorical syllogistic.

2. Preliminaries – diagrams involving one or two terms

2.1. A subclass from a universe

The “smallest” independent regions in a Venn diagram (1880) are called minterms.
Each minterm is either inhabited or empty, that is, it either has or does not have at
least one element. Figure 1 shows the Venn diagram possibilities involving either an
inhabitation or an emptiness mark for each minterm inside a universe of discourse12

I with one specially designated subclass/term b. Here the minterms happen to be b
itself and its complement, b′. When we do not know whether a minterm is inhabited
or empty, we leave it blank, in order to indicate lack of information on our part.

I

b

×

(a) b Ib: b is in-
habited. (Venn dia-
gram.)

I

b

(b) bEb: b is empty.
(Venn diagram.)

I

b

×

(c) b′ Ib′: b′ is in-
habited. (Venn dia-
gram.)

I

b

(d) b′ Eb′: b′ is
empty. (Venn dia-
gram.)

Figure 1.: Four possibilities of fundamental relations involving a single term of a uni-
verse class – Venn and Euler diagrams.

2.2. Representing two terms from a universe

Let’s draw a Venn (and also Euler) diagram representing a universe class that has two
terms b and c as subclasses (Figure 2). In a translation from set algebra to term logic,
we will call the sets/classes b and c the “subject” and the “predicative” terms, respec-
tively. The Venn diagram shows that this configuration gives rise to four minterms13:
bc, bc′, b′c, b′c′. Here the notion of complement is again demonstrated to be fundamen-
tal. And again a blank minterm indicates that we do not have the knowledge whether
that minterm is inhabited or empty.

Figure 3 enumerates the two possibilities (emptiness or inhabitation mark) for each
of the four minterms independently considered for both Venn14 and Euler diagrams,

12In this paper, “I” was intentionally chosen to represent the unIverse of discourse class to avoid using the
initial “U”, which might be confused with the union operator “∪”, and also because “I” resembles the digit “1”,
just like the empty set symbol “∅∅∅” resembles the digit “0”. Both digits play a major role in Boolean algebra
and in anything nowadays referred to as “digital”.

13Throughout this paper, we assume for notational convenience that the juxtaposition of two terms, bc,
represents the intersection of the classes they refer to, b∩c.

14Some introductory textbooks include these Venn diagrams and some corresponding algebraic symbology.
See for instance Copi, Cohen, and Flage (2016, pp. 106-109).
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I

cb

b′cbcbc′

b′c′

Figure 2.: Four minterms of a universe class that has two generating terms as subclasses.

showing how they are distinct by direct contrast15. It shows eight dyadic relations in
the form b ? c, where “?” is the relation symbol, which are the fundamental components
of what is called De Morgan’s syllogistic16 – an extension of Aristotle’s syllogistic17

(De Morgan, 1846, p. 381)(De Morgan, 1847, pp. 60-61).
Venn and Euler diagrams make it visible that every class being depicted is a subclass

of the universe class (b ⊆ I). However, a challenge in drawing both Euler and Venn
diagrams is how to represent the facts that the empty class is a subclass of every class
being depicted (∅∅∅ ⊆b) and that the intersection of any class with the empty one is the
latter (b∩∅∅∅ = ∅∅∅)18. We propose a solution which does not require modifying diagrams
(for instance, by adding a new marker), but merely requires us to change how we look
at them.

It is convenient to consider the boundary19 of the representation of a given class (say,
b) as the intersection between what is “inside” (b) and what is “outside” (b′) that class.
As bb′ = ∅∅∅, we feel we are justified in adopting the convention that the boundary of
a class stands for the empty class. The boundary of a class is reasonably considered
as an integral part of its visual representation; this is a convenient representation for
the fact that ∅∅∅⊆b. Moreover, in a Venn or Euler diagram, the intersection between
a class and its border –which, as we have said, stands for the empty class– is visually
realized as the border itself. Thus, the fact that b∩∅∅∅ = ∅∅∅ is also neatly represented.

As borders are present in any Venn or Euler diagram, the empty class is always vis-

15Those possibilities could be portrayed by Carroll diagrams (1886, pp. 44,28) as well, which we decided to
leave out of the scope of this paper.

16In order to preserve the order adopted for our Venn and Euler diagrams, we will enumerate in our Tables
the fundamental categorical relations in De Morgan’s syllogistic in the order I,E,O,A,Ö,Ä, Ï,Ë rather than
in the more conventional order A,E, I,O,Ë,Ä,Ö, Ï. The convention of adopting the umlaut to represent the
inverse relation (e.g.: b Ï c |=| b′ I c′) is from Menne (1957)(1962).

17Aristotle’s syllogistic, which include the 24 classic categorical syllogisms we prove in this paper in Sec-
tions 3, 6 and 7, involve the initial four possibilities only, which deal with the two minterms that are subclasses
of the subject (b): bc and bc′.

Historically, however, Aristotle also alluded to the possibility of categorical relations with a negated subject,
such as “Every non-man is just” (Aristotle of Stagira, ca. 350 BCEa, Chapter 10) – millennia later they would
become the interest of systematic study.

18The empty class is the only class simultaneously “included in” and “excluded from” every conceivable class,
that is, b⊆c and b ̸⋒ c if and only if b = ∅∅∅. Proof:

b⊆c |=| bc = b b ̸⋒ c |=| bc = ∅∅∅
{If b⊆c and b ̸⋒ c, then ...}

b⊆c, b ̸⋒ c |=| bc = b, bc = ∅∅∅
b⊆c, b ̸⋒ c |=| b = bc = ∅∅∅
b⊆c, b ̸⋒ c |=| b = ∅∅∅.

. {... b = ∅∅∅.}

b⊆c |=| bc = b b ̸⋒ c |=| bc = ∅∅∅
{If b = ∅∅∅, then ...}
∅∅∅⊆c |=| ∅∅∅c = ∅∅∅ ∅∅∅ ̸⋒ c |=| ∅∅∅c = ∅∅∅

∅∅∅⊆c, ∅∅∅ ̸⋒ c |=| ∅∅∅c = ∅∅∅.
∅∅∅c = ∅∅∅ |=| ∅∅∅⊆c, ∅∅∅ ̸⋒ c.

. {... b⊆c and b ̸⋒ c.}

Therefore, “every b is c” and “no b is c” simultaneously if and only if b = ∅∅∅.
Notice that, as a consequence of the definition of “̸⋒”, ∅∅∅ ̸⋒ c |=| ∅∅∅∩c = ∅∅∅.
19In another mathematical context, topos theory, Lawvere deals with a strongly related concept named

“intrinsic boundary” or “co-Heyting boundary” (nLab authors, 2016)(Lawvere, 1991)(Pagliani, 1998, p. 127).
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I

cb

×

(a) b I c: bc is in-
habited. (Venn dia-
gram.)

I

b c

(b) bE c: bc is
empty. (Venn dia-
gram.)

I

b

×

c

(c) bO c: bc′ is in-
habited. (Venn dia-
gram.)

I

b c

(d) bA c: bc′ is
empty. (Venn dia-
gram.)

I

cb

×

(e) b I c: bc is in-
habited. (Euler dia-
gram.)

I

b c

(f) bE c: bc is empty.
(Euler diagram.)

I

b

×

c

(g) bO c: bc′ is in-
habited. (Euler dia-
gram.)

I

b
c

(h) bA c: bc′ is
empty. (Euler dia-
gram.)

I

b

×

c

(i) bÖ c: b′c is in-
habited. (Venn dia-
gram.)

I

b c

(j) bÄ c: b′c is
empty. (Venn dia-
gram.)

I

cb

×

(k) b Ï c: b′c′ is in-
habited. (Venn dia-
gram.)

I

b c

(l) bË c: b′c′ is
empty. (Venn dia-
gram.)

I

b

×

c

(m) bÖ c: b′c is in-
habited. (Euler dia-
gram.)

I

c
b

(n) bÄ c: b′c is
empty. (Euler dia-
gram.)

I

cb

×

(o) b Ï c: b′c′ is in-
habited. (Euler dia-
gram.)

I

I

cb

(p) bË c: b′c′ is
empty. (Euler dia-
gram.)

Figure 3.: Eight possibilities of fundamental relations between two terms of a universe
class, one minterm at a time – Venn and Euler diagrams.
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ibly depicted, and usually more than once, for boundaries are non-contiguous among
classes –most notably the boundary of the universe I and the boundary of any of its
subclasses (b, c and so on). This would make the representation of the empty class “frag-
mented” in a diagram. This may at first sight look inelegant, but it actually portrays
in an elegant fashion an interesting property of the empty class: assuming idempotence
and associativity of union (∪), this “discontiguous border line interpretation”20 is alge-
braically supported by the identity ∅∅∅ = ∅∅∅∪∅∅∅ = ∅∅∅∪∅∅∅∪ ... ∅∅∅ = bb′ ∪ cc′ ∪ ... zz′. We
can see also see that the empty class is made of pure boundaries when it is represented
by the notation “{}”, and, in the representation of an inhabited class such as “{x}”, the
borders (braces) are discontiguous.

In addition, in this interpretation a shaded region in a Venn diagram can be seen as
a thicker expansion of a boundary, engulfing an entire region. (A diagram designer who
wants to stress this would select the same color for class boundaries and for shaded
regions – which usually isn’t done for aesthetic reasons only.)

The interaction between complementary classes and their shared border can be mod-
elled by a logical hexagon of opposition – Figure 4, loosely inspired by Béziau (2012,
pp. 38-39, picture 53).

b b′

b or
border

b′ or
border

border between
b and b′

(∅)

b or b′
(I)

contradictory

contrary

subcontrary

su
ba

lt
er

n subaltern

Figure 4.: A logical hexagon of opposition modelling the interaction between comple-
mentary classes and their shared border.

As shown in Figures 5a and 5b, the notational choices for the Venn diagram were
deliberately made in order to visually represent the following desired properties (which
are true propositions in set algebra, in its generalization, Boolean algebra, and even in
multiset algebra):

i. b∅∅∅ = ∅∅∅. Therefore,
c = ∅∅∅ |= bc = ∅∅∅.

20In a mereotopological analysis of Euler and Venn diagrams, as boundaries represent the empty class
(whether they touch each other or not), RCC-5 (Cohn and Gotts, 1994) becomes a valid degeneration of
RCC-8 (Randell, Cui, and Cohn, 1992; Bennett, 1994) in this context.
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ii. The contrapositive of the previous logical assertion:
bc ̸= ∅∅∅ |= c ̸= ∅∅∅.

I

c
I

b c
I

b c

bc

(a) c is empty, therefore bc is empty. (Venn diagram.)
I

b c

×
bc

I

b c

×

I

c

×

(b) bc is inhabited, therefore c is inhabited. (Venn diagram.)

Figure 5.: Emptiness and inhabitation markers for a minterm in a universe class that
has two generating terms.

In order to achieve this, in Venn diagrams the emptiness marker –the shade– was
intentionally chosen because it occupies a region as “wide” as possible (a whole class)
and spreads all the way inside, but not outside that region (that is, the marker fills
all of its subclasses down to the empty class, but not superclasses). In contrast, the
inhabitation marker –×– was purposely chosen due to having the opposite properties:
it occupies a “minimum” area inside a minterm and affects a region as large as possible
–all the regions that contain it (that is, all the superclasses of that class, up to the
universe class). These smart design decisions21 make them semiotically appropriate
notations to graphically represent the two properties we want.

Notice that the arrows in Figure 5 are unidirectional. The converse is not necessarily
true.

21The earliest explicit textual description we could find of the rationale for the desired features of emptiness
and inhabitation marks (including alternative inhabitation marks) for term logic diagrams is by Venn (1883,
pp. 599-600).

Euler (1770, p. 126, “Lettre CV” from February 24th, 1761) employed a special marker, “∗”, to indicate
that a classificatory term is inhabited. He therefore deserves credit for the earliest use we could find of the
inhabitation marker in logical diagrams.

In a draft circa 1903 –CP 4.359-4.363 (Hartshorne and Weiss, 1960, pp. 307–312), referred to as MS. 479 in
the “Robin catalog” at «https://peirce.sitehost.iu.edu/robin/robin_fm/logic.htm»)–, Peirce drew Venn
diagrams for O, I and Ï relations using a cross as inhabitation marker, and on CP 4.349 he describes the
procedure of representing existence in a Venn diagram (using a dot rather than a cross, however). Peirce’s draft
CP 4.359-4.363 is also the earliest source we could find for the graphic display of the alternative inhabitation
representation, ×—–×, used in this paper only later, in Figure 8. (See also Hammer (1995), Pietarinen
(2016)(2021, pp. 84-100) and Shin, Lemon, and Mumma (2018).)

Decades later, the inhabitation mark and the alternative inhabitation representation are employed for prov-
ing categorical syllogisms by means of Euler and Venn diagrams by Lewis (1918, pp. 176,183-184), and the
inhabitation mark is employed for Venn diagrams by Quine (1950, p. 70)(1982, pp. 98,102-110).
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3. Euler system

In this paper, we are concerned with categorical syllogisms that comply to a rigid form
that follows these rules:

• Three terms are involved: s, m and p22.
• There are two premises, where one involves s and m, and the other involves m

and p.
• There may be an additional premise asserting that a given term among s, m and

p is necessarily inhabited.
• There are one or two conclusions involving s and p.

In the limited logic we are concerned with, Euler diagrams are expressive enough
for our needs. Informal diagrammatic proofs23 of the 24 classic categorical syllogisms
by means of Euler diagrams, taken from Piesk (2017)2425, are shown in Figure 6 (split
into three parts).

All diagrammatic categorical syllogism proofs include a logical elimination step –
the dropping of information irrelevant to the conclusion (Venn, 1883, p. 602).

Leonhard Euler, arguably the greatest mathematician ever26, has the merit of pop-
ularizing this kind of diagram, after a series of didactic tutorials he wrote in French
for educating a young princess was published in 1770 in the form a textbook, titled
“Lettres a une princesse d’Allemagne sur divers sujets de physique & de philosophie”
(Euler, 1770, pp. 99–131, “Lettre CII” from February 14th, 1761 – “Lettre CV” from
February 24th, 1761), which became a best-seller at the time. However, he was defi-
nitely not the inventor of the kind of diagram which nowadays bears his name. The
earliest occurrence we could find of this kind of diagram is a book from 1661 –a cen-
tury earlier than Euler’s letters– by Sturm (1661, p. 86). Also, around 1686 –decades
before Euler was born–, Leibniz applied this kind of diagram to deduce categorical
syllogisms, in a draft written in Latin and nowadays known as “De Formae Logicae
comprobatione per linearum ductus” (Leibniz, ca. 1686a)27, with a presentation that
loosely resembles the modern one by Piesk (2017)28. He also realized that the final

22Standing for subject of the conclusion, mediator (or middle term), which does not appear in the conclu-
sion, and predicative of the conclusion.

23These proofs are informal not because they are diagrammatic, but because we have not explicitly enu-
merated here the axioms and inference rules required by this logic system.

24A variant of this Euler diagram representation of categorical syllogisms is offered by Flage (2002).
25For two of the moods, we adopt the names “Baroko-2” and “Bokardo-3” with ‘k’ rather than ‘c’ to preserve

compatibility with the rationale for the name of De Morgan’s “Theorem K” (1860, p. 344).
26To see just a single example of Euler’s impressive achievements, an easy-to-understand problem he devised

and solved, popularly called the “Seven Bridges of Königsberg”, is the founding point of two major branches
of mathematics at once: Graph Theory and Topology.

27Vacca (1899) rediscovered in the library of Hannover the draft where Leibniz anticipated Euler in the
use of “Euler diagrams” for logic reasoning. Later, on Vacca’s advice (Couturat, 1903, Préface, p. I)(Luciano,
2012), Couturat went to the library of Hannover to research Leibniz’s manuscripts on logic and then published
that insightful draft by Leibniz (ca. 1686a).

28Most of Leibniz’s proofs are correct. (His diagrammatic Ferio-1 configuration, for instance, is almost
correct, although he made up for it later in Ferison-3; and his “Fessapmo”, or Fesapo-4 configuration, is not
fully correct, although Felapton-3 is).

In his diagrammatic notation, a missing refinement adopted by Euler decades later would have made Leibniz’s
configurations clearer and less ambiguous: the employment of a symbol analogous to “×” to mark a classificatory
term as inhabited (Euler, 1770, p. 126, “Lettre CV” from February 24th, 1761) – which perhaps the great Leibniz
would never have thought of because, in alignment with Aristotle, his logic assumed that all classificatory terms
of interest were necessarily inhabited (Leibniz, ca. 1686a):

“Undes patet omnes imperfectos alterutro modo ex perfectae figurae modis derivari vel addendo praemissae
superfluam quantitatem, vel demendo conclusioni utilem.” (Hence it is clear that all imperfect moods can be
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diagrammatic configuration is the same for similar figures from different moods, which
vary from each other only by conversion of premise relations. At the end of his draft
essay, Leibniz cites Sturm and mentions he had read his book when he was young.
(For further historical remarks on “Euler” diagrams, see Lemanski (2017)(2018) and
Bennett (2015).)

Euler (1770, p. 126, “Lettre CV” from February 24th, 1761) began using a notational
device to explicitly mark inhabited classificatory terms in his diagrams, and in the next
page (127) he adopted the interpretation that, for a blank minterm/region inside a term
circle, it is uncertain whether it is inhabited or not. He had the same agnostic position
for the blank minterms/regions inside a term circle in the next example (ibid., pp. 128-
130). Those pieces of evidence combined suggest that Euler didn’t assume existential
import for classificatory terms, and didn’t consider that universal assertions declared
terms to be inhabited – only particular assertions did.

However, there are other pieces of evidence contradicting this conclusion. In the
next letter, Euler (1770, pp. 136–139, “Lettre CVI” from February 28th, 1761) enu-
merated 19 classic categorical syllogisms in the following order: Barbara-1, Darii-1,
Celarent-1, Ferio-1, Camestres-2, Baroko-2, Cesare-2, Festino-2, Darapti-3, Disamis-3,
Datisi-3, Felapton-3, Ferison-3, Bokardo-3, Bamalip-4, Dimatis-4, Calemes-4, Fesapo-
4, and Fresison-4. He did not provide their proofs, though; it seems he decided to leave
the proofs as an exercise to the student, since he provided examples of proofs in his
previous letter (Euler, 1770, pp. 124–139, “Lettre CV” from February 24th, 1761). Of
these syllogisms, Darapti-3, Felapton-3, Bamalip-4, and Fesapo-4 require an additional
existential premise in a logical system lacking existential import.

Missing from Euler’s enumeration are all and only the classic categorical syllogisms
having a “weakened”/subaltern (from universal to particular) conclusion obtained from
other syllogisms: Barbari-1, Celaront-1, Cesaro-2, Camestros-2, and Calemos-4. All
these categorical syllogisms require an additional existential premise in a logical system
lacking existential import.

We suspect that Euler simply copied the enumeration of 19 classic categorical syl-
logisms from another source and trusted the enumeration to be correct, rather than
trying to prove them all using his diagrammatic notation. Had Euler tried to prove
them all, he would have discovered that some categorical syllogisms in the two-premise
form are invalid when existential import is not implicitly assumed for universal categor-
ical assertions. We don’t know what would have been his reaction to this information:
would he have embraced the lack of existential import as an improvement on Aristotelic
logic –like Brentano (1874, pp. 283-286)(Land, 1876) did more than a century later–,
or would he have tried to “fix” his system to accommodate tradition?

The Euler diagrammatic system has been shown here as a motivation for introducing
the algebraic and relational systems that follow. The purpose is to show that, while
diagrammatic proofs for all 24 classic categorical syllogisms have long been known, we
also need algebraic proofs of the same theorems for new insights. As our focus is on
justifying and providing the algebraic proofs, we will explicitly describe in this paper
neither the axioms nor the inference rules for the Euler diagrammatic system. (See the
list of open problems in Section 9.)

derived from the moods of a perfect figure, either by adding the superfluous quantity to the premises, or by
weakening the useful conclusion.)

