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Abstract. In the paper we will employ set theory to study the formal aspects of quantum mechanics without explicitly making
use of space-time. It is demonstrated that von Neuman and Zermelo numeral sets, previously efectively used in the explanation
of Hardy’s paradox, follow a Heisenberg quantum form. Here monadic union plays the role of time derivative. The logical
counterpart of monadic union plays the part of the Hamiltonian in the commutator. The use of numerals and monadic union in
the classical probability resolution of Hardy’s paradox [1] is supported with the present derivation of a commutator for sets.
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INTRODUCTION

In the paper the possibility of a set-theoretical foundation of particle physics is explored. We show that numeral sets
from foundational set theory can be employed in physical theory. In fact numeral sets can behave quantum like in
set operator commutators without the presupposition of an existing space-time. Perhaps that the use of sets without
space-time but equiped with a quantal structure will provide insight into the creation of space-time in the big bang.

FORMALISM

Numeral sets & operators

The numeral sets of von Neuman and of Zermelo are the foundation of the analysis. The basis of those sets is the
empty set /0 = {}. The von Neuman numerals are defined by C0 = /0 and (∀ : n = 0,1,2,3, ....)Cn+1 = {C0, ....,Cn}.
The Zermelo numerals are defined by D0 = /0 and (∀ : n = 0,1,2,3, ....)Dn+1 = {Dn}. In a previous paper we
explained the Hardy paradox with classical measure theory using the set ω = C3 ∪D3 and the monadic union. Note
that the cardinality for von Neuman numerals |Cn|= n is different from the cardinality of Zermelo numerals |Dn|= 1,
for, n = 2,3, ....

Let us for an arbitrary set Z introduce some operators. Firstly, the monadic union on Z is defined by

∪(Z) = {x |(∃ : y ∈ Z)(x ∈ y)} (1)

Secondly, the logical counterpart of monadic union is

∇(Z) = {x |(∀ : y ∈ Z)(x /∈ y)∧ (x ∈ Z)} (2)

Thirdly an extended counterpart of monadic union, v0 is employed. We define

v0(Z) = ∪({x |(∀ : y ∈ Z)(x /∈ y)∧ (x ∈ Z)∧ (|x |> 1)}) (3)

In the present study of quantal structure in numeral sets, we will be in need of the two operators but ’indexed by’
sets. Suppose we inspect a set C2. Generally the Ω sets can be described as a structure that is build around the sets
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C0 and D0, both equal to the empty set, /0. Let us inspect the operation ∇ on C2. From the definition in (2) and
C2 = {C0,C1}, with, C1 = {C0} it readily follows that ∇(C2) = {C1}. We subsequently define ∇T as follows: perform
the operation ∇ on the, C0 = /0 based, set and substitute in the resulting non-empty set, C0 = T . If a /0 results, then no
C0 = T substitution takes place. In case of ∇T (C2) we have ∇T (C2) = {C1}|C0=T . Now, because of C1 = {C0} we find
∇T (C2) = {{T}}.

Subsequently, let us also define sequences of operators by illustrating their activity on numeral sets. E.g.
let us inspect ∪T ∇T (C3). According to the previous general rule illustrated in the next example, we have
∪T ∇T (C3) = (∪(∇(C3)))C0=T . Because, C3 = {C0,C1,C2} we find ∇(C3) = {C2} which follows from
(∀ : X ∈C3)C2 /∈ X . Subsequently, it follows that ∪(C2) = {C0}=C1, hence, ∪T ∇T (C3) = {C0}|C0=T = {T}.

Notice the difference between the set selection in v0 as v0 (C3∪D3) = ∪({C2}), because, |C2| = 2 > 1 and in
∇(C3∪D3) = {C2,D2}, because for ∇ no restrictions on the cardinality of the selected set is introduced.

Special symbolism

Now that the operators on numeral sets and possible sequences of operators are defined, we turn to the com-
mutator. In quantum theory a commutator for quantum operators, A and B and written as [A,B]− is defined by
[A,B]− = AB−BA. Here we seek to inspect a similar form for sets. In order to make the formalism somewhat easier
to read, the usual set theoretical elementary operations as union or difference between sets are written in an alternative
symbolism when necessary. We write, ⊗ for ∩; ⊕ for ∪; 	 for the ’difference’ between sets. Hence, when X and Y
sets we may use when necessary, X ⊕Y = X ∪Y ; X ⊗Y = X ∩Y and X 	Y = X −Y . The ⊗ will obtain some special
characteristic when combinations of set and set operator are under study.

Similarly, we can construe ’sums’ or ’differences’ from operator sequences. For our purpose we write an operator com-
mutator, [∪,∇]	 on a certain numeral set, denoted here with, ω , as [∪,∇]	 (ω) = (∪∇	∇∪)(ω) =∪∇(ω)	∇∪(ω).
The use of 	 is twofold, namely difference of operator sequences and of sets, but that is a not very important detail at
this moment.

