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Abstract

Whitehead’s 1922 theory of gravitation continues to attract the attention of some philosophers,

despite evidence presented in 1971 that it violates experiment. We demonstrate that the theory

strongly fails five quite different experimental tests, and conclude that, notwithstanding its allegedly

meritorious philosophical underpinnings, Whitehead’s theory is truly dead. Our demolition of

Whitehead’s theory serves as a case study, to illustrate the depth, breadth and precision of current

empirical bounds, which must be obeyed by any viable theory of gravitation.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction and summary

In 1922, the distinguished mathematician and philosopher Alfred North Whitehead
(1861–1947), then in his 60th year, published a relativistic theory of gravity with the
property, which it shares with Einstein’s theory, of containing no arbitrary parameters.
Furthermore, when suitably interpreted, it yields the same predictions as general relativity
(GR), not only for the three classic tests of light bending, gravitational redshift and the
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precession of the perihelion of Mercury, but also for the Shapiro time delay effect
(Shapiro, 1964), recently confirmed to one part in 105 (Bertotti, Iess, & Tortora, 2003).
The reason for this coincidence was realized early on by Eddington (1922). In the case of

vanishing cosmological constant the Schwarzschild solution is not only an exact solution
of Einstein’s theory, it is an exact solution of Whitehead’s theory as well (Whitehead,
1922). Thus it gives the same predictions for the parametrized post-Newtonian (PPN)
parameters g ¼ b ¼ 1. Eddington’s remark nicely explained an observation of Temple
(1924) that the predictions of the precession of the perihelion for the two theories agree
exactly, and gave rise to the idea that it is indistinguishable from GR. This was refuted by
Harvey (1964) by the observation that Birkhoff’s theorem fails for Whitehead’s theory: the
field outside a spherically symmetric source is not just given by the Schwarzschild solution
but in general contains an additional constant of integration which is in principle
measurable.
In fact an even stronger statement can be made. This remarkable correspondence of

exact solutions extends to the Kerr solution (Russell & Wasserman, 1987) and thus to the
corresponding Lense-Thirring or frame dragging effects (Rayner, 1955a). Thus experi-
ments such as that involving the LAGEOS satellites (Ciufolini & Pavlis, 2004) which have
verified the effect at the 10–15% level and the ongoing NASA-Stanford Gravity Probe B
superconducting gyroscope experiment, which aspires to an accuracy of 1%, cannot
distinguish Whitehead’s from Einstein’s theory on the basis of frame dragging (we will see
below that LAGEOS actually tests Whitehead because of the failure of Birkhoff’s
theorem).
The mathematical explanation for this striking, but accidental, coincidence is that both

the Schwarzschild solution and the Kerr solution may be cast in Kerr–Schild form (Kerr &
Schild, 1965). That is, coordinates exist for which

gmn ¼ Zmn þ lmln, (1)

where

Zmnlmln ¼ gmnlmln ¼ 0 (2)

and lm is tangent to a null geodesic congruence

l½m;nl
nll� ¼ 0, (3)

where lm is obtained from lm by index raising using either the metric Zmn or the metric gmn. It
follows (Kerr & Schild, 1965) that

hmn ¼ lmln (4)

satisfies the linearized Einstein equations. If this can be chosen to agree with Whitehead’s
retarded solution (see Eq. (10)), then his metric and that of Einstein will agree exactly.
Thus for a single particle at rest at the origin, in spherical polar Minkowski coordinates

t; r; y;f, Whitehead’s metric is

ds2 ¼ �dt2 þ dr2 þ r2ðdy2 þ sin2 ydf2
Þ þ

2M

r
ðdt� drÞ2. (5)
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On the other hand, the Schwarzschild metric, in standard Schwarzschild coordinates
ðT ; r; y;fÞ is

ds2 ¼ � 1�
2M

r

� �
dT2 þ

dr2

1� 2M=r
þ r2ðdy2 þ sin2 ydf2

Þ. (6)

If we set

t ¼ T � 2M ln
r

2M
� 1

� �
, (7)

the two metrics are seen to coincide, which is Eddington’s observation (Eddington, 1922).
If we define u ¼ t� r, then the coordinates u; r; y;f are nowadays referred to as outgoing
Eddington–Finkelstein coordinates. Thus Whitehead’s spacetime manifold is geodesically
incomplete with respect to his curved metric because outgoing Eddington–Finkelstein
coordinates cover only the lower half of the full Kruskal manifold. The surface r ¼ 2M is
the past event horizon, and Whitehead’s particle is naked and corresponds to what is now
called a White Hole (Harvey, 1964), the time reverse of a Black Hole. The Kerr solution is
also of Kerr–Schild form and is also an exact solution of Whitehead’s metric (Russell &
Wasserman, 1987) when expressed in terms of advanced null coordinates. It corresponds
therefore to a naked rotating White Hole. For strong fields therefore, even if a single object
is considered, the two theories would be expected to make very different predictions. Note
also that this exact correspondence between solutions of Whitehead’s theory and solutions
of Einstein’s theory holds only for a special class of solutions. Not every solution hmn of
linear theory may be cast in the form (4) such that (2) and (3) hold, i.e. to be of Kerr–Schild
form. Moreover, not every solution in the Kerr–Schild class need be of the retarded form
specified by Whitehead. Thus there is no general agreement between the predictions of
Einstein and those of Whitehead.

In any case, for many years the two theories were considered to be experimentally
indistinguishable, and this gave rise to much philosophical discussion as to whether
additional criteria, for example aesthetic considerations or philosophical preconceptions,
were needed in order to reject or accept one of them. This is brought out in Broad’s review
of Whitehead’s book The Principle of Relativity (Broad, 1923), and a particularly clear
discussion indicative of the mood in the late 1950s is that of Bonnor (1958).

From today’s perspective, one can say that the principal difference between Einstein and
Whitehead is the latter’s insistence on fixed a priori spatio-temporal relations, which in
practice meant the adoption of a fixed background Minkowski spacetime. This is stated
with admirable clarity by the philosopher Bain (1998), who provides a valuable account of
how Whitehead’s ideas about relativity were embedded in his overall philosophy of nature
(see also Tanaka, 1987).

In fact, by the late 1960s the promise of new technology had led to a more optimistic,
empirical viewpoint, and rival theories of gravity were carefully scrutinized both for internal
consistency and for testable predictions additional to the three classic tests. Two important
milestones in this development were Robert Dicke’s Les Houches Summer School lectures of
1964 (Dicke, 1964), and Irwin Shapiro’s time delay prediction (Shapiro, 1964). An outcome of
this line of research was the discrediting by Will (1971b) of Whitehead’s theory.

