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Human creativity generates novel ideas to solve real-world problems. This thereby grants us the power 

to transform the surrounding world and extend our human attributes beyond what is currently possi- 

ble. Creative ideas are not just new and unexpected, but are also successful in providing solutions that 

are useful, efficient and valuable. Thus, creativity optimizes the use of available resources and increases 

wealth. The origin of human creativity, however, is poorly understood, and semantic measures that could 

predict the success of generated ideas are currently unknown. Here, we analyze a dataset of design 

problem-solving conversations in real-world settings by using 49 semantic measures based on WordNet 

3.1 and demonstrate that a divergence of semantic similarity, an increased information content, and a 

decreased polysemy predict the success of generated ideas. The first feedback from clients also enhances 

information content and leads to a divergence of successful ideas in creative problem solving. These re- 

sults advance cognitive science by identifying real-world processes in human problem solving that are 

relevant to the success of produced solutions and provide tools for real-time monitoring of problem solv- 

ing, student training and skill acquisition. A selected subset of information content (IC Sánchez–Batet) and 

semantic similarity (Lin/Sánchez–Batet) measures, which are both statistically powerful and computation- 

ally fast, could support the development of technologies for computer-assisted enhancements of human 

creativity or for the implementation of creativity in machines endowed with general artificial intelligence . 

© 2018 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Creativity is the intellectual ability to create, invent, and dis-

over, which brings novel relations, entities, and/or unexpected

olutions into existence [1] . Creative thinking involves cognition

the mental act of acquiring knowledge and understanding through

hought, experience, and senses), production, and evaluation [2] .

e first become aware of the problems with which we are con-

ronted, then produce solutions to those problems, and finally eval-

ate how good our solutions are. Each act of creation involves

ll three processes—cognition, production, and evaluation [2] . Ac-

ording to J. P. Guilford, who first introduced the terms conver-

ence and divergence in the context of creative thinking, produc-

ive thinking can be divided into convergent and divergent think-

ng; the former which can generate one correct answer, and the

atter which goes off in different directions without producing a

nique answer [2] . Although currently there is no general consen-

us on the definition of convergent and divergent thinking, modern
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heories of creativity tend to have the following perspectives. Con-

ergent thinking is regarded as analytical and conducive to disre-

arding causal relationships between items already thought to be

elated, whereas divergent thinking is viewed as associative and

onducive to unearthing similarities or correlations between items

hat were not thought to be related previously [3–5] . 

Both convergent and divergent thinking are used to model the

tructure of intellect [6] . With regard to the nature of intelligence

nd originality, two general problem-solving behaviors were iden-

ified, those of the converger and those of the diverger, who exhibit

onvergent and divergent styles of reasoning/thinking, respectively

7] . The distinction between convergent and divergent thinkers is

one based on the dimensions of scoring high on closed-ended in-

elligence tests versus scoring high on open-ended tests of word

eanings or object uses [7] . The converger/diverger distinction

lso applies in cognitive styles and learning strategies [8] . Dual-

rocessing accounts of human thinking see convergent and diver-

ent styles as reflective/analytic and reflexive/intuitive, respectively

9] , which is in line with current theories of creative cognition

nvolving generation and exploration phases [10] . The convergent

hinking style is assumed to induce a systematic, focused process-
nder the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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ing mode, whereas divergent thinking is suspected to induce a

holistic, flexible task processing mode [11] . 

Psychological accounts that consider convergent and divergent

production as separate and independent dimensions of human

cognitive ability allow one to think of creative problem solvers

as divergers rather than convergers [12] , and to associate cre-

ativity with divergent thought that combines distant concepts to-

gether [13] . Focusing only on either convergent or divergent think-

ing, however, may inhibit the full understanding of creativity [14] .

Viewing convergent production as a rational and logical process,

and divergent production as an intuitive and imaginative process,

creates the danger of oversimplification and confusion between in-

telligence and creativity. Instead, it should be recognized that there

are parallel aspects or lines of thought that come together to-

ward the end of the design process, making the design а matter

of integration [14] . Since convergent and divergent thinking fre-

quently occur together in a total act of problem solving [2] , creativ-

ity may demand not only divergent thinking, but also convergent

thinking [15,16] . For example, deliberate techniques to activate hu-

man imagination rely on the elimination of criticism in favor of

the divergent generation of a higher number of ideas. The process

of deferred judgment in problem solving defers the evaluation of

ideas and options until a maximum number of ideas are produced,

thereby separating divergent thinking from subsequent convergent

thinking [17] . This sequence of divergent and convergent thinking

is classified as ideation-evaluation, where ideation refers to non-

judgmental imaginative thinking and evaluation to an application

of judgment to the generated options during ideation [17] . Such

accounts of creativity treat divergence and convergence as subse-

quent and iterated processes [18] , particularly in that order. More

recent accounts of creativity, however, highlight the interwoven

role of both convergent and divergent thinking [15,19,20] . This in-

terweaving has been identified in two ways. The analytic approach

to creative problem solving based on linkography showed that con-

vergent and divergent thinking are so frequent at the cognitive

scale that they occur concurrently in the ideation phase of creative

design [15] . The computational approach demonstrated that a com-

puter program (comRAT-C), which uses consecutive divergence and

convergence, generates results on a common creativity test compa-

rable to the results obtained with humans [20] . Hence, the creative

problem solver or designer may need to learn, articulate, and use

both convergent and divergent skills in equal proportions [14] . 

The concurrent occurrence of convergent and divergent think-

ing in creative problem solving raises several important questions.

Is it possible to evaluate convergence and divergence in problem-

solving conversations in an objective manner? How do conver-

gence and divergence relate to different participants in a problem-

solving activity? Are there particular moments in the process of

real-world problem solving where a definitive change from con-

vergence to divergence, or vice versa, occurs? How do convergence

and divergence relate to the success of different ideas that are gen-

erated and developed in the process of problem solving? Could

semantic measures predict the future success of generated ideas,

and can they be reverse-engineered to steer generated ideas to-

ward success in technological applications, such as in computer-

assisted enhancements of human creativity or implementations of

creativity in machines endowed with artificial intelligence? 

We hypothesized that semantic measures can be used to eval-

uate convergence and divergence in creative thinking, changes in

convergence/divergence can be detected in regard to different fea-

tures of the problem-solving process, including participant roles,

successfulness of ideas, first feedback from client, or first evalua-

tion by client or instructor, and semantic measures can be identi-

fied whose dynamics reliably predicts the success or failure of gen-

erated ideas. To test our hypotheses we analyzed the transcripts

of design review conversations recorded in real-world educational
ettings at Purdue University, West Lafayette, Indiana, in 2013 [21] .

he conversations between design students, instructors, and real

lients, with regard to a given design task, consisted of up to 5

essions ( Table 1 ) that included the generation of ideas by the

tudent, external feedback from the client, first evaluation by the

lient or instructor, and evaluation of the ideas by the client. The

roblem-solving conversations were analyzed in terms of partici-

ant role, successfulness of ideas, first feedback from client, or first

valuation by client or instructor using the average values of 49 se-

antic measures quantifying the level of abstraction (1 measure),

olysemy (1 measure) or information content (7 measures) of each

oun, or the semantic similarity (40 measures) between any two

ouns in the constructed semantic networks based on WordNet 3.1

22] . 