In the study of quantum forms and numeral sets, we will make use of the product of a set and a set operator.
E.g. we use t ⊗∪T . This ⊗ sequence of a set t and an operator ∪T is itself a new operator. If we for instance are
interested in a new sequence of ∇T and t ⊗∪T the ⊗ symbolic sequence operator separates the sets from the set
operators. We have, ∇T (t⊗∪T ) = t⊗ (∇T∪T ), etc. Note that on a set ω we see

∇T (t⊗∪T )(ω) = t⊗ (∇T∪T )(ω) = t ∩ (∇(∪(ω)))C0=T (4)

is intended. This concurs with the symbol definitions given previously but also illustrates the special role of ⊗. Note
that the sets t and T are related to each other as

t = {T} (5)

Moreover, it is assumed that a unity element, 1 exists such that 1⊗X , with X a set, leads to 1⊗X = 1∩X = X .

PHYSICAL MODELLING

Heisenberg’s commutator

With the use of set theory it is attempted to mimic the following Heisenberg relation

[v,H]|ψ〉= ih̄
dv
dt
|ψ〉 (6)

Here, v = v(t) represents the operation of the measurement of the particle’s velocity and H is the Hamiltonian while
|ψ〉 is the state-vector of the system. This is a textbook case of Heisenberg’s form of quantum mechanics.



Let us now try to see if the numeral sets introduced in the previous sections that were effectively used in the
explanation of Hardy’s paradox in terms of classical probability, can be mould into a similar form. First let us
introduce the ’velocity’ set operator.

v = (1⊗ v0)⊕ (t⊗∪T ) (7)

It should be noted that, dv
dt = a(t) + t da

dt . If we take ω = ∪(Ω) and Ω = C4 ∪D4, a form similar to: ∪2
T occurs in

(t⊗∪T )(ω) = t ∩ (∪T (∪(Ω))). When the non empty set results on the right hand side of ⊗, the substitution C0 = T
will be made for the t⊗∪2

T operation on Ω as well as for the (t⊗∪T ) operation on ω . The two forms give the same
result. Now this explains why ∪T can be seen as a kind of time derivative such as in (7). Of course, then the sequence
of v0 and ∪ leading to v0∪ must somehow represent an initial velocity when operated on Ω = C4 ∪D4. This is then
identical to v0 on ω = ∪(Ω).

Having established that (7) may represent v = v0 + ta(t) in a real physical experiment, we then turn to the
commutator defined in a previous paragraph.

Computation of the set commutator

In this paragraph we turn the attention to [v,∇T ]	. Here, v is defined in (7). It is then intutively clear that we will
have two compound operators to deal with, namely, 1⊗ v0 and t⊗∪T . It is intuitively clear that we may deal with the
two compound operators separately, viewed over the 	 of the set commutator, when computing the ∇T commutator
with v.

The 1⊗ v0 commutator with ∇T

Let us inspect [(1⊗ v0),∇T ]	. We already have established that

[(1⊗ v0),∇T ]	 = 1⊗ [v0,∇T ]	 = [v0,∇T ]	 (8)

It is clear that ω = {C0,C1,C2,D2}. Hence, from the definition of v0 and inspection of ω it follows that v0(ω) =
∪({C2}) = C2 because |C2| > 1 and (∀ : X ∈ ω)C2 /∈ X . In addition, from the definition and the rule of use for ∇ in
(2), it follows that, ∇(ω) = {C2,D2}. The commutator contains the v0∇T and the ∇T v0 operations of ω . For, v0∇T (ω)
we find

v0∇T (ω) = (v0({C2,D2})C0=T =C2|C0=T = {C0,C1}C0=T = {T, t}. (9)

This is so because from |C2| > 1 only C2 is selected from {C2,D2}. This results in a singleton set {C2}. Using the
definiton of ∪ from (1) the C2 is obtained such as in (9). Because, C1 = {C0} and C0 = T together with, t = {T}, the
result in (9) readily follows. For, ∇T v0(ω) we find

∇T v0(ω) = (∇(C2))C0=T = {C1}C0=T = {{T}}= {t} (10)

From the commutator given in (8) it then follows that

[(1⊗ v0),∇T ]	(ω) = v0∇T (ω)	∇T v0(ω) = {T, t}	{t}= {T}= t. (11)

In order to do justice to the idea that ∪T plays the part of temporal derivative, let us subsequently investigate,
∪T (1⊗ v0)(ω) as part of a construction to arrive at a similar form as in (6). Hence, it is necesary to have

∪T (1⊗ v0)(ω) = (1⊗∪T v0)(ω) = ∪T v0(ω) (12)

because of the role of the 1 or unity set. We already established that v0(ω) = C2. The ∪T operation then gives
∪T v0(ω) = ∪T (C2) =C1|C0=T = {T}= t. This implies that

[(1⊗ v0),∇T ]	(ω) = ∪T ((1⊗ v0)(ω)) (13)

which is a step into the direction of (6) when v = (1⊗ v0)⊕ (t⊗∪T ) from (7) is employed.