However, Whitehead’s philosophical ideas continue to attract widespread attention,
often under the rubric of Process Philosophy, and perhaps because of his formidable
achievements in the foundations of mathematics and logic. He was after all co-author with
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Bertrand Arthur William Russell (1872–1970) of the epoch making Principia Mathematica.
As a result, a few of his followers have been reluctant to abandon his theory of gravity
despite the growing observational evidence against it.
Will’s original disproof of Whitehead’s theory was based on the fact that Whitehead’s

theory predicts an anisotropy in the ‘‘locally measured’’ Newton’s constant due to distant
matter. Thus a mass M at a distance r from the Earth produces an effective Newton’s constant

Geff ¼ G 1þ
2GM

rc2
þ

GM

rc2
cos2 y

� �
, (8)

where y is the angle between the Earth’s radial direction and the distant gravitating body. This
would produce anomalous Earth tides that would show up in gravimeter experiments, yet
there was no experiment evidence for such effects (Warburton & Goodkind, 1976). As a
critique of Will’s argument, it was pointed out that the resultant Earth tides depend on the
distribution of extra-solar-system matter (Mentock, 1996) whose distribution is uncertain, and
so a cancellation might take place. However, as we shall show below, allowing for these
uncertainties will not change the predicted effect sufficiently to invalidate Will’s argument.
Another attempt to avoid Will’s argument was to change the interpretation (Hyman, 1989;
Reinhardt & Rosenblum, 1974). In Chiang and Hamity (1975) it was shown that the re-
interpretation of Reinhardt and Rosenblum (1974) would not achieve this goal, and they
obtained the same result for the anisotropy of Newton’s constant (8) as did Will. These general
conclusions, while accepted by Bain (1998), were rejected by Fowler (1974), and the latter’s
remarks were reiterated by Tanaka (1987). Similar reservations have been expressed by Russell
and Wasserman (1987).
It turns out that Whitehead’s theory is definitely excluded by several modern

experiments, and one of our aims in this article and the reason for our title is to point
out that any one of them would normally be sufficient for rejection. In other words judged
by modern scientific and technological standards, Whitehead’s theory, beautiful as it may
seem in the eyes of many of its beholders, is truly dead. By contrast, Einstein’s theory
passes all of these tests with flying colors.
Another aim is to highlight to the philosophy and history of science communities the

ways in which advances in the technology of precision measurement (on the ground and in
space), coupled with theoretical frameworks for comparing and contrasting gravitational
theories, have provided a formidable gauntlet of stringent tests that must be passed before
a candidate theory is to be taken seriously. A comparatively new development, to be
touched upon briefly later, is the use of cosmological observations to tests theories of
gravity. Despite the past empirical success of Einstein’s theory, the study of alternative
possibilities continues, today motivated by such developments as the rise of string theory,
extra dimensions and brane worlds, the conundrum of the nature of dark matter and dark
energy, and the as-yet unexplained anomaly in the orbit of the Pioneer spacecraft. The fact
that Whitehead’s theory fails so many tests mainly serves as a means of illustrating
concretely the range and depth of the kinds of tests available.
Specifically, Whitehead’s theory fails five tests, most of them by many orders of

magnitude:
1.
 Anisotropy in G. We have reexamined Will’s 1971 derivation, incorporating a model for
the mass distribution of the galaxy that includes a dark matter halo. The predicted effect
is still at least 100 times larger than the experimental bound.
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2.
 Nordtvedt effect and lunar laser ranging. Whitehead’s theory predicts that massive, self-
gravitating bodies violate the weak equivalence principle in that their acceleration in an
external gravitational field depends on their gravitational binding energy (Nordtvedt
effect). The predicted size is 400 times larger than that permitted by lunar laser ranging.
3.
 Gravitational radiation reaction and the binary pulsar. The theory predicts anti-damping
of binary orbits due to gravitational radiation reaction at a level ðv=cÞ3 beyond
Newtonian gravity, in contrast to the ðv=cÞ5 damping effect in GR. Thus it strongly
violates binary pulsar data by about four orders of magnitude, and with the wrong sign.
4.
 Violation of Birkhoff’s theorem, and LAGEOS satellites. The static, spherically
symmetric solution of the theory for finite sized bodies has an additional contribution
dependent on the body’s size (Harvey, 1964; Rayner, 1954; Synge, 1952). This produces
an additional advance of the perigee of the LAGEOS II satellite, in disagreement with
observations by a factor of 10.
5.
 Momentum conservation and the binary pulsar. Whitehead’s theory predicts an
acceleration of the center-of-mass of a binary system, a violation of momentum
conservation (Clark, 1954). Precise timing of the pulsar B1913+16 in the Hulse–Taylor
binary system rules out this effect by a factor of a million.

Any of these tests alone would have been enough to kill Whitehead’s theory, and indeed
the original 1971 G-anisotropy test was accepted by most workers as a solid
disconfirmation, so collectively they amount to overkill. On the other hand they serve as
a warning to any would-be inventor of an alternative gravity theory, or to anyone who
might hope that a suitably modified or reinterpreted Whiteheadian theory would pass
muster (Hyman, 1989; Reinhardt & Rosenblum, 1974; Schild, 1956). It is not sufficient to
check the ‘‘classic tests’’ of light bending, perihelion advance of Mercury, and gravitational
redshift. There is now an exhaustive battery of empirical checks that must be done.

2. Whitehead’s theory, metric gravity and the PPN framework

Throughout this paper, we adopt the ‘‘canonical’’ version of Whitehead’s theory,
specified as follows. One first assumes the presence of a flat background metric Zmn, whose
Riemann tensor vanishes everywhere. This background metric defines null cones for any
chosen spacetime event xm, given by points x

0m satisfying

Zmny
myn ¼ 0; ym ¼ xm � x

0m. (9)

The physical metric gmn is then given by (henceforth we use units in which G ¼ c ¼ 1)

gmnðx
aÞ � Zmn � 2

X
a

ma

ðy�a Þmðy
�
a Þn

ðw�a Þ
3

,

ðy�a Þ
m
¼ xm � ðx�a Þ

m,

Zmnðy
�
a Þ

m
ðy�a Þ

n
¼ 0,

w�a ¼ Zmnðy
�
a Þ

m
ðdxn

a=dsÞ
�,

ds2 ¼ Zmn dxm dxn, ð10Þ

where the sum is over all particles, with rest mass ma. The second and third of
Eqs. (10) express the fact that the four-vector ðy�a Þ

m used to construct the metric is a null
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vector with respect to Zmn, so that ðx�a Þ
m lies on the past Z-null cone of the field point xm.

