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Abstract

How do scientists navigate between the need to capitalize on their prior knowledge through special-
ization, and the urge to adapt to evolving research opportunities? Drawing from diverse perspectives on
adaptation, this paper proposes an unsupervised Bayesian approach motivated by Optimal Transport of
the evolution of scientists’ research portfolios in response to transformations in their field. The model
relies on 186, 162 scientific abstracts and authorship data to evaluate the influence of intellectual, so-
cial, and institutional resources on scientists’ trajectories within a cohort of 2 108 high-energy physicists
between 2000 and 2019. Using Inverse Optimal Transport, the reallocation of research efforts is shown
to be shaped by learning costs, thus enhancing the utility of the scientific capital disseminated among
scientists. Two dimensions of social capital, namely “diversity” and “power”, have opposite associations
with the magnitude of change in scientists’ research interests: while “diversity” is associated with greater
change and expansion of research portfolios, “power” is associated with more stable research agendas.
Social capital plays a more crucial role in shifts between cognitively distant research areas. More gener-
ally, this work suggests new approaches for understanding, measuring and modeling collective adaptation
using Optimal Transport.
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1 Introduction
Scientists are subject to conflicting incentives. On the one hand, they must work within the realm of their
expertise, where they can most effectively exploit their prior knowledge and compete with peers; this conser-
vative preference for familiar research topics is at the root of specialization. On the other hand, scientists are
simultaneously compelled to revise their research interests to engage with more promising research areas in
order to benefit from more exposure or to secure funding. Thus, in some instances, specialization is at odds
with the need to adapt to the decline of certain research opportunities and the growth of new ones. How do
scientists navigate the trade-off between specialization (i.e. the concentration of their intellectual resources
within a narrow cognitive range) and adaptation (i.e. the need to adjust these resources to new realities)?
This conflict differs from the “essential tension” between “tradition” and “innovation” proposed by Kuhn
[1], or that between “exploration” and “exploitation” [2], which have both been explored quantitatively in
previous works [3–9]. First, “adaptation” is not tantamount to innovation or disruption, for it can be a con-
formist move (e.g. as a result of a bandwagon effect [10]). Moreover, unlike “exploration”, adaptation is not
identical to a search strategy in a static landscape [11], but rather the convergence towards a new state more
congruent with current realities. Disruptions due to breakthroughs in Machine Learning or challenges due to
climate change urge to understand how scientists adapt to changing circumstances. Therefore, the present
paper investigates scientists’ responses to changes in their field (whether driven by epistemic or institutional
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factors), and the effect of their capital (intellectual, social, or institutional) on their ability to adapt. Drawing
insights on adaptation from cultural evolution and institutional change, we develop an unsupervised Bayesian
approach to analyze changes in scientists’ research agenda while measuring the effect of “capital” (intellec-
tual or social) on their individual trajectories. The model is applied to a cohort of high-energy physicists
between the years 2000 and 2019, a time during which the historical driver of progress in the field – particle
accelerators – have been contested by emerging astrophysical experiments, thus transforming the landscape
of opportunities.

Our approach reveals trends in the field: the boom of dark matter research – fueled by shifts away from the
physics of neutrinos and the electroweak sector – and the partial disintegration of string theory into the study
of black holes and holography/dualities. More importantly, this analysis also shows that changes in scientists’
research portfolios are shaped by learning costs, as scientific communities adapting to new circumstances
address an “Optimal Transport” problem by reallocating research efforts efficiently. Optimal Transport is a
mathematical framework initially concerned with the optimal displacement and allocation of resources [12–
14], and has since then found wide-ranging applications. We show that it also provides a characterization of
scientists’ behavior, as driven by the need to maximize the utility of their scientific capital under changing
circumstances. Moreover, the comparative analysis shows that two dimensions of social capital, namely
“diversity” and “power” [15], have opposite associations with change. While “diversity” of social capital – the
extent to which scientists have access to diverse cognitive resources via their collaborators – is correlated with
greater change and further diversification of scientists’ research interests, “power” – roughly speaking, the
size of their network – is associated with more stability in their research interests. Social capital has a stronger
association with transfers between research areas that are more cognitively “distant”. There is no discernible
effect of institutional stability after controlling for academic age (although affiliation data is a bit noisy in
the dataset). Overall, we contribute: i) a conceptual account of the features of change in scientists’ research
interests; ii) a novel methodological approach that introduces a model of scientists’ trajectories connected to
Optimal Transport and measures of intellectual capital, social capital, diversity, and power; and finally, iii)
some empirical evidence from high-energy physics. More generally, this paper addresses the relative lack of
empirical works within the body of literature that investigates science as a cultural evolutionary system [16].
It demonstrates that Optimal Transport provides an insightful description of certain aspects of collective
adaptation, but also computational tools (such as Probabilistic Inverse Optimal Transport [17] and OT based
measures of change) for measuring adaptive behavior, and more generally, mobility in physical and abstract
spaces.

In what follows, Sections 1.1 and 1.2 summarize previous research and lay out the conceptual background
on which the analysis rests, and Section 1.3 introduces the context of high-energy physics to which the model
is applied. Section 2 elaborates the methodology: the data (2.1), the topic model approach for measuring
authors’ research portfolios (2.2), the proposed measures of intellectual and social capital (2.3), and the model
of scientists’ trajectories (2.4). Section 3 presents the results: i) the transfers of attention from one research
area to another due to changes in the scientific landscape; ii) the structuring role of learning costs in the
observed patterns of adaptation (3.1), and iii) the effect of capital (intellectual and social) and institutional
stability on physicists’ strategies (3.2).

1.1 Empirical background
Several works have investigated the evolution of scientists’ research interests. For instance, by mapping
the trajectories of 103,246 physicists over 26 years using the American Physical Society (APS) dataset
and its topic classification (the Physics and Astronomy Classification Scheme® (PACS)), Aleta et al. [5]
demonstrated that a majority of physicists gradually migrate to entirely different topics by the end of
their careers while often staying within the same general area. They reveal differences between subfields
of physics, such that “exploitation” (i.e. specialization, as opposed to the “exploration” of new topics) is
especially prevalent in particle physics. Using the same data, Jia et al. [4] instead find an exponentially
decaying distribution of changes in scientists’ interests. Previous works generally agree, however, on the
graduality of change in research topics [4–6], as previously observed by Gieryn [18]. Recognizing that scientists
typically investigate several research questions in parallel, Gieryn proposed four mechanisms of gradual
change, including “accretion” (a problem is added to their “problem set”), “selective substitution” (one
problem is replaced by another), and “selective disengagement” (one problem is neglected).
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While [4–6] document the structure of changes in scientists’ interests, they do not relate these transforma-
tions to changes in epistemic and institutional context, or to the scientists’ incentives and resources. Tripodi
et al. [7] have taken a step in this direction. Using the APS dataset, they show that physicists are more likely
to explore areas to which they are connected via their collaborators, and highlight the crucial importance of
collaborations in the expansion of research portfolios, especially for the exploration of research areas distant
from one’s core specialization. However, their work does not primarily address the transformations of scien-
tists research portfolios throughout time – they do not quantify “change” –, and they recognize the need for
further longitudinal analyses. Finally, previous works have explored the connection between spatial mobility
patterns and scientific mobility using gravity or radiation models [8, 9]. In particular, [8] used such methods
to compare the characteristics of two types of scientists, “explorers” as opposed to “exploiters”.

The present paper complements previous works on changes in scientists’ research in several ways. First,
since the focus is on adaptation strategies, the core of our approach is both comparative (as in [7], and
unlike other previous works) and longitudinal (unlike [7], although their paper includes longitudinal robust-
ness checks). Second, this contribution evaluates previously unexplored aspects, such as the choice between
expansion or consolidation of research portfolios and the effect of affiliation stability. Third, this work relates
the findings to the epistemic context of the field and its transformations by performing the analysis at a
circumscribed scale (high-energy physics). Fourth, this work does not rely primarily on the APS dataset and
PACS categories, on which most previous works depend [4, 5, 19, 7], or any other pre-existing classification
of the literature. Research areas are clustered using an unsupervised topic model, such that this approach
measures linguistic change, which is arguably a more direct proxy of cognitive change. Fifth, this paper is
the first application of the Probabilistic Inverse Optimal Transport approach from [17], which provides an
alternative to other approaches to mobility (e.g. gravity models). Finally, the proposed approach is grounded
in theory, by operationalizing concepts such as capital [20, 21], and by exploiting theoretical insights from
diverse approaches to “adaptation”.

1.2 Conceptual framework
A central dilemma of adaptation consists in choosing which resources to leverage among those already
available (although those may be suboptimal or irrelevant under new circumstances) and which resources
to abandon and replace with others (which may be inefficiently costly). By adapting gradually, scientists
can strategically retain the benefits of “problem retention” (e.g., the exploitation of “accumulated skills and
resources” in one area, or “of an established research network”, [18, p. 106]) while progressively investing
resources in new research directions. This is illustrated in Figure 1, which represents the research portfolios
of one scientist during two distinct time periods. Cells indicate the resources exploited by the scientist (e.g.,
concepts, models, methods, etc.) and colors indicate to what problem areas this knowledge is applied. Figure
1 shows how scientists can enter new research areas by repurposing certain resources to new ends [22, 23].
We call this strategy “conversion”, in reference to the typology of incremental institutional change proposed
by Mahoney et al. [24]1

Not all knowledge can be successfully applied to new research areas: as illustrated in Figure 1, entering new
research areas typically requires “layering”2, that is, the introduction of new concepts, models, or methods,
on top of prior knowledge. The acquisition of knowledge entails learning costs, which can be partially avoided
by collaborating with experts in the target domain [7]. Another mode of change is displacement, when the
replacement of one research area for another involves significant neglect of prior knowledge. This may not be
the preferred strategy, since it fails to take advantage of accumulated resources. However, certain knowledge
may not apply to a new context, or sometimes there might be reasons to suspend a line of research in order
to focus on more promising topics. Overall, we expect that these transformations will manifest themselves as
changes in scientists’ linguistic behavior, i.e., as changes in the vocabulary of their publications. Generally,
we expect an important amount of continuity in linguistic behavior, given the need to minimize cognitive
learning costs by capitalizing on prior knowledge.

Scientists manage two kinds of assets when navigating the trade-off between specialization and adaptation:
1Indeed, as shown in previous works on the transformations of high-energy physics facilities to photon science instruments

[25–27], historical institutionalism can account for gradual adaptations with large cumulative effects taking place in response to
scientific and technological change [28]. In this paper, we apply the typology of change to individuals rather than organizations.

2Again, borrowing the terminology from historical institutionalism.
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Figure 1: Changes in a scientist’s “research portfolio” over time. Colors designate research areas.
Resources entail any intellectual or methodological assets that a scientist uses to investigate problems in
each area. “Conversion” repurposes knowledge to new goals. “Displacement” is the replacement of certain
research interests with little or no transfer of prior knowledge, as illustrated by the green area. Layering is
the introduction of new research interests via the addition of new knowledge.

their own prior expertise, and the expertise to which they have access through their social network. Both
constitute “capital” [21], i.e. assets that individuals accumulate and leverage in the competitive context of
their field. “Capital” (whether “economic”, “cultural”, “social” or even “symbolic”, cf. [21]) defines the scope
of scientists’ opportunities and therefore their ability to adapt. This paper considers the intellectual capital
possessed by scientists in the form of scientific knowledge, and social capital. Measures that represent these
concepts will be proposed, and their effect on the magnitude of transfers of attention across research areas
will be evaluated. Emphasis will be put on the divide underlined in [15] between two dimensions of social
capital, namely “power” (roughly speaking, network size in the present paper) and “diversity” (of cognitive
resources). Group diversity is generally recognized as a factor of adaptation in an evolving environment or in
the context of collective problem-solving [29–32]. “Power” is also plausibly associated with higher abilities.

While capital defines scientists’ opportunities, it is not sufficient to explain why scientists do turn to
new research areas or not, which also requires understanding actors’ incentives and why they must respond
to these incentives. Consequently, the present paper also considers the effect of institutional stability and
academic age on migrations between research areas, since the need to respond to changes in the epistemic
and institutional environment is presumably different for, say, tenured physicists versus postdocs. Moreover,
we may assume that younger and older generations play different roles in cultural change and collective
adaptation in general [33]. Finally, the effect of productivity will also be considered.

1.3 The case of high-energy physics: navigating a changing epistemic landscape
High-energy physics is a prime example for investigating adaptation in a transforming scientific landscape.
As this field relied on the input of increasingly large particle colliders to achieve progress, it has accumu-
lated considerable capital directed towards collider physics in the form of large infrastructure and complex
knowledge. These efforts culminated in 2010 with the start of the Large Hadron Collider (LHC), the largest
accelerator ever. However, the LHC has found no evidence for anything that was not already predicted by
the Standard Model of particle physics, and it is increasingly plausible that no future accelerator could ever
find any evidence for new particles, leading to a situation of “crisis” [34]. Although the LHC will continue
to take data for years and plans for successors are being discussed [35], some have speculated that particle
physics as we know it has come to an end [36, 37], “the proscenium [being] captured by astrophysics and
cosmology” instead [37]. However, according to physicist Mikhail Shifman the “pause in accelerator pro-
grams we are witnessing now is not necessarily [. . . ] the end of explorations at [high energies]”; instead,
such explorations “will continue, perhaps in a new form, with novel devices” [38]. Indeed, new experimental
opportunities have emerged in parallel, including gravitational waves astronomy (since 2015 [39]), searches
for dark matter of astrophysical origin in underground facilities, and more precise observations of the cosmic
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microwave background (see Figure 10, Appendix A.1). Morever, astrophysics seems to be increasingly replac-
ing particle colliders in citations across experimental and theoretical high-energy physics [40]. The present
paper investigates how high-energy physicists have adapted in reaction to these transformations.

