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ABSTRACT

This work addresses a broad range of questions which belong to four fields:
computation theory, general philosophy of science, philosophy of cognitive science,
and philosophy of mind. Dynamical system theory provides the framework for a
unified treatment of these questions.

The main goal of this dissertation is to propose a new view of the aims and
methods of cognitive science - the dynamical approach (chapter 4). According to
this view, the object of cognitive science is a particular set of dynamical systems,
which | call "cognitive systems". The goal of a cognitive study is to specify a
dynamical medel of a cognitive system, and then use this model to produce a
detailed account of the specific cognitive abilities of that systermn. The dynamical
approach does not limit a-priori the form of the dynamicat models which cognitive
science may consider. In particuiar, this approach is compatible with both
computational and connectionist modeling, for both computational systems and
connectionist networks are special types of dynarmical systems.

To substantiate these methodological claims about cognitive science, | deal
first with two questions in two different fields: (1) What is a computational system?
(2) What is a dynamical explanation of a deterministic process?

Intuitively, a computational system is a deterministic system which evolves in
discrete time steps, and which can be described in an effective way. In chapter 1,
I give a formal definition of this concept which employs the notions of isomorphism
between dynamical systems, and of Turing computable function. In chapter 2, |
propose a more comprehensive analysis which is based on a natural
generalization of the concept of Turing machine.

The goal of chapter 3 is to develop a theory of the dynamical expianation of
a deterministic process. By a "dynamical explanation” | mean the specification of
a dynamical model of the system or process which we want to explain. I start from
the analysis of a specific type of explanandum -- dynamical phenomena -- and |
then use this analysis to shed light on the general form of a dynamical explanation.
Finally, | analyze the structure of those theories which generate explanations of
this form, namely dynamical theories.
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Introduction

This work addresses a broad range of questicns which properly belong to four
different fields: computation theory, general philosophy of science, philosophy of
cognitive science, and philosophy of mind. The first two chapters deal with
foundational issues in computation theory. The third chapter discusses the
problem of the dynamical explanation of a deterministic process. Finally, the fourth
chapter proposes a new view of the aims and methods of cognitive science, and
it also discusses some classic issues in the philosophy of mind. | will attempt here
to highlight the main ideas of each chapter, and to explain how the specific
investigations are internally related to form an organized body.

From the methodological point of view, a single approach underlies the
treatment of all specific problems. This methodological approach can be
synthetically described as the attempt to formulate and solve each specific
question within the framework of dynamical system theory. The basic concept
which is at work throughout the whole course of my investigations is that of a
deterministic dynamical system. Given the importance of this concept, it is useful
to briefly introduce it here in an informal manner. This concept expresses in a
precise way the basic properties of any deterministic process. From the

mathematical point of view, a dynamical system is a quite simple structure



composed of three elements. The first element is a set T which represents time'.
The second element is a non-empty set M which represents all the possible states
through which the system can evolve®. Finally, the third element is a set of
functions {g'} which tells us the state of the system at any instantt e T, provided
that we know the initial state®. For example, if the initial state is x e M, the state
of the system at time t is given by g'(x}, the state at time w > t is given by g“(x),
etc. The functions in the set {g} must only satisfy two conditions. First, the
function g° must take each state to itself, for the state at time 0 when the initial
state is x obviously is x itself. Second, the composition of any two functions g' and
g" must be equal to the function g'**, for the evolution up to time t+w can always
be thought as two successive evolutions, the first up to time t, and the second up
to time w.

The heuristic principle which | have constantly used is try to find those parts
of a problem which can be represented as a dynamical system. This general rute
turns out to be extremely useful and powerful. The broad applicability of this rule
is apparent once we reflect how widespread dynamical processes are. What is
surprising to realize, however, is how much we can gain by the simple act of
explicitly thinking of a system, object, or part of the world which changes through

time, as a dynamical system. On the one hand, if we were able to explicitly

' T may be either the reals, the rationals, the integers, or the non-negative portions of these
structures.