Indices on ðyaÞ
m are raised and lowered using Zmn. The denominator in the first of Eqs. (10)

has the same form as that of the Liènard–Wiechert potential of flat-spacetime
electrodynamics.
Whitehead’s original motivation was to have a theory with a priori spatio-temporal

relations that would not depend crucially on the specific solution of the theory, in contrast
to GR, whose spatio-temporal relations are not known until one has solved for the entire
metric of spacetime. He achieved this through the introduction of the flat background
metric Zmn. Test particles and light rays were assumed to follow geodesics of gmn.
However, later workers, notably Dicke (1964) and Schild (1962), emphasized that

spatio-temporal relations cannot be divorced from the physical tools used to measure
space and time. Since those tools involve atoms interacting via electromagnetic, nuclear
and weak interactions, one must address the question of which metric, Zmn or gmn, couples
to these non-gravitational fields. Dicke in particular argued that if you have one metric,
say gmn coupling to test bodies, and another, such as Zmn coupling to electrodynamics, there
would be violations of the equality of free fall of composite bodies (weak equivalence
principle), violations of local Lorentz invariance, or variations in the values of
fundamental constants, such as the fine structure constant. Dicke and Peebles (1962)
and Peebles (1962) gave concrete examples of bimetric theories that would violate
experiments in this way. The experiments included Eötvös-type experiments that Dicke
himself was carrying out around 1960 (motivated in part by these considerations), and that
today have reached precisions of parts in 1013, ‘‘mass anisotropy’’ experiments of the
Hughes–Drever type and gravitational redshift experiments (see Will, 1993, 2006 for
background and current bounds).
Dicke argued that one could guarantee agreement with such foundational experiments

by ‘‘universal coupling’’, whereby the fields of non-gravitational physics would couple to
or interact with one and only one ‘‘metric’’. Dicke’s work led to the notion of dividing
gravitation theories into the ‘‘metric’’ class, consisting of theories satisfying universal
coupling, and the ‘‘non metric’’ class, consisting of theories that violate universal coupling.
Schiff (1960), Thorne, Lee, and Lightman (1973), and Lightman and Lee (1973) extended
these ideas with concrete examples and formulated the concept of the Einstein equivalence
principle (EEP), which is satisfied by any metric theory (see Will, 1993, Chapter 2, for
discussion).
Whitehead’s original formulation was ambiguous on how electrodynamics should

couple to the metric (see Schild, 1962 for a useful discussion). It was simply asserted that
photons should follow geodesics of gmn.
However, the only empirically viable choice is to make Whitehead’s theory a

metric theory with gmn being the only metric that couples to matter and non-gravitational
fields. For example, were one to try to let the background metric Zmn establish spatio-
temporal relationships purely electromagnetically, say by having that metric alone couple
to the electromagnetic field Fmn, while the metric gmn couples to material particles, then,
according to the framework of Lightman and Lee (1973), such a theory would be in
violation of the Eötvös experiment. The underlying idea is that electromagnetic energy, via
its coupling to Zmn, responds differently to gravity than do particles, which couple to gmn.
Consequently, different materials whose atoms contain different amounts of internal
electromagnetic energy per unit mass will fall with different accelerations, contrary to
observation.
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Synge (1952), proposed a partial coupling of the electromagnetic field Fmn to gmn that
guarantees that, in the geometrical optics limit, light rays indeed follow geodesics of gmn, in
accord with Whitehead’s assertion. However, Synge’s coupling was not the full metric-
theory coupling, since his Whitehead-induced Maxwell equations in vacuum were Fmn

;n ¼ 0,
where Fmn ¼ gmagnbFab, which involves just the partial derivative (or, equivalently the
covariant derivative with respect to Zmn), rather than the standard universally coupled
version, Fmn

;n ¼ 0, which involves the covariant derivative with respect to gmn. Synge’s
version can also be shown, via the Lightman–Lee formalism, to violate Eötvös data. The
universally coupled version obeys the weak equivalence principle precisely.

As a result, in the metric theory approach, the background metric has no further direct
physical consequences, apart from its role in defining the physical metric (and apart from
possibly affecting the propagation of gravitational waves). This makes Whitehead’s theory
provisionally viable as a metric theory, at the expense of giving up Whitehead’s original
philosophical motivation for the theory.

However, it is important to note that it is not essential to assume a metric version of
Whitehead’s theory in what follows, as long as we confine attention to the motion of
particles in their mutual gravitational fields as specified by Eq. (10), do not care about the
effects of non-gravitational interactions on their motions, and assume that light propagates
along geodesics of gmn. Under these conditions, we can make use of the PPN framework to
link theory to observation.

The PPN framework exploits the fact that, in the weak-field, slow motion limit
appropriate to the solar system, the physical metric gmn can be expressed in terms of the
Newtonian gravitational potential plus a limited set of ‘‘post-Newtonian’’ potentials,
whose effects are smaller than Newtonian gravity by factors of order
ðv=cÞ2�Gm=rc2��51, where � is a small parameter used for bookeeping purposes. By
inserting an arbitrary coefficient in front of each of these post-Newtonian potentials, one
obtains a phenomenological metric that can be used to compare and contrast alternative
theories (each theory predicts a specific value for each PPN parameter) and to analyze
experiments (each experiment can be seen to measure a combination of PPN parameters).
This framework was pioneered by Nordtvedt (1968b), building on earlier work by
Eddington, Robertson and Schiff, and extended by Will and Nordtvedt (Will, 1971a, 1974;
Will & Nordtvedt, 1972).

In a reference frame chosen to be at rest with respect to the mean rest-frame
of the universe (as embodied, say, by a frame in which the cosmic background radiation
has no ‘‘dipole’’ anisotropy), the PPN metric for a collection of ‘‘point’’ masses ma takes
the form

g00 ¼ � 1þ 2U � 2bU2 þ ð2gþ 1þ a3 þ z1 � 2xÞF1

þ 2ð1� 2bþ z2 þ xÞF2 � ðz1 � 2xÞA� 2xFW,

g0j ¼ �
1
2
ð4gþ 3þ a1 � a2 þ z1 � 2xÞVj � 1

2
ð1þ a2 � z1 þ 2xÞW j,

gij ¼ ð1þ 2gUÞdij , ð11Þ

where here, and for the rest of this paper, we use units in which G ¼ c ¼ 1, and where the
Newtonian potential U is given by

Uðt;xÞ ¼
X

a

ma

za

¼
X

a

ma

jx� xaj
, (12)
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and the post-Newtonian potentials are given by

F1 ¼
X

a

mav2a
za

; F2 ¼
X

a

maUðxaÞ

za

¼
X

a;baa

mamb

zazab

,

A ¼
X

a

maðva � zaÞ
2

z3a
; FW ¼

X
a;baa

mambza

z3a
�

zab

zb

�
zb

zab

� �
,

Vj ¼
X

a

mavj
a

za

; W j ¼
X

a

mava � zazj
a

z3a
, ð13Þ

where za ¼ x� xa, zab ¼ xa � xb and za ¼ jzaj. The hydrodynamical version of the PPN
framework can be found in Will (1993). The behavior of matter in this spacetime may be
found from the geodesic equation (for test bodies or for light rays), or from the covariant
equation of motion Tmn