. Materials and methods 

.1. Design review conversations 

Real-world conversations are an outstanding source to gain in-

ights into the constructs of problem solving and decision mak-

ng. To study human reasoning and problem solving, we focused

n design review conversation sessions in real-world educational

ettings. The conversation sessions were between students and ex-

erienced instructors, and each session was used to teach and as-

ess the student’s reasoning and problem solving with regard to

 given design task for a real client. The experimental dataset of

esign review conversations employed in this study was provided

s a part of the 10th Design Thinking Research Symposium [21] .

ere, we analyzed two subsets, with participants (students) major-

ng in Industrial Design: Junior (J): 1 instructor, 7 students (indi-

ated with J1–J7), and 10 other stakeholders (4 clients and 6 ex-

erts) and Graduate (G): 1 instructor, 6 students (indicated with

1–G6), and 6 other stakeholders (2 clients and 4 other students). 

The experimental dataset included data collected either from

he same students and teams over time (although not always pos-

ible) or from multiple students and teams [21] . In addition, effort s

ere made to be gender inclusive. All data were collected in situ

n natural environments rather than controlled environments. In

ome cases, the design reviews were conducted in environments

ell insulated from disruptive noises, surrounding activities, and

ighting changes; in other cases, these conditions were not possi-

le to achieve. When disruptions occurred, most were less than a

inute in duration. Because English was a second language for a

umber of the participants, there were some light accents in the

igital recordings [21] . The purpose of the conversations was for

he instructor to notice both promising and problematic aspects

n the student work and to help the students deal with possible

hallenges encountered [21] . At the end of these conversations, the

tudents developed a solution (design concept for a product or ser-

ice) that answered the problem posed in the task given initially. 

Computational quantification of the results was based on the

igital recordings and the corresponding written transcripts of the

onversations. Because our main focus was on studying ideas in

reative problem solving, we had explicitly defined the term idea

s a formulated creative solution (product concept) to the given

esign problem (including product name, drawings of the product,

rinciple of action, target group, etc.) [23,24] . As an example, on

he graduate project “Outside the Laundry Room,” some of the gen-

rated ideas were “Laundry Rocker,” “Clothes Cube,” “Drying Rack,”

Tree Breeze,” “Washer Bicycle,” etc. Our criterion for a minimal

onversation was a conversation containing at least 15 nouns. Since

n average 13.4% of the words in the conversation were nouns, an

verage minimal conversation contained ≈ 110 words. The reported

esults were per student and solution (idea). 
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Table 1 

Students and design review conversations in the Industrial Design Junior (J) and Graduate (G) subsets. Division of con- 

versations (C1–C5) for comparative analyses (1–4) into groups is indicated as follows: 1a, student; 1b, instructor; 2a, 

successful; 2b, unsuccessful; 3a, before first feedback; 3b, after first feedback; 4a, before first evaluation; 4b, after first 

evaluation. For empty cells no video data or transcripts were provided in the dataset. 

Students C1 C2 C3 C4 C5 

J1 1a,b, 2a,b, 3a,b, 4a 1a,b, 2a,b, 3b, 4a 1a,b, 2a,b, 3b, 4b 

J2 1a,b, 2a,b, 3a, 4a 1a,b, 2a,b, 3a,b, 4a 1a,b, 2a,b, 3b, 4b 

J3 1a,b, 2a,b, 3a, 4a 1a,b, 2a,b, 3a,b, 4a 1a,b, 2a,b, 3b, 4b 

J4 1a,b, 2a,b, 3a,b, 4a 1a,b, 2a,b, 3b, 4a 1a,b, 2a,b, 3b, 4b 

J5 1a,b, 2a,b, 3a 1a,b, 2a,b, 3a,b 

J6 1a,b, 2a,b, 3a, 4a 1a,b, 2a,b, 3a,b, 4a 1a,b, 2a,b, 3b, 4a 1a,b, 2a,b, 3b, 4b 

J7 1a,b, 2a,b, 3a, 4a 1a,b, 2a,b, 3a,b, 4a 1a,b, 2a,b, 3b, 4a 1a,b, 2a,b, 3b, 4b 

G1 1a,b, 3a 1a,b, 3a 

G2 1a,b, 3a, 4a 1a,b, 2a,b, 3a, 4a 1a,b, 2a,b, 3a,b, 4a,b 

G3 1a,b, 3a, 4a 1a,b, 2a,b, 3a,b, 4a,b 1a,b, 2a,b, 3b, 4b 

G4 1a,b, 3a, 4a 1a,b, 2a,b, 3a, 4a 1a,b, 2a,b, 3a,b, 4a,b 

G5 1a,b, 3a, 4a 1a,b, 2a,b, 3a, 4a 1a,b, 2a,b, 3a,b, 4a,b 

G6 1a,b, 2a,b, 3a, 4a 1a,b, 2a,b, 3a,b, 4a,b 1a,b, 2a,b, 3b, 4b 
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.1.1. Comparison between student thinking and instructor thinking 

On the basis of the participant roles, the speech in the conver-

ations was divided into speech by students or speech by instruc-

ors. Instructors were defined as those giving feedback or critique

hat were not only persons directly appointed as instructors in the

articular setting, but also clients, sometimes other students acting

r criticizing as instructors, or other stakeholders present on the

ntermediate or the final meetings. If there were several instruc-

ors in a conversation, their speech was taken together. For this

omparison, the J and G subsets contained 7 and 6 subject cases,

espectively, for a total of 13 cases. For both students and instruc-

ors, 39 conversation transcripts were each analyzed ( Table 1 ). 

.1.2. Comparison between successful ideas and unsuccessful ideas 

Conversations were divided into 2 groups: those related to un-

uccessful ideas and those related to successful ideas. The unsuc-

essful were ideas that had not been developed to the end or had

een disregarded in the problem-solving process, whereas success-

ul ideas were those that had been developed to the end. The final

valuation of successful ideas was performed by the clients. For

ach student, only one of the generated ideas was the successful

ne. The same conversation was divided into a part or parts that

oncerned one or more unsuccessful ideas, and a part that con-

erned the successful idea. These divisions were made on sentence

reaks. When two ideas were compared in one sentence, the sen-

ence was considered to belong to the idea that was main for the

omparison. In rare cases, if the main idea could not be identified,

he sentence was not included in the analysis. The division of the

ext in the conversation transcripts between different ideas was as-

isted by the available slides in the dataset containing drawings of

he generated ideas (product concepts), product names, principle

f action, etc. For this comparison, the J and G subsets contained 7

nd 5 subject cases, respectively, for a total of 12 cases. One case

n the G subset was omitted because of missing data (slides with

esign sketches for client review) pertaining to unsuccessful ideas.

or the 12 subject cases, the J subset contained conversations per-

aining to 22 unsuccessful and 7 successful ideas; the G subset

ontained conversations pertaining to 19 unsuccessful and 5 suc-

essful ideas. In total, conversations pertaining to 41 unsuccessful

deas and 12 successful ideas were analyzed ( Table 1 ). 

.1.3. Comparison of ideas before and after first feedback 

Conversations were divided into 2 groups: containing ideas be-

ore and after first feedback. The division was based on a prede-

ned point, which was the first feedback from the client (a stake-

older that was not a student or appointed as an instructor). For

his comparison, the J and G subsets contained 7 and 5 subject
ases, respectively, for a total of 12 cases. One case in the G subset

as omitted due to missing data for ideas after the first feedback.

or the 12 subject cases, the before first feedback group contained

5 conversation transcripts, whereas the after first feedback group

ontained 24 conversation transcripts ( Table 1 ). The effect of first

eedback on the time dynamics of successful ideas was assessed

n 7 successful ideas (G4, G5, G6, J3, J5, J6, and J7) that had suf-

ciently long conversations to allow for the division into 6 time

oints comprising 2 sets of 3 time points before and after the first

eedback. 