# M is called the phase space {or sometimes the state space) of the system.

® Each function in {¢'} is called a t-advance (or a state transition) of the system.

2



describe the possible states of the system, and the possible transitions between
these states, we would know exactly how the system evoives. This, however, is
an ideal case which rarely occurs. It is more common to have an implicit
description of the set of possible transitions, for example in the form of a
differential eguation, and some knowledge about the properties of the set of
possible states. The worst case is when we do not know anything else except that
a certain process is a dynamical system. Still, even in this case, there is a corpus
of theory and concepts which can be applied to the system. The simple act of
representing a dynamical process as a dynamical system allows us to use these
abstract tools and, as a rule, this produces a net increase in our understanding.

With regard to the content, | have tried to make each chapter as self contained
as possible. However, as a rule, each successive chapter presupposes certain
parts of the others. The relation is usually as follows. Each chapter has a specific
goal and develops concepts and theory to achieve its goal. Some of the concepts
and resuits which are discussed in detail in the previous chapters are then used
in the successive ones. When this is done, | refer to the relevant parts for the
details, but | try to give an intuitive explanation of the concepts involved. This
should allow an independent reading of each chapter, but such a reading will not
permit to fully appreciate the import of certain points.

Even though each chapter can be read as a separate work on a specific
subject, the first three chapters provide the conceptual framework for the

discussion of the methodological foundations of cognitive science which | develop



in chapter 4. My methodological proposal consists in thinking of cognitive science
as a special branch of dynamics. This means that (i) | identify a cognitive system
with a dynamical system which is realized by a physical system, and has cognitive
abilities (ch. 4, def. 1); (ii) | take the goal of each specific cognitive study to be the
production of a dynamical explanation (ch. 3, def. 7) of a particular cognitive
system. The dynamical approach which | propose is thus characterized by three
basic tenets: (a) the explicit recognition of the dynamical character of cognition; (b)
the disposition to apply methods and concepts from dynamical system theory to
the study of the mental’; (c) the disposition to explore the whole space of the
dynamical systems in order to locate and map the region of the cognitive systems.

The symbolic approach to cognitive science maintains that cognitive systems
are included in a special class of computational systems. This special class can
be intuitively characterized as the class of alt those computational systems which,
somehow, operate like Turing machines. The connectionist approach, on the other
hand, identifies cognitive systems with a certain class of neural networks. This
class intersects, but is not included in, the class of the computational systems.
One of the main theses of this dissertation is that both computational systems and
connectionist networks are special types of dynamical systems. it thus follows that
the dynamical approach which | propose is the methodological framework which
best allows for a plurality of empirical studies within a unified theoretical

perspective. To substantiate these methodological claims about cognitive science,

* | use the term "the mental’ to indicate the class of all cognitive systems.
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however, | must deal first with two basic questions in two different fields: (1)' What,
exactly, is a computational system? (2) What, exactly, is a dynamical explanation
of a deterministic process? Both chapter 1 and chapter 2 discuss the first
guestion, while chapter 3 is devoted to the second.

The specific goal of the first chapter is to give a formal analysis of three basic
concepts of computation theory: the general notion of a computational system, the
relation of emulation between two computational systems, and the relation of
realization between a computational system and the concrete system (the
hardware) which implements it. There are two possible ways of looking at
computation theory. On the one hand, one can focus on the numbers, functions,
or sets which can be computed or recognized by means of an effective process.
The discipline that studies this type of problem is usually called "computability
theory", and this name stresses the fact that the primary goal of the theory is to
determine which entities can be computed. On the other hand, one can focus on
the effective processes themselves, and ask several inferesting questions. The
first natural question is: what is an effective process, and what distinguishes it from
other processes that are not effective? The curious fact is that computer scientists
have not given this question a precise answer. Still, this question is very similar
to the one which has been investigated with great care: what is an effective
algorithm or function, and what distinguishes it from other functions which are not
effective?