2 Methods
2.1 Data
Our source is the Inspire HEP database [41]. It aggregates High-Energy Physics (HEP) literature from
various sources, including the main scientific publishers and arXiv, and has been used in a few works [40,
42–45]. For the literature on HEP, it is more comprehensive than the often used APS dataset which is limited
to a few journals3. Moreover, it implements both automatized and manual measures for the disambiguation
of author names4 , thus allowing careers’ analyses [44] (nevertheless, occasional misidentifications remain
possible). The database also contains data on experiments; consequently, the evolution of the landscape of
experimental opportunities can be retrieved (see Figure 10, Appendix A.1).

The analysis includes all papers from the categories “Theory-HEP” and “Phenomenology-HEP” (inspired
from arXiv’s categories “hep-th” and “hep-ph”), to which most HEP publications belong, which amounts to
D = 186, 162 articles between 2000 and 2019. The minority of purely experimental high-energy physics pub-
lications are excluded: such papers are typically authored by thousands of collaborators, and authorship data
provide no information about individual experimentalists’ specialization. Therefore, this paper documents
how theorists and phenomenologists have adapted to the changes outline above.

For the longitudinal analysis, two time periods are considered. An initial phase (2000-2009) is used to infer
a reference “research agenda” for each physicist in the cohort, as well as their intellectual and social capital.
A late phase (2015-2019) is used to measure how each physicist’s research agenda has shifted in comparison
to the initial time period, in the context of the changes outlined above. The five-year gap between these
two periods allows to measure the cumulative effect of the transformations in the scientific landscape that
have unfolded gradually between 2010 and 2015 (had they been sudden, we would not have introduced such
a wide gap – see Figure 10, Appendix A.1), together with the effect of the capital accumulated prior to
these transformations. Only physicists with ≥ 5 publications during each time period (2000 to 2009, and
2015 to 2019) are included, resulting in a cohort of N = 2108 physicists. This study therefore considers
physicists that have remained dedicated to high-energy physics, thus revealing adaptation and “survival”
strategies within HEP, excluding authors that exited the field. This author inclusion rule excludes scientists
who publish very irregularly; however, although scientists who continuously publish are a minority, they
make up most of the publications in their field5. We do not seek “representativeness”, but rather to achieve
enough variance to uncover patterns among this particular cohort of productive high-energy physicists. The
median academic age of the cohort was 23 years in 2015. 49% of these physicsts have had an affiliation that
spanned the entire time period (see Appendix A.2, Figure 11).

2.2 Measuring research portfolios
Research portfolios are evaluated in terms of the distribution of keywords (n-grams) that belong to each
research area within the scientists’ publications’ abstracts. Instead of reyling on PACS categories and cita-
tion data as in most previous works, research areas are extracted with a topic model that recovers latent
“topics” within the corpus and their vocabulary distributions, while directly classifying keywords into sepa-
rate research areas. Arguably, texts provide a more direct access to the kinds of knowledge leveraged by a
scientist in their publications: linguistic flexibility implies cognitive flexibility and a low commitment to a
specific body of knowledge. Moreover, this approach is applicable to a wider range of situations for which
only textual data (even short texts) are available. For instance, PACS codes are only sparsely available in

3https://journals.aps.org/datasets
4Besides the use of “advance algorithms” of author-disambiguation, Inspire invites scientists to correct their own publication

record on the website (https://twiki.cern.ch/twiki/pub/Inspire/WebHome/INSPIRE_background.pdf, June 2014)
5Less than 1% of scientists active in the years 1996 to 2011 have published every year during this period, and yet they are

responsible for 47% of the publications [46]; the 13% of physicists with ≥ 16 publications between 1985 and 2009 account for
82% of publications [9].
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the recent HEP literature. A coarse-grained classification of the literature into K0 = 20 broad “topics” is
performed. The number of topics is always somewhat arbitrary, but that topic models give some control over
the cognitive scale is a feature, rather than a bug6: as Gieryn [18] puts it, “in such analyses [of problem
change], empirical findings will in part reflect the defined scope of problem areas”, which is itself arbitrary.
In our case, we would ideally like our clustering to be just fine-grained enough to measure the impact of the
shifts in the landscape of experimental opportunities that we are interested in (the start of the LHC, the rise
of new probes of dark matter and black holes, etc.). In this respect, K0 = 20 turns out to be just sufficient to
discern the effects of the transformations in HEP discussed in Section 1.3 as well as the observed evolution
in the popularity of various kinds of experiments shown in Appendix A.1, Figure 10. Additional models
were trained for robustness assessment, setting different values for K0 (15, 20, 25). More coarse-grained
models (using lower values of K0) are typically less able to observe fine-grained patterns of adaptation to
changing experimental opportunities, and the initial K0 = 20 model is better at distinguishing black hole
phenomenology from cosmological phenomenology than the most fine-grained model (see Appendix A.3.5,
Figure 14).

We use an embedding model [47], a recent and straightforward approach that relies on pretrained embed-
dings representations of the n-grams and provides more reliable classifications for heavy-tailed vocabulary
distributions than previous models such as Latent Dirichlet Allocation [48]. Given the coarseness of the
clustering, Language Models were not deemed necessary. The model is trained on D = 186, 162 abstracts
published between 2000 and 2019. Tokens are extracted from the papers’ titles and abstracts by filtering
n-grams between one and three words matching syntactic expressions susceptible of carrying scientific infor-
mation (by designating concepts, models, methods, etc.), following the procedure from [40, 49]. Embeddings
are learned using a skip-grap model in L = 50 dimensions (few are needed given the small size of the vocab-
ulary, V = 4, 751; nevertheless, some analyses are re-iterated with L = 150; see Appendix A.3, Figure 12)
[50]). We obtain the topics listed in Appendix A.3, Table 1. Four of the 20 resulting topics regroup keywords
that do not clearly refer to any specific research area (e.g. “paper”, “approach”) and correlate poorly with
the PACS categories, which suggests their lack of scientific dimension. Consequently, the present analysis
only considers the K = 15 remaining topics that designate actual research areas (as confirmed by their
strong tendency to preferably cite themselves, cf. Appendix A.3.4, and their correlation patterns with the
PACS classification, cf. Appendix A.3.6). In order to enhance the robustness of the topic removal process,
we made sure all retained topics had a maximal loading on the PACS classification higher than that of all
removed topics.

Then, we derive ndk, the amount of keywords in the abstract of d that refer to a research area k (using the
method described in Appendix A.3.2), and consequently Xa,k, the amount of times keywords (“resources”,
i.e. concepts, models, methods, etc.) in relation to research area k have occurred in papers (co-)authored by
a in the initial time-period (2000 to 2009). Mathematically, Xa,k =

∑
d∈[2000,2009],a∈Ad

nd,k, where Ad is the
set of authors of a publication d. The matrix Ya,k is derived similarly, using publications from the later time
period (2015 to 2019). Research portfolios are then normalized into distributions xak ≡ Xak/

∑
k′ Xak′ and

yak ≡ Yak/
∑

k′ Yak′ , thus encoding how scientists divided their attention during each period. This approach
ensures that research portfolios are evaluated based on the frequency of keywords that belong to each “topic”,
according to the idea illustrated in Figure 1. Therefore, this approach captures variations in the prevalence
of different kinds of vocabulary (and thus bodies of knowledge) exploited in scientists’ publications. For
purposes of illustration, Figure 2 shows the research portfolios of one physicst who migrated from neutrinos
to dark matter physics, and of one physicist who maintained their research agenda over the time periods
considered.

6Previous works based on the PACS categories have leveraged the different levels of this hierarchical classification system to
investigate different scales.

7Physicist A’s personal website reads: “I am working on particle astrophysics and cosmology. In particular, I am interested
in dark matter problem in the Universe, and how to probe it using annihilation products such as energetic gamma rays and
neutrinos. [. . . ] I started my research career by studying supernova neutrinos from various aspects [our emphases].” (https:
//staff.fnwi.uva.nl/s.ando/eng/Research.html). This is therefore an instance of “conversion” of prior knowledge to
new purposes, one of the forms of change drawn from historical institutionalism represented in Figure 1.
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(a) Physicist A.
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(b) Physicist B.

Figure 2: Initial (in blue) and late (in red) research portfolios of two physicists. Physicist A shifted
their focus from neutrinos physics to dark matter7. Physicist B, on the other hand, pursued a remarkably
stable research agenda.

2.3 Measuring capital
As shown by Schirone [51] in an extensive review of references to Bourdieu in bibliometrics, most mentions
of capital focus on symbolic and social capital. Only a dozen works considered cultural/intellectual capital,
and none of those proposed a measure that adequately captured the distribution of capital across epistemic
domains. Therefore, an alternative unified approach for measuring the distribution of intellectual and social
capital is proposed below.

2.3.1 Intellectual capital

Intellectual capital is represented by a vector Ia = (Iak) that measures the concentration of a’s intellectual
resources in each domain k ∈ {1, . . . ,K}. It is constructed in a way similar to xa, summing the contribution
of keywords dedicated to each research area in the publications of each author between 2000 and 2009 (thus
excluding publications that belong to the outcome research portfolio ya), except that publications are now
weighed differently depending on the amount of authors. Indeed, publications with fewer co-authors convey
more information about each author’s own expertise. The weight is 1

|Ad| , where |Ad| is the amount of authors
of publication d8:

Iak ∝
∑

d∈[2000,2009],a∈Ad

nd,k

|Ad|
(1)

Ia is normalized, such that
∑

k Iak = 1; therefore, Ia only captures the ways scientists divide their
cognitive resources between research areas, rather than the “absolute magnitude” of their knowledge of each
area (by contrast, the measure of semantic capital proposed in [52] measures total knowledge but cannot
capture diversity).

2.3.2 Social capital

Many measures of scientists’ social capital have been proposed [15, 51], the simplest being the amount
of collaborators of a scientist (i.e. degree centrality in the co-authorship network [52]). Other measures
revolve around betweeness centrality, which captures the extent to which an actor “bridges” a network (e.g.
“brokerage”, i.e., the ability of an individual to overcome “structural holes” in a social network [53]). Abbasi
et al. [15] distinguish two general approaches to social capital, depending on whether the emphasis is placed
on “power” versus “diversity”. Measures of social capital (as those discussed in [15]) typically represent social
capital by single scalars; however, social capital has multiple dimensions. In fact, according to Bourdieu [20],
“the volume of social capital possessed by a particular agent [. . . ] depends on the extent of the network of
links that he can effectively mobilize, and on the volume of capital (economic, cultural or symbolic) possessed

8A justification for this weight is that the probability that a given author has been responsible for introducing any particular
concept or method present in the paper is O(1/|Ad|).
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by each of those to whom he is linked”. In that respect, social capital can come in different forms depending
on the resources being leveraged via one’s network. In the following, we focus on the intellectual dimension
of social capital, which we represent by a vector Sa defined as the sum of the intellectual capital of a’s
collaborators, weighted by the strength of their relationship:

Sa ≡
∑

c∈co-authors(a)

wacIc\a (2)

Ic\a is the intellectual capital of c, evaluated by excluding papers co-authored with a (in order to disentan-
gle the effect of an author’s own knowledge and that available to them via their collaborators). Collaborators
outside the cohort are taken into account. The weight wac, which represents the strength of the relationship
between a and c, is defined as:

wac ≡ max
d|{a,c}⊂Ad

1

|Ad| − 1
(3)

Where Ad is the set of the co-authors of a paper d. This weighing scheme – inspired from [54] – captures
the fact that a paper with, say, two co-authors, signals a stronger relationship between the authors than
a publication with a dozen authors.9 However, it does not take into account the recency and frequency of
collaborations.

2.3.3 Diversity and power

Measures of “diversity” (and “power”) can be readily derived from Ia (and Sa). A common measure of
diversity is the Shannon entropy H [55]. Let D(Ia) = expH(Ia) be the diversity of intellectual capital (and
D(Sa) = expH(Sa) that of social capital). Roughly speaking, these are measures of how many research areas
scientists have divided their cognitive or social resources among. In the cohort, individuals typically have
cognitive resources in several research areas (µD(Ia) = 5.6, σ = 2.0), and social capital is even more diverse
(µD(Sa) = 7.8, σ = 2.1). In fact, intuitively, scientific collaborations enable individuals to take advantage of
their group’s diversity. Furthermore, D(Ia) and D(Sa) are highly correlated (R = 0.75); indeed, individuals
with more diverse expertise are more able to engage with diverse collaborators. Since the diversity of social
capital is mostly expected to enhance individuals’ abilities when it exceeds that of their own knowledge,
from now on, only excess social capital diversity D∗(Sa) (defined as the residuals of the linear regression of
D(Sa) against D(Ia), by ordinary least squares) is considered10.

The “power” dimension of social capital is evaluated as the magnitude of social capital:

P (Sa) ≡
∑
k

Sak =
∑

c∈co-authors(a)

wac (4)

“Power” is therefore the amount of collaborators weighed by the strength of each relationship. Our
measures of diversity and power depart from [15], which conflates diversity with network size and power with
performance. By combining semantic and authorship data, our approach assesses diversity more directly.

Alternative measures of diversity and power are considered for robustness assessment. The alternative
measure of diversity is based on Stirling’s index, and the alternative measure of power uses the notion of
brokerage. All these measures are defined and compared in Appendix A.4.

2.4 Modelling trajectories
The model for the late research portfolio Ya is schematically illustrated in Figures 3a,3b,3c, and a more formal
representation is given in Figure 3d. It captures the idea expressed in Figure 1 that research portfolios are
transformed via strategic transfers of knowledge and attention from one research area to another. Occurrences
of keywords that belong to each research area k in papers by a in the late time period, Ya ∈ NK , are assumed

9Assuming that in a collaboration, each author interacts with a constant amount of co-authors in practice (regardless of
the total amount of co-authors), then the probability that they had interactions with one specific co-author in particular is
∝ 1

|Ad|−1
.