(The inhabitation assumption, or existential import, appears in various other drafts, for instance in Leibniz
(1690b, p. 233).)

Nevertheless, Leibniz’s diagrammatic configurations are very good for the rigor standards from that age.
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(f) Camestros-2 and Calemos-4.

Figure 6.: Proofs from Piesk (2017) of syllogisms by means of Euler diagrams (part 1
of 3).

4. Algebraic and relational representations

Tables 1a and 1b show various alternative algebraic or relational representations for
each fundamental categorical relation29. The symbols have their usual meanings in set
algebra. Juxtaposition of terms means intersection of classes.

The symbols “⋒”/“̸⋒” and “⋓”/“̸⋓” mean that their terms are conjoint/disjoint and
exhaustive/exclusionary, respectively. They are so defined:

b ⋒ c |=| b ∩ c ̸= ∅∅∅
b ̸⋒ c |=| b ∩ c = ∅∅∅
b ⋓ c |=| b ∪ c = I
b ̸⋓ c |=| b ∪ c ̸= I.

29The identities for bA c and bE c in Table 1a were enumerated by Robert Grassmann (1872, p. 20,
points 40-41).

The coining of some of the column names for Table 1b was loosely inspired by Ladd Franklin (1890, p. 79).
Reverse is the inverse of the obverse, like in numismatics.

Missing from Table 1b (for space reasons) are the representations “c′ ?b” and “c ?b′”, which are the “converse
of the obverse” and the “converse of the reverse”, respectively.
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(j) Disamis-3 and Dimatis-4.

Figure 6.: Proofs from Piesk (2017) of syllogisms by means of Euler diagrams (part 2
of 3).

The corresponding categorical relations are mutually connected by the De Morgan’s
laws:

b ⋒ c = b′ ̸⋓ c′

b ̸⋒ c = b′ ⋓ c′

b ⋓ c = b′ ̸⋒ c′

b ̸⋓ c = b′ ⋒ c′.
The analogous relation to “̸⋒” in propositional logic is an assertion involving Sheffer’s

stroke (“nand”) operation (Janssen-Lauret, 2023, pp. 9,10). The analogous relation to
“̸⋓” in propositional logic is an assertion involving Peirce’s arrow (“nor”) operation.

The “⋒” and “⋓” relations are not as often used as “⊆” and “⊇”30 in the literature
about set algebra, but are just as important. Ladd developed in her Doctoral thesis
(1883) the earliest in-depth study we could find about the “⋒” and “̸⋒” relations31. In

30Leibniz developed a logic of containment which employed the “⊆” relation (Malink and Vasudevan, 2019,
p. 1), writing it as “est”. von Segner (1740, pp. 71-72) adopted symbols that meant “⊂”, “⊃” and “=” – though
not symbols corresponding to “⊆” and “⊇”. (He also adopted a symbol corresponding to the modern “⋒”, and
a symbol standing for the monadic operation of class complementation.) As we can see, von Segner was more
fond of the symbolic tradition than Leibniz, despite offering a superficial treatment of logic which doesn’t come
close to Leibniz’s deep conceptual analyses. von Segner’s novel contributions were simply symbolic notations
for some categorical relations.

31Ladd actually adopted the symbols “∨” and “∨”, perhaps influenced by Boole’s (1847, pp. 21–22) use
of “v” –which was also cited by Wundt (1880, p. 229)– to represent “some” (“at least one”) in his unsuccessful
attempt to algebraically treat particular categorical relations; there is at least a curious resemblance among
both forms (Halsted, 1883)(Mitchell, 1883, p. 97). This might be confusing for an uninitiated reader of Ladd’s
thesis since, in modern notation, “∨” is often used in Logic with the meaning “or ”.

Like Ladd’s original notation, the modern one has the semiotic advantage of suggesting symmetrical relations:
b ⋒ c |=| c ⋒ b
b ̸⋒ c |=| c ̸⋒ b.
She was not the earliest adopter of symbols for the categorical relations “ ̸⋒” and “⋒”, though. In 1646 –more

than two centuries before Ladd’s Doctoral thesis–, Mounyer and Fabri (1646, pp. 254-263) had already adopted
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Figure 6.: Proofs from Piesk (2017) of syllogisms by means of Euler diagrams (part 3
of 3).

the same book where Ladd’s Doctoral thesis was published (Peirce, 1883)32, Mitchell’s
Doctoral thesis (1883)(Green, 1991, p. 5)(Venn, 1883, p. 601) was published, defining
the “⋓” relation and its complement, “̸⋓”33. Some researchers have used the modern
notation which we adopt here for the relation symbols, which is beneficial to humans
as corroborated by empirical cognitive psychology research (Wege et al., 2020). For
instance, Icard, III (2014, pp. 11,5-7) uses “⋒” and a not too different symbol for “⋓”.

Ladd’s relations “⋒” and “̸⋒” were decades later also employed by Rescher (1954,

a dedicated symbol for the “̸⋒” relation – they employed “X”. It is used, for instance, in “Theorema 52 ” (ibid.,
p. 257), where they state Celarent-1, albeit with the converse conclusion. (In the same book [ibid., p. 254], by
the way, there appears the earliest occurrence of a truth table we could find.) von Segner (1740, pp. 71-72,83)
adopted the same symbol “X” for the relation which we represent by the modern notation “⋒”. Wundt (1880,
pp. 244-248) chose iconic (semiotic-considerate) symbols for disjointness and conjointness: “)(”, “≬”. The same
conjointness symbol was adopted much later by Menne (1962, p. 59)(Novak, 1980, p. 238). In 1881, Ladd was
already aware of Wundt’s writings on logic (Pietarinen and Chevalier, 2015, p. 10) and developed her logic
upon the two mentioned relations which Wundt had assigned dedicated symbols to (Ladd, 1883, p. 17, fn. 1).

Ladd’s notation did not distinguish the “̸⋒” relation between terms from the metalogical “nand” relation
between formulae; the object level vs. metalevel distinction was not typical in that era. The metalogical “nand”
relation is a noteworthy alternative to the “ |=” assertion, having many interesting properties, many of which
have been discovered by Ladd (1883), such as symmetry and free transposition; we feel that, after the publication
of Ladd’s thesis, the community of logicians has not explored that relation as deeply as they should have done.

32Ladd and Mitchell were both supervised by Charles Sanders Peirce, the most important and influential
American logician of the 19th century, and the editor of the book which contains their Doctoral theses, among
others.

33For “⋓”, Mitchell (1883, p. 75) originally adopted the syntax “(b + c)1”; for “̸ ⋓”, he (p. 97) adopted
the syntax “(b + c)q”. Mitchell also made use of Ladd’s relations “⋒” and “̸⋒”, though he adopted the syntax
“(bc)u” and “(bc)0”, respectively (pp. 75,97), where “u” means “at least one in the universe of discourse (I)”.
Decades earlier than Mitchell, De Morgan (1846, p. 381)(1847, pp. 60-61) had presented all the 8 relations of
the extended Aristotelic syllogistic. McColl (1877, p. 184) also had mentioned the categorical relations which
later became the focus of Mitchell’s investigation. More than a century after Mitchell, Dekker (2015) explored
De Morgan’s syllogistic and adopted “x” and “y” for “⋓” and “̸⋓”, respectively.
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pp. 11-12), although with their meanings exchanged. As he noticed, Leibniz in a sense
anticipated later researchers (such as Ladd) in understanding the importance of the
relations “⋒” and “̸⋒” for logic, through his notions of “communicating” and “incommu-
nicating” terms and a few theorems he enunciated which employ these notions (Leibniz,
ca. 1686b)(Leibniz, ca. 1686d, pp. 268–269)(Leibniz, ca. 1686f)(Lenzen, 2014)(Lewis,
1918, pp. 17-18). However, unlike Ladd’s, Leibniz’s approach is pre-symbolic: he did
not dedicate any specific logical symbol to represent these complementary relations.

In the preface to the book he edited, Peirce (1883, p. v) remarks (annotations are
ours):

«Miss Ladd and Mr. Mitchell also use two signs expressive of simple relations involving
existence and non-existence; but in their choice of these relations they diverge both from
McColl and me, and from one another. In fact, of the eight simple relations of terms
signalized by De Morgan, Mr. McColl and I have chosen two (“⊆” vs. “⊈”), Miss Ladd
two others (“ ̸⋒” vs. “⋒”), Mr. Mitchell a fifth and sixth (“⋓” vs. “ ̸⋓”). (Missing: “⊇” vs.
“⊉”, the converse relations to “⊆” and “⊈”, respectively.) The logical world is thus in a
situation to weigh the advantages and disadvantages of the different systems.»

For each row, the representations in Tables 1b and 1a correspond as follows:

• Representation with “E”/“̸⋒” or “I”/“⋒” (highlighted in Table 1b): relation in
terms of intersection and “∅∅∅” (highlighted in Table 1a). (These represent the
inhabitation/emptiness mark in the appropriate minterm of the respective Venn
diagram in Figure 3.)
• Representation with “Ë”/“⋓” or “Ï”/“̸⋓”: relation in terms of union and “I”.
• Representation with “Ä”/“⊇” or “Ö”/“⊉”: relation in terms of intersection and

predicative (in both sides), or union and subject (in both sides).
• Representation with “A”/“⊆” or “O”/“⊈”: relation in terms of union and pred-

icative (in both sides), or intersection and subject (in both sides).
• The representations which mnemonically correspond to plain symbology are

highlighted in the respective rows of Tables 1b and 1a.

Thus the 17th and 19th centuries gifted us with distinct systems of logic in their
genesis which, once integrated and harmonized, are actually complementary points of
view of the same algebra of term logic (Moktefi, 2019)34:

• Diagrammatic (Leibniz, Venn, Carroll): Euler, Venn, and Carroll diagrams;
• Equational (Leibniz, Boole, Jevons, Cayley): =, ̸=;
• Subsumptive (McColl, Peirce): ⊆, ⊈, ⊉, ⊇;
• Semicomplementary (Ladd, Mitchell): ⋒, ̸⋒, ̸⋓, ⋓.

After translating to relation algebra notation, the “converse representation” column
from Table 1b becomes:

• Ĭ = I

• Ĕ = E

• Ŏ = Ö
• Ă = Ä

• Ö̆ = O

• Ä̆ = A

• Ï̆ = Ï
• Ë̆ = Ë.

34Jevons argued that the relation “=” is the most fundamental one. Peirce (1870, p. 2) argued instead that
“⊆” is more fundamental than “=” – McColl (1877, p. 177) would likely agree. And Ladd claimed the primacy
of “⋒” (and “ ̸⋒”). For Leibniz’s views, see Malink and Vasudevan (2019, pp. 28-33). We are free to be agnostic
and consider them as complementary viewpoints that shed light on different aspects of the same term logic.

16



Catego-
rical

relation

In terms of
intersection

and ∅∅∅

In terms
of union
and I

In terms of
intersection
and subject

In terms of
union and
subject

In terms of in-
tersection and

predicative

In terms of
union and
predicative

b I c
bc ̸= ∅∅∅ b′∪c′ ̸= I bc′ ̸= b b′∪c ̸= b′ b′c ̸= c b∪c′ ̸= c′

bc ⊃ ∅∅∅ b′∪c′ ⊂ I bc′ ⊂ b b′∪c ⊃ b′ b′c ⊂ c b∪c′ ⊃ c′

bE c
bc = ∅∅∅ b′∪c′ = I bc′ = b b′∪c = b′ b′c = c b∪c′ = c′

bc ⊆ ∅∅∅ b′∪c′ ⊇ I bc′ ⊇ b b′∪c ⊆ b′ b′c ⊇ c b∪c′ ⊆ c′

bO c
bc′ ̸= ∅∅∅ b′∪c ̸= I bc ̸= b b′∪c′ ̸= b′ b′c′ ̸= c′ b∪c ̸= c
bc′ ⊃ ∅∅∅ b′∪c ⊂ I bc ⊂ b b′∪c′ ⊃ b′ b′c′ ⊂ c′ b∪c ⊃ c

bA c
bc′ = ∅∅∅ b′∪c = I bc = b b′∪c′ = b′ b′c′ = c′ b∪c = c
bc′ ⊆ ∅∅∅ b′∪c ⊇ I bc ⊇ b b′∪c′ ⊆ b′ b′c′ ⊇ c′ b∪c ⊆ c

bÖ c
b′c ̸= ∅∅∅ b∪c′ ̸= I b′c′ ̸= b′ b∪c ̸= b bc ̸= c b′∪c′ ̸= c′

b′c ⊃ ∅∅∅ b∪c′ ⊂ I b′c′ ⊂ b′ b∪c ⊃ b bc ⊂ c b′∪c′ ⊃ c′

bÄ c
b′c = ∅∅∅ b∪c′ = I b′c′ = b′ b∪c = b bc = c b′∪c′ = c′

b′c ⊆ ∅∅∅ b∪c′ ⊇ I b′c′ ⊇ b′ b∪c ⊆ b bc ⊇ c b′∪c′ ⊆ c′

b Ï c
b′c′ ̸= ∅∅∅ b∪c ̸= I b′c ̸= b′ b∪c′ ̸= b bc′ ̸= c′ b′∪c ̸= c

b′c′ ⊃ ∅∅∅ b∪c ⊂ I b′c ⊂ b′ b∪c′ ⊃ b bc′ ⊂ c′ b′∪c ⊃ c

bË c
b′c′ = ∅∅∅ b∪c = I b′c = b′ b∪c′ = b bc′ = c′ b′∪c = c
b′c′ ⊆ ∅∅∅ b∪c ⊇ I b′c ⊇ b′ b∪c′ ⊆ b bc′ ⊇ c′ b′∪c ⊆ c

(a) Algebraic representations of categorical relations with identity and non-identity.
Catego-

rical
relation

Plain
symbol-

ogy:
b ? c

Comple-
mented

represen-
tation:
∼(b ? c)

Obverse
represen-
tation:
b ? c′

Reverse
represen-
tation:
b′ ? c

Inverse
represen-
tation:
b′ ? c′

Converse
represen-
tation:
c ?b

Contra-
positive
represen-
tation:
c′ ?b′

b I c b ⋒ c ∼(b ̸⋒ c) b ⊈ c′ b′ ⊉ c b′ ̸⋓ c′ c ⋒ b c′ ̸⋓ b′

bE c b ̸⋒ c ∼(b ⋒ c) b ⊆ c′ b′ ⊇ c b′ ⋓ c′ c ̸⋒ b c′ ⋓ b′

bO c b ⊈ c ∼(b ⊆ c) b ⋒ c′ b′ ̸⋓ c b′ ⊉ c′ c ⊉ b c′ ⊈ b′

bA c b ⊆ c ∼(b ⊈ c) b ̸⋒ c′ b′ ⋓ c b′ ⊇ c′ c ⊇ b c′ ⊆ b′

bÖ c b ⊉ c ∼(b ⊇ c) b ̸⋓ c′ b′ ⋒ c b′ ⊈ c′ c ⊈ b c′ ⊉ b′

bÄ c b ⊇ c ∼(b ⊉ c) b ⋓ c′ b′ ̸⋒ c b′ ⊆ c′ c ⊆ b c′ ⊇ b′

b Ï c b ̸⋓ c ∼(b ⋓ c) b ⊉ c′ b′ ⊈ c b′ ⋒ c′ c ̸⋓ b c′ ⋒ b′

bË c b ⋓ c ∼(b ̸⋓ c) b ⊇ c′ b′ ⊆ c b′ ̸⋒ c′ c ⋓ b c′ ̸⋒ b′

(b) Equivalent relational representations of each categorical relation with a single term on each
side of a single relation symbol.

Table 1.: Algebraic and relational representations of categorical relations.

These converse representations can be employed to transform categorical syllogisms
in De Morgan’s syllogistic into “perfect”, composition-friendly syllogisms in the “first”
figure.

Table 1a shows that at least one representation is available for each of the 8 categor-
ical relations which avoids dealing with the complementation operation; we just have
focus on this sublattice of the Boolean lattice generated by the atoms {b′c′, b′c, bc′, bc}
and structured by the {∩,∪} operations:

∅∅∅ ⊆ bc ⊆ {b, c} ⊆ b ∪ c ⊆ I
This partial order is also displayed by means of a Hasse diagram in Figure 7. The

representations using only the elements of that Hasse diagram and the “⊆” relation (or
its converse, “⊇”, to put the isolated term on the right for uniformity) are in Table 2.

It is interesting to notice that what are often (and controversially) called for
some reason the three (or four) “laws of thought”35 (Ladd Franklin, 1890, pp. 86-

35Various other fundamental laws of classical logic are enumerated in Section 8.2.1.
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Ö
Ä
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Figure 7.: A sublattice of the Boolean lattice generated by the atoms {b′c′, b′c, bc′, bc}
where complementation is not employed.

87,77)(Peirce and Ladd-Franklin, 1901)(Leibniz, ca. 1679)(Ladd, 1883, p. 31)(Richeri,
1761, p. 48)(Leibniz, ca. 1686d, p. 259, point 8; p. 261, point 3) are just different
representations of “bAb and bÄb”, as shown in Table 3.

From Table 3, and by looking up in Table 1b which plain relation corresponds to
the contrapositive or converse representation, we can also see that

(1) b and c are identical36 (b = c) if and only if bA c (b ⊆ c) and bÄ c (b ⊇ c).
(2) b and c are complementary (c = b′) if and only if bE c (b̸⋒c) and bË c (b⋓c).
(3) b and c are simultaneously identical and complementary (b = c = b′) if and only

if the universe is empty (I = ∅∅∅)37, and thus in such a special case everything
degenerates into emptiness (monovalent algebra).

Finally, we can combine the symbolic and diagrammatic notations (Venn diagrams)
to draw a logical “hexagon” that highlights mutually contradictory relations (Figure 8).
Red bidirectional arrows in a straight line indicate mutual contradiction, whereas
black unidirectional arrows indicate implication. Moreover, “b=∅∅∅” is equivalent to

36By employing Boolean algebra laws, Jevons (1864, pp. 42-43, points 112-113) offers an interesting proof
that positive identity entails negative identity and vice-versa (b = c |=| b′ = c′). Leibniz offered an elegant
(and simpler) proof by using only interchangeability of identicals and involution of complementation (Leibniz,
1690a, point 11)(Lenzen, 2018b, p. 266).

37To prove this we also assume idempotence of juxtaposition/∩ and ∪.

Relation Extracted from the Sublattice relation(s), Respective re-
sublattice relation(s) rewritten (⊆/⊇) presentation(s)

b I c ∅∅∅ ⊆ bc bc ⊇ ∅∅∅ bc ⊃ ∅∅∅
bE c bc = ∅∅∅
bO c

bc ⊆ b, c ⊆ b∪c bc ⊆ b, b∪c ⊇ c
bc ⊂ b, b∪c ⊃ c

bA c bc = b, b∪c = c

bÖ c
bc ⊆ c, b ⊆ b∪c bc ⊆ c, b∪c ⊇ b

bc ⊂ c, b∪c ⊃ b
bÄ c bc = c, b∪c = b

b Ï c
b∪c ⊆ I b∪c ⊆ I

b∪c ⊂ I
bË c b∪c = I

Table 2.: Representations avoiding class complementation.
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Identity laws:

Plain symbology
b ⊆ b, b ⊇ b
Positive identity
(“Identity”)

Inverse representation
b′ ⊇ b′, b′ ⊆ b′

Negative identity
(Usually omitted)

Complementarity/
Contradiction laws:

Obverse representation
b ̸⋒ b′, b′ ̸⋒ b
Disjointness
(“[Non-]Contradiction”)

Reverse representation
b′ ⋓ b, b ⋓ b′

Exhaustion
(“Excluded third”)

Table 3.: “Laws of thought”: variant forms of «bAb, bÄb» according to the bA c and
bÄ c rows (where c← b) from Table 1b (Ladd Franklin, 1890, pp. 86-87,77).