;n for distributed matter stress-energy. The metric depends implicitly
on the distribution of masses, and thus the evolution of a system of massive bodies such as
a binary system must be solved self-consistently.
In GR, g ¼ b ¼ 1, while the other PPN parameters vanish. If the parameters ai all

vanish, as they do in GR, the theory satisfies a kind of Lorentz invariance for gravity, in
that local gravitational dynamics does not depend on the motion of the system relative to
other matter in the universe (the metric above would have exactly the same form in a frame
moving with respect to the universe). The parameters zi are zero in any theory that
possesses suitable global conservation laws for momentum and angular momentum.
The potential FW is the infamous ‘‘Whitehead’’ potential. This potential did not appear

in earlier versions of the PPN framework (Nordtvedt, 1968b; Will, 1971a, 1954; Will &
Nordtvedt, 1972). In addition to appearing in Whitehead’s theory, it was later seen to be a
generic consequence of a class of theories of gravity dubbed ‘‘quasi-linear’’ (Will, 1973).
The original PPN framework was then modified to incorporate this potential naturally
with its associated ‘‘Whitehead parameter’’, x. In Whitehead’s theory, x ¼ 1, while in GR,
x ¼ 0. (With the benefit of hindsight, there is no logical reason for having failed to include
this term in the original PPN framework.)
The deflection of light and the Shapiro time delay both depend on the coefficient
ð1þ gÞ=2; measurements of the Shapiro delay using the Cassini spacecraft yield the bound
jg� 1jo2:3� 10�5. A list of current bounds on the PPN parameters may be found in
Table 1 (Will, 2006).
One of our goals in this paper will be to calculate the PPN parameters for Whitehead’s

theory and compare them with existing experimental bounds.

3. Post-Newtonian limit and gravitational radiation reaction in Whitehead’s theory

3.1. Solution of Whitehead’s theory to 1.5 post-Newtonian order

We wish to evaluate the Whitehead metric within the near-zone of a slow-motion
gravitating system, in order to derive the equations of motion. This corresponds to field
points such that jxj5l�R=v, where l is roughly a gravitational wavelength, R and v51
are the characteristic size and internal velocity of the system. Accordingly, we want to
evaluate gmn at ðt; xÞ in terms of source variables xa evaluated at the same time t. Our goal is
to determine the metric through 1.5 post-Newtonian order, or to order �3=2 beyond
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Table 1

Current limits on the PPN parameters

Parameter Effect Limit Remarks

g� 1 (i) Time delay 2:3� 10�5 Cassini tracking

(ii) Light deflection 4� 10�4 Radio interferometry (VLBI)

b� 1 (i) Perihelion shift 3� 10�3 J2 ¼ 2� 10�7 from

helioseismology

(ii) Nordtvedt effect 2:3� 10�4 Z ¼ 4b� g� 3 assumed

x Earth tides 10�3 Gravimeter data

a1 Orbital polarization 10�4 Lunar laser ranging

PSR J2317+1439

a2 Solar spin precession 4� 10�7 Alignment of Sun and ecliptic

a3 Pulsar acceleration 2� 10�20 Pulsar _P statistics

Za Nordtvedt effect 9� 10�4 Lunar laser ranging

z1 – 2� 10�2 Combined PPN bounds

z2 Binary motion 4� 10�5 €Pp for PSR 1913+16

aHere Z ¼ 4b� g� 3� 10x=3� a1 � 2a2=3� 2z1=3� z2=3.

G. Gibbons, C.M. Will / Studies in History and Philosophy of Modern Physics 39 (2008) 41–61 49
Newtonian gravity; this involves evaluating g00 through Oð�5=2Þ, g0j through Oð�2Þ, and gij

through Oð�3=2Þ. This will include the usual post-Newtonian terms of the PPN framework,
as well as, it will turn out, the leading effects of gravitational radiation reaction in this
theory.

We expand the retarded position of the ath particle by

x�a � xaðt� jx� x�a jÞ

� xa � vajx� x�a j þ
1
2
aajx� x�a j

2 þ � � � , ð14Þ

where xa, va and aa are the position, velocity and acceleration of the ath particle at the
field-point time t, and where we recall our use of units in which c ¼ 1. We can then expand
the spatial component ðy�a Þ

i
¼ ðx� x�a Þ

i in terms of the instantaneous difference zi
a �

ðx� xaÞ
i according to

ðy�a Þ
i
¼ zi

a þ �
1=2vi

ay� 1
2
�ai

ay2 þ 1
6
�3=2 _ai

ay3 þOð�2Þ, (15)

where an overdot denotes d=dt, and y � jy�a j. We also expand the retarded velocity
component ðv�a Þ

i
� ðdxi

a=dtÞ� according to

ðv�a Þ
i
¼ vi

a � �
1=2ai

ayþ 1
2
� _ai

ay2 þOð�3=2Þ. (16)

Note that, because the quantity ðy�a Þ
m is null with respect to the flat metric, ðy�a Þ

0
¼ y, and

thus

w�a ¼ ðdt=dsÞ�ð�yþ �1=2y�a � v
�
a Þ. (17)

The foregoing expressions can then be iterated to the required order in � to convert all
expressions into functions of va, aa, _aa, za, and za ¼ jzaj. The result is

gmn ¼ Zmn þ �
X

a

maðhaÞmn, (18)
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where

ðhaÞ00 ¼
2

za

þ �1=2
4va � za

z2a
þ � 2

v2a
za

� 5
aa � za

za

þ
ðva � zaÞ

2

z3a

� �

þ �3=2
8

3
_aa � za � 2va � aa þ 6

v2ava � za

z2a
� 12

va � zaaa � za

z2a
� 4
ðva � zaÞ

3

z4a

� �
þOð�2Þ,

ðhaÞ0j ¼ �
2zj

a

z2a
� �1=2 2

vj
a

za

þ 2
va � zazj

a

z3a

� �

þ � aj
a þ 4

aa � zazj
a

z2a
�

v2azj
a

z2a
þ 2
ðva � zaÞ

2zj
a

z4a
� 4

va � zavj
a

z2a

� �
þOð�3=2Þ,

ðhaÞij ¼
2zi

azj
a

z3a
þ �1=2

4zðia vjÞ
a

z2a
þOð�Þ. ð19Þ

Indices on spatial vectors are raised and lowered using the Cartesian metric; parentheses
around indices denote symmetrization, while square brackets around indices denote anti-
symmetrization.
The first term in ðhaÞ00 can be recognized as yielding the normal Newtonian potential U ,