10This approach aims to address the difficulty of determining the direction of the causal relationship between social resources
and research interests raised by Tripodi et al. [7].
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to be drawn from a hierarchical multinomial logistic model. Ya results from a linear combination of the
initial research portfolio, xa, and a mixing matrix θa that measures the fraction of attention redistributed
from each research area to another. θa is drawn from a hierarchical process, thus capturing the “average”
cohort behavior. Formally speaking, Ya is assumed to derive from a multinomial process involving linear
combinations of (xak):

Ya ∼ multinomial(
K∑

k=1

xakθak1, . . . ,

K∑
k=1

xakθakK) (5)

Where θakk′ is the fraction of attention to a topic k by a that has been redirected to a topic k′. θ is a
function of intellectual capital Ia and social capital Sa according to the following generalized linear model:

θak = softmax (βak1 + γk1Ia1 + δk1Sa1, . . . , βakK + γkKIaK + δkKSaK) (6)

δkk′ is the effect of the scientists’ social capital in a research area k on the magnitude of transfers from k to
k′. Similarly, γkk′ is the effect of having more expertise in k′ (intellectual capital) on shifts from k to k′. High
values of the diagonal elements of γ would imply that physicists are more conservative towards research areas
in which they concentrate more expertise. The coefficients βakk′ encode the average behavior of the cohort
plus individual deviations to the average behavior that are unexplained by the covariates11,12. The ability of
the model to predict individual trajectories is assessed in Appendix A.5, for various temporal segmentations
of the initial and late research portfolios and topic models. The model is better at predicting individual
trajectories for larger collective adaptive responses and longer time-scales. Indeed, this hierarchical model
relies on scientists’ collective behavior to predict individual change; moreover, research portfolios evaluated
over shorter time-scales are less informative and more prone to noise.

Our model is strongly connected to Optimal Transport [56, 57], which seeks optimal ways to “transport”
an input distribution (say, x = (xk)) to a target distribution (e.g., y = (yk′)) through “transfers” (θkk′) across
their components while minimizing a cost function

∑
k,k′ xkθkk′Ckk′ (where Ckk′ is a cost matrix) [14]. The

difference is that the proposed Bayesian approach estimates transfers θkk′ by minimizing a likelihood rather
than a cost function. However, the connection with Optimal Transport suggests an economic interpretation
of the reallocation of research efforts, which will be leveraged in Section 3.1 to show that patterns of change
in research interests are shaped by learning costs.

3 Results
Figure 4a shows the aggregate transfers of attention at the level of the cohort revealed by the model. The
most obvious feature is the remarkable stability of most research areas: indeed, physicists’ conservatism
toward their research area due to specialization is known to be particularly high in HEP [5]; late research
portfolios are largely constrained by prior research interests: they exhibit path dependence [11] (using Inverse
Optimal Transport, Section 3.1 shows that these patterns are structured by learning costs). Conservatism
seems especially prevalent in the case of “collider physics”, a research area dedicated to knowledge specific
to particle accelerators. Nevertheless, “dark matter” has doubled, fueled by a shift away from “neutrinos

11The priors for this hierarchical model are:

βakk′ ∼ N (µkk′ , σkk′ ) for 1 ≤ k′ ≤ K − 1 and βakK = µkK (7)
µkk′ ∼ N (λ× νkk′ , 1) (average behavior) (8)
δkk′ ∼ N (δ0 + λ′ × νkk′ , 1) (effect of social capital) (9)
γkk′ ∼ N (0, 1) (effect of intellectual capital) (10)

σ ∼ Exponential(1) (11)

Where νkk′ is the fraction of physicists with expertise in k (that is, with more intellectual capital than average in k) who also
have expertise in k′. Priors must be thought thoroughly, as certain invariances can lead to identification issues – for instance,
shifting µ by a constant does not change the likelihood.

12The fit is performed with Stan’s Hamiltonian Monte-Carlo sampler (HMC is better behaved than Gibbs for such problems).

9



Xa,1 Ya,1

Xa,2 Ya,2

Xa,3 Ya,3

. . . . . .

Xa,K Ya,K

θa,1,1
θa,1,2θ
a,1,3θ

a,1,...

θ
a,1,K

(a)

Xa,1 Ya,1

Xa,2 Ya,2

Xa,3 Ya,3

. . . . . .

Xa,K Ya,K

θa,2,1

θa,2,2
θa,2,3θ
a,2,...θ

a,2,K

(b)

Xa,1 Ya,1

Xa,2 Ya,2

Xa,3 Ya,3

. . . . . .

Xa,K Ya,K

θa,
3,
1

θa,3,2

θa,3,3
θa,3,...θ
a,3,K

(c)

xa Ya

θa

βa

µ,Σ

Ia

Sa

(d)

Figure 3: 3a,3b,3c: Transfers of attention across research areas. xa and ya are the distributions
scientist a’s attention across research areas in two consecutive time periods. θak = (θakk′) represents the
fraction of the attention devoted by an author a to a topic k redirected to topics k′ ∈ {1, . . . ,K}, as scientists
repurpose, expand or concentrate their knowledge. By definition,

∑
k′ θakk′ = 1.

Figure 3d: Hierarchical model. θa is drawn from a hierarchical process, with intellectual and social
capital (Ia and Sa) as covariates. Observed variables are represented in gray, latent variables in white.

and flavor physics”, and “electroweak sector”, a phenomenal domain studied at the LHC (Figure 4b)1314.
This confirms that the cohort has responded to changes in the landscape of experimental opportunities.
Moreover, “string theory and supergravity” has declined in favor of “AdS/CFT” (a research program that
explores dualities between theories of quantum gravity and certain types of theories of quantum field theory)
and “black holes” 15. Of course, this rough description must be considered with caution, as interpreting
clusters from topic models is notoriously hard, and these topics in particular can regroup quite heterogeneous
research programs.

While the paper focuses on two time periods (2000-2009 and 2015-2019), multiple alternative temporal
segmentations can be considered. Figure 5 shows the transfers of research attention of a cohort of physicists
across four time-periods of five years each. It reveals that the changes outlined above have unfolded rather
gradually. The average diversity of physicists’ research portfolio (µ(D), the average of the exponentiated
entropy of x) during each five-year time-bin is also shown. It has gradually increased over the years (P <
10−4): on average, physicists have expanded their portfolio. Interestingly, the average linguistic diversity of
each individual paper increased as well (with a confidence level P < 10−4) from 2.81 topics per paper (2000-
2004) to 2.96 (2015-2019). This means physicists diversified their research portfolios in part by diversifying
the knowledge leveraged within each of their individual papers (rather than solely by writing multiple papers
on separate issues).

13The electroweak notably includes Higgs physics, which are very prominent at the LHC, where the Higgs boson was discov-
ered.

14The migration of many particle physicists towards dark matter provides an explanation for the persisting schism between two
research programs in fundamental physics, namely dark matter particle research and modified gravity. Both research programs
seek to explain a shared set of anomalies in astronomical observations, and yet their communities communicate very little [58,
59]. Our approach suggests that particle physicists’ interest in dark matter is in great part motivated by the fact this is a natural
extension of their previous research; particle physicists would therefore not consider the alternative to dark matter (modified
gravity), given this topic that would make little use of their expertise.

15This converges with physicist Peter Woit’s controversial assessment that “string theorists” are no longer doing string theory
per se, though they keep identifying themselves as string theorists. As Peter Woit puts it, citing the 2022 “Strings” conference:
“one thing that stands out is that the string theory community has almost completely stopped doing string theory.”; and,
“[presentations’ titles] make very clear what the string theory community has found to replace string theory: black holes”
(Woit, 2022, https://www.math.columbia.edu/~woit/wordpress/?p=12981);
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(a) Transfers across all research areas.
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Figure 4: (a) Aggregate transfers of attention across research areas, between 2000-2009 (to
the left) and 2015-2019 (to the right). Widths of flows are proportional to

∑
a Xakθakk′ . Insignificant

transfers (that happen less than expected by chance alone assuming uniform mixing) are transparent. (b)
For purposes of clarity, the same figure is repeated to the right, highlighting only the flows directed towards
“Dark matter”.

3.1 The structuring effect of learning costs on scientists’ behavior
As research priorities change, research efforts must be efficiently reallocated among scientists, given their
prior knowledge. Here, we leverage the similarity between our model of scientists’ trajectories and Optimal
Transport (OT) [56, 57] to formulate the observed behavior in economic terms and demonstrate that the shifts
of attention are structured by the minimization of “learning costs”, thus providing a first-order explanation
of the aggregate patterns of change in high energy physicists’ research interests. Optimal Transport is a
mathematical framework first introduced by Gaspard Monge for finding optimal ways of displacing piles of
sand in a military context [12], and later refined by Leonid Kantorovitch in the context of economic planning
[13].

Let x =
∑

a xa be the cohort’s initial distribution of attention across research areas (summing over each
author a), and y =

∑
a ya the late distribution. Let us further assume that x and y can be considered “fixed”

by the institutions (scientific leadership, laboratories, funding agencies, etc.) that define scientific priorities
throughout time. In order to achieve the distribution of research efforts y given the previous distribution
x, some scientists must redirect their attention away from certain research areas (for which yk < xk) and
towards more pressing ones (for which yk > xk). What is the most efficient way to reallocate research efforts
and achieve the transition from x to y? Intuitively, research areas should be assigned to scientists in a way
that requires as few of them as possible to acquire new knowledge – in other words, in a way that minimizes
learning costs, given the way knowledge is distributed among individuals. This, we show, can be framed as
an Optimal Transport problem. Let Tkk′ be the coupling matrix that encodes how much attention has been
shifted from one research area k to a research area k′. There are two constraints on Tkk′ :

∑
k′ Tkk′ = xk,

and
∑

k Tkk′ = yk′ . These constraints encode the need to adapt (since y ̸= x). But T must also minimize
learning costs (C), which we assume to be linear in T for simplicity16: C =

∑
k,k′ Tkk′Ckk′ , where Ckk′ is

16Roughly speaking, this linear assumption entails that scientists from a given research area are equally able to shift attention
to another research area. In practice, some scientists have more abilities to switch to a given research area, and the cost will
increase non-linearly as more and more scientists are required to make the transition, including those less able to make the
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Figure 5: Aggregate transfers of attention throughout the years 2000 to 2019, considering four
time-intervals of five years each. µ(D) is the average portfolio diversity of the cohort during each time-
period.

a cost matrix. The problem of finding the couplings Tkk′ that minimize the “transportation” costs (given
a cost matrix Ckk′ and the constraints on Tkk′) is an instance of Optimal Transport problem [14]. Typical
instances of OT problems include how to efficiently transport (say, ore from mines to factories) or the optimal
assignment of workers to firms [60]. In our case, the couplings are known (they were recovered by the model
from Section 2.4), and we want to infer the underlying cost matrix that these couplings minimize. The
transfers from a research area k to k′ for each individual are simply xakθakk′ . Summing over individuals
yields the coupling matrix Tkk′ =

∑
a xakθakk′ , which measures how much attention was shifted away from

k and toward k′ at the cohort level.
The problem of recovering the cost matrix Ckk′ given the couplings is an Inverse Optimal Transport

problem. Below, this problem is solved using the probabilistic method proposed in [17]17. This method
requires to put a prior on P (Ckk′) – indeed, infinitely many cost matrices yield the same optimum, and
priors are needed to lift this degeneracy. Following [17], we consider a prior such that

∑
k,k′ Ckk′ = cst. We

assume that E(Ckk′) ∝ softmax(β × (1 − νkk′))18, where νkk′ is the fraction of physicists who already held
expertise in k′ among those who already held expertise in k, and β ∼ N (0, 1) is the effect of learning costs
on Ckk. If νkk′ ∼ 1 (i.e. 1− νkk′ ∼ 0), then shifting attention from k to k′ does not entail the acquisition of
additional knowledge, and Ckk′ should be almost zero. If νkk′ = 0 (i.e. 1 − νkk′ = 1), any scientist shifting
from k toward k′ must acquire new knowledge, and the cost should be maximal. If actual behaviors do involve
the minimization of learning costs, we should observe a strong correlation between Ckk′ and the “knowledge
gap” (1− νkk′).

switch.
17It should be noted that the approach by Chiu et al. [17] does not entail the assumption that scientists’ behavior is perfectly

minimizing the cost matrix. Indeed, the optimization problem they consider includes an entropic regularization term; while this
term is often introduced for numerical reasons, in the case of human behavior, it can be taken to represent inefficiencies and
random deviations from the optimum behavior [61].

18This prior has the merit of simplicity – it is a simple generalized linear model with the desired support.
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(b) Knowledge gap matrix 1 − νkk′ , where νkk′ is the
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Figure 6: Learning costs and knowledge gap. The cost of shifting attention from one area to another
(left plot) is in great part determined by how frequently individuals hold knowledge in both areas (right
plot).

Using the “MetroMC” algorithm proposed in [17], we empirically recover Ckk′ , the underlying cost matrix,
as shown in Figure 6a. We find a strong correlation with the “knowledge gap” (shown in Figure 6): R(Ckk′ , 1−
νkk′) = 0.76, such that R2 = 0.58 (Figure 17, see also Appendix A.6). Using a finer-grained temporal
segmentation (2000-2004→2005-2009), the resulting correlation is similar (R2 = 0.62). The empirical cost
of shifting research efforts from one research area to another is therefore shaped by learning costs. The
derivation of Ckk′ is potentially useful: one could in principle predict aggregate transfers of attention given a
counterfactual target distribution of research efforts y using optimal transport and plugging-in Ckk′ as the
cost matrix [57].