In chapter 1, | attempt to fill this gap by proposing a theory of what an effective



process is. The strategy that | use consists in thinking of an arbitrary effective
process as a special type of dynamical system, which | call a "computational
system". Intuitively, a computational system is a deterministic system which
evolves in discrete time steps, and which can always be described in an effective
way. This means that there is an effective procedure for determining the possible
states of an isomorphic system, and that the state-transitions of this system are
effective transformations of finite symbol structures. 1 give a formal definition of
this concept which is based on the notions of isomorphism between two dynamical
systems, and of Turing computable function (ch. 1, def. 3). One of the results
which [ take to be more interesting is the proof that Turing machines are a special
type of computational system (ch. 1, ex. 3.1). This result in fact shows that the
process by which a Turing machine computes a function is Turing computable, and
it thus partially justifies the concept of Turing computability itself”.

Other results of chapter 1 concern the relations of emulation and realization,
and the concept of a universal system. Both relations express the intuitive idea
of a system which is capable of exactly reproducing the behavior of a second

system®. Therefore, given a class of systems X, we can define two concepts of

* More precisely, this proof and the ‘non-trivial part' of Turing's thesis ([a] all effective functions
are Turing computable) provide a partial confirmation of the trivial part' of Turing’s thesis ([b] all
Turing computable functions are effective). In fact, if the process by which a Turing machine
computes a function were not Turing computable, we should obviously conclude (by [a]) that the
computed function itself is not effective.

® The emulation relation is a special case of the realization relation. In turn, the relation of
isomorphism between two dynamical systems is a special case of emulation. The relations of
isomorphism, emulation, and realization are defined for fwo arbitrary dynamical systems. The main
difference between emulation and realization is that the first relation presetves the possible types
of orbits of the emulated system, while the second does not. For example, if a system has two
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universality: a system is E-universal with respect fo X just in case it emulates all

systems in class X; a system is R-universal with respect to X just in case it

realizes all systems in class X. The interesting fact about these concepts of
universality is that they are not limited to computational systems, but they instead
apply to arbitrary dynamical systems’. | will employ this fact in chapter 4, where
| will propose a new way of explaining the seemingly unrestricted cognitive abilities
of the mind. 1f the mind is a dynamical system, then its cognitive universality’ can
be thought as a special case of either E-universality or R-universality. More
precisely, a dynamical system S is cognitively universal if there is a sufficiently
broad class of cognitive systems C such that S is E-universal with respect to C or
S is R-universal with respect to C.

The definition of a computational system which | give in chapter 1 presupposes
that the class of all effective transformations of finite symbol structures be
reducible to the class of the functions computable by a Turing maching’.
Chapter 2 discusses in detail this hypothesis, so that the investigations of this

chapter concern the foundations of the theory proposed in chapter 1. The main

orbits which merge, and this system is emulated by a second system, this second system will also
have two merging orbits. This fact prevents reversible systems from emulating irreversible systerns
with merging orbits, for no reversible system has merging orbits. Some reversible systems,
however, can exactly reproduce the behavior of irreversible systems with merging orbits. The
relation which holds in this case is that of realization.

" The reason is that the relations of emulation and realization are defined for two arbitrary
dynamical systems (ch. 1, def. 4, def. 5, and def. 6).

® By "cognitive universality" | mean the property of having many and differentiated cognitive
abilities, which allow a system to appropriately perform in a vast range of tasks or situations.

® This hypothesis is traditionally called Turing’s thesis.
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conclusion which | reach in chapter 2 is that the concept of an effective
transformation of finite symbol structures is not absolute, but instead depends on
the relational structure of the infinite support’® on which the elementary symbols
are written and manipulated. Ordinary Turing machines operate on finite symbol
structures (strings) written on an infinite support (a linear tape) whose topography
is extremely simple. But one can think of effectively transforming finite symbol
structures written on an infinite support whose topography is arbitrarily
compticated. 1t is in fact possible to define generalized Turing machines which
operate on these ‘supertapes' in exactly the same way as ordinary Turing
machines operate on linear tapes. The interesting result is that some of these
generalized Turing machines are able to compute non-recursive functions. At the
end of chapter 2, | will propose a more comprehensive definition of a
computational system (a generalized computational system on a regular pattern
field, def. 8), which is based on the concept of a generalized Turing machine. The
definition of a computational system which | give in chapter 1 (def. 3) turns out to
be a special case of the new one. In fact, generalized computational systems on
a regular pattern field reduce to computational systems when the pattern field is
identified with the tape of an ordinary Turing machine. Finally, | also prove that
any generalized Turing machine which operates on a regular pattern field is a
generalized computational system on that pattern field (ch. 2, th. ). This theorem