“b⊆c |∧| b ̸⋒ c”, and “b ̸=∅∅∅” is equivalent to “b⋒c |∨| b⊈c”.

5. Replacement and inference rules

In the description of each algebraic system, we make the axioms explicit. As a pedantic
remark in the interest of precision, we describe here the replacement and inference rules
adopted by the algebraic systems discussed in this paper.

An inference rule they assume is substitution of equivalent expressions38. If we know
that expr1 = expr2, then we can replace expr1 for expr2 (or vice-versa) anywhere the
other expression appears:

expr1 = expr2, rel |= rel[expr2 ← expr1]
For instance, suppose that (bc)d = fg and (fg)h ̸= j; then ((bc)d)h ̸= j.
In particular, by making rel = expr2 ? expr3, where “?” is a dyadic relation39:
expr1 = expr2, expr2 ? expr3 |= expr1 ? expr3
(From which the transitivity of “=” is straightforwardly derived40.)
Specializing it even more, we obtain Leibniz’s principle of interchangeability of iden-

ticals (Leibniz, ca. 1686f, p. 94, Definitio 1)(Forrest, 2020) (Boole, 1847, p. 18)(Jevons,
1864, pp. 16-18):

x1 = x2, f(x2) = y |= f(x1) = y
or, more succinctly,
x1 = x2 |= f(x1) = f(x2)
Another applicable inference rule is substitution of placeholder terms: if we take any

axiom or theorem having the term x as a “generic” placeholder (where it is explicitly

38An informal, example-driven treatment is given by Jevons (1864, pp. 9{point 23},18-19,27).
39Jevons –the modern founder of what we nowadays call “Boolean algebra”, which differs in some key aspects

from Boole’s original algebra (Hailperin, 1986, pp. 61,82-83,119-121,139-140)(Lewis, 1918, pp. 74,78)– called
this specialized rule the “law of sameness”, “substitution of equals” or “substitution of similars” (Jevons,
1869, pp. V,16-27)(Jevons, 1864, pp. 7-13,29-30,41; pp. 53-54, point 138; pp. 73-74, point 172)(Lewis, 1918,
p. 75)(Malink and Vasudevan, 2019, pp. 28-33).

Years before Jevon’s inference adopted a generic, arbitrary dyadic relation which we have designated by “?”,
Boole (1847, p. 18), likely repeating Whately (Jevons, 1869, p. 74), discussed more specialized versions of this
3-expression inference rule, in which the concrete relations “=” and “ ̸=” instantiate the generic relation.

40Two other notable properties of “=” –as it is an equivalence relation– are symmetry (which we use in
many of our proofs) and reflexivity (which we didn’t need to employ in any occasion). Symmetry, reflexivity and
transitivity of the “=” relation were explicitly stated in logic by Jevons (1864, pp. 9-11, points 22,24,27). More
than two millennia earlier, Euclid of Alexandria (ca. 300 BCE) explicitly stated reflexivity and transitivity
(though not symmetry) of “=” through his “common notions” 4 and 1, respectively, and also stated some
corollaries of the principle of interchangeability of identicals through his “common notions” 2 and 3.
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Figure 8.: A logical “hexagon” (which almost looks like a “cube” due to optical illusion)
showing the categorical relations b I c, bO c, bA c, and bE c, in the absence of exis-
tential import for universal ones.

or implicitly understood that it is universally quantified) and replace it by the term or
expression w –in effect, a relabelling, which we are always free to do41, as long as we
consistently do it for all occurrences of x –, the result will also be true:

x← w |= rel[x← w]
For instance, as we will see later, the Leibniz-Cayley system has the axiom bc = cb;

a consequence is that bm = mb, by consistently relabelling c as m.
More generally, this can be done with various placeholder terms at once42:
x← w, z ← y, ..., q ← p |= rel[x← w, z ← y, ..., q ← p]
Another inference rule we adopt is modus ponens, implication elimination or detach-

ment43:
(r1 |= r2) |,| r1 ||= r2.
For instance, the Leibniz-Cayley system has the axiom bc ̸= ∅∅∅ |= b ̸= ∅∅∅. Thus, in

the cases where we know that bc ̸= ∅∅∅, we are justified in deducing b ̸= ∅∅∅.

41This is analogous to α-conversion in λ-calculus (Church, 1932, p. 355, postulate I).
42On the other hand, in general we cannot replace a term for a generic placeholder expression, even if we

do it consistently. For instance:
(bc)b = bc (Universally true.)

d b = d {d← bc} (Not true in general!)
43Or its generalization, the cut rule.
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In summary, the only inference rules we need are are substitution of equivalent
expressions, substitution of placeholder terms, and modus ponens.

In the proofs that follow, all required proof steps are made explicit; no shortcuts are
taken.

6. Leibniz-Cayley (LC) system

6.1. Leibniz-Cayley system representations

The representations of categorical assertions in the Leibniz-Cayley system make use
only of one dyadic operation (which we interpret as intersection), one monadic opera-
tion (complement), two dyadic relations (equality, difference), and one constant object
(the empty class). The following representations of fundamental categorical assertions
are favored in the Leibniz-Cayley system as we define it:

A Every b is c. bc = b

E
No b is c.
(Every b is not-c.) bc′= b

I At least one b is c. bc ̸= ∅∅∅

O
At least one b is not c.
(At-least-one b is not-c.) bc′ ̸= ∅∅∅

∗ At least one b exists.
(b is-not empty.) b ̸= ∅∅∅

By means of the “substitution of similars” inference rule (Section 5) –and with no
need of any axiom–, these representations straightforwardly lead to the “subalternation
laws” from traditional Aristotelic logic when the subject term is inhabited:

bc = b, b ̸= ∅∅∅ |= bc ̸= ∅∅∅
bc′= b, b ̸= ∅∅∅ |= bc′ ̸= ∅∅∅.
Leibniz has the merit of being the earliest logician we could find to algebraically

represent the universal assertions as we do here, and came very, very close to repre-
senting particular assertions in the LC fashion, as we will show in the next paragraphs.
His various strategies for representing particular assertions are very insightful: a short
summary is made by Brown (2012, p. 165), and further comments are made by Lewis
(1918, p. 15) and Malink and Vasudevan (2016, pp. 691-692). In 1871, Cayley devised a
proper way of representing particular assertions by means of non-identity relations with
respect to “∅∅∅” (Cayley, 1871)(Valencia, 2004, p. 473), in a break with his predecessor
Boole (1847).44.

Leibniz offered algebraic representations of categorical assertions in various drafts45.

44In 1870 –one year before Cayley–, Peirce (1870, pp. 57-58), in a minor remark in the context of his paper,
proposed representing particular categorical assertions such as “At least one b is c.” as “bc ⊃ ∅∅∅”. Cayley
represented it instead as “bc ̸= ∅∅∅”. So, Peirce deserves the credit of providing before Cayley a proper way of
representing particular assertions by means of comparison relations involving “∅∅∅”. We found no evidence that
Cayley was aware of Peirce’s discovery when he published his paper.

We prefer to adopt Cayley’s representation here because for this section we want a system with only “=”
and “ ̸=” (coincidence and non-coincidence), not “⊆”, “⊃”, or other super-/sub-classhood relations. In addition,
we feel it is fair to pay special homage to Cayley in the Leibnizian research program on term logic because his
paper, unlike Peirce’s, adopts as its central concern the algebraic representation of classic categorical assertions.

45In his research over decades, Leibniz toyed with various attempts of logical systems. As a faithful Aris-
totelic logic traditionalist, he gave preference to constructing an intensional logic of concepts rather than an
extensional logic of classes (a preference later shared by Frege, who invented a brand of quantificational logic
that modelled concepts as Boolean-valued functions – which he employed to enunciate his Basic Law V that
inspired the discovery of Russell’s paradox and led to intense research towards axiomatic set theory, type
theory, lambda calculus and combinatory logic) and often assumed existential import. (These are interesting
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In a representative draft, Leibniz (1690b, pp. 235-236) wrote (the symbolic decoding
highlighted inside square brackets are ours):

«(5)A ∞ non non A. [a = (a′)′]
[...]
(7) AB ∞ BA [ab = ba].
[...]
(12) Coincidunt A ∞ AB et non B ∞ non B non A.
[a=ab |=| b′=b′a′]
(13) [...] Universalis affirmativa [aAb:] sic exprimi potest:
A ∞ AB [a = ab] [...]
Particularis affirmativa [a Ib:] sic:
[...] AB est Ens [I⟨ab⟩] [...] vel [or]
A non∞ A non B [a ̸= ab′].
Universalis negativa: Nullum A est B [aEb:], sic:
[...] A ∞ A non B [a = ab′] seu [or] AB est non Ens [I⟨ab⟩].
Particularis negativa: Quoddam A est non B [aOb:],
A non∞ AB [a ̸= ab], vel [or] A non B est Ens [I⟨ab′⟩]. [...]»

In Leibniz’s era, the symbols “∞” and “=” were adopted by different authors to
represent the equality relation; Leibniz adopted the former convention. For our mod-
ern “ ̸=” he adopted “non∞”46. In both sides of each (in)equation, literal symbols,
accompanied or not by a negation particle (“non”), are employed. In contrast, in other
important points of this excerpt, Leibniz consciously adopted the expressions “est Ens”
and “est non Ens” after literal symbols. This is strong evidence that by “[non]∞” and
“est [non] Ens” Leibniz meant distinct relations in this and some other excerpts of his
drafts. In our interpretation, Leibniz adopted “est Ens” (“is an entity”47) to indicate

features on their own, however they are not within the scope of this paper.) He was a 17th-century rationalist
Germanic/continental logician concerned with organized concepts or ideas, not a 19th-century British logician
committed to working with arbitrarily formed extensional classes (Lewis, 1918, p. 14,35-37). He also drew
symbolic treatment parallels of term logic and propositional logic –anticipating Boole (1847)–, and dealt with
some notions of modal logic.

There is no single manuscript where Leibniz does everything the way we want. A typical situation is that, in
a manuscript, Leibniz often has an insight that represents a progress towards our desired end stage, and then,
after not having completed the entire puzzle, backtracks to try another direction, undoing the progress towards
what we want. Then in another manuscript he documents another important insight, but does not combine it
with a good insight he previously abandoned. It was state-of-the-art research at that age. He invents virtually
all the required pieces of our puzzle, but the pieces are scattered across different boxes and in each box they
are mixed with pieces that are incompatible to our puzzle. In fairness, he wasn’t trying to achieve exactly
our goals. But this means that, in order to understand how Leibniz contributed so much to the extensional
algebra of categorical syllogisms involving classes which lack existential import by default, we are forced to
cherry-pick particularly noteworthy passages from his drafts, ignoring much of the original context surrounding
those snippets, and assemble excerpts from different drafts to bring a Frankenstein’s monster alive, adopting
our 21st-century prejudices as a guide to picking and choosing and combining.

A quote mining exercise does not make a sound historical research, however. The reader is warned that
Leibniz’s drafts as a whole are far more nuanced than the details we focus on: the real Leibniz the logician is
far richer in insights and thoughts than our “extensional Leibniz” (Lewis, 1918, pp. 13-14). (The same can be
said about our convenient quotations from other early symbolic logicians, such as Jevons, Ladd and Mitchell.)
Fortunately, professional historians of logic have plenty of rich material to explore and comment on all the
nuances of the real Leibniz for many decades to come.

Nevertheless, even our impoverished, extensional Leibniz is enough for us to appreciate how prolific Leibniz
was as a source of great insights. We provide strong evidence that Leibniz is a tremendously skilled founding
master of the algebra of logic. Indeed, every time we revisit Leibniz’s drafts, the master teaches us something
new about logic which we passed over in previous readings.

46The employment of symbols which are nowadays nonstandard was not unusual up to the 19th century.
For instance, in Robert Grassmann’s treatise on Logic (1872, p. 8), the symbol “≷” –a combination of “>” and
“<” (Grattan-Guinness, 2000, p. 158)– was employed instead of “ ̸=” to represent non-equality.

47The literal translation of [la] “ens” is [pt,es,it] “ente”, [en] “entity”.
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that its subject was an inhabited term, and “est non Ens” (“is a non-entity”) to indi-
cate that its subject was a non-inhabited (that is, extensionally empty) term. These
are monadic relations, which we respectively represent in symbolic notation by “I⟨s⟩”
and “I⟨s⟩”48.

In this excerpt, Leibniz correctly proposed the following representations49:

• aAb: a = ab
• aEb: a = ab′; I⟨ab⟩
• a Ib: a ̸= ab′; I⟨ab⟩
• aOb: a ̸= ab; I⟨ab′⟩.

Leibniz didn’t mention in this particular excerpt “I⟨ab′⟩” as an alternative repre-
sentation for “aAb”, although he fixed this omission in other drafts (ca. 1691a; ca.
1691b). Also noteworthy is that he didn’t shy away of using the “ ̸=” relation in the
representation of particular categorical assertions, unlike Boole (1847, pp. 21–22) more
than 150 years later, who only attempted to represent all categorical assertions with
equations (using “=”).

As we can see, in this short excerpt Leibniz identified the importance of the term
combination/intersection and complementation operations, the equality/coincidence
(“∞”) and difference/non-coincidence (“non∞”) relations, the involution of comple-
mentation (a=(a′)′), the commutativity of intersection (ab=ba), inhabitation (“Ens”)
and non-inhabitation/emptiness (“non-Ens”, nonexistent, in a loose, non-literal trans-
lation50).

Later, Cayley (1871) proposed the following representations51:

• aAb: ab′=∅∅∅
• aEb: ab = ∅∅∅
• a Ib: ab ̸= ∅∅∅
• aOb: ab′ ̸=∅∅∅.

Notice that Leibniz’s monadic relations “I⟨s⟩” and “I⟨s⟩” respectively correspond52

In some manuscripts, e.g. (Leibniz, ca. 1686e, pp. 391-395, points 144-146,148-155,165,167-169,171), Leibniz
adopts the word “res” (“thing”) rather than or in alternation with “Ens” (“entity”). Sometimes, e.g. (Leibniz,
ca. 1686e, pp. 398-399, points 199-200), Leibniz simply adopts “est” (“is”) rather than “est Ens”, and “non est”
(“is not”) rather than “est non Ens”.

48We chose the character “I” for this monadic relation because it is the initial character of
“Inhabitātus”/“Inhabited” and also the vowel corresponding to the particular affirmative categorical dyadic
relation “I”, ensuring that “b I c |=| I⟨bc⟩”. The complement of “I” is the monadic relation “I”. One may
think of “I” and “I” by the mnemonics “is” and “is not” in English, respectively.

Almost two centuries after Leibniz, Ladd (1883, pp. 29-30)(Venn, 1883, p. 598) reinvented these monadic
relations by employing the representations “s⋒” and “ s̸⋒” to respectively stand for “s ⋒ I” and “s ̸⋒ I”. If one
asserts some thing exists (does not exist), then one asserts it exists (does not exist) within the universe.

49The highlighted symbolic encodings are the ones we would select for a pure Leibniz’s system, since they
would fit the axioms enumerated in Section 6.2.

50Ramon Llull (1993, p. 162), a major intellectual influence on the young Leibniz, wrote the following on
the contrast between “Ens” and “non-Ens” and the power of imagination:

“Si extra intellectum nullum non ens est ens, solus intellectus facit non ens.”
“As there is no non-being outside of the intellect, then only intellect creates non-being.”
(Literally: “If outside the intellect no non-entity is [an] entity, only intellect makes [a] non-entity.”)
51The highlighted algebraic encodings of particular categorical assertions are the ones we have selected for

the Leibniz-Cayley system instead of Leibniz’s relational representations of particular categorical assertions.
52Of course, here we are projecting our 21-century extensional goals on Leibniz’s excerpts. Leibniz was

actually dealing with modal logic concepts when he was talking about “est Ens” and variants according to
Lenzen (1987, p. 5):

«[...] there is abundant textual evidence to show that at least as applied to terms, i.e. to concepts, Leibniz
always uses ‘est Ens’ as synonymous with ‘est Possibile’ [...]. Accordingly ‘est non-Ens’ means the same
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to Cayley’s dyadic relations “s ̸= ∅∅∅” and “s = ∅∅∅”. Moreover, notice that all of Cayley’s
representations are about either the emptiness or the inhabitation of some combination
of terms.

We will show that a pure Leibniz’s system –which adopts Leibniz’s algebraic rep-
resentations for universal categorical assertions and Leibniz’s monadic relational rep-
resentations for particular categorical assertions, together with taking as axioms some
laws stated by Leibniz, which are enumerated in Section 6.2– suffices to prove all 24
categorical syllogisms (see the proofs in Section 6.3). For this narrow purpose, Cayley’s
(1871) representations of the fundamental categorical assertions are superfluous.

Nevertheless, the Leibniz-Cayley system adopts Cayley’s algebraic representations
(with “ ̸=∅∅∅”) for particular categorical assertions rather than Leibniz’s monadic rela-
tional representations (with “I”) because: we prefer to construct a system with only
(in)equations rather than a hybrid algebraic/relational system; it makes it easier to al-
gebraically justify the axiom LC3 (Section 6.2); and, more importantly, because LC3 in
the representation adopted by LC (rather than as represented a pure Leibniz’s system)
is straightforward to prove as a theorem in Boolean algebra (Section 8.2.2).

Unfortunately, Leibniz chose to keep the note containing that key excerpt as a private
draft, perhaps feeling his system hadn’t yet achieved far enough results to his liking;
it was published only in 1903 by the diligent editor Couturat (1903), decades after the
results of Boole (1847, p. 21) and Cayley (1871), taken in combination, were published
containing the algebraic representations of categorical assertions in the LC system53.

as ‘non est Ens’ or ‘est impossibilis’ [...].
[...]
[...] on the whole, there is overwhelming evidence showing that Leibniz expresses the possibility-

operator ‘A est possibile’ equally by means of ‘A est Res’, ‘A est Ens’ or even ‘A est ’. [...]»

Lenzen (2004b, p. 94) reinforces this assertion of the synonymy of “est”, “est Ens”, “est res” and “est possibile”,
and he complements the previous quote with a short commentary (2004a, p. 74) on some metaphysical goals
to which Leibniz applied his brand of modal reasoning.

Reinforcing this preference for a logic of possibility over a logic of actuality, Leibniz also justified the validity
of “conversion by limitation (per accidens)” (an Aristotelic logic law akin to “subalternation”) in terms of
possibility (Leibniz, ca. 1691a, p. 101)(Leibniz, ca. 1691b, p. 211-212).

We bother providing our unorthodox interpretation because our goal is to extract from Leibniz’s manuscripts
concepts and tools that lead us to our modern algebra of categorical syllogisms rather than understanding
Leibniz’s logic on its own terms.

53We stress that Cayley explicitly called attention to the correspondence between “a Ib” and “ab ̸= ∅∅∅”,
and that of “aOb” and “ab′ ̸= ∅∅∅”. Leibniz arguably pioneered such correspondences only for those –e.g.
Couturat (1901, p. 358, point 17), Marciszewski (1984, pp. 527,532) and Sotirov (1999, p. 199)– who perform a
reconstruction of his logic that treats “est” as synonym to “aequivalent” (“=”), “non-Ens” as the empty class,
and forces the leap “est Ens |=| non est non-Ens” for particular categorical assertions, which Leibniz didn’t
perform in the drafts we consulted∗.

Both Boole and Cayley algebraically represented “bE c” as “bc=∅∅∅”. In Boolean algebra (Section 8.2.1), we
can derive the LC representation as follows:

bc = ∅∅∅ |= bc ∪ bc′ = ∅∅∅ ∪ bc′ |=| b(c ∪ c′) = bc′ |=| bI = bc′ |=| b = bc′.
And the converse:
b = bc′ |= bc = (bc′)c |=| bc = b(c′c) |=| bc = b∅∅∅ |=| bc = ∅∅∅.
Therefore,
bc = ∅∅∅ |=| b = bc′.
(∗) It is easy to be misled because the copular verb “est” is polysemous. Leibniz himself took advantage

of –and sometimes was confused (Lenzen, 2018a, pp. 67-68,74) by– the reuse of “est” with different meanings
(Levey, 2011, pp. 118-119)(Lenzen, 1986)(Rescher, 1954, pp. 4,9).