Under changing circumstances, research efforts must be reallocated efficiently. Scientific norms and in-
stitutions must address an Optimal Transport problem by providing incentives for scientists to conform
to new research imperatives, in a way that factors “learning costs”. Consequently, shifts between research
areas which entail the acquisition of new knowledge (layering) must be less likely that those which can take
advantage of prior knowledge (conversion). In the case of HEP, it does seem that adaptative patterns are
structured by this OT problem. Interestingly, the matrices in Figure 6a and 6b feature blocks (indicative of
an underlying hierarchical structure), such that it is easier for scientists to migrate within than across these
blocks. While these observation characterizes the cohort’s behavior, drivers of differences among individuals
are considered next.

3.2 Individual behavior and the effect of capital
3.2.1 Magnitude of change and capital

We propose a change score ca that measures how much the research agenda of a scientist has changed between
the two time periods under consideration, defined as the total variation distance between their initial and
late research portfolios:
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ca ≡ dTV(xa,ya) =
1

2

∑
k

|yak − xak| (12)

This measure of change is naturally motivated by Optimal Transport: it is the minimal cost of transporting
xa to ya if the cost matrix has zeros on the diagonal and ones everywhere else (Ckk = 0 and Ckk′ = 1 for
k ̸= k′.). This measure, however, weighs migrations across different research areas identically, regardless
of their cognitive proximity. We will therefore also consider a second measure of change, the “cognitive
distance” (da), defined as the minimum cost of transporting xa to ya [14] induced by the cost matrix
empirically recovered (see Figure 6a) using the Inverse Optimal Transport approach described in the previous
section. Another interesting aspect of Optimal Transport is indeed its ability to provide “distances” between
distributions that emphasize certain costs in particular 19.

ca is comprised between 0 (if research attention has remained identically distributed) and 1 (if the research
agenda has been entirely redistributed). Large values of ca are rare, with 50% of authors lying between 0.21
and 0.40 (Appendix A.7.1, Figure 18). Although the absolute value of ca (and da) has limited interpretability
(it depends on the choice of “cognitive scope” and the duration of the time periods considered, and ca is never
expected to be exactly zero due to random fluctuations and measurement noise), it allows for comparisons
between physicists. We evaluate the effect of several factors on ca: i) the diversity of intellectual capital
D(Ia); ii) the excess diversity of social capital D∗(Sa); and iii) the magnitude of social capital (“power”).
We also consider the effect of iv) affiliation stability, represented by a binary variable sa (sa = 1 if scientist
a has at least one affiliation that spans the whole time range considered, and sa = 0 otherwise), the effect of
v) academic age, and productivity, estimated from vi) all papers and vii) solo-authored papers. We perform
a linear regression of ca as a function of these variables, adjusting for Za = argmaxk xak, i.e. physicists’
primary research area over the years 2000 to 2009 (see the model specification in Appendix A.7.1).

The results are shown in Figure 7. The diversity of intellectual capital has a significant positive effect:
physicists with resources in many areas tend to revise their research agenda more. There is also evidence of a
small but positive effect of diversity of social capital on the magnitude of changes in scientists’ research focus
(interpreting these results in terms of Optimal Transport, we might say that social capital helps overcome
cognitive learning costs). However, the magnitude of social capital, “power”, has a negative direct effect on
change. In other words, “power” is associated with stability, and “diversity” with change. It is noteworthy
that these dimensions of social capital have opposite effects. More senior physicists are more conservative
toward their research agenda, possibly because they experience less incentive to “adapt”. This comes in
contrast with [6]. The difference could stem in the specificity of high-energy physics, and in the fact that
change is measured in linguistics terms (instead of relying on citation patterns) at a rather coarse-grained
scale in the present paper. There is no discernible effect of affiliation stability after adjusting for academic
age. However, affiliation data is a bit noisy, and this could have the consequence of underestimating the effect
of institutional stability relative to that of academic age. Finally, productivity (in co-authored papers) is
associated with stability. Overall, entrenchment (age, power, productivity, specialization) all drive stability
and conservatism.

Unsurprisingly, both research areas that have shrunk considerably have a significant positive effect on
migration scores. “Collider physics” and “dark matter”, on the other hand, have a negative effect on the
magnitude of change. All effects combined, physicists whose primary category is “Collider physics” are the
most conservative, with an average change score 24% lower than the rest of the cohort; the long time-scales
of collider experiments provide stable opportunities to physicists in that area [62, p. 138], thus promoting
conservatism. The variance explained remains low (R2 = 0.17): these factors only partially explain differences
between individuals.

ca neglects the cognitive gap between research areas. Using our alternative measure of change that takes
into account cognitive distance (da), the diversity of intellectual and social capital has slightly larger effects.

19Given a cost matrix Ckk′ , we can define a measure of the gap from one distribution x to another distribution y, as the
minimum cost of displacing x to y:

d(x,y) = min
θkk′

θ1=1,θTx=y

∑
kk′

xkθkk′Ckk′ (13)

If the cost matrix meets certain properties (such as symmetry), then d is a distance. See [14] for more on the metric properties
of OT.
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Figure 7: Effect of intellectual capital, social capital, and institutional stability the magnitude
of changes in high-energy physicists’ interests.. Change (ca) is the total variation distance and weighs
migrations across research areas equally. The cognitive distance (da) gives more weight to migrations across
cognitively distant research area. Diversity is evaluated as the exponential of the Shannon entropy of the
distribution of intellectual and social capital across research areas. The effect of the primary research area
during the initial period (2000-2009) was also included as a control. Three research areas have a significant
(95% CL) effect. Error bars indicate 95% credible intervals; µ(β) denotes the mean posterior effect size.
R2 = 0.17. Continuous variables (diversity, power and ca) are standardized.

The robustness of these results is assessed by using different operationalizations of diversity and power in
Appendix A.7.3), Table 3. Most findings are stable, except that “brokerage” (unlike the magnitude of social
capital, i.e. degree centrality) has no direct effect on change (beyond the effect of productivity resulting from
co-authored publications).

In addition, in order to exclude the influence of direct collaborations on change, we conducted a second
comparative analysis including only scientists’ first-authored and last-authored publications in their research
portfolios20. The effect of the diversity of intellectual and social capital is stable; however, the direct effect of
power is reduced (Appendix A.7.3, Tables 5 and 6). Moreover, the analysis was reproduced across different
choices of temporal segmentation and using different topic models. The previous findings remain stable.

3.2.2 Diversification versus concentration

Research portfolios can be altered by two opposite strategies. One is “diversification”, i.e. the addition of
new research areas. Another is “concentration”, i.e. the desertion of research areas to focus increasingly on
others (Figure 1 illustrates how this can happen, whether via “conversion” or “displacement”). Figure 8

20It is important to emphasize that alphabetical ordering is still very prevalent in this field [63], and therefore this strategy
does not address the issue entirely.
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shows the effect of the same factors as above on the probability that physicists have i) entered at least one
new research area in between the two periods or ii) exited one research area (model description provided in
Appendix A.7.2)21.

The diversity of intellectual capital has a strong positive effect on the probability of exiting a research
area; intuitively, scientists with diverse interests can afford to disengage from certain research areas even
if this implies to abandon maladaptive prior knowledge (“displacement”). Excess diversity of social capital
increases the probability of entering new research areas, but has no discernible effect on the probability of
exiting research areas. In contrast, there is some evidence that “power” decreases the probability of leaving
a research area. Figure 8 shows the direct effect of power (controlling for productivity due to co-authored
papers), which does not pass the 95% significance test; however, the total effect of power22 on the probability
of leaving a research area is significantly negative (µ(β) = −0.24, P (β > 0) < 10−4). Presumably, having
many collaborators allows scientists to remain committed to many research areas with minimal personal
investment, thus stabilizing their research agendas. Moreover, “power” also decreases the probability of
entering new research areas; this suggests that powerful scientists have less incentives to invest resources in
new topics. String theory & supergravity has a significant positive effect of both entering and exiting research
areas (suggesting physicists frequently “replaced” it with another topic). “Dark matter” has a negative effect
on the probability of entering a new research area, possibly because scientists with prior commitment to this
research area had less incentive to diversify their research portfolio and more incentive to focus increasingly
on this topic given its success over the following years. These conclusions hold as alternative measures of
diversity and power are considered (A.7.3, Table 4).

Again, we ran a second analysis considering only scientists’ first-authored and last-authored publications.
The effects of intellectual and social diversity remain stable. However, the effect of productivity resulting
from co-authored papers no longer has an effect on the probability of exiting a research area when only first-
and last-authored papers are included in physicists’ research portfolios (8, Appendix A.7.3. ). The results
are generally stable across different topic models and temporal segmentations, except for i) the effect of
academic age on the probability of exiting a research area, which is not consistently 95% CL significant; and
ii) the effect of the diversity of social capital on the probability of entering a new research area, which is zero
in one particular configuration.

3.2.3 Why diversity promotes change

Access to diverse cognitive resources is associated with change. To see why, it is insightful to look into
how the concentration of scientists’ intellectual capital in each research area k (Ia = (Iak)) affects their
trajectories. In the model introduced in Section 2.4, the diagonal coefficients of the γ matrix measure the
effect of having intellectual resources in a certain area on the commitment to this area. As shown in Figure
9a, most coefficients on the diagonal are significantly positive: physicists with a strong specialization in a
research area tend to preserve their specialization in this area.

The effect of social capital on transfers across research areas (δkk′ , Eq. 6), is shown in Figure 9b. Statis-
tically significant effects are always positive: scientists tend to redirect attention to research areas in which
they have more collaborators involved, in line with a very recent observation by Venturini et al. [64].

Moreover, we find a strong correlation between the effect of social capital (δkk′), and νkk′ ∈ [0, 1], the
fraction of physicists with more expertise than average in a research area k′ among those who have more
expertise than average in k (see Eq. (9), Section 2.4). δkk′ decreases by 1.5 unit of standard deviation on
average as νkk′ goes from 0 (nobody holds expertise in both research areas k and k′) to 1 (everyone with
expertise in k has expertise in k′). Social capital plays a more important role in shifts between cognitively
distant research areas, in line with a previous finding by Tripodi et al. [7]. These general patterns (the

21A research area k is considered “entered” by a when xak < 1
N

∑
a′ xa′k and yak > 1

N

∑
a′ ya′k; conversely, a research area

is considered exited when xak > 1
N

∑
a′ xa′k and yak < 1

N

∑
a′ ya′k.

22That is, assuming the following causal structure:
Power Productivity

Leaving
research area

16



−1.0 −0.5 0.0 0.5 1.0

Effect size (log odds ratio)

Intellectual capital (diversity)

Social capital (diversity)

Social capital (power)

Stable affiliation

Academic age

Productivity (co-authored)

Productivity (solo-authored)

String theory & supergravity

Collider physics

Dark matter

µ(β) = 0.2, P (β < 0) = 0.00013

µ(β) = 0.22

P (β > 0) = 0.047

µ(β) = 0.32, P (β < 0) = 0.016

µ(β) = −0.43, P (β > 0) = 0.0042

µ(β) = −0.62, P (β > 0) = 0.0091

µ(β) = 1

µ(β) = −0.21, P (β > 0) = 0.0002

µ(β) = −0.28

µ(β) = 0.3, P (β < 0) = 0.022

entered new research area

exited research area

Figure 8: Effect of capital and institutional stability on the probability of entering new research
areas or exiting previously explored ones. Bars indicate 95% credible intervals. µ(β) denotes the mean
posterior effect size. Continuous variables (diversity and power) are standardized.

association between the concentration of intellectual capital in one area and the commitment to this area, and
the increasing effect of social capital with cognitive dissimilarity) are insensitive to the temporal segmentation
in place (see Appendix A.9 for similar Figures based on a different segmentation).

4 Discussion
This paper addressed the conflict between specialization and adaptability in science. To this end, an unsu-
pervised Bayesian approach was developed, based on the idea that transformations in the scientific landscape
prompt scientists to efficiently repurpose their prior knowledge. The model simultaneously measures transfers
of attention across research areas and the effect of various variables on the evolution of scientists’ research
portfolios, in particular intellectual and social capital.

The model was applied to a cohort of N = 2108 high-energy physicists between the years 2000 and 2019.
At the macroscopic level, it reveals the decline of neutrinos physics due to migrations towards the electroweak
sector (explored at the LHC) and more importantly towards dark matter. Similarly, many physicists have
shifted resources from the electroweak sector towards dark matter. Moreover, string theory & supergravity
has started to disintegrate into black holes and AdS/CFT research. The cohort has therefore responded to
new experimental opportunities as well as to theoretical developments in quantum gravity.

Then, leveraging the connection between our model and Optimal Transport (OT), we showed that the
reallocation of research efforts among scientists is shaped by learning costs. Indeed, under changing circum-
stances, scientific institutions must address an OT problem by efficiently reallocating research efforts in a
way that balances learning costs and the imperative to adapt to new circumstances. This has the effect of en-
hancing the utility of the scientific capital disseminated amongst scientists as the perceived payoff of certain
research areas change. OT structurally explains path dependency, as individuals experiencing pressures to
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(b) Effect of social capital (δkk′).

Figure 9: Effect of intellectual and social capital on transfers across research areas. Rows rep-
resent research areas of origin and columns represent target areas. Effect sizes are expressed in log-odds
(log [θakk′/(1− θakk′)], where θakk′ is the fraction of attention to k redirected to k′) per unit of intellectual
or social capital in the target research area k′. Effects that are not significant (at the 95% credible level) are
displayed in white for purposes of clarity.

adapt seize the nearest opportunity available to them. OT is also methodologically useful: Inverse OT allows
one to derive cost functions from observed behavior, and thus offers a potential way to better connect empir-
ical data with evolutionary agent-based models of scientists’ behavior that postulate latent utility functions
[16]. Moreover, it has the potential of informing policy by identifying potential bottlenecks if research efforts
were to be reallocated in certain ways (as one can use OT to estimate the “cost” of various counterfactual
scenarios). Overall, the OT approach illustrates that the adaptability of epistemic communities is constrained
by how knowledge is distributed among individuals (specialization).