.1.4. Comparison of ideas before and after first evaluation 

Conversations were divided into 2 groups: containing ideas be-

ore and after the first evaluation. The division was based on a

redefined point, which was the first evaluation performed by the

nstructor (for the J subset) or the client (for the G subset). At

he time of first evaluation, some of the generated ideas were dis-

arded as unsuccessful. Those ideas that passed the first evaluation

ere developed further, mainly with a focus on details rather than

n change of the main characteristics. In the G subset, two or more

deas passed the first evaluation, whereas in the J subset, only the

uccessful idea passed the first evaluation. For this comparison, the

 and G subsets contained 6 and 5 subject cases, respectively, for

 total of 11 cases. One case of the J subset and one case of the

 subset were omitted because of missing data for ideas after the

rst evaluation. For the 11 subject cases, the before first evaluation

roup contained 22 conversation transcripts, whereas the after first

valuation group contained 13 conversation transcripts ( Table 1 ).

he effect of first evaluation on the time dynamics of successful

deas was assessed on 8 successful ideas (G4, G5, G6, J1, J3, J4, J6,

nd J7) that had sufficiently long conversations to allow for the di-

ision into 6 time points comprising 2 sets of 3 time points before

nd after the first evaluation. 

.2. Modeling with semantic networks 

In psychology, semantic networks depict human memory as an

ssociative system wherein each concept can lead to many other

elevant concepts [25] . In artificial intelligence, the semantic net-

orks are computational structures that represent meaning in a

implified way within a certain region of conceptual space. The

emantic networks consist of nodes and links. Each node stands

or a specific concept, and each link, whereby one concept is ac-

essed from another, indicates a type of semantic connection [25] .

emantic networks can be used to computationally model concep-

ual associations and structures [26,27] . In this study, to construct

emantic networks of nouns used in the conversations, we first
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cleaned the transcripts of the conversations for any indications of

non-verbal expressions, such as “[Laughter],” speaker names and

all the time stamps. As a second step, we processed the textual

data using part-of-speech tagging performed by the Natural Lan-

guage Toolkit (NLTK) [28] with the TextBlob library [29] . Then, we

extracted only the nouns, both singular and plural. With the use of

Python scripts, we processed all the nouns by converting the plu-

ral forms to singular and by removing nouns that were not listed

in WordNet. In total, only 8 nouns were removed, which comprised

0.2% of all nouns that were analyzed. Finally, we analyzed the con-

structed semantic networks using WordNet 3.1. 

2.3. Analysis of time dynamics of semantic measures 

For graph analysis, we used Wolfram Mathematica, a mathe-

matical symbolic computation program developed by Wolfram Re-

search (Champaign, Illinois). The average level of abstraction, poly-

semy, information content and semantic similarity in the semantic

network were computed using WordGraph 3.1, a toolset that im-

plements the WordNet 3.1 is-a hierarchy of nouns as a directed

acyclic graph, allowing for efficient computation of various graph-

theoretic measures in Wolfram Mathematica. The is-a relationship

between noun synsets (sets of synonyms) organizes WordNet 3.1

into a hierarchical structure wherein if synset A is a kind of synset

B, then A is the hyponym of B, and B is the hypernym of A. As

an example, the synset {cognition, knowledge, noesis} is a kind of

{psychological_feature}. 

The level of abstraction is negatively related to the depth of

the noun in the taxonomy in a way that the root noun “entity”

is the most abstract, whereas the deepest nouns in the taxonomy

are least abstract [30] . The complement of the level of abstraction

to unity is a measure of word concreteness. 

The polysemy counts the number of meanings of each word,

and its log-transformed value measures the bits of missing infor-

mation that are needed by the listener to correctly understand the

intended meaning of a given word. 

The information content (IC) of nouns was calculated using

seven IC formulas by Blanchard et al. [31] , Meng et al. [32] ,

Sánchez [33] , Sánchez–Batet [34] , Seco et al. [35] , Yuan et al. [36] ,

or Zhou et al. [37] . 

The semantic similarity of pairs of nouns was calculated us-

ing five path-based similarity formulas by Al-Mubaid–Nguyen [38] ,

Leacock–Chodorow [39] , Li et al. [40] , Rada et al. [41] , or Wu–

Palmer [42] and five IC-based similarity formulas by Jiang–Conrath

[43] , Lin [44] , Meng et al. [45] , Resnik [46] , or Zhou et al. [47] ,

each of which could be combined with any of the seven IC formu-

las, thereby generating 35 IC-based similarity measures. Because

WordNet 3.1 as a database is much richer than a mathematical

graph, we created and employed WordGraph 3.1, a custom toolset

for Wolfram Mathematica that allows for fast and efficient compu-

tation of all graph-theoretic measures related to the is-a hierarchy

of nouns. 

To test whether convergent or divergent thinking could be

quantified through convergence or divergence of semantic similar-

ity, we assessed the change of the average semantic similarity in

time. Convergence in the semantic networks was defined as an in-

crease in the average semantic similarity in time (positive slope of

the trend line), whereas divergence as a decrease in the average

semantic similarity in time (negative slope of the trend line). To

obtain 3 time points for analysis of time dynamics for each subject

( Table 1 ), we joined the conversation transcripts pertaining to each

group or idea and then divided the resulting conjoined conversa-

tions into 3 equal parts based on word count. This division was

made into whole sentences in such a way that no time point of

the conversation contained less than 5 nouns. Then, we assessed

the time dynamics using linear trend lines. Because only nouns in
he conversations were used for the construction of semantic net-

orks, each time point had to contain at least 5 nouns to obtain a

roper average semantic similarity. 

.4. Semantic measures based on WordNet 3.1 

The calculation of semantic measures based on WordNet 3.1

 https://wordnet.princeton.edu/ ) was performed with the Word-

raph 3.1 custom toolset for Wolfram Mathematica. The structure

f WordGraph 3.1 is isomorphic to the is-a hierarchy of nouns in

ordNet 3.1, implying that all mathematical expressions defined in

ordGraph 3.1 also hold for WordNet 3.1. The nouns in WordGraph

.1 were represented by 158,441 case-sensitive word vertices (in-

luding spelling variations, abbreviations, acronyms, and loanwords

rom other languages) and 82,192 meaning vertices, in which each

ord could have more than one meaning (polysemy) and each

eaning could be expressed by more than one word (synset).

ordGraph 3.1 consists of two subgraphs, subgraph M , which con-

ains 84,505 hypernym → hyponym edges between meaning ver-

ices, and subgraph W , which contains 189,555 word → meaning

dges between word vertices and each of their meaning vertices. 

Several graph-theoretic functions were used as follows: 

Subvertices( G, x ): the subvertices of a vertex x in a directed

graph G are all vertices in G that have a finite directed path

from x . Thus, every vertex is a subvertex of itself. 

Subsumers( G, x ): the subsumers of a vertex x in a directed

graph G are all vertices in G that have a finite directed path

to x . Thus, every vertex is a subsumer of itself. 

Leaves( G, x ): a leaf in a directed graph G is a vertex with a

vertex out-degree of zero. In other words, the leaf does not

have outgoing edges. The leaves of a vertex x in a directed

graph G are all subvertices of x with a vertex out-degree of

zero. Because every vertex is a subvertex of itself, it follows

that the number of leaves of each leaf in G is 1. 

ShortestPathDistance( G, x, y ): the shortest path distance be-

tween a vertex x and a vertex y in a directed graph G is the

minimal number of edges needed for a trip from x to y . The

shortest path distance is infinite ∞ if there is no path from

x to y . In general, the shortest path distance from x to y is

not the same as the shortest path distance from y to x ; these

distances are equal in undirected (bidirectional) graphs. 

Depth( G, x ): the depth of a vertex x in a rooted directed graph

G is 1 + the shortest path distance from the root vertex r

to x . Thus, the depth of the root vertex is 1. 