Regarding uses of “est Ens” with distinct meanings, Leibniz on some occasions explicitly employed “Ens”
and “Nihil” (“nothing”/“empty”) as complementary, such as in the following excerpt on metaphysics, discussed
in detail by Koszkało (2017, pp. 14-16):

“Essentia ablata existentia aut est ens reale aut nihil. Si nihil, aut non fuit in creaturis, quod absurdum; aut
non distincta ab existentia fuit, quod intendo.”

(“Essence taken away from existence is either a real entity or nothing. If it is nothing, either it was not
in creatures, which is absurd; or it was not distinct from existence, which I intend.”)
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This historical accident might lead to the impression that the tradition of the al-
gebra of logic was pioneered by Boole in the chronology of publications, if not in the
chronology of ideas. However, some other drafts on logic by Leibniz were published
in a book (Erdmann, 1840) years before Boole’s 1847 pioneering treatise on logic. In
particular, a draft by Leibniz (ca. 1691a; ca. 1691b) contained the following excerpt
(the symbolic decoding highlighted inside square brackets is ours):

«Reductio mea vetus talis fuit:
Universalis Affirmativa: Omne A est B [aAb:], id est aequivalent AB et A [ab = a]

seu [or] A non B est non-Ens [I⟨ab′⟩].
Particularis Negativa: Quoddam A non est B [aOb:] seu non aequivalent AB et A

[ab ̸= a] seu [or] A non B est Ens [I⟨ab′⟩].
At Universalis Negativa: Nullum A est B [aEb:], erit AB est non-Ens [I⟨ab⟩].
Et Particularis Affirmativa: Quoddam A est B [a Ib:], erit AB est Ens [I⟨ab⟩].
[...] aequivalent AB et BA [ab = ba]. [...]»

Unlike the previous excerpt, here Leibniz didn’t adopt the symbols “∞” and “non∞”,
preferring instead to write “aequivalent” and “non aequivalent” in full. Notice that,
again, before “Ens” and “non-Ens” he adopted neither “∞” nor “aequivalent”, but the
verb “est”, certainly to stress the distinction between the [in]equality relation and the
relation indicated by “est [non-]Ens”.

In this excerpt, Leibniz correctly proposed the following representations49:

• aAb: ab = a; I⟨ab′⟩
• aEb: I⟨ab⟩
• a Ib: I⟨ab⟩
• aOb: ab ̸= a; I⟨ab′⟩.

For our purposes, in this excerpt Leibniz only missed the representation of “aEb”
that would be required for a pure Leibniz’s system compatible with the axioms in Sec-
tion 6.2: “ab′=a”. But the main point is that Leibniz’s research program on categorical
syllogistic, some algebraic representations and laws, and some attempts at a complete
system for proving all the classic categorical syllogisms had already been published –by
the editor Erdmann (1840)– years before Boole’s 1847 book. This excerpt alone would
suffice, in our view, to establish Leibniz as the founding master of the algebra of logic
in the chronology of publications too – and not only in the chronology of ideas.

It is also worth it to point out that, despite doing his research almost two centuries
earlier, Leibniz went farther than Boole (1847) towards LC in this excerpt. He correctly
identified a proper use of “ ̸=” in term logic (for instance, aOb: ab ̸=a, as the quote
shows), whereas Boole only employed “=” in his logic.

In other excerpts where Leibniz gets it wrong (from the perspective of extensional
term logic without existential import) by employing “= an inhabited term” instead of
“ ̸=∅∅∅”, Boole miserably fails in the same way: Leibniz sometimes employed the letter
“Y”, “Z” or “W” to stand for a not-yet-determined class –e.g. in (Leibniz, 1690b, p. 234;

We can also exercise our creativity and explore the polysemy of “est” by performing the following loose (and
historically inaccurate) interpretations:

Leibniz, Ladd McColl, Cayley

Universal bc «non est [Ens]».
«...»

I⟨bc⟩, bc
«...»

̸⋒I bc « est» non-Ens. bc

«...»

⊆∅∅∅, bc
«...»

=⊆∅∅∅

Particular bc « est [Ens]».
«...»

I⟨bc⟩, bc
«...»

⋒I bc «non est» non-Ens. bc

«...»

⊈∅∅∅, bc
«...»

̸=∅∅∅

Different choices of primary notion: «est Ens» (“exists”) vs. «est» non-Ens (“is empty”).
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p. 236, point 13)–, whereas Boole (1847, pp. 21–22) usually represented an arbitrary
inhabited class by the letter “v”. This corroborates Couturat’s remark (1901, p. 386)
that Leibniz possessed almost all principles of the Boole-Schröder logic, and in some
points he was even more advanced than Boole himself54.

One of the likely reasons why both Leibniz and Boole insisted on employing “=” to
particular assertions was to preserve the validity of the “subalternation” laws55

bA c |= b I c
bE c |= bO c
from Aristotelic logic – after all,
bc′=b |= bc′=v
bc′=b |= bc′=v
make some sense in algebraic reasoning56. (For some supporting evidence, see Leibniz
(1690b, p. 234), Leibniz (ca. 1691b, pp. 213-214), Leibniz (ca. 1691a, p. 102), Couturat
(1901, pp. 358-361, point 18)57, Boole (1847, pp. 21-25) and Jevons (1864, pp. 55,
points 140-141; 57, point 144).)

Boole’s desire to preserve existential import for all categorical assertions58 may have
encouraged him to think of inhabitation as primary and of emptiness (non-inhabitation)
as a derived, subordinate notion in term logic. This seems to be a reasonable and prag-
matic choice of default condition for terms at first sight when we consider, like Aristotle,
that we most often care to reason about existent things in the world, not nonexistent
ones. However, a mathematical fact is that there are infinitely many inhabited classes,
but (extensionally) a unique empty class59: his “v” doesn’t have a well-determined
referent, whereas “∅∅∅” does. Thus, equality (“=”) and difference (“ ̸=”) assertions are
well-defined with “∅∅∅”, but not with “v”. Algebraic manipulations in LC benefit from
this important property of “∅∅∅” by considering emptiness as the primary notion, and
inhabitation as a synonym for non-emptiness, thus subverting our initial disposition

54On the other hand, Leibniz was in hindsight too conservative, clinging too much to the traditional Aris-
totelic paradigm of grammatically inspired term logic. This may seem ironic, given that the algebra of logic
he pioneered would surely be considered by 17th-century logicians a radical innovation in his time, had he
published his drafts – and indeed it was. However, it wasn’t as predominantly symbolic as the 19th-century
tradition initiated by Boole. Even for the algebraic logician Leibniz, logic still was more philosophical than
algebraic, given features such as the handling of many sentences in verbose prose (instead of adopting purely
symbolic representations), his decades-long dedication to the study of the logical meanings of “est” (“is”), the
absence of the insight of dealing with inhabited terms as extensionally non-empty (“non est non Ens”), his
bias toward intensionality and even modality, and the stubborn conservation of existential import for universal
categorical assertions.

55An opinion we share with Marciszewski and Murawski (1995, p. 140).
56In first-order quantificational logic, it corresponds to (an instantiation of) the existential introduction

axiom:
b ∈ P(I) |= ∃v. v ∈ P(I)
where P(I) is the powerclass of I.
57Despite Couturat’s strong stance against existential import of universal categorical assertions.
58Boole (1847, pp. 26-30) embraced “conversion by limitation or per accidens” of “A” into “I” and of “E”

into “O”. This gives rise to difficulties and to a clunky algebraic system for categorical syllogistic, as shown by
Makinson (2022, pp. 168-169,171).

59Leibniz (ca. 1686d, points 15-22,28-30,39) knew this; he enunciated this and other important facts about
the empty class.

Since the origination of axiomatic set theory (if not earlier), the fact that the empty class is unique is stated
as a theorem (with various proofs), not as an axiom.

By the Boolean lattice axioms shown in Section 8.2.1, the empty class is the identity element with respect to
the union operation. One can easily prove that the identity element associated to a dyadic operation is always
unique. See «https://proofwiki.org/wiki/Identity_is_Unique».

It is also easy to prove that the empty class is unique by employing the properties of “⊆”, or alternatively
by employing the extensionality axiom from set theory. See «https://proofwiki.org/wiki/Empty_Set_is_
Unique».
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for considering inhabitation as a primitive notion60. In addition, Boole’s obsession with
equational reasoning may have led him to overlook that, just like “bE c” is contradic-
tory to “b I c”, “bc=∅∅∅” is contradictory to “bc ̸=∅∅∅”, not to “bc= v”. Cayley (1871)
realized what Boole (1847; 1854) overlooked61.

For comparison, if we want to preserve the validity of the subalternation laws in
LC, they would have to be respectively expressed – at the cost of a more complicated
formula, roughly following Venn (1881, pp. 167-168) – as
bc′=b, b ̸= ∅∅∅ |= bc′ ̸= ∅∅∅
bc′=b, b ̸= ∅∅∅ |= bc′ ̸= ∅∅∅.
Alternatively, by transposing the latter premise:
bc′=b |= b ̸= ∅∅∅ |∨| bc′ ̸= ∅∅∅ {where “ |∨|” is the meta-level “or”}.

Thus, we would have to

• adopt a definition of bA c which explicitly adds existential import of the subject
as a constraint (so the definition of bA c would have to be composed of both
left-hand-side premises); and also
• either add existential import of the subject to the definition of bE c –like McColl

(1877, p. 180, rule 18) did62– or abandon existential import of the subject for
the definition of bO c –like Tamaki (1974, pp. 191-192) did. Pick your poison.

Alternatively, we could adopt algebraic definitions for “bA c”, “bE c” and “bO c”
formed by a single premise only, with the consequence that the subalternation “laws”
would no longer be universally applicable, but subject to an additional inhabitation

60Notice that, whereas a purely algebraic treatment with “=∅∅∅” and “ ̸=∅∅∅” requires subverting Aristotle’s
reasonable choice of primary notion, Leibniz’s relation “I” preserves it, as the table in footnote53 shows.

61Leibniz (ca. 1686f, p. 94), and most emphatically Jevons (1864, pp. 2-4,8-13,29-30), in the pamphlet that
founded modern Boolean algebra, anticipated Cayley (1871) in identifying the importance of the negation of
“=” –namely, the “ ̸=” relation– for general deductive reasoning (though not for the representation of particular
categorical relations with “∅∅∅”). Jevons divided relations into:

• affirmative, having the “=” copula meaning “equals”, “extensionally coincides with”, or, in Jevons’ par-
lance, “is the same as”.

• negative, having the “ ̸=” copula meaning “does not equal”, “does not extensionally coincide with”, or “is
not the same as”.

One can intuitively understand Jevons’ point of view, which generalizes two important relations from nu-
merical algebra (Jevons, 1869, pp. 5,8,15-26,73)(Jevons, 1864, p. 7, point 15; p. 6, point 13; p. 86, point 203).
Cayley’s insight, however, is that, in the traditional jargon of categorical syllogistic, sentences with these cop-
ulae don’t correspond to affirmative and negative ones, but respectively to universal and particular ones – an
insight later explained in prose by Venn (1883, p. 596). In categorical syllogistic jargon, “affirmative” versus
“negative” is a distinction in “quality” (in contrast to “quantity”) revealed to be about (predicative) obversion
–with some resemblance to the opposition of qualities in Jevons (1864, p. 83, point 193)–, and thus these
adjectives as used in categorical syllogistic have different meanings from Jevons’ usage.

Indeed, considering yet another distinct meaning, Jevons’ “affirmative” sentences are in another sense al-
ways “negative”, if by “negative” we now mean that they assert a nonexistence stance (b=∅∅∅ / I⟨b⟩) (Jevons,
1864, p. 71, point 167), as Brentano (1874, pp. 283-286)(Land, 1876) later noticed. Likewise, “negative” sen-
tences in Jevons’ sense are in another sense always “affirmative”: they assert something does exist (b ̸= ∅∅∅ /
I⟨b⟩). (Which should be the “primitive/affirmative/default” notion: emptiness/nonexistence (“est Nihil”) or
inhabitation/existence (“est Ens”)? Revisit the table in footnote53.)

Given the three distinct meanings of “affirmative”/“negative”, we should always make it clear which one we
are referring to.

62Storrs McCall (1967, p. 349,347-348) explained that, to go from Barbara-1 to Barbari-1 without adding
any further premise, we should accept the validity of A→I subalternation, which in a symbology from Table 1b
would be
s ⊆ p |= s ⊈ p′

(“est P” est “non est non P”, Boethius’ connexive thesis),
and he discussed the difficulties caused by this.

Hugh McColl (1877, p. 180, rule 18) also embraced this thesis, which entails existential import for universal
categorical assertions.
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constraint for the subject – as we do in this paper.

6.2. Leibniz-Cayley system axioms

In order to prove all the classic categorical syllogisms, we have extracted from Leibniz’s
drafts on logic the following axioms to form LC:

(LC1) bc = cb {commutativity (Leibniz, 1690b, p. 235, point 7)}
(LC2) b(cd) = (bc)d {associativity63}
(LC3) bc ̸= ∅∅∅ |= c ̸= ∅∅∅ {predicative inhabitation64}
(LC4) bc = b |=| c′b′ = c′ {subsumption contraposition (Leibniz, 1690a, point 19)

65}
(LC5) bc′ = b |=| cb′ = c {disjointness conversion66}

The following is a convenient lemma to shorten the proofs of some valid mood/figure
pairs:

(LC6) bc ̸= ∅∅∅ |= b ̸= ∅∅∅
Proof: bc̸=∅∅∅ |=| cb ̸=∅∅∅ |= b ̸=∅∅∅

{subject inhabitation}

Thus, it is fair to say that by the end of 1690 Leibniz had already figured out all
the laws required to work as axioms of an algebraic system of categorical syllogistic –
a research he seriously undertook from at least 1679 (Leibniz, 1679b, pp. 43-44) on67.

Regarding subject inhabitation (LC6) and predicative inhabitation (LC3), each one

63We haven’t found an explicit statement of this law by Leibniz, although he implicitly made use of it in a
proof (Leibniz, ca. 1690, pp. 229-230, Axioma 1). The earliest explicit statement we could find of the associative
law in an algebra is by William Rowan Hamilton (1843, p. 430). In the context of the algebra of logic, it was
explicitly stated by Peirce (1867, p. 251).

64In Leibniz’s manuscripts on logic, we failed to find a direct assertion like
A Nihil = Nihil {a∅∅∅ = ∅∅∅},
although we cannot discard it is present in some form somewhere. Nevertheless, we can deduce it from other

assertions scattered throughout his manuscripts:
a ∪ ∅∅∅ = a (Leibniz, ca. 1686d, p. 267, point 28)
∅∅∅ ∪ a = a {b ∪ n = n ∪ b (Leibniz, ca. 1687, p. 237, Axiom. 1)}
∅∅∅ ⊆ a {a∪y=c |=| a⊆c (Leibniz, ca. 1686d, p. 265, points 9-10)}
∅∅∅a = ∅∅∅ {a⊆b |=| ab=a (Leibniz, 1690b, p. 236, point 13)}
a∅∅∅ = ∅∅∅ {ab = ba (Leibniz, 1690b, p. 235, point 7)}
From this, we can deduce the predicative inhabitation law:

b∅∅∅=∅∅∅ {placeholder relabelling: a← b}
c=∅∅∅ |= bc=∅∅∅ {substitution of similars}
bc ̸=∅∅∅ |= c ̸=∅∅∅ {transposition (from propositional logic)}.
In Leibniz’s original system, which adopts for particular assertions the representations “I⟨s⟩” and “I⟨s⟩”

instead of “ s̸=∅∅∅” and “s=∅∅∅” respectively, we can prove an equivalent law to LC3, though the proof is different.
Unlike LC, Leibniz (ca. 1686c, point 5) assumed existential import of the generating terms: “A est, id est A
est Ens.” (“I⟨a⟩”). Thus,

|= I⟨c⟩ {existential import}
I⟨bc⟩ |= I⟨c⟩ {antecedent introduction before a true consequent}.
In a system like Leibniz’s original one but without existential import, one could simply declare the latter

law as an alternative axiom to LC3 by fiat, diagrammatically justified by Figure 5b, although if we didn’t also
assume “I⟨s⟩ |=| s ̸=∅∅∅”, the axiom would be wanting of a satisfactory algebraic justification. Ladd (1883,
p. 34) also states this law.

65In the representation of categorical assertions by means of single vowels, it corresponds to “A-
contraposition” (bA c |=| c′ Ab′). It symbolically represents contravariance/antitonicity of subclasshood
under complementation.

66In the representation of categorical assertions by means of single vowels, it corresponds to “E-conversion”
(bE c |=| cEb). Leibniz stated that (b′)′ = b, which, together with the LC4 axiom, would suffice to deduce
LC5 as a theorem.

By adopting both subsumption contraposition and disjointness conversion as axioms, we make the involution
law, (b′)′ = b, superfluous for the strict purpose of proving classical categorical syllogisms.

67LC1 and LC2 are two of the three algebraic axioms of semilattices (Section 8.2.1). Interestingly, idempo-
tence (bb = b), which Leibniz (1690b, p. 235, point 6) also explicitly stated, is not required in LC. These three
laws, together with LC3, are the bounded (meet-)semilattice axioms.
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can be proved from the other by using commutativity (LC1). Thus, any of them might
have been chosen as an axiom. The motivation for LC choosing LC3 rather than LC6
is explained in Section 6.4.

Notice that LC didn’t adopt axioms of subalternation:
bc = b |=| bc ̸= ∅∅∅
bc′= b |=| bc′ ̸= ∅∅∅,
which would imply (by LC6) existential import for universal categorical assertions:
bc = b |=| b ̸= ∅∅∅
bc′= b |=| b ̸= ∅∅∅.
The lack of this axiom makes LC fully compatible to Boolean algebra, as we will

prove in Section 8.2.2. However, due to this intentional omission, 9 of the 24 classic
categorical syllogisms require not just two but three premises for them to be valid in
this system, just like in the Euler system (Section 3).

These axioms stand on their own as relations between formal, abstract objects which
can be manipulated according to the inference rules the system is subject to. In this
purely formal sense, the operands can be seen as just “terms” (in mathematical ex-
pressions), “names” or individuating, arbitrary “labels”. Given these axioms, a skilled
middle-school algebra student could trace and maybe even derive on her own the
proofs of our theorems without being informed of the context (what these operands
and operations refer to). If we had no intended direction and just wanted to derive the
theorems of any formal system to see where they lead us to, the chosen axioms would
be as arbitrary as any other. For us, the legitimacy of the system as a logic which
we are interested in studying is justified by the fact that the Euler system, involving
classes represented by the Euler (and Venn) diagrams shown in Section 3 and by Piesk
(2017), is a fully compliant model or interpretation of the axiomatic system we defined,
since we want to explore different approaches to prove the same theorems, the classic
categorical syllogisms without existential import on universal assertions.

6.3. Syllogism proofs in the Leibniz-Cayley system

Here are the proofs of categorical syllogisms in LC. None of them has more than 5
steps.

Syllogism 1. Barbara-1:
P1. sm = s {Every s is m.}
P2. mp = m {Every m is p.}
C1. sp = s {Every s is p.}
Proof.

(by Leibniz (ca. 1690, pp. 229-230, Axioma 1),
once we make associativity explicit:)

S3. s(mp) = s (P1), (P2)

S4. (sm)p = s (S3), {b(cd) = (bc)d}
b← s, c← m, d← p

S5. sp = s (S4), (P1). Therefore: (C1).

* * *

Syllogism 2. Barbari-1:
P1. sm = s {Every s is m.}
P2. mp = m {Every m is p.}
P3. s ̸= ∅∅∅ {At least one s exists.}
C1. sp = s {Every s is p.}
C2. sp ̸= ∅∅∅ {At least one s is p.}
Proof.