The longitudinal comparative analysis of physicists’ trajectories revealed that the diversity of intellectual
and social capital is positively associated with change: diversity promotes adaptability under new circum-
stances, and therefore diversifying research portfolios is a reasonable strategy when the future is uncertain.
However, enforcing diversity can lead to suboptimal allocations of research efforts under stable circumstances
[30]. Differences among research areas are found: physicists expert in particle colliders have remained par-
ticularly conservative, possibly because they have secured long-term research opportunities (thanks to very
large investments in particle accelerators like the LHC). There is also evidence that physicists specialized in
dark matter have been consolidating their specialization, presumably because the increasing popularity of
the topic encouraged them to double down their investment in this research area. Higher concentrations of
intellectual capital in certain research areas generate stronger commitment towards these areas; therefore,
specialized scientists are more at risk of being trapped in a sunk cost fallacy as their expertise becomes unsuit-
able for new circumstances. However, specialized scientists can offset the risks associated with specialization
by diversifying their social network. This raises the possibility of free-riding, as scientists are encouraged to
focus on what seems most promising at the time and let their peers take the risk of exploring alternatives
until their value is established [65]. Additionally, social capital plays an increasingly important role as sci-
entists expand their research agenda further beyond their specialization, as observed by [7], suggesting that
collaborations are crucial in overcoming cognitive barriers between research areas. Unlike diversity, “power”
is associated with more stable research interests: presumably, cooperation can safeguard individuals from
adaptive pressures, and most importantly minimizes the cost of remaining invested in certain areas.

We have described renewal strategies of research portfolios according to a typology of incremental change
developed in the context of historical institutionalism, which has been shown to account for how organizations
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like DESY and SLAC have transitioned from HEP to multi-purpose photon science. Adaptation strategies
include the “conversion” of prior knowledge to new purposes, the “layering” of additional research interests
via the acquisition of new knowledge, or the “displacement” of former research commitments resulting in a
loss of knowledge. The connection with institutional change stems from the fact that institutions can face
a challenge similar to that experienced by specialized scientists confronted with transformations in their
scientific landscape, in that they too must sometimes adapt and redirect accumulated capital in directions
that may not have been foreseen at the time of their “design”. The LHC itself has evolved through similar
processes of gradual repurposing of prior infrastructure, including the accelerator’s tunnels [66]: adaptation
prompts individuals (and collectives) to efficiently repurpose capital previously accumulated in different
forms (cultural, social, economic, etc.). Following [11], we conclude that a better understanding of collective
adaptation benefits from the pooling of diverse insights: while studies of institutional change have documented
strategies of gradual adaptation that progressively leverage and repurpose accumulated capital when change
is difficult, the literature on cultural evolvability stresses the critical roles of diversity and social learning.
In return, this work provides an empirical contribution to the literature that treats science as a cultural
evolutionary system [16].

Throughout the paper, various methodological limitations were raised. First, the requirement on the
quantity of authors’ publications makes the cohort atypical. A second issue, already noted by Gieryn [18],
lies in the arbitrariness in the choice of temporal and cognitive scopes for measuring change. In this paper,
the choice in temporal segmentation was driven by the time-scale associated with the transformations in
the landscape of experimental opportunities. For shorter time-scales, the very notion of research portfolio
– as operationalized in this paper – may break down and lose any predictive force. As per the cognitive
scope, previous works (e.g. [4, 5, 7]) have typically relied on the hierarchical PACS classification of physics
literature, such that cognitive scales were imposed. For this work, the literature was divided into 15 topics
that captured the features of change in the epistemic landscape discussed above, i.e. the rise of new probes of
the cosmos, but other scales could have been considered. Moreover, although the unsupervised topic model
approach is arguably a better proxy of cognitive change, it introduces noise which could in part explain
the low predictive power of the models of change in scientists’ research agendas. Additionally, the topic
model was trained on the entire time range covered by the analysis. Changes in the relationships between
topics and in their own vocabulary distributions are not considered, even though they constitute another
interesting linguistic dimension of adaptive patterns that would deserve further investigation. Morever, the
cost of shifting from one research area to another, is itself time-varying quantity in reality. Finally, one
must be cautious before drawing strong causal conclusions from these findings. While the causal pathway
“power → collaborations → stabilization of research interests” seems to be a reasonable interpretation of the
results, the relationship between diversity and change is less clear; they could both be confounded by a latent
trait specific to certain researchers (e.g. the “explorers” in [67]). Moreover, the sample size (N = 2108) is
insufficient to explore sophisticated interactions or potential moderators in the comparative analysis.
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A Supplementary material
A.1 Transformations in high-energy physics
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Figure 10: Share of citations of each of the most cited experiments in high-energy physics
literature, between 2000 and 2019. Hatched rectangles correspond to experiments observing particles
produced in colliders or nuclear reactors; other rectangles correspond to observations of phenomena or
particles of astrophysical origin. We use citation and experiment data from the Inspire HEP database [41].
The classification of these experiments is our own.
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A.2 Cohort characteristics
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Figure 11: Distribution of academic age (in 2019) and affiliation stability within the considered
cohort. Academic age (left plot) is evaluated as the time passed since the first publication. There is a cut-
off in the distribution academic age due to the requirement on publication counts between 2000 and 2009.
The median academic age is 27 years in 2019. 49% of the cohort has had at least one permanent affiliation
spanning the period under consideration (right plot). As expected, permanent affiliations are associated with
higher academic ages (bars indicate quartiles).

A.3 Topics
A.3.1 Word embeddings dimension

The word2vec skip-gram models is trained using different values for L the dimension of the embeddings’
space. L = 50 (the choice made in the present paper) generally lies somewhere between under-fitting and
over-fitting. The latter is a concern due to the small sample size (the model is trained on abstracts rather
than full-texts).
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Figure 12: Loss of the word2vec model as a function of the embeddings dimension (L).

A.3.2 Keyword classification

In the Embedding Topic Model used in the present paper – as in topic models in general–, documents are
mixtures of several topics; moreover, keywords may belong to several topics. This is a desirable feature:
certain concepts serve different purposes depending on the context, and some concepts do not clearly belong
to any research area. More importantly, this is crucial to the present approach, given that we must be sensitive
to situations in which scientists have repurposed certain concepts to new research goals; i.e., instances where
the same resources are applied in a new context (a new research area). For that, each keyword i from a
document d is assigned a research area zdi := argmaxk=1,...,K P (zdi = k|wdi,θd), which is the research area
most probably associated with the keyword i given the topic distribution of the document θd – i.e. the
context. In fact:

zdi := argmax
k=1,...,K

P (zdi = k|wdi,θd) = argmax
k=1,...,K

P (wdi|zdi = k)P (zdi = k|θd)
P (wdi|θd)

(14)

In the process, we discard ambiguous keywords for which H(zdi) ≥ log 2, where H denotes the entropy
of the distribution P (zdi = k|wdi). Either such keywords do not carry any scientific content, or the context
is insufficient to disambiguate among the possible research areas to which they might belong.

The average effective amount of topics in documents according to the topic model – measured as expH(θd)
where H is the Shannon entropy – is 7.5, which is unrealistically high. The filtering and classification proce-
dure reduces the average effective amount of topics to 3.1 per document, which is much more informative.
This procedure is especially important for short texts such as abstracts, which poorly constrain the latent
topic distribution θd.

A.3.3 List of topics
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Table 1: Research areas, their top-words, and their correlation with a standard classification (PACS).

Research area Top words Most correlated PACS categories

AdS/CFT

boundary, holographic, flow, bulk, critical, conformal, criti-
cal_point, boundary_theory, cfts, point, bootstrap, central,
conformal_anomaly, strip, fixed, free, entanglement_entropy,
conformal_field_theory, criticality, condition

Gauge/string duality (0.27)
Conformal field theory, algebraic [...] (0.23)
Theory of quantized fields (0.15)
Theories and models of [...] (0.14)
Critical point phenomena (0.14)

Black holes

hole, black_hole, gravity, black, horizon, geometry, gravita-
tional, spacetimes, spacetime, curvature, thermodynamics, ein-
stein, schwarzschild, metric, ad, hair, relativity, space_time,
observer, graviton

Quantum aspects of black holes, [...] (0.51)
Classical black holes (0.41)
Physics of black holes (0.32)
Exact solutions (0.24)
Higher-dimensional black holes, [...] (0.23)

Classical fields

scalar, general, first, scalar_field, massless, real, explicit, dy-
namical, second, exact, special, linear, full, symmetric, static,
electromagnetic, classical, nonlinear, approximate, non_trivial

Modified theories of gravity (0.19)
Lorentz and Poincaré invariance (0.16)
Nonlinear or nonlocal theories and [...] (0.11)
Exact solutions (0.10)
Higher-dimensional gravity and [...] (0.10)

Collider physics

distribution, collision, production, cross_sections, section, par-
ton, hadron, cross, cross_section, process, hadronic_collision,
scattering, correction, fragmentation, partons, kinematics,
transverse, impact, event, partonic

Perturbative calculations (0.29)
Polarization in interactions and [...] (0.28)
Inclusive production with [...] (0.27)
Total and inclusive cross sections [...] (0.26)
Relativistic heavy-ion collisions (0.25)

Cosmology

constant, cosmological, inflation, cosmic, perturbation, vac-
uum, universe, inflationary, cosmology, fluctuation, inho-
mogeneity, tension, lambda, planck, inflaton, cosmologi-
cal_perturbation, era, epoch, density, background

Particle-theory and field-theory [...] (0.59)
Cosmology (0.32)
Observational cosmology (including [...] (0.28)
Dark energy (0.25)
Background radiations (0.21)

Dark matter

matter, dark, dark_matter, detection, dm, signal, abundance,
observation, relic, direct, constraint, candidate, wimp, asym-
metric, prospect, dark_matter_particle, center, detectable,
cold, contribute

Dark matter (0.74)
-ray (0.22)
Cosmic rays (0.19)
-ray sources; -ray bursts (0.17)
Elementary particle processes (0.17)

Electroweak sector

standard, higgs, boson, particle, standard_model, physic, lhc,
sm, top, tev, collider, mssm, electroweak, minimal, phe-
nomenology, extension, extra, supersymmetric_model, super-
partners, new_particle

Extensions of electroweak Higgs sector (0.34)
Supersymmetric models (0.33)
Non-standard-model Higgs bosons (0.30)
Supersymmetric partners of known [...] (0.28)
Standard-model Higgs bosons (0.27)

Gauge theory &
Grand Unification

dimension, coupling, scale, structure, operator, fermion, value,
matrix, number, su, charge, sector, spin, group, topological,
anomalous, breaking, anomaly, global, flavor

Unified theories and models of [...] (0.22)
Unification of couplings; mass relations (0.17)
Quark and lepton masses and mixing (0.13)
Unified field theories and models (0.12)
Field theories in dimensions other [...] (0.12)

Hadrons

decay, data, channel, bound, resonance, gamma, meson,
width, experimental_data, collaboration, kaon, prediction,
experimental, measurement, admixture, narrow, process,
hadronic_decay, s0, ratio

Decays of bottom mesons (0.30)
Decays of J/, , and other quarkonia (0.24)
Meson-meson interactions (0.21)
Decays of bottom mesons (0.20)
Bottom mesons (|B|>0) (0.19)

Neutrinos & flavour
physics

neutrino, violation, oscillation, flavor, cp, angle, mixing, exper-
iment, lepton, flavour, hierarchy, majorana, cp_violation, beta,
leptogenesis, asymmetry, neutrino_mass, neutrino_oscillation,
smallness, generation

Neutrino mass and mixing (0.74)
Non-standard-model neutrinos, [...] (0.41)
Ordinary neutrinos (0.30)
Neutrino interactions (0.28)
Quark and lepton masses and mixing (0.23)

Perturbative methods

amplitude, qcd, loop, diagram, sum, contribution, perturba-
tive, expansion, vertex, rule, light_cone, perturbative_qcd,
propagator, approach, correlator, one_loop, evaluation, non-
perturbative, kernel, diagrammatic

General properties of perturbation [...] (0.25)
Other nonperturbative calculations (0.24)
Sum rules (0.22)
Perturbative calculations (0.21)
General properties of QCD [...] (0.16)

QCD

quark, chiral, magnetic, baryon, relativistic, moment, qcd,
light_quark, strong, heavy, heavy_quark, lattice, mag-
netic_field, electric, deconfinement, chromodynamics, current,
diquarks, plasma, color

Lattice QCD calculations (0.27)
Chiral symmetries (0.26)
Chiral Lagrangians (0.25)
Quark-gluon plasma (0.23)
General properties of QCD [...] (0.20)

Quantum Field The-
ory

quantum, group, quantum_field, representation, quantisation,
mechanic, quantum_field_theory, transformation, hamiltoni-
ans, algebra, finite_dimensional, quantization, commutator,
algebraic, arbitrary, operator, qft, invariant, analog, associated

Algebraic methods (0.26)
Noncommutative field theory (0.25)
Quantum mechanics (0.22)
Noncommutative geometry (0.19)
Quantum groups (0.18)

Continued on next page
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Table 1: Research areas, their top-words, and their correlation with a standard classification (PACS).