thus extends the analogous resuit for ordinary Turing machines (ch. 1, ex. 3.1).

' [ call this support a "pattern field" (ch. 2, def. 1).

8



The goal of chapter 3 is to develop a general theory of the dynamical
explanation {ch. 3, def. 7} of a deterministic process. By a "dynamical explanation”
I mean the specification of a dynamical model (ch. 3, def. 2 and def. 4) of the
system or process which we want to explain. Historically, the first dynamical
explanations were provided by Galileo, who studied in detail the free fall of a body,
the motion of a sphere on an inclined plane, and the motion of a projectile. Other
classic examples of dynamical explanations are those of the motion of a pendulum,
and of the revolution of the planets about the sun. Dynamical explanations were
first put forth by physicists but, since then, many other sciences have been
concerned with this type of explanation. The main thesis of this dissertation is that
cognitive science is one of these, for | take the goal of each cognitive study to be
the specification of a dynamical model of a particular cognitive system.

Even though the literature on scientific explanation is huge, dynamical
explanations have not been studied in detail so far. Scientific explanation is in fact
traditionally studied from a very general point of view, which does not pay much
attention to the specific structure of the phenomena'’ which scientists attempt to
explain. Chapter 3 reverses this approach. | start from the analysis of a specific
tyoe of explanandum -- dynamical phenomena'”? -- and | then use this analysis

to shed light on the general form of a dynamical explanation. Finally, | analyze the

"' | use the term "phenomenon" in a sense which is consistent with the Kantian tradition: any
system or process which can be subsumed under cerfain categories.

2 By a "dynamical phenomenon" | mean any deterministic process or system which can be
described by means of a finite number of interdependent magnitudes (ch. 3, def. 5).
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structure of those theories which generate explanations of this form, namely
dynamical theories (ch. 3, def. 10). The only concept from the previous chapters
which | use in chapter 3 is that of a deterministic dynamical system. On the other
hand, the concepts developed in chapter 3 (together with those of chapter 1)
provide the necessary framework for the discussion of the aims and methods of
cognitive science, which is the main topic of chapter 4.

In chapter 4, | focus first on the information processing theory of the mind, and
| then propose an alternative methodological view. The information processing
theory of the mind maintains that the mind is a computational system realized by
a concrete physical system. This basic assumption, together with the further
hypothesis that the mind is a universal computer®, is the foundation of a definite
research program. Since by assumption the mind is a universal computer, its
operations depend on the programs which are stored in its working memory.
Different programs specify different computational systems, and these systems
have particuiar cognitive abilities appropriate for specific situations or tasks.
Therefore, the aim of a concrete empirical research is to specify a dynamical
model of one of these special purpose computational systems. This can be
obtained by writing a computer program which specifies a second computational

system, and this computational system must emulate the special purpose

¥ Universal computers have a working memoty in which both programs and data can be
stored, and they have the capacity to execute any program stored in their memory. Since any
computational system can be specified by a program, universal computers are able to emulate any
computational system. Universal computers are thus E-universal with respect to the class of all
computational systems. The classic example of a universal compuler is a universal Turing

machine.
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computational system which we want to explain.