S4. s(mp) = s (P1), (P2)

S5. (sm)p = s (S4), {b(cd) = (bc)d}
b← s, c← m, d← p

S6. sp = s (S5), (P1). Therefore: (C1).

S7. sp ̸= ∅∅∅ (S6), (P3). Therefore: (C2).

* * *
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Syllogism 3. Celarent-1:
P1. sm = s {Every s is m.}
P2. mp′ = m {No m is p.}
C1. sp′ = s {No s is p.}
Proof.

(by Whitehead (1898, pp. 102), once we
make the use of associativity explicit:)

S3. s(mp′) = s (P1), (P2)

S4. (sm)p′ = s (S3), {b(cd) = (bc)d}
b← s, c← m, d← p′

S5. sp′ = s (S4), (P1). Therefore: (C1).

* * *

Syllogism 4. Celaront-1:
P1. sm = s {Every s is m.}
P2. mp′ = m {No m is p.}
P3. s ̸= ∅∅∅ {At least one s exists.}
C1. sp′ = s {No s is p.}
C2. sp′ ̸= ∅∅∅ {At least one s is not p.}
Proof.

S4. s(mp′) = s (P1), (P2)

S5. (sm)p′ = s (S4), {b(cd) = (bc)d}
b← s, c← m, d← p′

S6. sp′ = s (S5), (P1). Therefore: (C1).

S7. sp′ ̸= ∅∅∅ (S6), (P3). Therefore: (C2).

* * *

Syllogism 5. Camestres-2:
P1. sm′ = s {No s is m.}
P2. pm = p {Every p is m.}
C1. sp′ = s {No s is p.}
Proof.

S3. m′p′ = m′ (P2), {bc = b |=| c′b′ = c′}
b← p, c← m

S4. s(m′p′) = s (P1), (S3)

S5. (sm′)p′ = s (S4), {b(cd) = (bc)d}
b← s, c← m′, d← p′

S6. sp′ = s (S5), (P1). Therefore: (C1).

* * *

Syllogism 6. Camestros-2:
P1. sm′ = s {No s is m.}
P2. pm = p {Every p is m.}
P3. s ̸= ∅∅∅ {At least one s exists.}
C1. sp′ = s {No s is p.}
C2. sp′ ̸= ∅∅∅ {At least one s is not p.}
Proof.

S4. m′p′ = m′ (P2), {bc = b |=| c′b′ = c′}
b← p, c← m

S5. s(m′p′) = s (P1), (S4)

S6. (sm′)p′ = s (S5), {b(cd) = (bc)d}
b← s, c← m′, d← p′

S7. sp′ = s (S6), (P1). Therefore: (C1).

S8. sp′ ̸= ∅∅∅ (S7), (P3). Therefore: (C2).

* * *

Syllogism 7. Bamalip-4:
P1. ms = m {Every m is s.}
P2. pm = p {Every p is m.}
P3. p ̸= ∅∅∅ {At least one p exists.}
C1. sp ̸= ∅∅∅ {At least one s is p.}
Proof.

S4. p(ms) = p (P2), (P1)

S5. (pm)s = p (S4), {b(cd) = (bc)d}
b← p, c← m, d← s

S6. ps = p (S5), (P2)

S7. sp = p (S6), {bc = cb}
b← p, c← s

S8. sp ̸= ∅∅∅ (S7), (P3). Therefore: (C1).

* * *

Syllogism 8. Darapti-3:
P1. ms = m {Every m is s.}
P2. mp = m {Every m is p.}
P3. m ̸= ∅∅∅ {At least one m exists.}
C1. sp ̸= ∅∅∅ {At least one s is p.}
Proof.

S4. (ms)p = m (P2), (P1)

S5. m(sp) = m (S4), {b(cd) = (bc)d}
b← m, c← s, d← p

S6. m(sp) ̸= ∅∅∅ (S5), (P3)

S7. sp ̸= ∅∅∅ (S6),
{bc ̸= ∅∅∅ |= c ̸= ∅∅∅}
b← m, c← sp.

Therefore: (C1).

* * *

Syllogism 9. Felapton-3:
P1. ms = m {Every m is s.}
P2. mp′ = m {No m is p.}
P3. m ̸= ∅∅∅ {At least one m exists.}
C1. sp′ ̸= ∅∅∅ {At least one s is not p.}
Proof.

S4. (ms)p′ = m (P2), (P1)

S5. m(sp′) = m (S4), {b(cd) = (bc)d}
b← m, c← s, d← p′

S6. m(sp′) ̸= ∅∅∅ (S5), (P3)

S7. sp′ ̸= ∅∅∅ (S6),
{bc ̸= ∅∅∅ |= c ̸= ∅∅∅}
b← m, c← sp′.

Therefore: (C1).

* * *

Syllogism 10. Disamis-3:
P1. ms = m {Every m is s.}
P2. mp ̸= ∅∅∅ {At least one m is p.}
C1. sp ̸= ∅∅∅ {At least one s is p.}
Proof.

S3. (ms)p ̸= ∅∅∅ (P2), (P1)

S4. m(sp) ̸= ∅∅∅ (S3), {b(cd) = (bc)d}
b← m, c← s, d← p

S5. sp ̸= ∅∅∅ (S4),
{bc ̸= ∅∅∅ |= c ̸= ∅∅∅}
b← m, c← sp.

Therefore: (C1).

* * *
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Syllogism 11. Bokardo-3:
P1. ms = m {Every m is s.}
P2. mp′ ̸= ∅∅∅ {At least one m is not p.}
C1. sp′ ̸= ∅∅∅ {At least one s is not p.}
Proof.

S3. (ms)p′ ̸= ∅∅∅ (P1), (P2)

S4. m(sp′) ̸= ∅∅∅ (S3), {b(cd) = (bc)d}
b← m, c← s, d← p′

S5. sp′ ̸= ∅∅∅ (S4),
{bc ̸= ∅∅∅ |= c ̸= ∅∅∅}
b← m, c← sp′.

Therefore: (C1).

* * *

Syllogism 12. Darii-1:
P1. sm ̸= ∅∅∅ {At least one s is m.}
P2. mp = m {Every m is p.}
C1. sp ̸= ∅∅∅ {At least one s is p.}
Proof.

S3. s(mp) ̸= ∅∅∅ (P1), (P2)

S4. s(pm) ̸= ∅∅∅ (S3), {bc = cb}
b← m, c← p

S5. (sp)m ̸= ∅∅∅ (S4), {b(cd) = (bc)d}
b← s, c← p, d← m

S6. sp ̸= ∅∅∅ (S5),
{bc ̸= ∅∅∅ |= b ̸= ∅∅∅}
b← sp, c← m.

Therefore: (C1).

* * *

Syllogism 13. Ferio-1:
P1. sm ̸= ∅∅∅ {At least one s is m.}
P2. mp′ = m {No m is p.}
C1. sp′ ̸= ∅∅∅ {At least one s is not p.}
Proof.

S3. s(mp′) ̸= ∅∅∅ (P1), (P2)

S4. s(p′m) ̸= ∅∅∅ (S3), {bc = cb}
b← m, c← p′

S5. (sp′)m ̸= ∅∅∅ (S4), {b(cd) = (bc)d}
b← s, c← p′, d← m

S6. sp′ ̸= ∅∅∅ (S5),
{bc ̸= ∅∅∅ |= b ̸= ∅∅∅}
b← sp′, c← m.

Therefore: (C1).

* * *
Syllogism 14. Baroko-2:
P1. sm′ ̸= ∅∅∅ {At least one s is not m.}
P2. pm = p {Every p is m.}
C1. sp′ ̸= ∅∅∅ {At least one s is not p.}
Proof.

S3. m′p′ = m′ (P2), {bc = b |=| c′b′ = c′}
b← p, c← m

S4. s(m′p′) ̸= ∅∅∅ (S3), (P1)

S5. s(p′m′) ̸= ∅∅∅ (S4), {bc = cb}
b← m′, c← p′

S6. (sp′)m′ ̸= ∅∅∅ (S5), {b(cd) = (bc)d}
b← s, c← p′, d← m′

S7. sp′ ̸= ∅∅∅ (S6),
{bc ̸= ∅∅∅ |= b ̸= ∅∅∅}

b← s, c← p′.
Therefore: (C1).

* * *

Syllogism 15. Dimatis-4:
P1. ms = m {Every m is s.}
P2. pm ̸= ∅∅∅ {At least one p is m.}
C1. sp ̸= ∅∅∅ {At least one s is p.}
Proof.

P2a. mp ̸= ∅∅∅ (P2), {bc = cb}
b← p, c← m

S3. (ms)p ̸= ∅∅∅ (P2a), (P1)

S4. m(sp) ̸= ∅∅∅ (S3), {b(cd) = (bc)d}
b← m, c← s, d← p

S5. sp ̸= ∅∅∅ (S4),
{bc ̸= ∅∅∅ |= c ̸= ∅∅∅}
b← m, c← sp.

Therefore: (C1).

* * *

Syllogism 16. Datisi-3:
P1. ms ̸= ∅∅∅ {At least one m is s.}
P2. mp = m {Every m is p.}
C1. sp ̸= ∅∅∅ {At least one s is p.}
Proof.

S3. (mp)s ̸= ∅∅∅ (P1), (P2)

S4. m(ps) ̸= ∅∅∅ (S4), {b(cd) = (bc)d}
b← m, c← p, d← s

S5. ps ̸= ∅∅∅ (S4), {bc ̸= ∅∅∅ |= c ̸= ∅∅∅}
b← m, c← ps

S6. sp ̸= ∅∅∅ (S5),
{bc = cb}
b← p, c← s.

Therefore: (C1).

* * *

Syllogism 17. Ferison-3:
P1. ms ̸= ∅∅∅ {At least one m is s.}
P2. mp′ = m {No m is p.}
C1. sp′ ̸= ∅∅∅ {At least one s is not p.}
Proof.

S3. (mp′)s ̸= ∅∅∅ (P1), (P2)

S4. m(p′s) ̸= ∅∅∅ (S3), {b(cd) = (bc)d}
b← m, c← p′, d← s

S5. p′s ̸= ∅∅∅ (S4), {bc ̸= ∅∅∅ |= c ̸= ∅∅∅}
b← m, c← p′s

S6. sp′ ̸= ∅∅∅ (S5),
{bc = cb}
b← p′, c← s.

Therefore: (C1).

* * *
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Syllogism 18. Festino-2:
P1. sm ̸= ∅∅∅ {At least one s is m.}
P2. pm′ = p {No p is m.}
C1. sp′ ̸= ∅∅∅ {At least one s is not p.}
Proof.

P2a. mp′ = m (P2), {bc′ = b |=| cb′ = c}
b← p, c← m

S3. s(mp′) ̸= ∅∅∅ (P1), (P2a)

S4. s(p′m) ̸= ∅∅∅ (S3), {bc = cb}
b← m, c← p′

S5. (sp′)m ̸= ∅∅∅ (S4), {b(cd) = (bc)d}
b← s, c← p′, d← m

S6. sp′ ̸= ∅∅∅ (S5),
{bc ̸= ∅∅∅ |= b ̸= ∅∅∅}
b← sp′, c← m.

Therefore: (C1).

* * *

Syllogism 19. Fresison-4:
P1. ms ̸= ∅∅∅ {At least one m is s.}
P2. pm′ = p {No p is m.}
C1. sp′ ̸= ∅∅∅ {At least one s is not p.}
Proof.

P2a. mp′ = m (P2), {bc′ = b |=| cb′ = c}
b← p, c← m

S3. (mp′)s ̸= ∅∅∅ (P1), (P2a)

S4. m(p′s) ̸= ∅∅∅ (S3), {b(cd) = (bc)d}
b← m, c← p′, d← s

S5. p′s ̸= ∅∅∅ (S4), {bc ̸= ∅∅∅ |= c ̸= ∅∅∅}
b← m, c← p′s

S6. sp′ ̸= ∅∅∅ (S5),
{bc = cb}
b← p′, c← s.

Therefore: (C1).

* * *

Syllogism 20. Fesapo-4:
P1. ms = m {Every m is s.}
P2. pm′ = p {No p is m.}
P3. m ̸= ∅∅∅ {At least one m exists.}
C1. sp′ ̸= ∅∅∅ {At least one s is not p.}
Proof.

P2a. mp′ = m (P2), {bc′ = b |=| cb′ = c}
b← p, c← m

S4. (ms)p′ = m (P2a), (P1)

S5. m(sp′) = m (S4), {b(cd) = (bc)d}
b← m, c← s, d← p′

S6. m(sp′) ̸= ∅∅∅ (S5), (P3)

S7. sp′ ̸= ∅∅∅ (S6),
{bc ̸= ∅∅∅ |= c ̸= ∅∅∅}
b← m, c← sp′.

Therefore: (C1).

* * *

Syllogism 21. Cesare-2:
P1. sm = s {Every s is m.}
P2. pm′ = p {No p is m.}
C1. sp′ = s {No s is p.}
Proof.

P2a. mp′ = m (P2), {bc′ = b |=| cb′ = c}
b← p, c← m

S3. s(mp′) = s (P1), (P2a)

S4. (sm)p′ = s (S3), {b(cd) = (bc)d}
b← s, c← m, d← p′

S5. sp′ = s
(S4), (P1).
Therefore: (C1).

* * *
Syllogism 22. Cesaro-2:
P1. sm = s {Every s is m.}
P2. pm′ = p {No p is m.}
P3. s ̸= ∅∅∅ {At least one s exists.}
C1. sp′ = s {No s is p.}
C2. sp′ ̸= ∅∅∅ {At least one s is not p.}
Proof.

P2a. mp′ = m (P2), {bc′ = b |=| cb′ = c}
b← p, c← m

S4. s(mp′) = s (P1), (P2a)

S5. (sm)p′ = s (S4), {b(cd) = (bc)d}
b← s, c← m, d← p′

S6. sp′ = s
(S5), (P1).
Therefore: (C1).

S7. sp′ ̸= ∅∅∅ (S6), (P3).
Therefore: (C2).

* * *
Syllogism 23. Calemes-4:
P1. ms′ = m {No m is s.}
P2. pm = p {Every p is m.}
C1. sp′ = s {No s is p.}
Proof.

S3. p(ms′) = p (P2), (P1)

S4. (pm)s′ = p (S3), {b(cd) = (bc)d}
b← p, c← m, d← s′

S5. ps′ = p (S4), (P2)

S6. sp′ = s (S5),
{bc′ = b |=| cb′ = c}

b← p, c← s.
Therefore: (C1).

* * *
Syllogism 24. Calemos-4:
P1. ms′ = m {No m is s.}
P2. pm = p {Every p is m.}
P3. s ̸= ∅∅∅ {At least one s exists.}
C1. sp′ = s {No s is p.}
C2. sp′ ̸= ∅∅∅ {At least one s is not p.}
Proof.

S4. p(ms′) = p (P2), (P1)

S5. (pm)s′ = p (S4), {b(cd) = (bc)d}
b← p, c← m, d← s′

S6 ps′ = p (S5), (P2)

S7. sp′ = s (S6),
{bc′ = b |=| cb′ = c}

b← p, c← s.
Therefore: (C1).

S8. sp′ ̸= ∅∅∅ (S7), (P3).
Therefore: (C2).
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Thus, we have shown that the LC axioms are sufficiently powerful for proving all 24
classic categorical syllogisms.

6.4. Syllogism-axiom matrix for LC

Table 4 summarizes the axioms that have been adopted in the proof of each valid
categorical syllogism in the preceding subsection.

Syllogism (LC2)
associativity

(LC3)
predicative
inhabitation

(LC1)
commutativity

(LC5)
disjointness
conversion

(LC4)
subsumption
contraposition

Barbara-1 ✓
Barbari-1 ✓
Celarent-1 ✓
Celaront-1 ✓
Camestres-2 ✓ ✓
Camestros-2 ✓ ✓
Bamalip-4 ✓ ✓
Darapti-3 ✓ ✓
Felapton-3 ✓ ✓
Disamis-3 ✓ ✓
Bokardo-3 ✓ ✓
Darii-1* ✓ ✓ ✓
Ferio-1* ✓ ✓ ✓
Baroko-2* ✓ ✓ ✓ ✓

Dimatis-4 ✓ ✓ ✓
Datisi-3 ✓ ✓ ✓
Ferison-3 ✓ ✓ ✓
Festino-2* ✓ ✓ ✓ ✓
Fresison-4 ✓ ✓ ✓ ✓
Fesapo-4 ✓ ✓ ✓
Cesare-2 ✓ ✓
Cesaro-2 ✓ ✓
Calemes-4 ✓ ✓
Calemos-4 ✓ ✓

* The subject inhabitation (LC6) lemma, convenient for the proof of this mood-figure pair, requires the axioms
of predicative inhabitation (LC3) and commutativity (LC1).

Table 4.: Syllogism-axiom matrix for the Leibniz-Cayley system.

Notice that the proof of every mood requires LC2. In addition, the proof of every
mood having a particular premise requires LC3.

LC5 is not needed for proving syllogisms in the “basic” set, and is only used where
there is an E-conversion that maps certain syllogisms in the “derived” set into syllogisms
in the “basic” set.

It is remarkable that the proof of 14 categorical syllogisms in LC requires only
bounded (meet-)semilattice axioms (L1 to L3). Among them, all the 8 affirmative
categorical syllogisms –which employ only “A” or “I” relations in their premises and
conclusions– require in their proof neither LC4 nor LC5; for them, the monadic com-
plementation operation “ ′” is superfluous. (In contrast, categorical syllogisms which
employ “E” or “O” already require complementation in the premise or conclusion,
whether their proofs make use of LC4/LC5 or not.)

Table 4 would have been less parsimonious in the application of axioms had LC
adopted subject inhabitation (LC6) as an axiom instead of predicative inhabitation
(LC3): 5 categorical syllogisms –Darapti-3, Felapton-3, Disamis-3, Bokardo-3, Fesapo-
4– would require commutativity (LC1).
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Many logical facts were not needed to prove all the 24 categorical syllogisms in LC,
such as:

(a) “ ̸=” is the negation of “=”: this fact is not used in any proof. Formally, we could
have replaced “ ̸=” by an arbitrary dyadic relation “R” which we know no property
of – the proofs would have been the same.

(b) The representation of universal categorical assertions in terms of “∅∅∅”:
bA c |= bc′=∅∅∅; bE c |= bc=∅∅∅.

(c) The symbolization and characterization of the properties of the universe class I.
(d) Involution of complementation: (b′)′ = b.
(e) Disjointness of complements: bb′ = ∅∅∅68.
(f) Idempotence of combination/intersection: bb = b69.
(g) The operation “∪” (union of two classes) and its properties.

Interestingly, the two operations adopted in LC, intersection and complementation,
form together a functionally complete set of Boolean operations.

7. McColl-Ladd (ML) system

7.1. McColl-Ladd system representations

The McColl-Ladd system makes use only of symbols that represent particular or uni-
versal relations that are affirmative for both the subject and the predicative (“⊆” and
“⋒⋒⋒”)70. Each fundamental categorical relation is represented in ML as follows:

A Every b is c. b ⊆ c

E
No b is c.
(Every b is not-c.) b ⊆ c′

I At least one b is c. b ⋒ c

O
At least one b is not c.
(At-least-one b is not-c.) b ⋒ c′

∗ At least one b exists.
(At least one b is b.) b ⋒ b

The symbolic representations of universal categorical assertions are by McColl (1877,
p. 181) and reproduced by Ladd (1883, p. 24), whereas the representations of the
particular ones are by Ladd (1883, p. 26). In addition, Ladd (1883, p. 29) employs “b⋒I”
for “*”; we employ instead the equivalent assertion “b ⋒ b” for economy of concepts –
we are not strictly required to postulate a universe class, and the McColl-Ladd system
as we present it is saved from an extra axiom “b ⋒ I |= b ⋒ b”.