Research area Top words Most correlated PACS categories

String theory & su-
pergravity

string, supersymmetric, superstring, six_dimensional, modu-
lus, super, instantons, supergravity, dyons, n2, mathcaln, su-
perpotentials, heterotic, sigma_models, n1, n4, gauged, space,
deformation, compactifications

Supersymmetry (0.31)
Strings and branes (0.29)
Supergravity (0.29)
Compactification and four- [...] (0.25)
D branes (0.20)

Thermodynamics

potential, effective, interaction, limit, temperature, action, fi-
nite, local, freedom, approximation, level, weak, chemical,
force, effective_field_theory, lagrangian, finite_temperature,
effective_field, degree, effective_theory

Finite-temperature field theory (0.26)
Chiral symmetries (0.09)
Nuclear forces (0.08)
Quark-gluon plasma (0.08)
General properties of QCD [...] (0.08)

Uninterpretable

approach, method, analysis, recent, calculation, numerical, for-
malism, study, prediction, sigma, previous, work, theoretical,
systematic, comparison, uncertainty, agreement, good, investi-
gation, paper

Lattice QCD calculations (0.07)
Baryon resonances (S=C=B=0) (0.05)
Other nonperturbative calculations (0.05)
Few-body systems (0.05)
Lagrangian and Hamiltonian approach (0.05)

Uninterpretable

solution, equation, phase, space, time, system, transition, re-
gion, condition, constraint, dynamic, class, background, con-
figuration, wave, range, motion, set, star, instability

Exact solutions (0.14)
Nonlinear or nonlocal theories and [...] (0.11)
Extended classical solutions; [...] (0.10)
Relativistic wave equations (0.10)
Modified theories of gravity (0.09)

Uninterpretable

form, correction, momentum, tensor, mode, relation, higher,
factor, vector, invariant, formula, angular, part, theorem, spec-
trum, power, dimensional, invariance, expression, derivative

Electromagnetic form factors (0.17)
Protons and neutrons (0.10)
Lorentz and Poincaré invariance (0.08)
Gauge field theories (0.06)
Dispersion relations (0.06)

Uninterpretable

spectrum, low, problem, low_energy, important, high, prop-
erty, high_energy, small, physical, soft, fundamental, behav-
ior, analytic, behaviour, spectral, dispersion, essential, phe-
nomenon, regime

General properties of QCD [...] (0.07)
Regge formalism (0.07)
Wave propagation, transmission and [...] (0.05)
Elastic scattering (0.05)
Lattice gauge theory (0.05)

Uninterpretable

different, possible, particular, present, various, mechanism,
type, example, massive, several, scenario, simple, single, simi-
lar, consistent, addition, hand, different_type, interesting, way

Particle-theory and field-theory [...] (0.07)
Modified theories of gravity (0.07)
Field theories in dimensions other [...] (0.05)
Cosmology (0.05)
Dark energy (0.05)

A.3.4 Topic validation using the citation network

In order to validate the consistency and scientific dimension of the topics that were recovered, we verify that
papers from a given topic tend to cite more papers from the same topic. Let Nk,k′ be the amount of citations
of articles that belong to topic k′ originating from articles that belong to k, and N =

∑
k,k′ Nk,k′ the total

number of citations. From this matrix, a normalized pointwise mutual correlation npmi(k, k′) is calculated:

npmi(k, k′) = log
Nk,k′/N

(
∑

i Nk,i/N)(
∑

i Ni,k′/N)
(15)

npmi(k, k′) is shown in Figure 13. It measures how frequent citations from k to k′ are, relative to what
would be expected if citations were uniformly distributed. The diagonal values are positive, indicating that
the topics we retrieved tend to refer to themselves significantly more than expected by chance alone, providing
further evidence of their scientific content and coherence.

28



Q
C
D

H
a
d
ro
n
s

P
er
tu
rb
a
ti
v
e
m
et
h
o
d
s

C
o
ll
id
er

p
h
y
si
cs

E
le
ct
ro
w
ea
k
se
ct
o
r

N
eu
tr
in
o
s
&

fl
av
o
u
r
p
h
y
si
cs

D
a
rk

m
a
tt
er

T
h
er
m
o
d
y
n
a
m
ic
s

C
la
ss
ic
a
l
fi
el
d
s

Q
u
a
n
tu
m

F
ie
ld

T
h
eo
ry

G
a
u
g
e
th
eo
ry

&
G
ra
n
d
U
n
ifi
ca
ti
o
n

S
tr
in
g
th
eo
ry

&
su
p
er
g
ra
v
it
y

A
d
S
/
C
F
T

B
la
ck

h
o
le
s

C
o
sm

o
lo
g
y

Cited category (references)

QCD

Hadrons

Perturbative methods

Collider physics

Electroweak sector

Neutrinos & flavour physics

Dark matter

Thermodynamics

Classical fields

Quantum Field Theory

Gauge theory & Grand Unification

String theory & supergravity

AdS/CFT

Black holes

Cosmology

C
it
in
g
c
a
te
g
o
ry

×7.0 ×1.6 ×1.1 ×2.1

×1.8 ×8.9 ×1.4

×1.1 ×7.0 ×1.3 ×1.2 ×1.2

×1.1 ×6.7

×1.1 ×5.5 ×1.1

×1.2 ×10.1

×1.4 ×8.8

×2.0 ×1.3 ×5.3 ×2.3 ×1.4 ×1.3 ×1.4

×2.0 ×7.7 ×1.5 ×1.4 ×2.0 ×2.0

×1.1 ×1.2 ×1.4 ×8.6 ×1.7 ×1.5 ×1.4

×1.1 ×1.4 ×1.4 ×1.7 ×5.6 ×1.4 ×1.4

×1.3 ×1.4 ×5.8

×1.3 ×1.4 ×1.4 ×6.9 ×1.5

×1.9 ×1.5 ×6.2

×1.9 ×6.8

−3

−2

−1

0

1

2

3

Figure 13: Normalized pointwise mutual information npmi(k, k′) of the citation matrix Nk,k′ .
Positive values (in blue) indicate that the y-axis research area cites the x-axis research area more often than
expected by chance; negative values indicate that citations occur less than expected by chance. When shown,
individual values indicate how many times citations occur compared to chance alone. For instance, papers
about Hadrons cite papers about Perturbative methods 1.4 times what would be expected if citations were
uniform across research areas.

A.3.5 A comparison of three topic models

Figure 14 compares the ability of three topic models to measure the transformations in high-energy physics
research resulting from changes in the landscape of experimental opportunities. In the coarse-grained model
(K0 = 15, in the middle), many types of experiments are lumped together into a single topic. It is therefore
ill-suited for assessing the impact of the transformations in the landscape of experimental opportunities. The
model used throughout the paper is well able to distinguish neutrino research for dark matter research, which
have both undergone significant transformations according to Figure 10. It is also better able to separate
black hole phenomenology and cosmology, compared to the fine-grained model (K0 = 25).
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Figure 14: Origin of papers citing each type of experiment, according to three topic models: the model
considered throughout the present paper (to the left), a model with fewer topics (K0 = 15), and a model
with more topics (K0 = 25). A value of one (dark red) indicates that 100% of the papers citing a certain
type of experiment (cf. rows) originate from a given topic (cf. columns).
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A.3.6 Topic validation using the PACS classification
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Figure 15: Correlation between PACS categories present in ≥ 100 publications in the corpus (rows), and the
research areas recovered by the topic model (columns). Each colored cell indicates the correlation between a
leaf category of the hierarchical PACS classification and one of the topics from the topic model.
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Blue cells show that the research areas recovered from the topic model correlate with the PACS classification
(which further confirms their scientific dimension), but also that they can give a different picture. For instance,
each of the topics “dark matter”, “black holes” and “cosmology” span over several higher-level categories
of the PACS classification (e.g. “fundamental astronomy . . . ” and “specific theories and interaction models
. . . ” for dark matter).

A.4 Measures of capital
Figure 16 shows the Pearson correlation between different measures of the diversity of intellectual and social
capital and of power, as evaluated among the cohort of high-energy physicists. For comparison purposes, an
alternative measure of diversity based on Stirling’s index [68], with prior applications to studies of interdis-
ciplinarity [69, 70] is evaluated23. A measure of brokerage is also considered24.

As shown in Figure 16, the entropic measure of diversity considered in this paper correlates strongly
with the Stirling measure. The magnitude of social capital (which is similar to degree centrality) correlates
weakly with excess social diversity, thus emphasizing that power and diversity are partially orthogonal
aspects of social capital. The magnitude of social capital is strongly correlated with brokerage; indeed,
strongly connected scientists, with higher degree centrality, are also those scientists who initiate collaborations
between otherwise disconnected scientists, as measured by brokerage.
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Figure 16: Correlation between different measures of capital. Measures considered in priority in this
analysis are shown in bold. Alternative measures are shown for comparison purposes. By construction, excess
social diversity is orthogonal to intellectual diversity (R = 0).

23The Stirling-based diversity measured is evaluated as:

DStirling = 1−
∑
k,k′

dkk′IakIak′ (16)

Where dkk′ is the fraction of scientists who have more expertise than average in both k and k′ among those that have expertise
in one or the other (i.e., a similarity matrix). This follows from previous approaches for measuring research interdisciplinarity
[69, 70].

24We evaluated brokerage as the amount of pairs of scientists that have collaborated with a given physicist while having no
common collaborator except for this physicist. This effectively measures the extent to which this physicist connects otherwise
disconnected scientists.
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A.5 Model performance over multiple corpora, temporal segmentations, and
topic granularities

The predictive power of the model can be assessed by evaluating the total variation distance between the
true distribution ya and the predicted distribution ypred

a . This performance metric is calculated via 10-
fold cross-validation. It is compared to a baseline model that predicts no change in the research agenda
(ybaseline

a = xa). The results are shown in Table 2. For the cohort of high-energy physicists, the model
performs only marginally better than the baseline, given that individuals have remained quite conservative
on average, most of the fluctuations being difficult to predict. Table 2 also considers a cohort of scientists
from the ACL anthology corpus of computational linguistics research [71], by running the same pipeline
(the measurement of research portfolios during two consecutive time periods using our topic model approach
and the training of the trajectory model). Although the data are of significantly lesser quality, research
portfolios have undergone much more significant transformations in this dataset (see Appendix A.10, Figure
20). Consequently, our model performs much better than the baseline for this cohort.

Table 2: Performance of the actual model versus that of the baseline model for various corpora, temporal
segmentations, topic model parameters, and authorship criteria.

Corpus Authorship K L
Cohort

size
Temporal

segmentation
Model

µ(dTV(ya,ya
pred))

Baseline
µ(dTV(ya,xa))

HEP Any 20 50 2108 2000–2009
2015–2019 0.306 0.316

HEP 1st/last 20 50 2108 2000–2009
2015–2019 0.306 0.316

HEP Any 20 50 1836 2000–2004
2005–2009 0.262 0.262

HEP Any 20 50 2530 2005–2009
2010–2014 0.261 0.265

HEP Any 20 50 3816 2010–2014
2015–2019 0.246 0.244

HEP Any 15 50 2375 2000–2009
2015–2019 0.293 0.297

HEP Any 25 50 2109 2000–2009
2010–2019 0.315 0.328

HEP Any 15 50 2069 2000–2009
2015–2019 0.290 0.295

HEP Any 20 150 2169 2000–2009
2015–2019 0.309 0.318

ACL Anthology Any 20 50 578 2002–2011
2012–2022 0.337 0.466

A.6 Learning costs and optimal transport
The MCMC algorithm from [17] is run on 1 000 000 iterations of the “MetroMC” algorithm, using what the
authors call a “P1” prior (that is, a prior such that

∑
kk′ Ckk′ = C0 = cst25). More precisely, we assume

that:
25We chose the minimum value of C0 for which the system admitted a solution.
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P (ckk′ |pkk′) =
1

Z

1∏
kk′

c
1/2
kk′

exp (−αDKL(ckk′ ||pkk′)) with ckk′ = Ckk′/C0 (17)

and pkk′ = softmax(β(1− νkk′)) (18)
(19)

(17) is sometimes referred to as the entropic prior [72, 73]. The mean posterior values of Ck,k′ are shown
in Figure 17, as a function of the knowledge gap from k to k′. The knowledge gap 1− νkk′ is the fraction of
experts in k who do not hold significant expertise in k′ (ν is shown in Figure 6b). A significant correlation
is found (R = −0.76). This is true also for the replication dataset of computational linguistics research
(Appendix A.10), for which R = −0.63.
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Figure 17: Cost of shifting a unit of cohort’s research attention from k to k′ as a function of the fraction of
physicists with expertise in k′ among those with expertise in k (νkk′).

A.7 Effect of capital on strategies of change
A.7.1 Model for the magnitude of change

The model for ca is:
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Figure 18: Distribution of change and cognitive distances in the cohort. Higher values correspond
to more drastic changes in a scientists’ research agenda.

z(ca) ∼ N (µa, σ)

µa = βint-divz(D(Ia)) + βsoc-divz(D∗(Sa)) + βpowerz(P (Sa)) + βstabilitypa + βagez(aa) + βprodz(πa) + µarea
ka

+ µ

ka = argmax
k

xak

β, µ ∼ N (0, 1)

|µarea
k | ∼ Exponential(τ)

τ, σ ∼ Exponential(1)

Where z(·) denotes standardized variables.

A.7.2 Model for the probability of having entered/exited a research area

The model for the probability pa of having entered a new field:

logit(pa) = βint-divz(D(Ia)) + βsoc-divz(D∗(Sa)) + βpowerz(P (Sa)) + βstabilitypa + βagez(aa) + βprodz(πa) + µarea
ka

+ µ

ka = argmax
k

xak

β, µ ∼ N (0, 1)

|µarea
k | ∼ Exponential(τ)

τ, σ ∼ Exponential(1)

The same model structure is used for the probability of having exited a research area.
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A.7.3 Effect of capital and robustness checks

Table 3: Effect of each variable on (a) the change score and (b) the cognitive distance for each model. The
reference model uses entropy as the diversity measure D and the magnitude of intellectual capital as a
measure of power P . Values indicate the mean posterior effect size and the 95% credible interval. Significant
effects are shown in bold.