VertexEccentricity( G, x ): the vertex eccentricity of a vertex x in

a directed graph G is the length of the longest of all the

shortest paths from the vertex x to every other vertex in the

graph G . 

MaxDepth( G ): the maximal depth of a rooted directed graph G

is 1 + the vertex eccentricity of the root vertex r . 

IncidenceList( G, x ): gives a list of all edges (incoming, outgoing,

or undirected) incident to a vertex x in a graph G . 

ith the use of the above graph-theoretic functions, semantic

unctions were constructed that take words as arguments and re-

urn values that depend only on the relationship between the word

rguments and the meanings subgraph M ( Fig. 1 ). Two graph op-

rators were used: R ( G ) reverses the direction of all directed edges

n the graph G , and U ( G ) converts all directed edges in the graph

 into undirected (bidirectional) edges. 

| f ( x )|: gives the number of elements contained by the list f ( x ). 

Polysemy (x ) = | IncidenceList (W, x ) | : gives the number of all

the meaning vertices that are 1 edge away from a given

word x ( Fig. 1 (A)). 

https://wordnet.princeton.edu/
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Fig. 1. Calculation of semantic functions that take word arguments in WordNet 3.1 fragment composed of meaning vertices (blue) and word vertices (green). (A) 

Polysemy (x ) = 2 ; Depth (x ) = 3 ; | Subsumers (x ) | = 6 . (B) | Subvertices (x ) | = 4 ; Leaves (x ) = { 8 , 9 , 12 } ; | Leaves (x ) | = 3 ; Commonness (x ) = 3 / 4 . (C) LCS( x, y ); Depth [ LCS (x, y ) ] = 

2 . (D) Distance (x, y ) = 2 excludes the dashed edges that connect the words x and y to their meaning vertices. 
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Depth( x ): gives the shortest path distance between the root

meaning vertex corresponding to the word “entity” and a

word x in the graph M ∪ IncidenceList[ R ( W ), x ] ( Fig. 1 (A, C)).

Thus, the depth of the word “entity” is 1. 

AbstractionLevel( x ): gives the level of abstraction of the word x

defined as 1 − Depth (x ) −1 
Max _ depth −1 

. 

Subsumers( x ): gives a list of the meaning subsumers of the

word x in the graph M ∪ IncidenceList[ R ( W ), x ], excluding x

itself since it is a word subsumer ( Fig. 1 (A)). 

Subvertices( x ): gives a list of the meaning subvertices of the

word x in the graph M ∪ IncidenceList( W, x ), excluding x it-

self since it is a word subvertex ( Fig. 1 (B)). 

Leaves( x ): gives a list of the leaves of the word x in the graph

M ∪ IncidenceList( W, x ) ( Fig. 1 (B)). 

Commonness( x ): the commonness of a word x in the graph G =
M ∪ IncidenceList (W, x ) is defined as 

∑ 

i ∈ Leaves (G,x ) 

1 
Subsumers (M,i ) 

( Fig. 1 (B)). 

LCS( x, y ): for x � = y gives the lowest common sub-

sumer of a word x and a word y in the graph

G = M ∪ IncidenceList [ R (W ) , x ] ∪ IncidenceList [ R (W ) , y ] 

( Fig. 1 (C)). The lowest common subsumer is a

meaning vertex with maximal depth in the taxon-

omy among all vertices z that minimize the sum

ShortestPathDistance [ G, z, x ] + ShortestPathDistance [ G, z, y ] . 

If there is a tie between two or more common subsumers

of x and y , which are equally deep in the taxonomy, the

uniqueness of LCS( x, y ) is ensured by taking the meaning

vertex with the lowest entry number in WordNet 3.1. 
Depth[LCS( x, y )]: gives the shortest path distance between the

root word “entity” and a meaning vertex LCS( x, y ) in the

graph M ∪ IncidenceList ( W , “entity”) ( Fig. 1 (C)). 

Depth[LCS( x, y )]: gives the shortest path distance between the

root word “entity” and a meaning vertex LCS( x, y ) in the

graph M ∪ IncidenceList ( W , “entity”) ( Fig. 1 (C)). 

Distance( x, y ): for x � = y gives the shortest path dis-

tance between a word x and a word y in the graph

U ( M ) ∪ IncidenceList[ U ( W ), x ] ∪ IncidenceList[ U ( W ), y ] minus 2

edges to subtract edge contribution outside of the meanings

subgraph M ( Fig. 1 (D)). 

For the calculation of intrinsic information content of nouns,

were used several constants that are specific for WordNet

3.1: 

Max _ vertices : total number of meaning vertices is 82,192. 

Max _ leaves : total number of leaves is 65,031. 

Max _ depth : maximal depth of the taxonomy is 19. 

Min _ commonness : minimal commonness of the word “Saint

Ambrose” is 1/35. 

Max _ commonness : maximal commonness of the root word “en-

tity” is 6863.6. 

.4.1. Information content (IC) measures 

The intrinsic information content (IC) of a word x in WordNet

.1 was computed using seven different formulas: 

IC by Blanchard et al. [31] , normalized in the interval [0,1], is 

C(x ) = 1 − log | Leaves (x ) | 
log ( Max _ leaves ) 
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IC by Meng et al. [32] 

IC(x ) = 

log [ Depth (x ) ] 

log ( Max _ depth ) 

⎡ 

⎢ ⎢ ⎣ 

1 −
log 

[
1 + 

∑ 

i ∈ Subvertices (x ) 

1 
Depth (i ) 

]

log ( Max _ vertices ) 

⎤ 

⎥ ⎥ ⎦ 

IC by Sánchez et al. [33] , normalized in the interval [0,1], is 

IC(x ) = 

log 

( | Leaves (x ) | 
Max _ leaves × | Subsumers (x ) | 

)

log 

(
Min _ commonness 

Max _ leaves 

)

IC by Sánchez–Batet [34] , normalized in the interval [0,1], is 

IC(x ) = 

log 

[
Commonness (x ) 

Max _ commonness 

]

log 

(
Min _ commonness 

Max _ commonness 

)

IC by Seco et al. [35] , normalized in the interval [0,1], is 

IC(x ) = 1 − log | Subvertices (x ) | 
log ( Max _ vertices ) 

IC by Yuan et al. [36] 

IC(x ) = 

log [ Depth (x ) ] 

log ( Max _ depth ) 

(
1 − log | Leaves (x ) | 

log ( Max _ leaves ) 

)

+ 

log | Subsumers (x ) | 
log ( Max _ vertices ) 

IC by Zhou et al. [37] 

IC(x ) = 

1 

2 

[
1 − log | Subvertices (x ) | 

log ( Max _ vertices ) 
+ 

log [ Depth (x ) ] 

log ( Max _ depth ) 

]

2.4.2. Path-based similarity measures 

The semantic similarity between a pair of words x and y such

that x � = y was computed using five different path-based similarity

formulas: 

Al-Mubaid–Nguyen similarity [38] , normalized in the interval

[0,1], is 

sim (x, y ) = 1 

− log [ 1 + Distance ( x, y ) × ( Max _ depth − Depth [ LCS (x, y ) ] ) ] 

log 
[
1 + 2 ( Max _ depth − 1 ) 

2 
]

Leacock–Chodorow similarity [39] , normalized in the interval

[0,1], is 

sim (x, y ) = 1 − log [ Distance (x, y ) + 1 ] 

log [ 2 ( Max _ depth ) − 1 ] 