68This is the algebraic form of the “law of thought” known as non-contradiction (Section 4). The fact that a
supposedly fundamental “law of thought” is superfluous for proving classic categorical syllogisms cannot escape
our attention.

69This is remarkable. Boole (1854, p. 49) claims this is the fundamental law of thought. This is the special
law that distinguishes his algebra of logic (subordinated to numerical algebra with 0 and 1 only) from numerical
algebra over N or Z. He even derives non-contradiction –widely held by many logicians up to the 19th century
to be one of the fundamental laws of thought (see Section 4), but also unnecessary in categorical syllogistic–
from it. Nevertheless, we have shown here that idempotence is a superfluous law for proving classic categorical
syllogisms.

70It would be fair to argue that this system is relational, instead of algebraic in a strict sense, since its object
of study is a relational structure, not an algebraic structure with operations/functions only. In general, the
signature of a mathematical structure can include special values and/or operations/functions and/or relations,
and our position is that we consider their study algebraic in a wider sense. The study of the interplay between
operations and relations is not uncommon in algebra, for instance, in lattice theory.
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7.2. McColl-Ladd system axioms

In order to prove all the classic categorical syllogisms, we have selected the following
axioms to form the McColl-Ladd system71:

(ML1) b ⋒ c |=| c ⋒ b {I-conversion}
(ML2) b ⊆ c |=| c′ ⊆ b′ {A-transposition72}
(ML3) b ⊆ c′ |=| c ⊆ b′ {E-transposition73}
(ML4) b ⊆ c, c ⊆ d |= b ⊆ d {Barbara-174}
(ML5) b ⋒ c, c ⊆ d |= b ⋒ d {Darii-175}

The following is a convenient lemma to shorten the proofs of some valid mood/figure
pairs:

(ML6) c ⋒ b, c ⊆ d |= d ⋒ b {Disamis-3}

Proof.
S1. b ⋒ d |=| d ⋒ b

{(ML1): b ⋒ c |=| c ⋒ b}
c← d

S2. c ⋒ b, c ⊆ d |= b ⋒ d (ML5), {(ML1): b ⋒ c |=| c ⋒ b}
S3. c ⋒ b, c ⊆ d |= d ⋒ b (S2), (S1)

These ML axioms form the subset76 of the axioms presented by Moss (2007, p. 21,
Figure 9)(2010, p. 31, Figure 3.4)(2011, p. 181, Figure 11.1) –and reused by Hemann,
Swords, and Moss (2015, p. 3)– that is needed for proving all the classic categorical
syllogisms. In addition, Reichenbach (1952, pp. 7-8) informally justifies why Barbara-
1 and Darii-1 are the “primitive” categorical syllogisms which the other 22 ones are
reducible to when the the four classic categorical relations are expressed in terms of
A/⊆ and I/⋒ by obversion.

The comma (“,”) is typically interpreted as the metalogical “and ” operator. The re-
lational character of the ML system is enhanced if, in the ML4 and ML5 axioms, we
reinterpret the “,” as the operator for composition of relations (from relation algebra)
instead77. Intriguingly, the metalogical “and ” is the operator for a commutative oper-
ation, whereas composition of relations is not necessarily commutative. On the other
hand, the fact that ML4 and ML5 are “composition-friendly”, with the middle term
occupying the position of a “bridge” between two “endpoints”, is perhaps a reason why
syllogism moods from the first figure were seen by Aristotle as “perfect” (Patzig, 1968,
pp. 50-59)(Locke, 1700, book IV, chapter 17, §§ 4 and 8, pp. 405–413)(De Morgan,
1858, p. 217)(Lorenzen, 1957)78.

71McColl’s original system (1877) –which represented categorical assertions by means of the relations “⊆”
and “⊈”– adopted the following laws: ML2 (p. 177, rule 11); ML3 (p. 181); ML4 (p. 180, rule 15); “b ⊈ c |=
c′ ⊈ b′” (p. 180, rule 16) rather than ML1; Bokardo-3 –“b ⊆ c, b ⊈ d |= c ⊈ d” (p. 180, rule 17)– rather than
ML5.

72In the representation of categorical relations by means of single vowels, it corresponds to “A-contraposition”
(bA c |=| c′ Ab′).

73In the representation of categorical relations by means of single vowels, it corresponds to “E-conversion”
(bE c |=| cEb).

Leibniz (ca. 1686e, p. 399, point 200) also stated (in intensional/contravariant language) both ML3 and ML2,
with the explicit algebraic employment of the term negation (class complement) operation.

74It symbolically represents transitivity of subclasshood.
75It symbolically represents covariance/monotonicity of conjointness: if two classes are conjoint, then one

of them is conjoint with any superclass of the other.
76A-transposition, taken here as an axiom, is a consequence of the axioms of E-transposition and involution

of complementation from the mentioned sources.
77De Morgan (1860, pp. 331,355) is to be credited for noticing that the deduction of the conclusion in a

syllogism can be seen as an application of composition of relations, the premises.
78Once we recognize all the categorical relations in De Morgan’s syllogistic, any categorical syllogism can
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Notice that ML didn’t adopts axioms of subalternation:
b ⊆ c |=| b ⋒ c
b ⊆ c′ |=| b ⋒ c′.
The lack of this axiom makes ML fully compatible to Boolean algebra, as we will

prove in Section 8. However, due to this intentional omission, 9 of the 24 classic cate-
gorical syllogisms require not just two but three premises for them to be valid in this
system, just like in the Euler system (Section 3) and in LC (Section 6).

ML can straightforwardly derive the subalternation laws of traditional Aristotelic
logic from Darii-1 (ML5) if the subject term is inhabited:

b ⋒ b, b ⊆ c |=| b ⋒ c
b ⋒ b, b ⊆ c′ |=| b ⋒ c′.
As ML is a relational system, it is closer in spirit to the original Aristotelic syllogistic

(Aristotle of Stagira, ca. 350 BCEa)(ca. 350 BCEc)79 than LC –an algebraic system–
is. The following categorical syllogism proofs –none of which has more than 3 steps–
reinforce this point.

7.3. Syllogism proofs in the McColl-Ladd system

Here are the proofs of categorical syllogisms in ML.

Syllogism 1. Barbara-1:
P1. s ⊆ m {Every s is m.}
P2. m ⊆ p {Every m is p.}
C1. s ⊆ p {Every s is p.}
Proof.

S3. s ⊆ p

(P1), (P2),
{b ⊆ c, c ⊆ d |= b ⊆ d}
b← s, c← m, d← p.

Therefore: (C1).

* * *

Syllogism 2. Barbari-1:
P1. s ⊆ m {Every s is m.}
P2. m ⊆ p {Every m is p.}
P3. s ⋒ s {At least one s exists.}
C1. s ⊆ p {Every s is p.}
C2. s ⋒ p {At least one s is p.}
Proof.

S4. s ⊆ p

(P1), (P2),
{b ⊆ c, c ⊆ d |= b ⊆ d}
b← s, c← m, d← p.

Therefore: (C1).

S5. s ⋒ p

(P3), (S4),
{b ⋒ c, c ⊆ d |= b ⋒ d}
b← s, c← s, d← p.

Therefore: (C2).

* * *

Syllogism 3. Celarent-1:
P1. s ⊆ m {Every s is m.}
P2. m ⊆ p′ {No m is p.}
C1. s ⊆ p′ {No s is p.}
Proof.

(by Lewis (1918, p. 194):)

S3. s ⊆ p′

(P1), (P2),
{b ⊆ c, c ⊆ d |= b ⊆ d}
b← s, c← m, d← p′.

Therefore: (C1).

* * *

Syllogism 4. Celaront-1:
P1. s ⊆ m {Every s is m.}
P2. m ⊆ p′ {No m is p.}
P3. s ⋒ s {At least one s exists.}
C1. s ⊆ p′ {No s is p.}
C2. s ⋒ p′ {At least one s is not p.}
Proof.

S4. s ⊆ p′

(P1), (P2),
{b ⊆ c, c ⊆ d |= b ⊆ d}
b← s, c← m, d← p′.

Therefore: (C1).

S5. s ⋒ p′

(P3), (S4),
{b ⋒ c, c ⊆ d |= b ⋒ d}
b← s, c← s, d← p′.

Therefore: (C2).

* * *

be reduced into a first-figure syllogism by applying the conversion operation, e.g. pAm |=| mÄp, as Ă = Ä.
79Though one important departure is that, in ML, intermediate proof steps which are the result of A-

transpositions are not directly expressed as traditional Aristotelic relations {A,E, I,O} with only positive
subjects, namely, “Every p is m. |= Every non-m is non-p” in Camestres-2, Camestros-2 and Baroko-2, as we
will see in Section 7.3.
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Syllogism 5. Camestres-2:
P1. s ⊆ m′ {No s is m.}
P2. p ⊆ m {Every p is m.}
C1. s ⊆ p′ {No s is p.}
Proof.

S3. m′ ⊆ p′ (P2), {b ⊆ c |=| c′ ⊆ b′}
b← p, c← m

S4. s ⊆ p′

(P1), (S3),
{b ⊆ c, c ⊆ d |= b ⊆ d}
b← s, c← m′, d← p′.

Therefore: (C1).

* * *

Syllogism 6. Camestros-2:
P1. s ⊆ m′ {No s is m.}
P2. p ⊆ m {Every p is m.}
P3. s ⋒ s {At least one s exists.}
C1. s ⊆ p′ {No s is p.}
C2. s ⋒ p′ {At least one s is not p.}
Proof.

S4. m′ ⊆ p′ (P2), {b ⊆ c |=| c′ ⊆ b’}
b← p, c← m

S5. s ⊆ p′

(P1), (S4),
{b ⊆ c, c ⊆ d |= b ⊆ d}
b← s, c← m′, d← p′.

Therefore: (C1).

S6. s ⋒ p′

(P3), (S5),
{b ⋒ c, c ⊆ d |= b ⋒ d}
b← s, c← s, d← p′.

Therefore: (C2).

* * *

Syllogism 7. Bamalip-4:
P1. m ⊆ s {Every m is s.}
P2. p ⊆ m {Every p is m.}
P3. p ⋒ p {At least one p exists.}
C1. s ⋒ p {At least one s is p.}
Proof.

S4. p ⊆ s
(P2), (P1),

{b ⊆ c, c ⊆ d |= b ⊆ d}
b← p, c← m, d← s

S5. s ⋒ p

(P3), (S4),
{c ⋒ b, c ⊆ d |= d ⋒ b}
c← p, b← p, d← s.

Therefore: (C1).

* * *

Syllogism 8. Darapti-3:
P1. m ⊆ s {Every m is s.}
P2. m ⊆ p {Every m is p.}
P3. m ⋒m {At least one m exists.}
C1. s ⋒ p {At least one s is p.}
Proof.

S4. m ⋒ p
(P3), (P2),

{b ⋒ c, c ⊆ d |= b ⋒ d}
b← m, c← m, d← p

S5. s ⋒ p

(S4), (P1),
{c ⋒ b, c ⊆ d |= d ⋒ b}
c← m, b← p, d← s.

Therefore: (C1).

* * *

Syllogism 9. Felapton-3:
P1. m ⊆ s {Every m is s.}
P2. m ⊆ p′ {No m is p.}
P3. m ⋒m {At least one m exists.}
C1. s ⋒ p′ {At least one s is not p.}
Proof.

S4. m ⋒ p′
(P3), (P2),

{b ⋒ c, c ⊆ d |= b ⋒ d}
b← m, c← m, d← p′

S5. s ⋒ p′

(S4), (P1),
{c ⋒ b, c ⊆ d |= d ⋒ b}
c← m, b← p′, d← s.

Therefore: (C1).

* * *

Syllogism 10. Disamis-3:
P1. m ⊆ s {Every m is s.}
P2. m ⋒ p {At least one m is p.}
C1. s ⋒ p {At least one s is p.}
Proof.

S3. s ⋒ p

(P2), (P1),
{c ⋒ b, c ⊆ d |= d ⋒ b}
c← m, b← p, d← s.

Therefore: (C1).

* * *

Syllogism 11. Bokardo-3:
P1. m ⊆ s {Every m is s.}
P2. m ⋒ p′ {At least one m is not p.}
P3. s ⋒ p′ {At least one s is not p.}
Proof.

S3. s ⋒ p′

(P2), (P1),
{c ⋒ b, c ⊆ d |= d ⋒ b}
c← m, b← p′, d← s.

Therefore: (C1).

* * *

Syllogism 12. Darii-1:
P1. s ⋒m {At least one s is m.}
P2. m ⊆ p {Every m is p.}
C1. s ⋒ p {At least one s is p.}
Proof.

S3. s ⋒ p

(P1), (P2),
{b ⋒ c, c ⊆ d |= b ⋒ d}
b← s, c← m, d← p.

Therefore: (C1).

* * *

Syllogism 13. Ferio-1:
P1. s ⋒m {At least one s is m.}
P2. m ⊆ p′ {No m is p.}
C1. s ⋒ p′ {At least one s is not p.}
Proof.

S3. s ⋒ p′

(P1), (P2),
{b ⋒ c, c ⊆ d |= b ⋒ d}
b← s, c← m, d← p′.

Therefore: (C1).

* * *

37



Syllogism 14. Baroko-2:
P1. s ⋒m′ {At least one s is not m.}
P2. p ⊆ m {Every p is m.}
C1. s ⋒ p′ {At least one s is not p.}
Proof.

S3. m′ ⊆ p′ (P2), {b⊆ c |=| c′ ⊆ b′}
b← p, c← m

S4. s ⋒ p′

(P1), (S3),
{b ⋒ c, c ⊆ d |= b ⋒ d}
b← s, c← m′, d← p′.

Therefore: (C1).

* * *

Syllogism 15. Dimatis-4:
P1. m ⊆ s {Every m is s.}
P2. p ⋒m {At least one p is m.}
C1. s ⋒ p {At least one s is p.}
Proof.

S3. p ⋒ s
(P2), (P1),

{b ⋒ c, c ⊆ d |= b ⋒ d}
b← p, c← m, d← s

S4. s ⋒ p
(S3), {b ⋒ c |=| c ⋒ b}

b← p, c← s.
Therefore: (C1).

* * *

Syllogism 16. Datisi-3:
P1. m ⋒ s {At least one m is s.}
P2. m ⊆ p {Every m is p.}
C1. s ⋒ p {At least one s is p.}
Proof.

P1a. s ⋒m (P1), {b ⋒ c |=| c ⋒ b}
b← m, c← s

S3. s ⋒ p

(P1a), (P2),
{b ⋒ c, c ⊆ d |= b ⋒ d}
b← s, c← m, d← p.

Therefore: (C1).

* * *

Syllogism 17. Ferison-3:
P1. m ⋒ s {At least one m is s.}
P2. m ⊆ p′ {No m is p.}
C1. s ⋒ p′ {At least one s is not p.}
Proof.

P1a. s ⋒m (P1), {b ⋒ c |=| c ⋒ b}
b← m, c← s

S3. s ⋒ p′

(P1a), (P2),
{b ⋒ c, c ⊆ d |= b ⋒ d}
b← s, c← m, d← p′.

Therefore: (C1).

* * *

Syllogism 18. Festino-2:
P1. s ⋒m {At least one s is m.}
P2. p ⊆ m′ {No p is m.}
C1. s ⋒ p′ {At least one s is not p.}
Proof.

P2a. m ⊆ p′ (P2), {b ⊆ c′ |=| c ⊆ b′}
b← p, c← m

S3. s ⋒ p′

(P1), (P2a),
{b ⋒ c, c ⊆ d |= b ⋒ d}
b← s, c← m, d← p′.

Therefore: (C1).

* * *

Syllogism 19. Fresison-4:
P1. m ⋒ s {At least one m is s.}
P2. p ⊆ m′ {No p is m.}
C1. s ⋒ p′ {At least one s is not p.}
Proof.

P1a. s ⋒m (P1), {b ⋒ c |=| c ⋒ b}
b← m, c← s

P2a. m ⊆ p′ (P2), {b ⊆ c′ |=| c ⊆ b′}
b← p, c← m

S3. s ⋒ p′

(P1a), (P2a),
{b ⋒ c, c ⊆ d |= b ⋒ d}
b← s, c← m, d← p′.

Therefore: (C1).

* * *

Syllogism 20. Fesapo-4:
P1. m ⊆ s {Every m is s.}
P2. p ⊆ m′ {No p is m.}
P3. m ⋒m {At least one m exists.}
C1. s ⋒ p′ {At least one s is not p.}
Proof.

P2a. m ⊆ p′ (P2), {b ⊆ c′ |=| c ⊆ b′}
b← p, c← m

S4. m ⋒ p′
(P3), (P2a),

{b ⋒ c, c ⊆ d |= b ⋒ d}
b← m, c← m, d← p′

S5. s ⋒ p′

(S4), (P1),
{c ⋒ b, c ⊆ d |= d ⋒ b}
c← m, b← p′, d← s.

Therefore: (C1).

* * *

Syllogism 21. Cesare-2:
P1. s ⊆ m {Every s is m.}
P2. p ⊆ m′ {No p is m.}
C1. s ⊆ p′ {No s is p.}
Proof.

P2a. m ⊆ p′ (P2), {b ⊆ c′ |=| c ⊆ b′}
b← p, c← m

S3. s ⊆ p′

(P1), (P2a),
{b ⊆ c, c ⊆ d |= b ⊆ d}
b← s, c← m, d← p′.

Therefore: (C1).

* * *
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Syllogism 22. Cesaro-2:
P1. s ⊆ m {Every s is m.}
P2. p ⊆ m′ {No p is m.}
P3. s ⋒ s {At least one s exists.}
C1. s ⊆ p′ {No s is p.}
C2. s ⋒ p′ {At least one s is not p.}
Proof.

P2a. m ⊆ p′ (P2), {b ⊆ c′ |=| c ⊆ b′}
b← p, c← m

S4. s ⊆ p′

(P1), (P2a),
{b ⊆ c, c ⊆ d |= b ⊆ d}
b← s, c← m, d← p′.

Therefore: (C1).

S5. s ⋒ p′

(P3), (S4),
{b ⋒ c, c ⊆ d |= b ⋒ d}
b← s, c← s, d← p′.

Therefore: (C2).

* * *

Syllogism 23. Calemes-4:
P1. m ⊆ s′ {No m is s.}
P2. p ⊆ m {Every p is m.}
C1. s ⊆ p′ {No s is p.}
Proof.

(by Lewis (1918, p. 194):)

S3. p ⊆ s′
(P2), (P1),

{b ⊆ c, c ⊆ d |= b ⊆ d}
b← p, c← m, d← s′

S4. s ⊆ p′ (S3), {b ⊆ c′ |=| c ⊆ b′}
b← p, c← s.

Therefore: (C1).

* * *

Syllogism 24. Calemos-4:
P1. m ⊆ s′ {No m is s.}
P2. p ⊆ m {Every p is m.}
P3. s ⋒ s {At least one s exists.}
C1. s ⊆ p′ {No s is p.}
C2. s ⋒ p′ {At least one s is not p.}
Proof.

S4. p ⊆ s′
(P2), (P1),

{b ⊆ c, c ⊆ d |= b ⊆ d}
b← p, c← m, d← s′

S5. s ⊆ p′ (S4), {b ⊆ c′ |=| c ⊆ b′}
b← p, c← s.

Therefore: (C1).

S6. s ⋒ p′

(P3), (S5),
{b ⋒ c, c ⊆ d |= b ⋒ d}
b← s, c← s, d← p′.

Therefore: (C2).

Thus, we have shown that the ML axioms are sufficiently powerful for proving all
24 classic categorical syllogisms.

7.4. Syllogism-axiom matrix for ML

Table 5 summarizes the axioms that have been adopted in the proof of each valid
categorical syllogism in the preceding subsection.

Notice that the proof of every mood requires ML4 (when there is a universal conclu-
sion) or ML5 (when there is a particular conclusion). If the proof of a mood requires
both ML4 and ML5, then the mood has more than two premises (not assuming ex-
istential import for universal assertions). Therefore, the proof of every mood having
exactly two premises requires either ML4 or ML5. In other words, for our proofs of
2-premise moods, ML4 and ML5 are mutually exclusive and collectively exhaustive.