Dep. variable Change score (ca) Cognitive distance (da)

Model Reference D = Stirling P = Brokerage Reference D = Stirling P = Brokerage

Predictor

Intellectual capital (diversity) +0.28+0.044
−0.044 +0.28+0.042

−0.043 +0.27+0.044
−0.043 +0.33+0.043

−0.042 +0.34+0.042
−0.042 +0.32+0.043

−0.043

Social capital (diversity) +0.09+0.04
−0.04 +0.07+0.04

−0.04 +0.08+0.04
−0.04 +0.11 +0.04

−0.041 +0.09+0.04
−0.04 +0.1+0.04

−0.04

Social capital (power) −0.09+0.06
−0.06 −0.07+0.06

−0.06 −0.02+0.05
−0.05 −0.14+0.061

−0.061 −0.12+0.06
−0.06 −0.05+0.05

−0.05

Stable affiliation −0.01+0.09
−0.09 −0.009+0.09

−0.09 −0.0008+0.09
−0.09 −0.007+0.09

−0.09 +0.0009+0.09
−0.09 +0.01+0.09

−0.09

Academic age −0.1+0.05
−0.05 −0.1+0.05

−0.05 −0.1+0.047
−0.047 −0.07+0.05

−0.05 −0.07+0.047
−0.047 −0.08+0.05

−0.05

Productivity (co-authored) −0.12+0.058
−0.059 −0.12+0.058

−0.058 −0.17+0.052
−0.053 −0.1+0.06

−0.06 −0.1+0.058
−0.056 −0.17+0.053

−0.052

Productivity (solo-authored) −0.05+0.041
−0.04 −0.05+0.04

−0.04 −0.06+0.04
−0.04 −0.04+0.04

−0.04 −0.03+0.04
−0.04 −0.04+0.04

−0.04

Hadrons −0.009+0.2
−0.2 −0.11+0.18

−0.2 −0.008+0.2
−0.2 +0.03+0.1

−0.1 −0.05+0.1
−0.2 +0.04+0.1

−0.1

String theory & supergravity +0.28+0.15
−0.15 +0.34+0.18

−0.18 +0.25+0.15
−0.15 +0.11+0.13

−0.11 +0.21+0.15
−0.15 +0.07+0.1

−0.1

Perturbative methods +0.12+0.22
−0.18 +0.06+0.2

−0.2 +0.13+0.22
−0.18 +0.15+0.22

−0.17 +0.1+0.21
−0.17 +0.16+0.23

−0.18

Classical fields −0.25+0.36
−0.59 −0.21+0.38

−0.55 −0.23+0.35
−0.57 −0.19+0.27

−0.58 −0.17 +0.3
−0.51 −0.16+0.26

−0.55

Collider physics −0.19+0.16
−0.17 −0.34+0.19

−0.19 −0.2+0.17
−0.17 −0.02+0.1

−0.1 −0.16+0.15
−0.16 −0.03+0.1

−0.1

Neutrinos & flavour physics +0.21+0.18
−0.17 +0.17 +0.2

−0.18 +0.18+0.18
−0.17 +0.11+0.16

−0.13 +0.1+0.2
−0.1 +0.09+0.2

−0.1

Black holes +0.06+0.2
−0.2 +0.15+0.22

−0.19 +0.05+0.2
−0.2 −0.03+0.1

−0.2 +0.06+0.2
−0.1 −0.04+0.1

−0.2

Gauge theory & Grand Unification −0.07+0.3
−0.4 −0.05+0.3

−0.4 −0.06+0.3
−0.3 −0.02+0.2

−0.3 +0.003+0.3
−0.3 −0.008+0.2

−0.3

Dark matter −0.27+0.24
−0.25 −0.32+0.26

−0.27 −0.28+0.24
−0.25 −0.13+0.17

−0.23 −0.18 +0.2
−0.24 −0.13+0.17

−0.23

Thermodynamics +0.14+0.36
−0.26 +0.27+0.41

−0.32 +0.16+0.37
−0.27 +0.1+0.34

−0.2 +0.25+0.41
−0.29 +0.12+0.36

−0.21

Cosmology −0.02+0.16
−0.17 +0.01+0.2

−0.2 −0.03+0.2
−0.2 −0.06+0.1

−0.2 −0.02+0.1
−0.2 −0.06+0.13

−0.17

Electroweak sector −0.14+0.15
−0.16 −0.21+0.18

−0.18 −0.17+0.16
−0.16 −0.04+0.1

−0.1 −0.1+0.13
−0.15 −0.07+0.1

−0.1

QCD −0.009+0.2
−0.2 −0.07+0.2

−0.2 +0.001+0.2
−0.2 +0.02+0.1

−0.1 −0.03+0.14
−0.16 +0.04+0.1

−0.1

Quantum Field Theory +0.04+0.2
−0.2 +0.09+0.2

−0.2 +0.04+0.21
−0.19 −0.09+0.2

−0.2 −0.04+0.2
−0.2 −0.08+0.2

−0.2

AdS/CFT +0.003+0.2
−0.2 +0.07+0.3

−0.2 +0.005+0.2
−0.2 +0.02+0.2

−0.2 +0.11+0.27
−0.2 +0.03+0.2

−0.2
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Table 4: Effect of each variable on (a) the probability of having entered a new research area and (b) the
probability of having exited a research area, for each model. The reference model uses entropy as the diversity
measure D and the magnitude of intellectual capital as a measure of power P . Values indicate the mean
posterior effect size and the 95% credible interval. Significant effects are shown in bold.

Dep. variable Entered a new research area Exited a research area

Model Reference D = Stirling P = Brokerage Reference D = Stirling P = Brokerage

Predictor

Intellectual capital (diversity) +0.2+0.11
−0.11 +0.17+0.1

−0.1 +0.19+0.11
−0.11 +1+0.14

−0.14 +0.85+0.12
−0.12 +1+0.14

−0.14

Social capital (diversity) +0.22+0.1
−0.1 +0.18+0.1

−0.1 +0.22+0.099
−0.1 +0.04+0.1

−0.1 +0.04+0.1
−0.1 +0.04+0.1

−0.1

Social capital (power) +0.006+0.1
−0.1 +0.03+0.15

−0.15 +0.04+0.1
−0.1 −0.03+0.2

−0.2 +0.02+0.2
−0.2 +0.03+0.1

−0.1

Stable affiliation −0.19+0.22
−0.22 −0.18+0.22

−0.22 −0.19+0.22
−0.22 +0.04+0.2

−0.2 +0.06+0.2
−0.2 +0.04+0.24

−0.24

Academic age +0.04+0.12
−0.11 +0.04+0.1

−0.1 +0.04+0.1
−0.1 −0.21+0.12

−0.12 −0.21+0.12
−0.12 −0.22+0.12

−0.12

Productivity (co-authored) −0.07+0.1
−0.1 −0.08+0.1

−0.1 −0.09+0.1
−0.1 −0.28+0.15

−0.14 −0.28+0.15
−0.15 −0.31+0.13

−0.13

Productivity (solo-authored) −0.05 +0.1
−0.09 −0.05 +0.1

−0.09 −0.06+0.1
−0.1 −0.02+0.1

−0.1 −0.007+0.1
−0.1 −0.03+0.1

−0.1

Hadrons −0.14+0.29
−0.36 −0.24+0.33

−0.39 −0.14+0.29
−0.35 +0.03+0.3

−0.2 −0.09+0.3
−0.4 +0.04+0.3

−0.2

String theory & supergravity +0.32+0.32
−0.3 +0.4+0.35

−0.33 +0.32+0.32
−0.29 +0.3+0.34

−0.3 +0.65+0.39
−0.38 +0.28+0.34

−0.29

Perturbative methods +0.11+0.45
−0.35 +0.09+0.5

−0.4 +0.11+0.45
−0.35 −0.03+0.29

−0.34 −0.13 +0.4
−0.48 −0.03+0.3

−0.3

Classical fields +0.22+1.1
−0.6 +0.34+1.4

−0.7 +0.22+1.1
−0.6 −0.07+0.4

−0.6 −0.07+0.7
−0.8 −0.07+0.4

−0.6

Collider physics −0.43+0.33
−0.34 −0.61+0.33

−0.34 −0.42+0.33
−0.34 −0.01+0.2

−0.2 −0.28+0.32
−0.37 −0.02+0.2

−0.2

Neutrinos & flavour physics +0.08+0.3
−0.3 +0.04+0.3

−0.3 +0.07+0.3
−0.3 −0.21+0.25

−0.35 −0.31+0.35
−0.41 −0.21+0.26

−0.36

Black holes −0.0006+0.3
−0.3 +0.06+0.4

−0.3 −0.003+0.3
−0.3 +0.08+0.4

−0.3 +0.43+0.53
−0.45 +0.08+0.4

−0.3

Gauge theory & Grand Unification −0.04+0.6
−0.6 −0.04+0.6

−0.7 −0.03+0.6
−0.6 −0.08+0.4

−0.6 −0.11+0.64
−0.79 −0.08+0.4

−0.6

Dark matter −0.62+0.55
−0.56 −0.68+0.55

−0.56 −0.63+0.55
−0.56 −0.05+0.3

−0.4 −0.11+0.42
−0.5 −0.05+0.3

−0.4

Thermodynamics −0.03+0.5
−0.6 +0.01+0.62

−0.58 −0.02+0.5
−0.6 −0.05+0.4

−0.6 +0.03+0.7
−0.6 −0.05+0.41

−0.53

Cosmology −0.07+0.3
−0.4 −0.03+0.3

−0.4 −0.07+0.3
−0.4 +0.09+0.4

−0.3 +0.36+0.56
−0.43 +0.09+0.4

−0.3

Electroweak sector +0.05+0.3
−0.3 +0.009+0.3

−0.3 +0.05+0.3
−0.3 −0.003+0.2

−0.2 −0.04+0.3
−0.3 −0.009+0.2

−0.2

QCD +0.008+0.3
−0.3 −0.03+0.3

−0.4 +0.01+0.3
−0.3 +0.04+0.32

−0.26 +0.04+0.4
−0.4 +0.04+0.3

−0.3

Quantum Field Theory +0.15+0.52
−0.38 +0.22+0.57

−0.41 +0.15+0.52
−0.38 +0.05+0.4

−0.3 +0.26+0.64
−0.44 +0.05+0.4

−0.3

AdS/CFT +0.14 +0.6
−0.42 +0.22+0.67

−0.47 +0.14+0.59
−0.42 −0.06+0.4

−0.5 +0.07+0.6
−0.5 −0.06+0.3

−0.5

A.8 Additional robustness checks
The robustness of the results of the comparative analysis is assessed by varying different parameters:

• The papers included in each authors’ portfolio (any paper versus first-authored and last-authored
papers only).

• The amount of topics in the topic model (K0).

• The amount of dimensions for the word embeddings (L).

• The temporal segmentation for the early and late research portfolios.
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Table 5: Summary of the effect of each predictor on the change score (ca) across topic models and temporal
segmentations. Values indicate the mean posterior effect size and the 95% credible interval. Significant effects
are shown in bold.

Author-
ship K0 L

Temporal
segmentation

Intell. capital
(diversity)

Soc. capital
(diversity)

Soc. capital
(power)

Stable
affiliation

Academic
age

Prod.
(co-auth.)

Prod.
(solo-auth.)

Any 20 50 2000-2009
2015-2019 +0.28+0.044

−0.044 +0.09+0.04
−0.04 −0.09+0.06

−0.06 −0.01+0.09
−0.09 −0.1+0.05

−0.05 −0.12+0.058
−0.059 −0.05+0.041

−0.04

1st/last 20 50 2000-2009
2015-2019 +0.25+0.055

−0.056 +0.09+0.05
−0.05 −0.01+0.08

−0.08 +0.04+0.1
−0.1 −0.12+0.059

−0.06 −0.16+0.075
−0.074 −0.05+0.05

−0.05

Any 20 50 2000-2004
2005-2009 +0.37+0.045

−0.045 +0.12+0.043
−0.043 −0.02+0.06

−0.06 −0.02+0.1
−0.1 −0.08+0.05

−0.05 −0.21+0.059
−0.059 −0.06+0.04

−0.04

Any 20 50 2010-2014
2015-2019 +0.36+0.039

−0.039 +0.08+0.04
−0.04 −0.06+0.051

−0.052 −0.11+0.087
−0.086 −0.06+0.04

−0.04 −0.21+0.051
−0.051 −0.04+0.04

−0.04

Any 20 50 2000-2009
2010-2019 +0.37+0.033

−0.033 +0.06+0.03
−0.03 −0.06+0.05

−0.05 −0.02+0.07
−0.07 −0.04+0.036

−0.035 −0.22+0.046
−0.046 −0.04+0.03

−0.03

Any 20 50 2000-2009
2015-2019 +0.32+0.044

−0.044 +0.09+0.04
−0.04 −0.09+0.06

−0.06 +0.02+0.09
−0.09 −0.12+0.047

−0.046 −0.15+0.057
−0.057 −0.05+0.04

−0.04

Any 15 50 2000-2009
2015-2019 +0.33+0.04

−0.04 +0.09+0.04
−0.04 −0.12+0.057

−0.057 −0.04+0.09
−0.09 −0.12 +0.05

−0.051 −0.1+0.054
−0.054 −0.06+0.04

−0.04

Any 25 50 2000-2009
2015-2019 +0.35+0.042

−0.042 +0.13+0.04
−0.04 −0.15+0.058

−0.058 −0.002+0.09
−0.09 −0.15+0.052

−0.052 −0.12+0.056
−0.056 −0.05+0.04

−0.04

Any 15 150 2000-2009
2015-2019 +0.35+0.044

−0.044 +0.07+0.04
−0.04 −0.08+0.06

−0.06 −0.02+0.089
−0.089 −0.08+0.05

−0.05 −0.1+0.056
−0.057 −0.02+0.04

−0.04

Any 20 150 2000-2009
2015-2019 +0.34+0.044

−0.043 +0.08+0.04
−0.04 −0.09+0.06

−0.06 +0.008+0.09
−0.09 −0.1+0.046

−0.046 −0.12+0.056
−0.056 −0.06+0.04

−0.04

Any 25 150 2000-2009
2015-2019 +0.34+0.044

−0.044 +0.06+0.04
−0.04 −0.09+0.06

−0.06 −0.009+0.09
−0.09 −0.11+0.047

−0.047 −0.13+0.057
−0.057 −0.02+0.04

−0.04

Table 6: Summary of the effect of each predictor on the cognitive distance (da) across topic models and tem-
poral segmentations. Values indicate the mean posterior effect size and the 95% credible interval. Significant
effects are shown in bold.