Li et al. similarity [40] , normalized in the interval [0,1], is 

sim (x, y ) = e −0 . 2 Distance (x,y ) e 
1 . 2 Depth [ LCS (x,y ) ] − 1 

e 1 . 2 Depth [ LCS (x,y ) ] + 1 

Rada et al. similarity [41] , normalized in the interval [0,1], is 

sim (x, y ) = 1 − Distance (x, y ) 

2 ( Max _ depth − 1 ) 

Wu–Palmer similarity [42] , normalized in the interval [0,1], is 

sim (x, y ) = 

2 [ Depth [ LCS (x, y ) ] − 1 ] 
2 [ Depth [ LCS (x, y ) ] − 1 ] + Distance (x, y ) e  
.4.3. IC-based similarity measures 

The semantic similarity between a pair of words x and y such

hat x � = y was computed using five different IC-based similarity

ormulas, each of which was combined with every of the seven IC

ormulas thereby generating a total of 35 different IC-based simi-

arity measures: 

Jiang–Conrath similarity [43] 

im (x, y ) = 1 − [ IC(x ) + IC(y ) − 2IC [ LCS (x, y ) ] ] 

2 

Lin similarity [44] 

im (x, y ) = 

2IC [ LCS (x, y ) ] 

IC(x ) + IC(y ) 

Meng similarity [45] 

im (x, y ) = 

[
2IC [ LCS (x, y ) ] 

IC(x ) + IC(y ) 

] 1 −exp [ −0 . 08 Distance (x,y ) ] 
exp [ −0 . 08 Distance (x,y ) ] 

Resnik similarity [46] 

im (x, y ) = IC [ LCS (x, y ) ] 

Zhou similarity [47] 

im (x, y ) = 1 − 1 

2 

[
1 − log [ Distance (x, y ) + 1 ] 

log [ 2 ( Max _ depth ) − 1 ] 

]

− 1 

4 

[ IC(x ) + IC(y ) − 2IC [ LCS (x, y ) ] ] 

.5. Statistics 

Statistical analyses of the constructed semantic networks were

erformed using SPSS ver. 23 (IBM Corporation, New York, USA). To

educe type I errors, the time dynamics of semantic measures were

nalyzed with only two a priori planned linear contrasts [48] for

he idea type (sensitive to vertical shifts of the trend lines) or the

nteraction between idea type and time (sensitive to differences in

he slopes of the trend lines). Because semantic similarity was cal-

ulated with 40 different formulas and information content with

 different formulas, possible differences in semantic similarity

r information content were analyzed with three-factor repeated-

easures analysis of variance (rANOVA), where the idea type was

et as a factor with 2 levels, the time was set as a factor with 3 lev-

ls, and the formula type was set as a factor with 40 or 7 levels, re-

pectively. Differences in the average level of abstraction, polysemy,

r individual measures of information content or semantic similar-

ty were analyzed with two-factor rANOVAs, where the idea type

nd time were the two only factors. The implementation of the

epeated-measures experimental design controlled for factors that

ause variability between subjects, thereby simplifying the effects

f the primary factors (ideas and time) and enhancing the power

f the performed statistical tests. Pearson correlation analyses and

ierarchical clustering of semantic similarity and IC measures were

erformed in R ver. 3.3.2 (R Foundation for Statistical Computing,

ienna, Austria). For all tests, the significance threshold was set at

.05. 

. Results 

.1. Student and instructor thinking are similar in terms of semantic 

easures 

With regard to creative thinking, our primary interest was fo-

used on semantic similarity because as a two-argument func-

ion, it is able to evaluate the relationship between pairs of ver-

ices in the constructed semantic networks. In addition, the av-

rage of semantic similarity is more informative than is the av-

rage of single-argument functions, such as information content,
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Fig. 2. Comparison between student thinking and instructor thinking. Linear trend lines show the time dynamics of semantic similarity (average of 40 measures) (A), 

information content (average of 7 measures) (B), polysemy (C), and the level of abstraction (D) of nouns in semantic networks constructed from design problem-solving 

conversations. 
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olysemy, or level of abstraction, because there are ( n 2 − n ) / 2

airs of vertices versus only n vertices in the semantic network.

 comparison between the student and instructor speech in the

roblem-solving conversations did not show significant differences

n semantic similarity (three-factor rANOVA: F 1,12 < 0.3, P > 0.58;

ig. 2 (A)), information content (three-factor rANOVA: F 1,12 < 0.2,

 > 0.65; Fig. 2 (B)), polysemy ( F 1,12 < 0.6, P > 0.46; Fig. 2 (C)), or

evel of abstraction ( F 1,12 < 0.9, P > 0.38; Fig. 2 (D)); this could be

ecause all of the ideas originating from the student or the instruc-

or were commented upon by both participants. To reduce Type

I errors, we also confirmed that the linear contrasts in individual

wo-factor rANOVAs were not significant for each of the 40 seman-

ic similarity measures ( F 1,12 < 0.9, P > 0.37) and each of the 7 infor-

ation content measures ( F 1,12 < 0.8, P > 0.40). These results justify

ur decision to further analyze both student and instructor speech

ointly with regard to different types of ideas contained in the con-

ersations. 

.2. Divergence of semantic similarity predicts the success of ideas 

Creative ideas should be novel, unexpected, or surprising, and

rovide solutions that are useful, efficient, and valuable [49,50] .

he success of generated ideas in creative problem solving depends

ot only on the final judgment by the client who decides which

dea is the most creative, but also on the prior decisions made by

he designer not to drop the idea in face of constraints on avail-

ble physical resources. Thus, while success and creativity are not

he same, the ultimate goal of design practice is to find solutions

hat are both creative and successful. To determine whether dif-

erent types of thinking are responsible for the success of some

f the generated ideas and the failure of others, we have com-
ared the time dynamics of semantic measures in the conversa-

ions pertaining to successful or unsuccessful ideas. Three-factor

ANOVA detected a significant crossover interaction between idea

ype and time ( F 1,11 = 11.4, P = 0.006), where successful ideas ex-

ibited divergence and unsuccessful ideas exhibited convergence

f semantic similarity ( Fig. 3 (A)). The information content mani-

ested a trend toward significant crossover interaction ( F 1,11 = 4.0,

 = 0.072), where successful ideas increased and unsuccessful ideas

ecreased their information content in time ( Fig. 3 (B)). The pol-

semy exhibited crossover interaction decreasing in time for suc-

essful ideas ( F 1,11 = 12.8, P = 0.004; Fig. 3 (C)), whereas the average

evel of abstraction decreased in time but with only a trend to-

ard significance ( F 1,11 = 4.6, P = 0.055; Fig. 3 (D)). Because design

ractice usually generates both successful and unsuccessful ideas,

hese results support models of concurrent divergent ideation and

onvergent evaluation in creative problem solving. 

.3. IC-based semantic similarity measures outperform path-based 

nes 

The majority of 40 different semantic similarity formulas gen-

rated highly correlated outputs, which segregated them into

lusters of purely IC-based, hybrid path/IC-based, and path-

ased similarity measures ( Fig. 4 ). Motivated by the signif-

cant difference detected in the time dynamics of semantic

imilarity between successful and unsuccessful ideas, we per-

ormed post hoc linear contrasts in individual two-factor rA-

OVAs and ranked the 40 semantic similarity measures by the

bserved statistical power ( Fig. 5 ; Table 2 ). The best perfor-

ance was achieved by purely IC-based similarity measures us-

ng the formulas by Lin ( F 1,11 > 10.6, P < 0.008, power > 0.84),
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Table 2 

Statistics from the post hoc two-factor rANOVAs (linear contrasts of idea ∗time interaction) used to rank the 40 semantic similarity measures and trend line parameters ( y = kt + b ) 

for successful ideas ( k 1 , b 1 ) and unsuccessful ideas ( k 2 , b 2 ) at 3 time points t = {1,2,3} in the conversations. 