If ML1 is required in the proof of a mood, then ML5 is also required.
ML3 is not needed for proving syllogisms in the “basic” set, and is only used where

there is an E-conversion that maps certain syllogisms in the “derived” set into syllogisms
in the “basic” set.

All the 8 affirmative categorical syllogisms, which employ only “A” or “I” relations in
their premises and conclusions, require in their proof neither ML2 nor ML3; for them,
the monadic complementation operation “ ′” is superfluous. (In contrast, categorical
syllogisms which employ “E” or “O” already require complementation in the premise
or conclusion, whether their proofs make use of ML2/ML3 or not.)

Column ML3 has the same mood-figure pairs as column LC5 (Section 6.4), which
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Syllogism (ML4)
Barbara-1

(ML5)
Darii-1

(ML1)
I-conversion

(ML3)
E-transposition

(ML2)
A-transposition

Barbara-1 ✓
Barbari-1 ✓ ✓
Celarent-1 ✓
Celaront-1 ✓ ✓
Camestres-2 ✓ ✓
Camestros-2 ✓ ✓ ✓
Bamalip-4* ✓ ✓ ✓
Darapti-3* ✓ ✓
Felapton-3* ✓ ✓
Disamis-3* ✓ ✓
Bokardo-3* ✓ ✓
Darii-1 ✓
Ferio-1 ✓
Baroko-2 ✓ ✓
Dimatis-4 ✓ ✓
Datisi-3 ✓ ✓
Ferison-3 ✓ ✓
Festino-2 ✓ ✓
Fresison-4 ✓ ✓ ✓
Fesapo-4* ✓ ✓ ✓
Cesare-2 ✓ ✓
Cesaro-2 ✓ ✓ ✓
Calemes-4 ✓ ✓
Calemos-4 ✓ ✓ ✓

* The Disamis-3 (ML6) lemma, convenient for the proof of this mood-figure pair, requires the axioms Darii-1
(ML5) and I-conversion (ML1).

Table 5.: Syllogism-axiom matrix for the McColl-Ladd system.

corresponds to the same law expressed in a different form; likewise, column ML2 and
column LC4 perfectly coincide.

Many logical facts were not needed to prove all the 24 categorical syllogisms in ML,
such as:

(a) The postulation and symbolization of the empty class (∅∅∅) and its properties:
∅∅∅ ⊆ b, ∅∅∅ ̸⋒b for any b.

(b) The symbolization and characterization of the properties of the universe class I.
(c) Reflexivity and antisymmetry of “⊆”.
(d) How “⊆” is connected to “⋒”: b ⊆ c |=| b ̸⋒ c′; b ⋒ c |=| b ⊈ c′.
(e) The term inhabitation law (which is neither an axiom nor a theorem in ML):

b ⋒ c |= b ⋒ b.
(f) Laws involving the term combination (or class intersection) operation, such as:

bc ⊆ b; b ⊆ c |= bd ⊆ cd80; b ⊆ c, b ⊆ d |= b ⊆ cd.
(g) Involution of complementation: (b′)′ = b.
(h) The 4 misnamed “laws of thought” (Section 4)81.

80Stated by McColl (1877, p. 178, Rule 12).
81Aristotle himself recognized that the non-contradiction law is superfluous for proving the classic categorical

syllogisms:
«The law that it is impossible to affirm and deny simultaneously the same predicate of the same subject
is not expressly posited by any demonstration except when the conclusion also has to be expressed in
that form [...].»(Aristotle of Stagira, ca. 350 BCEb, 77a10)
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8. Connection between the symbolic axiomatic systems
An important characteristic of the symbolic representations selected for the fundamen-
tal relations in LC and ML is that they make obverse relations evident (the pairs A/E
and I/O), but curiously they don’t make contradictory relations evident (the pairs
A/O and E/I). In contrast, for instance, in a pure Cayley system (with =/̸= ∅∅∅), in a
pure Ladd system (with ⋒/̸⋒), or in a pure McColl system (with ⊆/⊈), contradictory
pairs would also be made evident. Thus we have shown that the information about
contradictory relations is superfluous to prove the 24 classic categorical syllogisms –
an information-poorer context is sufficient for that.

How can we compare the expressive power of the ML and LC systems? This is what
we show in the next subsections.

8.1. Deriving ML from LC

Let’s study the relation between the McColl-Ladd and Leibniz-Cayley algebraic ax-
iomatic systems. Are these two axiomatic systems capable of proving exactly the same
theorems?

These systems adopt very different representations, so we need definitions to bridge
them. Let’s adopt the following definitions82:

(D1) b ⊆ c |=| bc = b
(D2) b ⋒ c |=| bc ̸= ∅∅∅

These definitions are enough to almost perfectly83 derive the mapping from the
McColl-Ladd system representation to the Leibniz-Cayley system representation:

ML LC
A Every b is c. b ⊆ c bc = b

E
No b is c.
(Every b is not-c.) b ⊆ c′ bc′=b

I At least one b is c. b ⋒ c bc ̸= ∅∅∅

O
At least one b is not c.
(At-least-one b is not-c.) b ⋒ c′ bc′ ̸=∅∅∅

∗
At least one b exists.
(At least one b is b.)
(b is-not empty.)

b ⋒ b bb ̸= ∅∅∅

Does LC |= ML? In other words, can we derive all ML axioms from LC axioms?
Let’s derive each individual ML axiom from LC.

ML1: b ⋒ c |=| bc ̸= ∅∅∅ |=| cb ̸= ∅∅∅ |=| c ⋒ b {(D2), (LC1)}
ML2: b ⊆ c |=| bc = b |=| c′b′ = c′ |=| c′ ⊆ b′ {(D1), (LC4)}
ML3: b ⊆ c′ |=| bc′ = b |=| cb′ = c |=| c ⊆ b′ {(D1), (LC5)}
ML4: (D1), Barbara-1 proof in LC {(D1), (LC2)}

ML5: (D2), (D1), Darii-1 proof in LC {(D2), (D1),
(LC1), (LC2), (LC3)}

Therefore, as long as we additionally assume D1 and D2 as bridge definitions en-
riching LC, LC |= ML.

What about the converse? Does ML |= LC?

82Intuitively justifiable by Venn and Euler diagrams.
83When mapping the ML representation for “At least one b exists.” to the LC representation which we have

chosen in Section 6.1 (b ̸= ∅∅∅), we have to make use of definition D2 and the idempotence law from Boolean
algebra (bb = b). This is a minor detail; had we represented “At least one b exists.” in LC by bb ̸= ∅∅∅ rather
than b ̸= ∅∅∅ –with the corresponding minor adaptation to the LC3 and LC6 laws–, the proofs in LC would have
remained the same, and there would be no need of assuming the idempotence law, at the (small) cost of the
loss of a more direct, more intuitive justification for the alternative LC representation (bb ̸= ∅∅∅).
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If it is true, we should be able to prove every LC axiom from the ML axioms. If it
is false, we should be able to find a consequence/theorem from LC which we cannot
prove true or false (that is, which is undecidable) in ML.

It turns out that “b⋒c |= c⋒c” cannot be proved from ML axioms alone84, whereas
it is a straightforward consequence of LC3 and the correspondence of definitions of “At
least one b is c.” and “At least one c exists.” in LC and ML:

bc ̸= ∅∅∅ |= c ̸= ∅∅∅
b ⋒ c |= c ⋒ c

ML has no expressive apparatus to state sentences involving the intersection oper-
ation, such as “b ⊆ cd”. In contrast, in the more expressive LC system we can prove
some theorems which are translatable to laws involving “⊆” and intersection, such as
greatest lower bound:

b ⊆ c, b ⊆ d |= b ⊆ cd
(Here, b is a lower bound of both c and d, and cd is the greatest lower bound of c

and d taken together.)
Proof:

1. b = bc {b ⊆ c}
2. b = bd {b ⊆ d}
—————————————————
3. b = (bc)d {(2), (1)}
4. b = b(cd) {(3), LC2. Therefore: b ⊆ cd}

Therefore, ML ̸|= LC.
By taking together the facts that LC |= ML and ML ̸|= LC, we conclude that LC

is strictly more “powerful” than ML, in the sense that we can prove more theorems in
LC than in ML.

Note that Barbara-1 (subclasshood transitivity – ML4) is a consequence of the
associativity of intersection (one of the semilattice laws, as we will see in Section 8.2).
Associativity is more general than transitivity because the involved classes are not
required to participate together in a subclasshood relation.

With the axioms we have chosen, every categorical syllogism proof in ML has shown
to be shorter than (or at least as short as) the corresponding proof in LC.

8.2. Deriving LC from Boolean algebra
8.2.1. Boolean lattice

There are various equivalent axiomatic systems –entry points– for Boolean algebra.
One of them is the Boolean lattice (BL) axiomatic system, which we will adopt in
this paper85. “Boolean lattice” is usually defined as “complemented distributive lattice”
(Birkhoff, 1940, p. 88), with the signature ⟨S,⊓,⊔,′ ,⊥,⊤⟩. Does BL |= LC? To answer
this, let’s first enumerate the BL axioms, that is, the lattice, distributive lattice, and
complemented lattice axioms86:

84By the way, we would need ML4 and that extra assumption to prove covariance/monotonicity of inhabi-
tation – if a class is inhabited, then any of its superclasses is also inhabited:

S1. b ⋒ b, b ⊆ c |= b ⋒ c
{b ⋒ c, c ⊆ d |= b ⋒ d}

c← b, d← c

S2. b ⋒ b, b ⊆ c |= c ⋒ c (S1), {b ⋒ c |= c ⋒ c}
The corresponding theorem in LC (b ̸= ∅∅∅, bc = b |= c ̸= ∅∅∅) can be proved by the application of substitution

and LC3.
85One could adopt instead the definition of Boolean ring (Stone, 1935), one of Huntington’s axiomatic

systems (1933; 1904), or one of the two alternative versions of Wolfram’s (2018)(McCune et al., 2002) axiom,
among various other equivalent axiomatic systems.

86Boolean lattice, as a formal (abstract) algebraic structure, was axiomatically defined by Ernst Schröder
(1877, pp. 8-12), who called it simply “Logikkalkul”, with an axiomatic system very close to the one we adopt
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Semilattice laws87:
Idempotence88 b ⊓ b = b b ⊔ b = b
Commutativity b ⊓ c = c ⊓ b b ⊔ c = c ⊔ b

Associativity (b ⊓ c) ⊓ d =
b ⊓ (c ⊓ d)

(b ⊔ c) ⊔ d =
b ⊔ (c ⊔ d)

Lattice laws:
Absorption89 b ⊓ (b ⊔ c) = b b ⊔ (b ⊓ c) = b
Distributive lattice laws:

Distributivity90 b ⊓ (c ⊔ d) =
(b ⊓ c) ⊔ (b ⊓ d)

b ⊔ (c ⊓ d) =
(b ⊔ c) ⊓ (b ⊔ d)

Bounded lattice laws
Identity element b ⊓ ⊤ = b b ⊔ ⊥ = b
Complemented lattice laws
Complementarity/
Contradiction91 b ⊓ b′ = ⊥ b ⊔ b′ = ⊤

here (with the minor difference that Schröder was more parsimonious, since he proved the bounded lattice law
“b⊔⊥ = b” and the two absorption laws as theorems), long before Lattice Theory was systematized as a topic
of study.

The axiomatic system as presented here is didactically clear (since it follows the typical progression of the
study of algebraic structures in abstract algebra) but redundant. For instance, each idempotence law becomes
a theorem when both absorption laws hold:
b ⊓ b = b ⊓ (b ⊔ (b ⊓ b)) = b;
b ⊔ b = b ⊔ (b ⊓ (b ⊔ b)) = b.
For further examples of redundancy in this axiomatic system, see the Section “§ 1. The First Set of Postulates”
by Huntington (1904).

87The (semi)lattice axioms were collected together into lattice theory –a branch of both abstract algebra
and order theory– by Birkhoff (1938, p. 795).

88Each idempotence law was algebraically enunciated by Leibniz, respectively in (Leibniz, ca. 1679) and
(Leibniz, ca. 1686f, Axioma 1 & Scholium) – drafts published years before Boole’s (1847) pamphlet. Boole
restated b ⊓ b = b but did not tolerate b ⊔ b = b because ⊤ ⊔ ⊤ = ⊤ would translate to 1 + 1 = 1 in
his syntax, which attempted to imitate as closely as possible certain ordinary operations and values from
numerical algebra. Few years after Boole’s pamphlet was published, Jevons (1864, p. 26, point 69; pp. 82-83,
points 191-193) restated b ⊔ b = b.

89The earliest recognition we could find for an absorption law in Boolean algebra, b⊔(b⊓c) = b, is by Jevons
(1864, p. 26, point 70)(Valencia, 2004, p. 454)(Lewis, 1918, p. 74). Boole impeded himself from discovering it,
since his partial “union” operation was valid only for disjoint classes, and it is not necessarily the case that
b and b ⊓ c are mutually disjoint. For the other absorption law, b ⊓ (b ⊔ c) = b, the obstacle for its universal
validity in Boole’s original algebra is that b and c (in the partial “union” inside parentheses) are not necessarily
disjoint.

We didn’t succeed in finding an excerpt of some draft where Leibniz makes this law explicit or at least makes
use of it implicitly, but we may have inattentively passed over it in our reading. Malink and Vasudevan (2016,
p. 709) studied an important manuscript of Leibniz’s on logic and couldn’t find this law there either – though
the possibility that it might be present somewhere else remains.

90One of the distributive laws –b ⊓ (c ⊔ d) = (b ⊓ c) ⊔ (b ⊓ d)– was stated by Boole (1847, p. 17). The other
one was stated by Peirce (1867, p. 251), and wasn’t anticipated by Boole likely because it is not universally
valid for numerical algebra with “+” and “∗”, to which his algebra of logic is subordinated; it is not universally
valid for non-trivial Boolean rings either.

Schröder (1890, pp. 280,282,285-287,643) discovered that not all lattices are distributive. By constructing an
example of non-distributive lattice, we can prove the independence of the distributive laws from the other lattice
axioms. The (modular, bounded) diamond lattice M5 and the (non-modular, bounded) pentagon lattice N5,
both with 5 points, are examples of non-distributive lattices. In addition, set partition lattices and noncrossing
partition lattices are not distributive in general.

Schröder’s (1890, pp. 643) diagrammatic example of non-distributive lattice contains two non-modular pen-
tagon sublattices N5: {AB,B,AB +AC,A(B + C), B + C} and {AC,C,AB +AC,A(B + C), B + C}.

91Lodovico Ignazio Richeri (1761, p. 48), in an article where he attempts to construct a characteristica
universalis along lines similar to Leibniz’s, adopted semiotically opposite symbols similar to “

ω

” and “ω”
for false/empty and true/universe, respectively –to which the modern lattice theory symbols “⊥” and “⊤”
are analogous–, in order to symbolically represent the complementarity laws – disjointness and exhaustion
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From these axioms, we can derive the following theorems.

Dominating element for ⊓ /
Least element:
b ⊓ ⊥ = ⊥
Proof.

b ⊓ ⊥
= b ⊓ (b ⊓ b′) {b ⊓ b′ = ⊥}

= (b ⊓ b) ⊓ b′
{(b ⊓ c) ⊓ d =
b ⊓ (c ⊓ d)}

= b ⊓ b′ {b ⊓ b = b}
= ⊥ {b ⊓ b′ = ⊥}

Dominating element for ⊔ /
Greatest element:
b ⊔ ⊤ = ⊤
Proof.

b ⊔ ⊤
= b ⊔ (b ⊔ b′) {b ⊔ b′ = ⊤}

= (b ⊔ b) ⊔ b′
{(b ⊔ c) ⊔ d =
b ⊔ (c ⊔ d)}

= b ⊔ b′ {b ⊔ b = b}
= ⊤ {b ⊔ b′ = ⊤}

Subsumption with ⊓ and ⊔:
b ⊓ c = b |=| b ⊔ c = c
Proof.

b ⊓ c = b |= b ⊔ c = c
b ⊔ c
= (b ⊓ c) ⊔ c {assumption: b ⊓ c = b}
= c ⊔ (b ⊓ c) {b ⊔ c = c ⊔ b}
= c ⊔ (c ⊓ b) {b ⊓ c = c ⊓ b}
= c {b ⊔ (b ⊓ c) = b}

b ⊔ c = c |= b ⊓ c = b
b ⊓ c
= b ⊓ (b ⊔ c) {assumption: b ⊔ c = c}
= b {b ⊓ (b ⊔ c) = b}

Therefore, b ⊓ c = b |=| b ⊔ c = c.

Subsumption and supersumption:
b ⊓ c = b, b ⊔ c = b |= b = c
Proof.

b
= b ⊔ c {assumption: b ⊔ c = b}
= (b ⊓ c) ⊔ c {assumption: b ⊓ c = b}
= (c ⊓ b) ⊔ c {b ⊓ c = c ⊓ b}
= c ⊔ (c ⊓ b) {b ⊔ c = c ⊔ b}
= c {b ⊔ (b ⊓ c) = b}

(Ladd Franklin, 1890, pp. 86-87)(Peirce and Ladd-Franklin, 1901):
&

ω

a non a
vel ω

What his symbolic representation of the complementarity laws had: literal placeholder for a term; a symbol
for “and”; symbols for false/contradiction and true/necessity.

What was missing: a symbol for “or”; a symbol for “non-”; a symbol for equality/identity.
With some notational adaptations to better exploit mirror reflection symmetry in order to show a kind of

“partial cancellation” and “combination” of symbols, we obtain:
∩ ω

i i =
∪ ω

This judicious choice of semiotically opposite symbols for “⊥” and “⊤” stressed a symmetry that later would
suggest the duality principle of Boolean algebras (nLab authors, 2019) and the two De Morgan’s laws – features
Leibniz didn’t seem to have grasped the importance of (Levey, 2011, p. 127)(Lenzen, 2018b, p. 263-265).

It is a pity that Richeri missed the opportunity to present the identity element laws with his layout and a
nice symmetrical notation where a kind of “cancellation” of almost antagonistic symbols becomes apparent
(Whitehead and Russell, 1910, p. 218, 22·05:IIa-IIb):

∩ω
i = i

∪ ω

The character “T” (from which the “⊤” symbol surely comes from) was adopted to represent “Totalität”
(“totality”, the universe of discourse) in logic by Robert Grassmann (1872, p. 15).
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Involution:
(b′)′ = b
Proof.

b ⊔ b′ = ⊤

(b′)′ ⊓ (b ⊔ b′) = (b′)′ ⊓ ⊤ {b = c |= f(b) = f(c)}
f(x) = (b′)′ ⊓ x

(b′)′ ⊓ (b ⊔ b′) = (b′)′ {b ⊓ ⊤ = b}

((b′)′ ⊓ b) ⊔ ((b′)′ ⊓ b′) = (b′)′
{b ⊓ (c ⊔ d)=
(b ⊓ c) ⊔ (b ⊓ d)}

((b′)′ ⊓ b) ⊔ (b′ ⊓ (b′)′) = (b′)′ {b ⊓ c = c ⊓ b}
((b′)′ ⊓ b) ⊔ ⊥ = (b′)′ {b ⊓ b′ = ⊥}
(b′)′ ⊓ b = (b′)′ {b ⊔ ⊥ = b}

b ⊓ b′ = ⊥

(b′)′ ⊔ (b ⊓ b′) = (b′)′ ⊔ ⊥ {b = c |= f(b) = f(c)}
f(x) = (b′)′ ⊔ x

(b′)′ ⊔ (b ⊓ b′) = (b′)′ {b ⊔ ⊥ = b}

((b′)′ ⊔ b) ⊓ ((b′)′ ⊔ b′) = (b′)′
{b ⊔ (c ⊓ d) =
(b ⊔ c) ⊓ (b ⊔ d)}

((b′)′ ⊔ b) ⊓ (b′ ⊔ (b′)′) = (b′)′ {b ⊔ c = c ⊔ b}
((b′)′ ⊔ b) ⊓ ⊤ = (b′)′ {b ⊔ b′ = ⊤}
(b′)′ ⊔ b = (b′)′ {b ⊓ ⊤ = b}

Therefore,
(b′)′ = b {b ⊓ c = b, b ⊔ c = b |= b = c}

Complementation of equivalent terms:
b = c |=| b′ = c′

Proof (by Leibniz36).

b = c |= b′ = c′
{b = c |= f(b) = f(c)}

f(x) = x′

Conversely,

b′ = c′ |= (b′)′ = (c′)′
{b = c |= f(b) = f(c)}
b← b′, c← c′, f(x) = x′

b′ = c′ |= b = c {(b′)′ = b}

Therefore,
b = c |=| b′ = c′
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Unique complementation 1:
b ⊓ c = ⊥, b ⊔ c = ⊤ |= c = b′

Proof92.