given by Eq. (12). Note the presence of 0.5PN terms in the metric; these are terms of
order �1=2 in ðhaÞ00, and �0 in ðhaÞ0j. Because of general covariance, we are free to
change coordinates to manipulate the form of the physical metric. In particular, we can
remove these 0.5PN terms, can manipulate the PN terms to put them into a form to
make comparisons with the standard PPN framework (Will, 1993), and can simplify
the 1.5PN terms. Here we consider the theory as satisfying ‘‘formal’’ general covariance in
the sense of Earman (2006), while not satisfying ‘‘substantive’’ general covariance,
because of the presence of an absolute geometrical object, the background Zmn. Even
though the background metric Zmn will change its form under such coordinate
transformations, this will have no direct physical consequences, since only gmn couples
directly to matter.
The following coordinate transformation kills the 0.5PN terms in the physical metric,

puts the PN terms into the standard PPN gauge, and also kills the 1.5PN terms in ðhaÞij :

t ¼ t̄� 2�L̄
0
þ 5

2
�3=2X̄ ;0̄ þOð�2Þ,

xi ¼ x̄i þ �X̄ ;j̄ � 2�3=2L̄
j
þOð�2Þ, ð20Þ

where commas denote partial derivatives, and where

L̄
0
¼
X

a

ma ln z̄a,

L̄
j
¼
X

a

mav̄j
a ln z̄a,

X̄ ¼
X

a

maz̄a. ð21Þ

Note that the first term in the time transformation is the post-Newtonian analogue of the
Eddington (1922) transformation, Eq. (7), that puts the Whitehead one-body metric into
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Schwarzschild form. In carrying out the normal coordinate transformation,

gāb̄ðx̄
ḡÞ ¼

qxm

qx̄ā

qxn

qx̄b̄
gmnðx

lÞ, (22)

to 1.5PN order, it is also necessary to reexpress the potentials in terms of the new
coordinates. For example, the Newtonian potential changes according to

U ! U � �ðU2 þ F2 þ FWÞ � 2�3=2½L0U ;0 þ LjU ;j � SðLjÞ;j þ SðvjL0Þ;j�, (23)

where all quantities on the right side are barred, and where

Sðf Þ �
X

a

maf ðt; xaÞ

za

. (24)

A further coordinate transformation, given by

t̄ ¼ t0 � �2ð4U 0L
00 þ 2X 0;jL

00
;j � 2M

0j
;jÞ, (25)

where Mj ¼
P

amaX ;jðxaÞ ln za, simplifies the 1.5PN terms in g0j and g00.
The post-Newtonian part of the metric will be discussed in Section 3.2, while the 1.5PN

part will be discussed in Section 3.5.
3.2. PPN parameters

Following the coordinate transformation of Eqs. (20), the metric to PN order takes the
form

g00 ¼ � 1þ 2U � 2U2 � 3F1 � 2F2 þ 6A� 2FW,

g0j ¼ � 4Vj � 7
2
W j,

gij ¼ dijð1þ 2UÞ, ð26Þ

where we drop the explicit use of �. Comparing this metric with the PPN metric for point
masses, Eq. (11), it is a simple matter to read off the PPN parameters for Whitehead’s
theory,

g ¼ 1; b ¼ 1; x ¼ 1,

a1 ¼ 0; a2 ¼ 0; a3 ¼ 0,

z1 ¼ � 4; z2 ¼ �1. ð27Þ

The parameters g and b are the same as in GR. In Whitehead’s theory, x ¼ 1, while in
GR, x ¼ 0. The parameters ai all vanish, as they do in GR, indicating that it has no
‘‘preferred-frame’’ effects. This is not surprising, given that it is constructed using a flat
background Minkowski metric. Here we ignore any coupling between local gravity and a
background cosmological solution for the metric, which can in fact lead to non-zero a’s,
even with a flat background metric (see Lee, Ni, Caves, & Will, 1976 for an example). The
‘‘conservation-law’’ parameters zi are non-zero, indicating that the theory lacks global
conservation laws for momentum and angular momentum; in GR, the z’s all vanish. In
Section 4 we will see that many of these values are in violation of experimental bounds.
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3.3. Static spherically symmetric metric

For a single, static point mass M, the metric is particularly simple. Placing the mass at
the origin of coordinates, we see that ðy�a Þ

0
¼ y ¼ r, ðy�a Þ

j
¼ xj, and w�a ¼ y ¼ r. The metric

then is g00 ¼ �1þ 2M=r, g0j ¼ �2Mxj=r2, gij ¼ dij þ 2Mxixj=r3. The coordinate trans-
formation (7) converts the metric to the Schwarzschild metric of GR (Eddington, 1922).
This was the basis of the claim made in the early years of Whitehead’s theory that it
satisfied all the ‘‘classic’’ tests.
However, real bodies such as the Sun and Earth are not point masses, but are finite sized

objects made up of many masses. Working in the PN limit and assuming a spherically
symmetric collection of masses centered at the origin, it is easy to show that, for a field
point outside the body,

U ¼M=r; X ¼Mrþ I=3r; FW ¼ �F2 �MI=3r4, (28)

where the latter follows from manipulating the identity r2ðFW þ 2U2 � 3F2Þ ¼ �2X ;ijU ;ij,
and where M ¼

P
ama and I ¼

P
amar2a are the total mass and spherical moment of inertia

of the body. All other post-Newtonian potentials vanish. Thus, in the PPN framework, the
metric for a finite spherically symmetric static body becomes (Harvey, 1964; Synge, 1952)

g00 ¼ � 1þ 2M=r� 2bðM=rÞ2 þ 2xMI=3r4,

g0j ¼ 0,

gij ¼ dijð1þ 2gM=rÞ. ð29Þ

Recall that g ¼ b ¼ x ¼ 1 in Whitehead’s theory. The pericenter advance per orbit of a test
particle moving on a geodesic of this metric is given by

Do ¼
6pm

p
ð2þ 2g� bÞ þ

2x
3

I

mp2
1þ

1

4
e2

� �� �
,

¼
6pm

p
1þ

2

3

I

mp2
1þ

1

4
e2

� �� �
, ð30Þ

where p ¼ að1� e2Þ, with a and e being the semi-major axis and eccentricity of the orbit,
and where the second line is the Whitehead prediction. The size-dependent term in Do has
a negligible effect on the perihelion advance of Mercury, and so Whitehead’s theory agrees
with the data; however that term will have measurable consequences for ranging of the
Earth-orbiting LAGEOS satellites (Section 4.4).