Information content (IC) formula 

Sánchez–Batet Blanchard Seco Zhou Sánchez Meng Yuan 

IC-based similarity formula Lin k 1 = −5.250 k 1 = −4.851 k 1 = −4.841 k 1 = −3.495 k 1 = −3.635 k 1 = −4.753 k 1 = −4.059 

b 1 = 8.833 b 1 = 7.604 b 1 = 7.510 b 1 = 5.340 b 1 = 5.771 b 1 = 6.980 b 1 = 6.273 

k 2 = 6.841 k 2 = 5.954 k 2 = 5.960 k 2 = 4.398 k 2 = 4.934 k 2 = 5.334 k 2 = 5.041 

b 2 = −10.424 b 2 = −8.707 b 2 = −8.629 b 2 = −6.242 b 2 = −7.070 b 2 = −7.561 b 2 = −7.255 

F 1,11 = 13.539 F 1,11 = 12.682 F 1,11 = 12.360 F 1,11 = 11.514 F 1,11 = 12.720 F 1,11 = 10.615 F 1,11 = 11.124 

P = 0.004 P = 0.004 P = 0.005 P = 0.006 P = 0.004 P = 0.008 P = 0.007 

Jiang–Conrath k 1 = −2.927 k 1 = −3.139 k 1 = −3.060 k 1 = −2.223 k 1 = −2.292 k 1 = −2.096 k 1 = −2.563 

b 1 = 4.687 b 1 = 4.635 b 1 = 4.424 b 1 = 3.295 b 1 = 3.313 b 1 = 3.060 b 1 = 3.645 

k 2 = 3.301 k 2 = 3.476 k 2 = 3.337 k 2 = 2.445 k 2 = 2.973 k 2 = 2.015 k 2 = 2.728 

b 2 = −5.062 b 2 = −4.973 b 2 = −4.701 b 2 = −3.516 b 2 = −3.994 b 2 = −2.979 b 2 = −3.810 

F 1,11 = 13.428 F 1,11 = 11.423 F 1,11 = 11.099 F 1,11 = 11.459 F 1,11 = 10.643 F 1,11 = 10.652 F 1,11 = 10.241 

P = 0.004 P = 0.006 P = 0.007 P = 0.006 P = 0.008 P = 0.008 P = 0.008 

Resnik k 1 = −4.309 k 1 = −4.309 k 1 = −4.276 k 1 = −2.902 k 1 = −3.537 k 1 = −4.042 k 1 = −3.778 

b 1 = 7.610 b 1 = 7.591 b 1 = 7.408 b 1 = 5.026 b 1 = 6.212 b 1 = 6.730 b 1 = 6.410 

k 2 = 5.250 k 2 = 5.165 k 2 = 5.213 k 2 = 4.119 k 2 = 4.559 k 2 = 5.094 k 2 = 4.775 

b 2 = −8.550 b 2 = −8.446 b 2 = −8.346 b 2 = −6.242 b 2 = −7.234 b 2 = −7.783 b 2 = −7.406 

F 1,11 = 13.728 F 1,11 = 14.027 F 1,11 = 12.299 F 1,11 = 9.060 F 1,11 = 12.105 F 1,11 = 8.357 F 1,11 = 9.305 

P = 0.003 P = 0.003 P = 0.005 P = 0.012 P = 0.005 P = 0.015 P = 0.011 

Hybrid path/IC-based 

similarity formula 

Meng k 1 = −4.631 k 1 = −4.432 k 1 = −4.448 k 1 = −3.558 k 1 = −4.017 k 1 = −4.377 k 1 = −4.304 

b 1 = 7.362 b 1 = 6.872 b 1 = 6.855 b 1 = 5.590 b 1 = 6.179 b 1 = 6.603 b 1 = 6.425 

k 2 = 5.744 k 2 = 5.486 k 2 = 5.503 k 2 = 4.467 k 2 = 5.008 k 2 = 5.179 k 2 = 5.082 

b 2 = −8.475 b 2 = −7.925 b 2 = −7.910 b 2 = −6.499 b 2 = −7.169 b 2 = −7.405 b 2 = −7.202 

F 1,11 = 8.683 F 1,11 = 8.461 F 1,11 = 8.409 F 1,11 = 7.254 F 1,11 = 7.335 F 1,11 = 7.129 F 1,11 = 6.642 

P = 0.013 P = 0.014 P = 0.014 P = 0.021 P = 0.020 P = 0.022 P = 0.026 

Zhou k 1 = −0.817 k 1 = −0.872 k 1 = −0.851 k 1 = −0.596 k 1 = −0.376 k 1 = −0.531 k 1 = −0.524 

b 1 = 1.538 b 1 = 1.428 b 1 = 1.345 b 1 = 1.011 b 1 = 0.663 b 1 = 0.888 b 1 = 0.846 

k 2 = 1.100 k 2 = 1.133 k 2 = 1.081 k 2 = 0.798 k 2 = 0.808 k 2 = 0.560 k 2 = 0.695 

b 2 = −1.820 b 2 = −1.689 b 2 = −1.575 b 2 = −1.214 b 2 = −1.094 b 2 = −0.916 b 2 = −1.017 

F 1,11 = 8.266 F 1,11 = 7.308 F 1,11 = 7.025 F 1,11 = 10.345 F 1,11 = 4.280 F 1,11 = 7.037 F 1,11 = 6.077 

P = 0.015 P = 0.021 P = 0.023 P = 0.008 P = 0.063 P = 0.022 P = 0.031 

Path-based similarity 

formula 

Wu–Palmer Li Al-Mubaid–Nguyen Leacock–Chodorow Rada 

k 1 = −2.415 k 1 = −3.767 k 1 = −2.028 k 1 = −1.720 k 1 = −0.712 

b 1 = 3.533 b 1 = 4.912 b 1 = 2.614 b 1 = 2.224 b 1 = 0.997 

k 2 = 2.929 k 2 = 3.669 k 2 = 1.815 k 2 = 1.528 k 2 = 0.670 

b 2 = −4.046 b 2 = −4.813 b 2 = −2.400 b 2 = −2.031 b 2 = −0.954 

F 1,11 = 5.763 F 1,11 = 5.089 F 1,11 = 4.767 F 1,11 = 4.555 F 1,11 = 4.423 

P = 0.035 P = 0.045 P = 0.052 P = 0.056 P = 0.059 
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Fig. 3. Comparison of conversations pertaining to successful ideas or unsuccessful ideas. 

Fig. 4. Hierarchical clustering of 40 semantic similarity measures based on WordNet 3.1. 

J  

(  

c  

H  

m  

s  

(  

S  

(  

s  

t  

(  
iang–Conrath ( F 1,11 > 10.2, P < 0.008, power > 0.83), and Resnik

 F 1,11 > 8.3, P < 0.015, power > 0.75; Fig. 5 ), all of which rely on the

alculation of the lowest common subsumer of pairs of nouns.

ybrid path/IC-based similarity measures had a weaker perfor-

ance as exemplified by the Meng formula for all IC mea-

ures ( F 1,11 > 6.6, P < 0.026, power > 0.65), and the Zhou formula
 F 1,11 > 6.0, P < 0.031, power > 0.61) for all IC measures except IC

ánchez for which there was only a trend toward significance

 F 1,11 = 4.3, P = 0.063, power = 0.47). Path-based similarity mea-

ures underperformed ( F 1,11 > 4.4, P < 0.059, power = 0.48), even

hough the Wu–Palmer ( F 1,11 = 5.7, P = 0.035, power = 0.59) and Li

 F 1,11 = 5.1, P = 0.045, power = 0.54; Fig. 5 ) measures were statisti-
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Fig. 5. Observed statistical power in detecting difference of time dynamics between successful and unsuccessful ideas. IC-based similarity measures outperform path-based 

similarity measures. 