Author-
ship K0 L

Temporal
segmentation

Intell. capital
(diversity)

Soc. capital
(diversity)

Soc. capital
(power)

Stable
affiliation

Academic
age

Prod.
(co-auth.)

Prod.
(solo-auth.)

Any 20 50 2000-2009
2015-2019 +0.33+0.043

−0.042 +0.11 +0.04
−0.041 −0.14+0.061

−0.061 −0.007+0.09
−0.09 −0.07+0.05

−0.05 −0.1+0.06
−0.06 −0.04+0.04

−0.04

1st/last 20 50 2000-2009
2015-2019 +0.3+0.056

−0.055 +0.1+0.053
−0.052 −0.06+0.08

−0.08 −0.01+0.1
−0.1 −0.07+0.06

−0.06 −0.12+0.076
−0.075 −0.04+0.05

−0.05

Any 20 50 2000-2004
2005-2009 +0.37+0.044

−0.044 +0.13+0.043
−0.044 −0.05+0.06

−0.06 −0.04+0.1
−0.1 −0.07+0.05

−0.05 −0.19+0.06
−0.06 −0.07+0.04

−0.04

Any 20 50 2010-2014
2015-2019 +0.37+0.037

−0.037 +0.09+0.04
−0.04 −0.07+0.05

−0.05 −0.12+0.086
−0.086 −0.03+0.04

−0.04 −0.21 +0.05
−0.051 −0.04+0.04

−0.04

Any 20 50 2000-2009
2010-2019 +0.4+0.031

−0.031 +0.06+0.031
−0.031 −0.09+0.05

−0.05 +0.01+0.07
−0.07 −0.05+0.035

−0.035 −0.19+0.046
−0.046 −0.03+0.03

−0.03

Any 20 50 2000-2009
2015-2019 +0.36+0.043

−0.043 +0.11+0.04
−0.04 −0.14+0.059

−0.06 +0.003+0.09
−0.09 −0.09+0.05

−0.05 −0.14+0.056
−0.056 −0.05+0.04

−0.04

Any 15 50 2000-2009
2015-2019 +0.28+0.041

−0.041 +0.1+0.04
−0.04 −0.18+0.057

−0.058 −0.04+0.09
−0.09 −0.09+0.05

−0.05 −0.05+0.05
−0.06 −0.03+0.04

−0.04

Any 25 50 2000-2009
2015-2019 +0.25+0.043

−0.043 +0.12+0.041
−0.04 −0.18+0.059

−0.058 +0.06+0.09
−0.09 −0.12+0.053

−0.053 −0.06+0.06
−0.06 −0.03+0.04

−0.04

Any 15 150 2000-2009
2015-2019 +0.28+0.048

−0.047 +0.07+0.04
−0.04 −0.09+0.06

−0.06 +0.03+0.09
−0.1 −0.07+0.05

−0.05 −0.08+0.06
−0.06 −0.02+0.04

−0.04

Any 20 150 2000-2009
2015-2019 +0.27+0.046

−0.045 +0.04+0.04
−0.04 −0.1+0.062

−0.061 +0.06+0.09
−0.09 −0.1+0.05

−0.05 −0.09+0.06
−0.06 −0.04+0.04

−0.04

Any 25 150 2000-2009
2015-2019 +0.26+0.047

−0.047 +0.07+0.043
−0.043 −0.15+0.063

−0.064 +0.02+0.09
−0.09 −0.08+0.05

−0.05 −0.08+0.06
−0.06 −0.003+0.04

−0.04
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Table 7: Summary of the effect of each predictor on the probability of having entered a research area across
topic models and temporal segmentations. Values indicate the mean posterior effect size and the 95% credible
interval. Significant effects are shown in bold.

Author-
ship K0 L

Temporal
segmentation

Intell. capital
(diversity)

Soc. capital
(diversity)

Soc. capital
(power)

Stable
affiliation

Academic
age

Prod.
(co-auth.)

Prod.
(solo-auth.)

Any 20 50 2000-2009
2015-2019 +0.2+0.11

−0.11 +0.22+0.1
−0.1 +0.006+0.1

−0.1 −0.19+0.22
−0.22 +0.04+0.12

−0.11 −0.07+0.1
−0.1 −0.05 +0.1

−0.09

1st/last 20 50 2000-2009
2015-2019 +0.25+0.14

−0.13 +0.19+0.13
−0.13 +0.21+0.19

−0.19 +0.12+0.29
−0.29 −0.07+0.1

−0.1 −0.33+0.18
−0.18 −0.0006+0.1

−0.1

Any 20 50 2000-2004
2005-2009 +0.16+0.11

−0.11 +0.2+0.11
−0.11 +0.01+0.15

−0.15 −0.007+0.2
−0.2 −0.06+0.1

−0.1 −0.14+0.14
−0.14 −0.05+0.1

−0.1

Any 20 50 2010-2014
2015-2019 +0.24+0.095

−0.095 +0.18+0.091
−0.091 −0.06+0.1

−0.1 +0.05 +0.2
−0.21 +0.07+0.1

−0.1 −0.18+0.12
−0.12 −0.02+0.09

−0.09

Any 20 50 2000-2009
2010-2019 +0.27+0.083

−0.083 +0.27+0.076
−0.076 −0.01+0.1

−0.1 −0.08+0.2
−0.2 +0.04+0.09

−0.09 −0.16+0.11
−0.11 −0.004+0.07

−0.07

Any 20 50 2000-2009
2015-2019 +0.24+0.11

−0.11 +0.2+0.1
−0.1 +0.03+0.15

−0.14 −0.07+0.2
−0.2 −0.01+0.1

−0.1 −0.19+0.13
−0.14 −0.06 +0.1

−0.09

Any 15 50 2000-2009
2015-2019 +0.13+0.11

−0.1 +0.13+0.096
−0.095 −0.005+0.1

−0.1 −0.03+0.2
−0.2 −0.04+0.1

−0.1 −0.16+0.13
−0.13 +0.002+0.09

−0.09

Any 25 50 2000-2009
2015-2019 +0.18+0.12

−0.12 +0.17+0.11
−0.11 −0.009+0.2

−0.2 −0.07+0.2
−0.2 −0.04+0.1

−0.1 −0.15+0.15
−0.15 −0.02+0.1

−0.1

Any 15 150 2000-2009
2015-2019 +0.12+0.1

−0.1 +0.19+0.095
−0.095 −0.08+0.1

−0.1 −0.02+0.2
−0.2 −0.02+0.1

−0.1 −0.04+0.1
−0.1 −0.06+0.09

−0.09

Any 20 150 2000-2009
2015-2019 +0.23+0.11

−0.11 +0.07+0.1
−0.1 +0.12+0.15

−0.15 −0.06+0.2
−0.2 −0.08+0.1

−0.1 −0.21+0.14
−0.14 −0.05+0.095

−0.093

Any 25 150 2000-2009
2015-2019 +0.31+0.13

−0.13 +0.01+0.1
−0.1 −0.09+0.2

−0.2 −0.14+0.25
−0.25 +0.06+0.1

−0.1 +0.001+0.2
−0.2 −0.02+0.1

−0.1

Table 8: Summary of the effect of each predictor on the probability of having exited a research area across
topic models and temporal segmentations. Values indicate the mean posterior effect size and the 95% credible
interval. Significant effects are shown in bold.

Author-
ship K0 L

Temporal
segmentation

Intell. capital
(diversity)

Soc. capital
(diversity)

Soc. capital
(power)

Stable
affiliation

Academic
age

Prod.
(co-auth.)

Prod.
(solo-auth.)

Any 20 50 2000-2009
2015-2019 +1+0.14

−0.14 +0.04+0.1
−0.1 −0.03+0.2

−0.2 +0.04+0.2
−0.2 −0.21+0.12

−0.12 −0.28+0.15
−0.14 −0.02+0.1

−0.1

1st/last 20 50 2000-2009
2015-2019 +1.1+0.18

−0.18 +0.01+0.1
−0.1 −0.12+0.2

−0.2 −0.05+0.3
−0.3 −0.15+0.16

−0.16 −0.12+0.19
−0.19 −0.01+0.1

−0.1

Any 20 50 2000-2004
2005-2009 +1+0.15

−0.14 +0.04+0.1
−0.1 −0.18+0.16

−0.16 −0.07+0.3
−0.3 −0.18+0.13

−0.13 −0.25+0.15
−0.15 +0.04+0.1

−0.1

Any 20 50 2010-2014
2015-2019 +0.89+0.12

−0.11 +0.04+0.09
−0.1 +0.1+0.1

−0.1 −0.22+0.22
−0.22 −0.04+0.1

−0.1 −0.34+0.13
−0.13 −0.09+0.09

−0.09

Any 20 50 2000-2009
2010-2019 +0.88+0.093

−0.09 +0.16+0.077
−0.076 −0.01+0.1

−0.1 +0.07+0.2
−0.2 −0.06+0.09

−0.08 −0.32+0.11
−0.11 −0.09+0.07

−0.07

Any 20 50 2000-2009
2015-2019 +0.91+0.13

−0.13 −0.05+0.1
−0.1 −0.07+0.2

−0.2 +0.001+0.2
−0.2 −0.16+0.12

−0.12 −0.28+0.14
−0.14 −0.002+0.1

−0.1

Any 15 50 2000-2009
2015-2019 +1.1+0.14

−0.14 −0.003+0.1
−0.1 −0.15+0.15

−0.15 −0.19+0.23
−0.23 −0.05+0.1

−0.1 −0.21+0.14
−0.14 −0.07+0.1

−0.1

Any 25 50 2000-2009
2015-2019 +1.1+0.16

−0.16 −0.07+0.1
−0.1 +0.17+0.17

−0.17 −0.06+0.3
−0.3 −0.21+0.14

−0.14 −0.39+0.15
−0.16 +0.09+0.1

−0.1

Any 15 150 2000-2009
2015-2019 +1.3+0.15

−0.14 +0.05+0.1
−0.1 −0.11+0.15

−0.15 +0.04+0.2
−0.2 −0.06+0.1

−0.1 −0.23+0.15
−0.15 +0.04+0.1

−0.1

Any 20 150 2000-2009
2015-2019 +1.1+0.14

−0.14 +0.09+0.1
−0.1 −0.09+0.2

−0.2 +0.09+0.2
−0.2 −0.11+0.12

−0.12 −0.21+0.15
−0.15 −0.06+0.1

−0.1

Any 25 150 2000-2009
2015-2019 +1.1+0.17

−0.17 +0.1+0.1
−0.1 +0.16+0.18

−0.18 +0.24+0.27
−0.27 −0.14+0.14

−0.14 −0.44+0.16
−0.16 −0.05+0.1

−0.1

A.9 Trajectory model parameters evaluated on a different time period
To further assess the robustness of the findings, the effect of intellectual and social capital on individual
trajectories is measured on a different temporal segmentation (2000-2004 to 2005-2009). We make similar
findings: the concentration of intellectual capital in one area promotes either commitment to this research
area (or transfers in related areas). Social capital, on the other hand, matters increasingly as cognitive
distance increases.
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(a) Effect of intellectual capital (γkk′).
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(b) Effect of social capital (δkk′).

Figure 19: Effect of intellectual and social capital on transfers across research areas. Rows rep-
resent research areas of origin and columns represent target areas. Effect sizes are expressed in log-odds
(log [θakk′/(1− θakk′)], where θakk′ is the fraction of attention to k redirected to k′) per unit of intellectual
or social capital in the target research area k′. Effects that are not significant (at the 95% credible level) are
displayed in white for purposes of clarity.

A.10 Replication corpus
For purposes of testing and replication, certain analyses have been reproduced on the ACL anthology corpus
of Computational Linguistics research .

The transfers of attention are shown in Figure 20. Compared to the high-energy physics corpus, it features
significant disruptions (e.g., the emergence of new topics, such as “deep learning”, “sentiment analysis” and
“embeddings & pre-trained models”).
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Dialogues & interfaces

Question Answering & Knowledge Bases

Embeddings & Pre-trained Models

Lexical Resources & Multilingual Entries

Sentiment Analysis

Document Similarity & Semantic Analysis

Information retrieval

NLP Tools & Resources

Speech

Semantics & Discourse

Statistical & Neural Machine Translation

Learning Algorithms & Optimization Techniques

Deep learning

Syntactic Parsing & Grammar

Dialogues & interfaces

Question Answering & Knowledge Bases

Embeddings & Pre-trained Models

Lexical Resources & Multilingual Entries

Sentiment Analysis

Document Similarity & Semantic Analysis

Information retrieval

NLP Tools & Resources

Speech

Semantics & Discourse

Statistical & Neural Machine Translation

Learning Algorithms & Optimization Techniques

Figure 20: Aggregate transfers of attention across research areas in the ACL anthology corpus
of Computational Linguistics, between 2002-2011 (to the left) and 2012-2022 (to the right).
Widths of flows are proportional to

∑
a Xakθakk′ . Transfers less frequent than expected by chance alone are

transparent.
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