3.4. Anisotropy in the locally measured G

Although we have set the fundamental coupling constant G equal to unity by making a
specific choice of units, it turns out that, in many alternative theories, the ‘‘locally
measured’’ G may vary. By locally measured G we mean the output of a Cavendish-type
experiment, whereby one measures the force between a test body and a source body
separated by a chosen distance. The result may depend on the velocity of the laboratory
relative to a preferred frame, if any of the a PPN parameters is non-zero, and may also
depend on the presence of matter outside the laboratory. Such effects are examples of
violations of the ‘‘strong equivalence principle’’ (SEP), which is a stronger version of the
EEP. Where the latter deals with coupling of other fields to non-gravitational interactions,
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the former deals with the coupling of other fields to gravity itself (see Will, 1993, Chapter 3
of for a discussion of SEP). Thus, for example, the scalar–tensor theories of the
Brans–Dicke type are known to violate SEP; Whitehead’s theory violates SEP seemingly
because of the presence of the background metric.

In the case of Whitehead’s theory, there are no preferred-frame effects, but there are
‘‘preferred location’’ effects. Specifically (see Will, 1993, Eq. (6.75)), the locally measured G

is given by

Glocal ¼ 1þ
7

3
U ext þ 1�

3I

MR2

� �
êi êjU

hiji
ext , (31)

where I , M and R are the spherical moment of inertia, mass and radius, respectively, of the
source body in the Cavendish experiment,

U ext ¼
X

a

ma

ra

; U
hiji
ext ¼

X
a

ma

ra

n̂i
an̂j

a �
1

3
dij

� �
, (32)

with the sum extending over all masses external to the laboratory, and where êi and n̂i
a are

unit vectors pointing from the source body to the test body and to the ath external body,
respectively. Angular brackets around the indices denote a symmetric, trace-free (STF)
tensor. Eq. (8) is the special case of Eq. (31) for a single external body, and for a point
source mass (I ¼ 0). The most important effect is the anisotropy in Glocal, which can lead
to anomalous Earth tides in geophysics (for the Earth, I � 0:5MR2). Notice that only the
l ¼ 2, or quadrupole anisotropy in the external matter distribution contributes.

3.5. Gravitational radiation reaction

We focus now on the 1.5PN terms in the metric. Combining the relevant terms from
Eq. (19) with the 1.5PN terms generated by the coordinate transformations (20) and (25),
we obtain,

h
ð5=2Þ
00 ¼

X
a

ma

8

3
_aa � za � 2va � aa þ 6

v2ava � za

z2a
� 12

va � zaaa � za

z2a
� 4
ðva � zaÞ

3

z4a

� �

þ 4L0U ;0 � 4LjU ;j þ 4SðLjÞ;j � 4SðvjL0Þ;j,

h
ð2Þ
0j ¼

X
a

ma aj
a þ 4

aa � zazj
a

z2a
�

v2azj
a

z2a
þ 2
ðva � zaÞ

2zj
a

z4a
� 4

va � zavj
a

z2a

� �

� 2L
j
;0 þ 4L0U ;j,

h
ð3=2Þ
ij ¼ 0, ð33Þ

where the superscript ðnÞ denotes the order of �. With these expressions and the geodesic
equation, it is straightforward to derive the 1.5PN contributions to the equation of motion
of a body in the presence of other bodies:

dvj

dt
¼

1

2
h
ð5=2Þ
00;j � h

ð2Þ
0j;0 � h

ð2Þ
0½j;k�v

k. (34)

We restrict attention to a binary system, and evaluate the terms in Eq. (34) at body 1 (as
usual, dropping contributions to potentials due to body 1 itself). We use the fact that, at
body 1, L0 ¼ m2 ln r, L0

;j ¼ m2x
j=r2, Lj ¼ m2v

j
2 ln r, L

j
;0 ¼ m2a

j
2 ln r�m2v

j
2v2 � x=r2, and so
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on, where now xj ¼ x
j
1 � x

j
2 and r ¼ jx1 � x2j; we also recall that

P
amaaj

a ¼ 0 from
conservation of momentum at Newtonian order. The surprising result is that, despite many
cancellations, there is a residual acceleration at 1.5PN order, given by

a
j
1 ¼ 8m1m2

_rxj

r4
. (35)

The acceleration for body 2 is found by interchanging m1 and m2 and letting xj !�xj.
The relative acceleration aj ¼ a

j
1 � a

j
2 is then given by

aj ¼ 16mm
_rxj

r4
, (36)

where m ¼ m1 þm2 and m ¼ m1m2=m are the total and reduced mass of the system,
respectively. This radiation reaction term does not affect the orbital angular momentum,
but it does cause an increase in the orbital energy at the rate dE=dt ¼ 16m2m_r2=r3.
We will see in Section 4.3 that this has disastrous consequences for Whitehead’s theory.
3.6. Failure of momentum conservation

In gravitational theories that lack suitable conservation laws for total momentum of
gravitating systems, a binary system could suffer an anomalous acceleration of its center-
of-mass, given in the PPN framework by

ACM ¼
1

2
ðz2 þ a3Þ

m

a2

m
m

dm

m

e

ð1� e2Þ3=2
, (37)

where dm ¼ m1 �m2 and the acceleration is directed toward the pericenter of the lighter
body. In GR (and in any theory based on an invariant action) the effect vanishes, but in
Whitehead’s theory, it does not.
Levi-Civita (1937) once claimed that this center-of-mass effect occurred in GR, but

Eddington and Clark (1938) spotted his error and confirmed that it did not. Clark (1954)
later showed that the effect did occur in Whitehead’s theory, in agreement with Eq. (37).
At the time, of course, there was no hope of detecting the effect using known binary
systems. However, the binary pulsar (Section 4.5) provides a particularly stringent bound
on this effect.
4. Experimental tests of Whitehead’s theory

4.1. Gravimeter tests of the anisotropy in Glocal

If Glocal is anisotropic because of the presence of an external mass, then there will be
anomalous tides of the solid Earth, superimposed on the normal luni-solar tides (see
Nordtvedt & Will, 1972; Will, 1993 for detailed discussion). The latter are of typical
amplitude Dg=g�10�8 (here g is the local acceleration as measured by a gravimeter). If the
external body is the sun itself, then Uext�10

�8, and the G anisotropy will produce a tidal
signal of comparable amplitude and of the same frequencies as the solar tide. It is very
unlikely that Whitehead’s theory would survive a comparison between the measured solar
Earth tide and standard tidal theory with such a large additional amplitude. However, the
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bound one could achieve has never been investigated in detail, because a cleaner test is
provided by looking at the so-called sidereal tides.

If the external mass is that of the galaxy, then U ext�5� 10�7, and the direction is fixed
in space. This produces tides at frequencies associated with the sidereal day rather than the
solar day of the solar tide, and these can be compared with known sidebands of the
coupled lunar and solar tides. Measurements by Warburton and Goodkind (1976) using
superconducting gravimeters showed no evidence of anomalies, and placed the bound on
the Whitehead parameter jxjo10�3, as compared with the Whitehead value of unity. This
improved upon the earlier bounds of Will (1971b), which were based on the existing tidal
literature.