Fig. 6 . Hierarchical clustering of 7 information content (IC) measures based on WordNet 3.1. 
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cally significant. Among the IC formulas, the best overall perfor-

mance was achieved by the cluster of Sánchez–Batet, Blanchard

and Seco, which exhibited highly correlated IC values ( r > 0.93,

P < 0.001; Fig. 6 ). 

Having ranked the IC formulas ( Fig. 5 ), we also performed

individual two-factor rANOVAs for each of the 7 IC measures.

The information content of nouns increased/decreased in time for

successful/unsuccessful ideas exhibiting a crossover interaction as

shown by IC Sánchez–Batet ( F 1,11 = 6.2, P = 0.03), with 4 other IC

measures by Blanchard, Meng, Seco and Zhou manifesting a trend

toward significance ( F 1,11 > 3.8, P < 0.076). Because the first-ranked

IC measure by Sánchez–Batet was significantly changed in the post

e  
oc tests, we interpreted the trend-like significance from the cor-

esponding three-factor rANOVA as a Type II error due to inclusion

n the analysis of IC measures that compound the word informa-

ion content with path-based information (such as the depth of the

ord in the taxonomy). 

.4. Effect of first feedback on creative problem solving 

Further, to test whether the first feedback from the client influ-

nces problem solving, we compared the conversations containing

deas before and after first feedback. Apart from polysemy, which

xhibited an interaction between idea type and time ( F 1,11 = 6.1,
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Fig. 7. Effect of the first feedback by the client on the time dynamics of semantic measures in the conversations containing both successful and unsuccessful ideas. 

P  

s  

m  

F  

d  

u  

H  

s  

i  

h  

P  

n  

(  

m  

S  

Z  

a  

(  

b  

t  

T  

i  

a  

w

3

 

f  

fi  

t  

t  

c  

t  

a  

F  

m  

y  

s  

i  

4  

P  

7  

P  

y  

s  

l  

e  

I  

i  

fi  

n

4

4

 

t  

t  

s  

v  

a  

o  
 = 0.031; Fig. 7 (C)), none of the other 40 semantic similarity mea-

ures (two-factor rANOVAs: F 1,11 < 2.7, P > 0.13; Fig. 7 (A)), 7 infor-

ation content measures (two-factor rANOVAs: F 1,11 < 1.6, P > 0.23;

ig. 7 (B)), or the level of abstraction ( F 1,11 < 0.1, P > 0.78; Fig. 7 (D))

iffered before and after first feedback when both successful and

nsuccessful ideas in the conversations are analyzed together.

owever, when only the time dynamics of successful ideas is con-

idered, the first feedback led to a divergence of semantic similar-

ty (three-factor rANOVA: F 1,6 = 22.8, P = 0.003; Fig. 8 (A)) and en-

anced the information content (three-factor rANOVA: F 1,6 = 6.5,

 = 0.044; Fig. 8 (B)). Post hoc two-factor rANOVAs found sig-

ificant differences in 36 of 40 semantic similarity measures

 F 1,6 > 6.2, P < 0.047 for 36 measures; F 1,6 > 12.6, P < 0.012 for 33

easures excluding Zhou similarity) and in 4 of 7 IC measures by

ánchez–Batet ( F 1,6 = 25.2, P = 0.002), Meng ( F 1,6 = 11.3, P = 0.015),

hou ( F 1,6 = 10.4, P = 0.018), and Yuan ( F 1,6 = 6.6, P = 0.042), with

 trend toward significance for 2 other IC measures by Blanchard

 F 1,6 = 5.4, P = 0.059) and Seco ( F 1,6 = 5.6, P = 0.056). The first feed-

ack also decreased polysemy ( F 1,6 = 8.2, P = 0.029; Fig. 8 (C)) and

he average level of abstraction ( F 1,6 = 16.8, P = 0.006; Fig. 8 (D)).

hese results show that the first feedback from the client has pos-

tively altered the process of problem solving and suggest that cre-

tivity benefits from external criticism obtained during the time in

hich the generated ideas are still evolving. 

.5. Effect of first evaluation on creative problem solving 

Ideas before first evaluation are subject to change, with new

eatures added and initial features omitted, whereas ideas after

rst evaluation do not change their main features, only their de-

ails. Considering this, we also tested the effects of first evalua-

ion by client or instructor upon problem solving. Conversations
ontaining both successful and unsuccessful ideas before and af-

er first evaluation did not exhibit different time dynamics in

ny of the 40 semantic similarity measures (two-factor rANOVAs:

 1,10 < 2.7, P > 0.14; Fig. 9 (A)), in any of the 7 information content

easures (two-factor rANOVAs: F 1,10 < 0.9, P > 0.38; Fig. 9 (B)), pol-

semy ( F 1,10 < 3.8, P > 0.08; Fig. 9 (C)), or the average level of ab-

traction ( F 1,10 < 0.1, P > 0.76; Fig. 9 (D)). Analyzing the time dynam-

cs of only successful ideas also showed a lack of effect upon 39 of

0 semantic similarity measures (three-factor rANOVA: F 1,7 = 2.9,

 = 0.131; two-factor rANOVAs: F 1,7 < 4.9, P > 0.063; Fig. 10 (A)),

 information content measures (three-factor rANOVA: F 1,7 = 3.1,

 = 0.124; two-factor rANOVAs: F 1,7 < 4.7, P > 0.067; Fig. 10 (B)), pol-

semy ( F 1,7 = 3.8, P = 0.093; Fig. 10 (C)), and the average level of ab-

traction ( F 1,7 = 5.0, P = 0.06; Fig. 10 (D)). Only the semantic simi-

arity measure by Rada showed an enhanced divergence after first

valuation ( F 1,7 = 6.0, P = 0.044), but we interpreted this as a Type

 error since the path-based similarity measures were the weakest

n terms of statistical power ( Fig. 5 ). These results suggest that the

rst evaluation had a minimal effect upon those ideas that were

ot dropped but developed further. 

. Discussion 

.1. Implications for cognitive science of creativity 

The presented findings advance cognitive science by showing

hat convergence and divergence of semantic similarity, as well as

ime dynamics of information content, polysemy, and level of ab-

traction, could be evaluated objectively for problem-solving con-

ersations in academic settings and be used to monitor the prob-

bility of success of different ideas that are generated and devel-

ped in the process of problem solving in view of improving stu-
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Fig. 8. Effect of the first feedback by the client on the time dynamics of semantic measures in the conversations containing only successful ideas. 

Fig. 9. Effect of the first evaluation by the instructor or the client on the time dynamics of semantic measures in the conversations containing both successful and unsuc- 

cessful ideas. 
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Fig. 10. Effect of the first evaluation by the instructor or the client on the time dynamics of semantic measures in the conversations containing only successful ideas. 
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ent training, creative thinking and skill acquisition. The observed

onvergence of semantic similarity for unsuccessful ideas and di-

ergence for successful ideas parallel the psychological definitions

f convergent/divergent thinking that associate creativity with di-

ergent thought [3–5] . Thus, the convergence or divergence of se-

antic similarity in verbalized thoughts could be interpreted as a

aithful reflection of the underlying cognitive processes, including

onvergent (analytical) or divergent (associative) thinking. Given

he correspondence between convergence/divergence of semantic

imilarity and convergent/divergent thinking, our results, with re-

ard to successful/unsuccessful ideas, provide extra support to re-

ent accounts of concurrent occurrence of convergent and diver-

ent thinking in creative problem solving [12,15,19] . 