In a Boolean lattice, an element b necessarily has a
complement, b′, by the complemented lattice laws.
Suppose c is also a complement of b, that is:
b ⊓ c = ⊥ b ⊔ c = ⊤
Then
c
= c ⊓ ⊤ {b ⊓ ⊤ = b}
= c ⊓ (b ⊔ b′) {b ⊔ b′ = ⊤}
= (c ⊓ b) ⊔ (c ⊓ b′) {b ⊓ (c ⊔ d) = (b ⊓ c) ⊔ (b ⊓ d)}
= (b ⊓ c) ⊔ (c ⊓ b′) {b ⊓ c = c ⊓ b}
= ⊥ ⊔ (c ⊓ b′) {assumption: b ⊓ c = ⊥}
= (b ⊓ b′) ⊔ (c ⊓ b′) {b ⊓ b′ = ⊥}
= (b′ ⊓ b) ⊔ (c ⊓ b′) {b ⊓ c = c ⊓ b}
= (b′ ⊓ b) ⊔ (b′ ⊓ c) {b ⊓ c = c ⊓ b}
= b′ ⊓ (b ⊔ c) {b ⊓ (c ⊔ d) = (b ⊓ c) ⊔ (b ⊓ d)}
= b′ ⊓ ⊤ {assumption: b ⊔ c = ⊤}
= b′ {b ⊓ ⊤ = b}

Unique complementation 2:
b ⊓ c′ = ⊥, b ⊔ c′ = ⊤ |= c = b
Proof.

b ⊓ c′ = ⊥, b ⊔ c′ = ⊤ |= c′ = b′
{b ⊓ c = ⊥, b ⊔ c = ⊤ |= c = b′}

c← c′

b ⊓ c′ = ⊥, b ⊔ c′ = ⊤ |= (c′)′ = (b′)′ {b = c |=| b′ = c′}
b ⊓ c′ = ⊥, b ⊔ c′ = ⊤ |= c = (b′)′ {(b′)′ = b}
b ⊓ c′ = ⊥, b ⊔ c′ = ⊤ |= c = b {(b′)′ = b}

De Morgan’s law93 for ⊓:
(b ⊓ c)′ = b′ ⊔ c′

Proof94.

f ← (b ⊓ c)′, d← b′ ⊔ c′

92Adapted from:
«https://proofwiki.org/wiki/Complement_in_Boolean_Algebra_is_Unique».
See also:
«https://proofwiki.org/wiki/Complement_in_Distributive_Lattice_is_Unique»
«https://math.stackexchange.com/questions/3239464/how-to-prove-the-uniqueness-of-complement-in-the-algebra-of-sets-without-using#
3239493»

93The two De Morgan’s laws state or imply that “ ′” is a monoid homomorphism from “⊓” to “⊔” and vice
versa – or, more precisely, from ⟨B,⊓,⊤⟩ to ⟨B,⊔,⊥⟩ and vice versa, as it is an involution.
The De Morgan’s (1847, pp. 118,59) laws were anticipated in prose by William of Ockham (ca. 1323).

94Adapted from:
«https://www.geeksforgeeks.org/proof-of-de-morgans-laws-in-boolean-algebra/».
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d ⊓ f ′

= (b′ ⊔ c′) ⊓ ((b ⊓ c)′)′

= (b′ ⊔ c′) ⊓ (b ⊓ c) {(b′)′ = b}
= (b ⊓ c) ⊓ (b′ ⊔ c′) {b ⊓ c = c ⊓ b}

= ((b ⊓ c) ⊓ b′) ⊔ ((b ⊓ c) ⊓ c′)
{b ⊓ (c ⊔ d) =
(b ⊓ c) ⊔ (b ⊓ d}

= ((c ⊓ b) ⊓ b′) ⊔ ((b ⊓ c) ⊓ c′) {b ⊓ c = c ⊓ b}

= (c ⊓ (b ⊓ b′)) ⊔ ((b ⊓ c) ⊓ c′)
{(b ⊓ c) ⊓ d =
b ⊓ (c ⊓ d)}

= (c ⊓ ⊥) ⊔ ((b ⊓ c) ⊓ c′) {b ⊓ b′ = ⊥}
= ⊥ ⊔ ((b ⊓ c) ⊓ c′) {b ⊓ ⊥ = ⊥}
= ((b ⊓ c) ⊓ c′) ⊔ ⊥ {b ⊔ c = c ⊔ b}
= (b ⊓ c) ⊓ c′ {b ⊔ ⊥ = b}

= b ⊓ (c ⊓ c′)
{(b ⊓ c) ⊓ d =
b ⊓ (c ⊓ d)}

= b ⊓ ⊥ {b ⊓ b′ = ⊥}
= ⊥ {b ⊓ ⊥ = ⊥}

d ⊔ f ′

= (b′ ⊔ c′) ⊔ ((b ⊓ c)′)′

= (b′ ⊔ c′) ⊔ (b ⊓ c) {(b′)′ = b}

= ((b′ ⊔ c′) ⊔ b) ⊓ ((b′ ⊔ c′) ⊔ c)
{b ⊔ (c ⊓ d) =
(b ⊔ c) ⊓ (b ⊔ d)}

= (b ⊔ (b′ ⊔ c′)) ⊓ ((b′ ⊔ c′) ⊔ c) {b ⊔ c = c ⊔ b}

= ((b ⊔ b′) ⊔ c′) ⊓ ((b′ ⊔ c′) ⊔ c)
{(b ⊔ c) ⊔ d =
b ⊔ (c ⊔ d)}

= (⊤ ⊔ c′) ⊓ ((b′ ⊔ c′) ⊔ c) {b ⊔ b′ = ⊤}
= (c′ ⊔ ⊤) ⊓ ((b′ ⊔ c′) ⊔ c) {b ⊔ c = c ⊔ b}
= ⊤ ⊓ ((b′ ⊔ c′) ⊔ c) {b ⊔ ⊤ = ⊤}
= ((b′ ⊔ c′) ⊔ c) ⊓ ⊤ {b ⊓ c = c ⊓ b}
= (b′ ⊔ c′) ⊔ c {b ⊓ ⊤ = b}

= b′ ⊔ (c′ ⊔ c)
{(b ⊔ c) ⊔ d =
b ⊔ (c ⊔ d)}

= b′ ⊔ (c ⊔ c′) {b ⊔ c = c ⊔ b}
= b′ ⊔ ⊤ {b ⊔ b′ = ⊤}
= ⊤ {b ⊔ ⊤ = ⊤}

Therefore,

f = d
{b ⊓ c′ = ⊥, b ⊔ c′ = ⊤ |= c = b}

b← d, c← f
(b ⊓ c)′ = b′ ⊔ c′ f ← (b ⊓ c)′, d← b′ ⊔ c′

De Morgan’s law for ⊔:
(b ⊔ c)′ = b′ ⊓ c′

Proof.

(b′ ⊓ c′)′ = (b′)′ ⊔ (c′)′
{De Morgan’s law for ⊓}

b← b′, c← c′

(b′ ⊓ c′)′ = b ⊔ c {(b′)′ = b}
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b ⊔ c = (b′ ⊓ c′)′ {b = c |=| c = b}
(b ⊔ c)′ = ((b′ ⊓ c′)′)′ {b = c |=| b′ = c′}
(b ⊔ c)′ = b′ ⊓ c′ {(b′)′ = b}

8.2.2. Deriving LC from Boolean lattice axioms

Does BL |= LC? Let’s derive LC axioms from BL axioms and theorems.
The first thing to do is to map the abstract Boolean lattice signature ⟨S,⊓,⊔,′ ,⊥,⊤⟩

to the signature we need: ⟨P(I),∩,∪,′ ,∅∅∅, I⟩, where “P” is the “powerclass-of” function.
After this mapping, we obtain the facts that follow.

LC1 (commutativity) and LC2 (associativity) are semilattice axioms.
LC3 (predicative inhabitation) can be proved as follows:

b∅∅∅ = ∅∅∅ {b ⊓ ⊥ = ⊥}
c = ∅∅∅ |= bc = ∅∅∅ {substitution of similars}

bc ̸= ∅∅∅ |= c ̸= ∅∅∅ {transposition (from propositional logic)}

LC4 (subsumption contraposition) can be proved as follows:

Suppose
b ⊓ c = b.
Then
(b ⊓ c)′ = b′ {b = c |=| b′ = c′}
b′ ⊔ c′ = b′ {(b ⊓ c)′ = b′ ⊔ c′}
c′ ⊔ b′ = b′ {b ⊔ c = c ⊔ b}
c′ ⊓ b′ = c′ {b ⊓ c = b |=| b ⊔ c = c}
Therefore, bc = b |=| c′b′ = c′.

LC5 (disjointness conversion) can be proved as follows:

Suppose
b ⊓ c′ = b.
Then
(b ⊓ c′)′ = b′ {b = c |=| b′ = c′}
b′ ⊔ (c′)′ = b′ {(b ⊓ c)′ = b′ ⊔ c′}
b′ ⊔ c = b′ {(b′)′ = b}
c ⊔ b′ = b′ {b ⊔ c = c ⊔ b}
c ⊓ b′ = c {b ⊔ c = b |=| b ⊔ c = c}
Therefore, bc′ = b |=| cb′ = c.

Therefore, BL |= LC.
What about the converse? Does LC |= BL? No. The BL theorem (b′)′ = b is neither

an axiom nor a theorem that can be proved in LC. Its axioms are not sufficient to
prove bb = b either – nor simple theorems like (bc)b = cb = (cb)c.

Therefore, LC ̸|= BL.
By taking together the facts that BL |= LC and LC ̸|= BL, we conclude that BL is

strictly more “powerful” than LC, in the sense that we can prove more theorems in BL
than in LC.

As we have shown, with the LC representation of an inhabited term it is straight-
forward to prove the predicative inhabitation law LC3 from Boolean lattice axioms.
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To our purposes here, this is an important advantage of LC over a pure Leibniz’s
system, which adopts Leibniz’s representation of an inhabited term (Section 6.1). No
harm is done, since we can easily convert from such a pure Leibniz’s system to LC and
vice-versa through the following correspondence:

I⟨s⟩ |=| s ̸= ∅∅∅.
Therefore, Leibniz’s sytem and LC have equivalent expressive power.
On a note that fits the importance of Cayley’s insight for the harmonization between

Boolean algebra and the algebra of categorical syllogistic, Green (1991, p. 2) remarked
that

«[...] It was because of this difficulty of dealing with particular statements that a generally
accepted solution of the elimination problem sufficient for a complete treatment of the
syllogism came so late in the development of the algebra of logic.»95

On the other hand, we should have in mind that Leibniz’s system is conceptually
more parsimonious than LC, as the former does not require postulating:

• The complementary relation to “=”. In no proof of a categorical syllogism in LC
(Section 6.3) one needs to use the knowledge that “ ̸=” is the complement of “=”;
one could even have replaced it by a dyadic relation “R” with unknown properties,
and the proofs would have remained the same.
• The concept of empty class (“∅∅∅”). Nowhere in the proofs of categorical syllogisms

in LC we make use of properties of “∅∅∅”, such as “b∅∅∅ = ∅∅∅” – many of these
properties Leibniz (ca. 1686d, points 15-22,28-30,39) knew, by the way.

Indeed, in LC “ ̸=” and “∅∅∅” are only used together –namely in the representations of
particular categorical assertions and in LC3–, and can be safely replaced by a monadic
relation “I” (“est Ens”) from Leibniz’s original logic. Cayley’s contribution, valuable as
it is, is not needed in order to prove the classic categorical syllogisms by an equational
algebra of logic. His contribution is, above all, a bridge to what is external to the
system: it enables an easy correspondence between ideas from Leibniz’s pure system
and Boolean algebra, allowing us to prove LC3 from BL.

Figure 9 shows the connections we have proved between BL, LC and ML. Since the
theorems of ML are a subset of the theorems of LC, the latter theorems are a subset of
the theorems of BL, and BL axioms don’t lead to (mutually) contradictory conclusions,
it follows that ML and LC don’t lead to (mutually) contradictory conclusions either.

BL (if interpreted as the Boolean algebra of terms, or of term logic) has the same
expressive power as a fragment of monadic first-order quantificational logic (Simons,
2020)(Green, 1991, p. 7)(Pratt-Hartmann, 2023, pp. 25-30). Thus, we have proved how
the hierarchy of expressiveness is constituted from some axiomatizations of classic Aris-
totelic categorical syllogistic (but without existential import for universal assertions)
–a “toy” logic with a finite, small number of interesting theorems– up to first-order
logic.

9. Future work

All proof techniques have their value to illuminating different aspects of categorical
syllogistic, and we feel that the “Euler system” diagrammatic proof technique deserves

95When put in another context, this remark, in our view, would also be fitting to pay homage to McColl’s
insight on the opposition “⊆” vs. “⊈”, to Ladd’s insight on the complementary relations “̸⋒” vs. “⋒”, to Mitchell’s
“⋓” vs. “̸⋓”, and to the opposition “⊇” vs. “⊉”, as we saw in Section 7.
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BL
LC

ML

Figure 9.: Euler diagram representing the relations between the Boolean lattice,
Leibniz-Cayley, and McColl-Ladd axiomatic systems in terms of the set of theorems
that can be proved in them.

as much respect as the algebraic proof techniques shown in this paper and the first-order
logic proof technique shown in other catalogs. It has the didactic advantage of being
easier to understand –almost intuitive– and less intimidating for beginners in logic.
Although the “semiformal” proofs we have reproduced here are well-known, appearing
even in Wikimedia Commons (Piesk, 2017), what to the best of our knowledge is
missing in the literature (and in this paper as well) is the description of all the axioms
and inference rules that make the Euler system work. This would be useful for the
full formalization of the proofs as a gapless sequence of steps, and would ensure a
level of respectability of this diagrammatic proof technique similar to that of the fully
formalized, gapless algebraic techniques.

Kraszewski (1956, pp. 54,16) noticed that, if we rewrite all the moods of the 24
traditional Aristotelic categorical syllogisms into the first figure, we see that only 6
fundamental categorical relations from De Morgan’s syllogistic are used in the premises
(A, Ä, E, I, O, Ö for the premises in the form s ?m and m ?p, with in some cases the
addition of a premise s I s, m Im or p Ip) and only 4 are used in the conclusion (A, E,
I, O in the form s ?p). Missing in the enumeration are valid categorical syllogisms with
premises in the remaining 2 fundamental categorical relations (Ë, Ï) and the conclusion
in the 4 fundamental categorical relations with umlaut. In a future work, they should
be enumerated, and we should check whether the axioms presented in this paper –
perhaps with the replacement of one of the axioms in each symbolic system by the
axiom of involution of complementation: (b′)′ = b– are sufficient to prove all the valid
categorical syllogisms in De Morgan’s syllogistic.

With our proof methods, whenever we are able to construct a proof, we do know
a conclusion necessarily follows from the premises (if the proof is correct). However,
when we are unable to construct a proof, our proof methods do not provide us tools
to know whether there exists a proof (and we only lacked the skill to construct it) or
whether the conclusion does not necessarily follow from the premises (in which case no
proof of the necessity of that conclusion is possible). For instance:
P1: Every s is m.
P2: Every m is p.
C1: Therefore: At least one s is p.
The conclusion is not incompatible with the premises, though it is not necessary either.
It might be the case that “No s is p.” instead – namely, when s = ∅∅∅ / s ̸ ⋒ s. This
limitation of our proof methods implies that they should also be complemented by
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techniques for rejection proofs of invalid categorical syllogisms, for completeness96. It
would be even better if the rejection proofs helped us to discriminate invalid conclusions
which are incompatible with the premises (and thus the complement of the former
relations would be necessary conclusions) from invalid conclusions which are compatible
with the premises but not necessary (and thus the complement of the former relations
would neither be incompatible nor necessary conclusions as well). For instance, with
the premises of Barbara-1 –sAm, mAp–, any conclusion s ?p where “?” is not “A” is
invalid; “O” (the complementary relation to “A”) would be an incompatible conclusion,
and remaining relations would be compatible but non-necessary conclusions – we wish
those facts to be proved in an style similar to our LC and ML systems. A system is
said to be refutationally complete if each formula of its language is either a theorem
or a rejected formula (Kulicki, 2020, p. 10)(Wybraniec-Skardowska, 2018, pp. 578–
582). Since this logic –categorical syllogistic– is finite, given that we can enumerate all
possible combinations of the 8 basic relations in the strict format “premise 1 - premise
2 - candidate conclusion”, what we wish is defining decidable, refutationally complete
systems extending LC and ML.

10. Conclusion

We have described two symbolic axiomatic systems –Leibniz-Cayley (Section 6) and
McColl-Ladd (Section 7)– which are sufficiently powerful to prove all the 24 classic
categorical syllogisms in the term logic tradition founded by Aristotle, as made visual
by the diagrammatic Euler system (Section 3), thus totalling three systems presented
by this paper (one diagrammatic and two symbolic ones). Our main novel result is
summarized in Figure 9.

We have also unveiled new proofs of known theorems – the 24 classic categorical
syllogisms. All proofs are short and don’t fly over lay people’s heads. We claim that,
unlike first-order logic proofs, the diagrammatic, algebraic and relational techniques we
have adopted from the literature on the topic are understandable to mathematically
curious students who are finishing the middle school and that, by providing them all
the axioms and three or four proofs of sample theorems, they should be able to prove
all remaining theorems97. This is because our algebraic proofs can piggyback on their
familiarity to elementary numerical algebra, which has many analogous properties to
the algebra of classic logic (such as substitutability of equals, commutativity and as-
sociativity of certain operations), and they are short and don’t impose much cognitive
burden, thus reducing the likelihood that the learners will get lost. Moreover, we hy-
pothesize that the Euler diagram technique is immediately “intuitive” even to ordinary
students not skilled enough to reproduce the proofs, who would at a minimum be able
to visually track the proof steps and grasp them. Thus, these diagrammatic proofs are
particularly effective to mathematically-averse Philosophy students who are required
to deal with Aristotelic logic in their course curriculum.

The conventional proofs in monadic first-order quantificational logic à la Frege and
Peirce (Tennant, 2014; Metamath, 2021; Koutsoukou-Argyraki, 2019) are a great way

96The logician David Makinson, in private correspondence with the main author, claimed that “it can be
done semantically by considering models of up to 8 elements”.

97The categorical syllogisms Bamalip-4, Disamis-3, Camestres-2 and Cesare-2 have representative proofs
that cover together all axioms proposed in this paper for LC. (For ML, Camestres-2, Dimatis-4 and Cesare-2.)
As an exercise, a teacher could show her students the axioms and those proofs and ask them to prove the
remaining classic categorical syllogisms.
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(or a gateway) to introduce categorical syllogistic students into first-order logic. Our
proofs dispel the misconceptions that (a) the mathematical treatment of categorical
syllogisms requires methods from first-order logic, and that (b) first-order logic makes
Leibnizian/Boolean methods “obsolete”.
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