This was considered a fatal blow to the theory, but it did assume an amplitude 5� 10�7

for the anisotropic part of the galactic potential. That value came from relating the solar
system’s orbital velocity in the galaxy to the potential via v2�U ext. This was criticized
(Mentock, 1996) because it concentrated the mass of the galaxy at the center, whereas we
now know that the bulk of the mass of the galaxy is in a roughly spherical halo of stars and
dark matter, substantially larger in size than the visible Milky Way.

However, it can be shown using a simple density model for the galaxy that the original
estimate for the anomalous tidal amplitude holds up within a factor of two. First, we note
that the ‘‘trace-free’’ tensor potential U hiji ¼ �X ;hiji, where X is the ‘‘superpotential’’
defined in Eq. (21). For a spherically symmetric distribution of matter, X is given by

X ¼ rmðrÞ þ
1

3r

Z r

0

4pr0r
04 dr0 þ

1

3

Z 1
r

4pr0r0ðr2 þ 3r
02Þdr0, (38)

where r is the mass density and mðrÞ is the mass inside radius r. Then, for spherical
symmetry,

X ;hiji ¼ n̂hijiðd2X=dr2 � r�1dX=drÞ

¼ � n̂hiji
mðrÞ

r
�

IðrÞ

r3

� �
, ð39Þ

where IðrÞ is the spherical moment of inertia inside radius r. For flat or monotonically
decreasing density distributions. the second term is always smaller than the first.

To compare with the earlier estimate we consider a specific density distribution given by
4pr ¼ a=r2c , for rorc, and 4pr ¼ a=r2, for r4rc, where rc is a core radius meant to
represent the mass of the inner part of the galaxy, and a is a parameter. The 1=r2 density
distribution is meant to model the dark matter halo, and to yield a flat rotation curve for
the outer reaches of the Milky Way, in rough agreement with observations. By noting that
a circular orbit in a spherical potential satisfies, v2=r ¼ ar ¼ mðrÞ=r2, and considering the
case r4rc, we can fit a ¼ v2=ð1� 2q=3Þ, and find that

U
hiji
ext ¼

2

3
v2n̂hiji

1� qþ q3=5

1� 2q=3
, (40)

where q ¼ rc=r. For the case rorc, a similar calculation gives

U
hiji
ext ¼

2

5
v2n̂hiji, (41)

independent of r. Thus for v�220 km=s, we find an amplitude 223� 10�7, fully consistent
with the earlier estimate. Note from Eq. (39) that only the matter inside our radius has an
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effect on the anisotropy. Even though the galaxy and its halo are not strictly spherically
symmetric, this is unlikely to alter the estimate significantly. The only way to suppress this
effect is by some specific, fine-tuned distribution of external matter.
The conclusion stands: Whitehead’s theory violates geophysical tide measurements by

about a factor of 500.

4.2. Lunar laser ranging and the Nordtvedt effect

In many alternative theories of gravity, there is a violation of the equally of acceleration
for massive, self-gravitating bodies; this is another example of a violation of SEP.
Specifically, the passive gravitational mass mp may differ from the inertial mass mi

according to

mp ¼ mið1� ZjEgj=miÞ, (42)

where

Z ¼ 4b� g� 3� 10
3
x� a1 þ 2

3
a2 � 2

3
z1 � 1

3
z2, (43)

and Eg is the gravitational binding energy of the body. This is known as the Nordtvedt
effect (Nordtvedt, 1968a), and can cause a difference in acceleration of the Earth and the
Moon toward the Sun, and a resulting perturbation of the Earth–Moon orbit with a
specific signature. Over 35 years of lunar laser ranging have found no evidence for such an
effect, and have placed the bound jZjo9� 10�4 (Williams, Turyshev, & Boggs, 2004).
From the set of PPN parameter values for Whitehead’s theory in Eq. (27), ZWhitehead ¼ �

1
3

in strong disagreement with experiment.

4.3. The binary pulsar

Thirty years of timing of the binary pulsar 1913+16 have shown that its orbital period is
decreasing at a rate _Pb ¼ �ð2:4184	 0:0009Þ � 10�12, in agreement with the GR
prediction for gravitational radiation damping within a fraction of a percent (Weisberg
& Taylor, 2005). Orbital damping has also been measured in the binary pulsars 1534þ 12
and the double pulsar 0737� 3039AB, again in agreement with GR. Unfortunately,
Whitehead’s theory has both the wrong sign—antidamping instead of damping—and the
wrong magnitude, _Pb � þ4� 10�8. The magnitude is so large because the reaction is a
1.5PN effect, rather that a v2-times smaller 2.5PN effect, as in GR. One could change the
sign of the effect, but not its magnitude, by assuming advanced, rather than retarded
interactions.

4.4. LAGEOS data

Since 1992, precise laser tracking of two Earth-orbiting Laser Geodynamics Satellites
(LAGEOS I and II) has made possible tests of GR in the vicinity of the Earth, in addition
to its primary geophysical goals. Notably, the tracking data have been used to give a
preliminary test of the ‘‘dragging of inertial frames’’, or Lense-Thirring effect, in which the
rotating Earth causes a small precession of the planes of the orbits of the satellites. The
NASA-Stanford Gravity Probe B experiment also aims to measure this effect with higher
accuracy using orbiting superconducting gyroscopes. The effect depends on the PPN



ARTICLE IN PRESS
G. Gibbons, C.M. Will / Studies in History and Philosophy of Modern Physics 39 (2008) 41–61 57
parameters g and a1, so both Whitehead’s theory and GR agree on the prediction for this
effect. However, the orbit of the LAGEOS II satellite has a small eccentricity, unlike
LAGEOS I, and so its advance of perigee is also measured, along with the ‘‘nodal’’
precession of the orbit plane.

Now, the multipole moments of the Earth’s Newtonian gravity field also contribute to
the nodal precessions and the perigee advance, indeed they overwhelm the relativistic
effects. However, Ciufolini, Chieppa, Lucchesi, and Vespe (1997) found a particular linear
combination of the three measurables, the two nodal precessions, _OI, and _OII, and the
perigee precession of II, _oII, in which the effects of the leading l ¼ 2 and 4 Newtonian
multipoles would precisely cancel. The combinations depend on the known inclinations of
the orbits relative to the equator. The uncertainties in the measured values of the remaining
lX6 multipoles then become part of the error budget of the experiment.