Psychological accounts of creative thinking and problem solv-

ng describe divergent generation of novelty and convergent ex-

loration, evaluation or elimination of the introduced novelty [19] .

he opposite trend line slopes for successful and unsuccessful

deas found in the studied design review conversations can be well

xplained by difference in the rates of divergent production and

onvergent elimination of novelty. Thus, convergent (analytical)

nd divergent (associative) cognitive processes, quantified through

ime dynamics of semantic similarity, appear to be the main fac-

ors that shape the evolution and determine the outcome of gen-

rated ideas. 

Language is a powerful data source for the analysis of men-

al processes, such as design and creative problem solving. Ex-

racting meaningful results about the cognitive processes underly-

ng human creativity from recorded design conversations, however,

s a challenging task because not all aspects of human creative

kills are verbalized or represented at a consciously accessible level

25] . Semantic networks address the latter problem by providing a

tructured representation of not only the explicitly verbalized con-
epts contained in the conversations [26,27] , but also of the in-

xplicitly imaged virtual concepts (connecting the verbalized con-

epts), which are extracted from available lexical databases that are

ndependent of the designer’s background [51] . In our methods, we

ave used WordNet 3.1 as a lexical database and have constructed

emantic networks containing only nouns. Working with a single

exical category (nouns) was necessitated by the fact that WordNet

onsists of four subnets, one each for nouns, verbs, adjectives, and

dverbs, with only a few cross-subnet pointers [22] . Besides nouns

eing the largest and deepest hierarchical taxonomy in WordNet,

ur choice to construct semantic networks of nouns had been mo-

ivated by previous findings that showed how: noun phrases are

seful surrogates for measuring early phases of the mechanical de-

ign process in educational settings [52] , networks of nouns act as

timuli for idea generation in creative problem solving [53] , noun–

oun combinations and noun–noun relations play essential role in

esigning [54] , and similarity/dissimilarity of noun–noun combi-

ations is related to creativity through yielding emergent proper-

ies of generated ideas [55] . Noteworthy, disambiguation of noun

enses is not done for the construction of semantic networks be-

ause nouns used to describe creative design ideas may acquire

ew senses different from dictionary-defined ones and polysemy

ay be responsible for the association of ideas previously thought

o be unrelated [56,57] . The effectiveness of semantic networks

f nouns for constructive simulation of difficult-to-observe design-

hinking processes and investigation of creativity in conceptual de-

ign was validated in previous studies using different sets of ex-

erimental data [26,27,51,58] . 

The temporal factor is not a prerequisite for applying seman-

ic network analysis to text data, however, determining the slope

f convergence/divergence is essential if the objective is to under-

tand dynamic processes or to achieve dynamic control of artificial
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intelligence applications. The temporal resolution of the method

for studying cognitive processes in humans is limited by the speed

of verbalization and the sparsity of nouns in the sentences. A pos-

sible inclusion of more lexical categories in the semantic analysis

would increase the temporal resolution by allowing verbal reports

to be divided into smaller pieces of text, but for practical realiza-

tion this will require further extensive information theoretic re-

search on how semantic similarity could be meaningfully defined

for combinations of lexical categories, such as verbs and nouns,

which form separate hierarchical taxonomies in WordNet. 

4.2. Implications for artificial intelligence research 

Implementing creativity in machines endowed with artificial in-

telligence requires mechanisms for generation of conceptual space

within which creative activity occurs and algorithms for explo-

ration or transformation of the conceptual space [59] . The most se-

rious challenge, however, is considered not the production of novel

ideas, but their automated evaluation [50] . For example, machines

could explore structured conceptual spaces and combine or trans-

form ideas in new ways, but then arrive at solutions that are of no

interest or value to humans. Since creativity requires both novelty

and a positive evaluation of the product, the engineering of cre-

ative machines is conditional on the availability of algorithms that

could compute the poor quality of newly generated ideas, thereby

allowing ideas to be dropped or amended accordingly [50] . 

Linkography is a method for analyzing decisions and activities

that occur during a design work session by parsing the design con-

versations into a large number of small steps called design moves,

some of which are then interrelated through backlinks to previous

moves or forelinks to future moves. The most significant elements

in a linkograph are critical moves, which are particularly rich in

links. The percentage of critical moves and the link index (the ratio

between the number of links and the number of moves) are posi-

tively correlated with creativity. The ideas considered most mean-

ingful (successful ideas) have a significantly higher number of links

than other ideas [60] . Information theoretic approach to measur-

ing creativity in linkography has further shown that the Shannon

entropy H of the linkograph is not directly correlated to the de-

sign outcome, however, the slope of the rate of change in entropy

(second derivative in time of the entropy curve, d 2 H 
d t 2 

) for high-

scoring design sessions (successful ideas) is positive, whereas for

low-scoring design sessions (unsuccessful ideas) is negative [61] . 

Here, we have analyzed design review conversations at the level

of individual words and extracted nouns from the corresponding

text transcripts through computer automated natural language pro-

cessing. With the use of semantic networks of nouns constructed

at different times, we studied the time dynamics of 49 semantic

measures that quantitatively evaluated the content of generated

ideas in creative problem solving. We found that the creative ideas,

which are judged as successful by the client, exhibit distinct dy-

namics including divergence of semantic similarity, increased in-

formation content and decreased polysemy in time. These find-

ings are susceptible to reverse-engineering and could be useful

for the development of machines endowed with general artificial

intelligence that are capable of using language (words) and ab-

stract concepts (meanings) to assist in solving problems that are

currently reserved only for humans [62] . A foreseeable application

would be to use divergence of Lin/Sánchez–Batet semantic similar-

ity in computer-assisted enhancement of human creativity wherein

a software proposes a set of possible solutions or transformations

of generated ideas and the human designer chooses which of the

proposed ideas to drop and which to transform further. As an ex-

ample, consider a design task described by the set of nouns {bird,

crayon, desk, hand, paper} whose average semantic similarity is

0.39. The software computes four possible solutions that change
he average similarity of the set when added to it, namely, drawing

0.40), sketch (0.39), greeting_card (0.35), origami (0.29), and pro-

oses origami as the most creative solution as it is the most diver-

ent. If the designer rejects the idea, the software proposes greet-

ng_card as the second best choice, and so on. Divergence of se-

antic similarity could be monitored and used to supplement ex-

sting systems for support of user creativity [63–65] . Accumulated

xperience with software that enhances human creativity could

elp optimize the evaluation function for dynamic transformation

f semantic similarity and information content of generated ideas

p to the point wherein the computer-assisted design products are

nvariably more successful than products designed without com-

uter aid. If such an optimized evaluation function is arrived at,

reative machines could be able to evaluate their generated solu-

ions at different stages without human help, and steer a selected

esign solution toward success through consecutive transforma-

ions; human designers would then act as clients who run design

asks with slightly different initial constraints on the design prob-

em and at the end choose the computer product that best satisfies

heir personal preference. 

.3. Future work 

Having established a method for the quantitative evaluation of

onvergence/divergence in creative problem solving and design, we

re planning to utilize it for the development of artificial intel-

igence applications, the most promising of which are software

or the computer-assisted enhancement of human creativity and

ot-automated design education in massive open online courses

MOOCs), wherein a few instructors are assisted by artificial agents

hat provide feedback on the design work for thousands of stu-

ents. We are also interested in cross-validating our results with

he use of conversation transcripts from the design process of pro-

essional design teams in which the instructor-student paradigm is

ot applicable, and testing whether semantic measure analysis of

nline texts in social media or social networks could predict future

uman behavior. 
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