The t⊗∪T commutator with ∇T

Now we turn to the second term in the operator of (7). We can write

[(t⊗∪T ),∇T ]	(ω) = t⊗ [∪T ,∇T ]	(ω) (14)

We have ∪T ∇T (ω) = (∪T (∇T (ω)))C0=T . Now, because we already have established that ∇(ω) = {C2,D2} and, by
definition, D2 = {C1} = {D1}, it follows that ∪T ∇T (ω) = {C0,C1}C0=T = {t,T}, when we note that from C1 it
follows that {T} = t is introduced. Subsequently, ∇T ∪T (ω) = (∇(∪(ω)))C0=T = (∇(C2))C0=T . If we now note that
C2 = {C0,C1}, it follows from (2) that ∇T ∪T (ω) = {{C0}}C0=T = {t}, because t = {T}.

From the commutator in (14) we then may derive from the previous special role of ⊗ that

[(t⊗∪T ),∇T ]	(ω) = t ∩ [{t,T}	{t}] = t ∩{T}= t ∩ t = t. (15)

Subsequently we turn our attention to ∪T (t⊗∪T )(ω). From the definitions previously given it follows that

∪T (t⊗∪T )(ω) = t⊗
(
∪2

T
)
(ω) = t ∩ (∪(C2))C0=T = t ∩C1|C0=T = t ∩{T}= t ∩ t = t. (16)

This result in (15) and (16) gives
[(t⊗∪T ),∇T ]	(ω) = ∪T (t⊗∪T )(ω). (17)

This leads to the theorem that for physical measurement of velocity the operator v = (1⊗ v0)⊕ (t⊗∪T ) and set
operators can be used such that the following commutation relation resembling a quantum form is obtained

[v,∇T ]	(ω) = (∪T v)(ω). (18)

CONCLUSION AND DISCUSSION

In the previous it was demonstrated that numeral set theory can be employed in a quantum-like format such that
for measuring velocity of a particle, associated to a compound set operator expression v = (1⊗ v0)⊕ (t⊗∪T )
resembling the standard physical form, a Heisenberg commutator can be obtained. This supports the use of numeral
sets and monadic union in the context of Hardy’s paradox. Of course, there is some heuristic arbitrariness in the
choice of the set operators that mimic the Hamiltonian and the time derivative. The state vector can be mimicked by ω .

If we inspect the expression for dv
dt then it can be concluded that a(t) in equation dv

dt = a(t) + t da
dt can be mim-

icked by 1⊗a, with, a = ∪T v0 and t da
dt with t⊗∪2

T .

In a sense the presented study is philosophical because the logical structure of quantum theory and numeral set
theory plus operators are studied and appear the same. The point is that numeral sets are without reference to
space-time and the definition of the velocity is a a pure abstract expression of compound set operators. In other words
there is no need of a space-time in numeral set theory to have a space-time to move in. The reasoning is ’in analogy’.
However, the numeral sets have the advantage to be able to explain the Hardy paradox with conceptually reference to
a hidden mirror sector. There is no space-time necessary2 to mimic the quantum commutator forms in the Heisenberg
representation and to explain Hardy’s paradox with local hidden causalities inside a classical probability triple.

It can be asked if space-time is the cause of all trouble for quantum forms because an analysis without explicit
use is able to solve the problem, even in terms of classical probability, without having mysterious non-localities or the
influence of the mind on the measurement. In the previous paper on set theory the idea was that a hidden mirror sector
[2] could assist in understanding of the hidden causality. This is a very valuable conceptual point and adds to the idea
that space-time is the cause of paradox in quantum theory. Hidden causality can be a form of absence of space-time

2 The author and reader are in need of space-time.



influence. As was explained here, quantum mechanics can be done without explicit reference to space-time and this
set theoretical approach, with monadic union operator, solved the Hardy paradox in classical probabilistic terms. The
absence of explicit refernce to space and time solves the paradox and enables to remain within the boundaries of
quantum-like forms.

With the previous cosmological point in mind it can be claimed that the advanced set theoretical quantum the-
ory has no paradoxes because it uses no space-time and is perhaps the ontological ’behind the scenes’ of the real
space-time physics that takes place in experiment. Another cosmological point could be to employ the predictions
of the set theoretical quantum theory for the creation of space-time in the big bang. One can perform quantum-like
manipulations on numeral sets without space-time involved in the consideration.
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