The only difference in any of the relevant predictions between Whitehead and GR is the
additional size-dependent term in the pericenter advance, Eq. (30). Because the LAGEOS
II satellite is at two Earth radii, this can be a sizable effect (unlike the case with Mercury).
Thus, the specific linear combination of predicted effects used by Ciufolini et al. gives the
theoretical prediction (in milliarcseconds per year)

Atheory ¼ _OI þ 0:295 _OII � 0:35 _oII

¼ 60:2� 109xþ ðerrorsÞ, ð44Þ

where we have kept the PPN Whitehead parameter x but used the GR/Whitehead values
for g, b and a1, and where ‘‘error’’ denotes those due to the higher multipole moments.
Using the actual tracking data, the measured value of this combination is Aexp ¼ 66:6
milliarcseconds per year, plus measurement errors. The combination of all the errors leads
to a total estimated error of about 25%. Thus for the theory to match observation within
25%, the parameter x must lie in the range

�0:2oxo0:1, (45)

which thus excludes Whitehead’s theory. It is likely that this bound could be improved by
making use of dramatically improved Earth gravity models that have been derived from
the GRACE and CHAMP geodesy space missions, which have reduced the errors in the
Earth’s multipole moments by significant amounts.

4.5. Binary pulsars and momentum conservation

The binary pulsar B1913+16 provides an excellent system to test the momentum non-
conserving effect described in Section 3.6, because it is highly relativistic, and because of
the ability to do precise timing. For a moving system all measured periods will be offset via
the Doppler effect ðDP=P�v=cÞ; accordingly, in an accelerating system periods will suffer a
drift dP=dt�ða=cÞP, and in a system with a changing acceleration, there will be a
d2P=dt2�ð _a=cÞP. In the binary pulsar, the center-of-mass acceleration predicted by
Whitehead’s theory changes because it is directed toward the periastron of the system,
which rotates by four degrees per year. Indeed, in the 30 years since discovery, the center-
of-mass motion (were it to exist) would have almost reversed itself. Yet precise timing of
the pulsar 1913+16 has shown no evidence of any change in its spindown rate dP=dt,
leading to an upper bound jd2P=dt2jo8:5� 10�32 s�1 (Manchester, Hobbs, Teoh, &
Hobbs, 2005). Using the neutron star masses and orbital elements inferred from the timing
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data, together with Eq. (4) of Will (1992), we find the predicted value
d2P=dt2 ’ 2:1� 10�25z2 coso s�1, where o is the periastron angle (we adopt the
Whitehead value a3 ¼ 0). With coso varying between �1 and þ0:59 over that period,
we find the bound jz2jo8� 10�7. Notice that the mass values used were inferred using
GR; in Whitehead’s theory, it is conceivable that these values could be different from the
GR values (as occurs in other theories that violate the SEP). However, to evade this
bound, either the inferred masses would have to be 106 times smaller, or they would have
to be the same to a part in106. This seems highly unlikely.

5. Cosmological considerations

In addition to passing stringent tests at terrestial, solar system, and galactic scales, in
order to be viable, a theory of spacetime and gravity must agree with the basic facts of
cosmology: the expansion of the universe and the existence of the Cosmic Microwave
Background. Of course neither was known when Whitehead formulated his theory.
However, at present, we are entering an era in which cosmological observations are
becoming increasingly detailed and precise (Spergel et al., 2006).
Already during the 1950s Synge (1954), using the spherically symmetric continuum

version of Whitehead’s theory developed by Rayner (1954), derived the form the
Friedmann–Lemaitre metric takes according to Whitehead. If t ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Zmnxmxn

p
, the curved

metric is

ds2 ¼ � 1�
3A

t

� �
dt2 þ t2 1þ

A

t

� �
ðdw2 þ sinh wðdy2 þ sin2 ydf2

ÞÞ, (46)

with the density

r ¼
K

t2
, (47)

and A ¼ 8pGK=9, with K a constant. Note that Synge’s version of Whitehead’s Universe,
which has hyperbolic, k ¼ �1 spatial cross sections, becomes empty and flat at late times,
becoming more and more Milne-like.
By contrast, current observations (Spergel et al., 2006) strongly indicate that our

universe is currently of Friedmann–Lemaitre form with flat spatial sections and scale
factor aðtÞ with jerk (Alam, Sahni, Saini, & Starobinsky, 2003; Blandford, 1990; Sahni,
Saini, Starobinsky, & Alam, 2003)

j ¼
a2

_a3

d3a

dt3
¼ 1, (48)

and thus given by

aðtÞ ¼ sinh2=3½ð3L=4Þ1=2t�, (49)

where L is the cosmological constant. As proper time t goes by, the universe is more and
more accurately De-Sitter like, with

aðtÞ ¼ eðL=3Þ
1=2t. (50)

It seems that to be viable, Whitehead’s theory requires, at the very least, a modification
that incorporates the same effects as the cosmological term in Einstein’s theory. The
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principal motivation behind Whitehead’s alternative to Einstein’s theory was the desire to
retain fixed, non-dynamical, background-independent, causal relations between spacetime
events which do not depend upon one’s location in spacetime. Presumably, purely on the
same aesthetic or philosophical grounds, one might argue that, as a fixed set of spatio-
temporal relations, those of De-Sitter spacetime or of anti-De-Sitter spacetime are to be
preferred to those of Minkowski spacetime since the underlying isometry groups in the
former two cases are simple, rather than being a mere semi-direct product in the latter. Be
that as it may, early on, Temple (1923) pointed out that this aim could just as readily be
achieved by adopting the causal relations of a fixed maximally symmetric spacetime of
constant curvature, e.g. a De-Sitter spacetime, as it could by insisting that they were the
same as Minkowski spacetime. With this in mind, Temple sketched a generalization of
Whitehead’s theory to incorporate a De-Sitter background which received enthusiastic
support from Whitehead himself. An interesting Machian argument in its favor was made
by Band (1929a), who pointed out that for positive cosmological constant it described a
finite universe relative to which one could define an absolute acceleration. Actually Band
claimed (Band, 1929b) that Whitehead’s theory was in gross violation of experiment.
Later, Rayner (1955b) pointed out what he claimed were some errors in Temple’s
formulae.

Rather than recall the details of Temple’s construction, which appears to have been
almost completely forgotten, perhaps because the reference to it in Synge’s influential
reformulation of Whitehead’s theory in modern notation (Synge, 1952) is incorrect, we
shall content ourselves with the remark that the obvious statement of the theory1 is that it
amounts to linearizing Einstein’s theory with a cosmological constant around a De-Sitter
background. This interpretation is consistent with Temples’ finding that the perihelion
advance agrees with that obtained by Eddington for the Schwarzschild–De-Sitter metric. If
one accepts our interpretation, then the fact that the Kerr–De-Sitter solution is also of
Kerr–Schild form (Carter, 1968) shows that Eddington and Rayner’s observations
(Eddington, 1922; Rayner, 1955a) may be extended to the full set of rotating solutions in a
background De-Sitter spacetime.

However, although incorporating a cosmological term may conceivably render
Whitehead’s theory in better accord with cosmological data, it will do nothing to alter
the fact that it is in flagrant contradiction with observations at solar system and galactic
scales, since the effects of any cosmological modification at these scales are negligible.
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