The first question | discuss in chapter 4 is whether this view of the aims and
methods of cognitive science is justified. In this connection, | consider a number
of arguments which attempt to show that it is in principle impossible to identify the
mind with a computational system realized by a concrete physical system. These
objections are of two types. The first type singles out a certain mental property P,
and then attempts to show that the identification of the mind with a computational
system realized by a concrete physical system entails that the mind cannot have
property P. In particular, I consider whether the information processing theory of
the mind can in principle explain the intentional character of mental states™, the
existence and nature of conscious states'®, and the ability of recognizing the truth
of the Godel sentence of an arbitrary formal theory of arithmetic’®. Several
authors have variously maintained that the identification of the mind with a
computational system realized by a physical system is inconsistent with these
three properties of concrete minds. The general thesis | defend is that these
arguments fail to make their point, and that it is in principle possible to identify the
mind with a computational system realized by a concrete physical system.

The second type of objection has been recently raised by Searle (1990b).

' Searle has claimed that it cannot (1980, 1984, 1990a).

'8 Maudlin {(1989) has recently put forth an ingenious argument to show that any computational
theory of consciousness must be inconsistent.

® { ucas (1961, 1968a, 1968b) has maintained that, since the mind has this ability, it cannot
be a computational system. A similar argument has been recently put forth by Penrose (1989).

11



Searle claims that the question whether a physical system realizes a computational
one is not factual but, rather, a matter of conventions. If Searle were right, the
information processing theory of the mind would face a serious problem, for the
proponents of this approach maintain that the mind is a computational system
realized by the brain, and they take this hypothesis to be a synthetic one. | will
show in section 6 of chapter 1 that the realization relation between two dynamical
systems does not involve any conventional element, for it depends on the
existence of a mapping between the states of the realized system and sets of
states of the realizing one. The relation between the mind and the brain
postulated by the information processing theory is in fact a special case of the
realization relation between two dynamical systems. Therefore, Searle’s claim
about the conventional character of this relation is unjustified.

Even though it is in principle possible to identify the mind with a computational
system realized by a concrete physical system, we should also consider whether
this hypothesis is consistent with the most recent developments in cognitive
science. | will argue that it might not be, provided that the mind can be identified
with a finite neural network with continuous activation levels (ch. 4, sec. 5.2).
Furthermore, the question of whether this identification is possible is an empirical
one. This argument is based on the analysis of a computational system which |

develop in chapters 1 and 2, and it can in fact be generalized to any continuous

12



dynamical system’’

The possibility that the mind could be identified with a non-computational
dynamical system thus is a real one. Therefore, the methodological perspective
provided by the information processing theory of the mind is too restrictive, for it
rules out a-priori a broad range of possibilities which instead shouid be empirically
investigated. My proposal for overcoming this methodological impasse is a more
comprehensive theory - the dynamical approach (ch. 4, sec. 6) - which does not
assume that the mind is the primary object of cognitive science, and does not
presuppose the computational character of this object. The basic idea of this
methodological view is that the primary object of cognitive science is not the mind
but, instead, a particular set of dynamical systems, which | call "cognitive systems".
A second name which is also appropriate is "the mental'. | prefer the first term for
it more clearly brings about the shift of perspective between this view and the one
which primarily focuses on the mind. According to this view, cognitive systems are
all those dynamical systems which are realized by physical systems and have
cognitive abilities. The goal of a cognitive study is to specify a dynamical mode!
of a particular cognitive system, and to produce a detailed account of the specific
cognitive abilities of this system.

An important feature of the dynamical approach is that it does not limit a-priori

the form of the dynamical models which can be considered. For example, some

"7 By a "continuous dynamical system" | mean a dynamical system <T M {g'}> such that at least
one of the following conditions is satisfied: (i) the time T of the system is the set of the real
numbers {or the set of the non-negative reals); (ii) the phase space M is not denumerable.

13



of these models are computational, for they are specified by means of computer
programs. Others consist of neural networks, which are specified by their
connections, weights, and by the input-output characteristics of each unit. Finally,
a third type of models are those specified by systems of differential equations.
The dynamical approach to cognitive science can thus be characterized by three
basic tenets: (a) the explicit recognition of the dynamical character of cognition;
(b) the disposition to apply methods and concepts from dynamical system theory
to the study of the mental (¢} the disposition to explore the whole space of the
dynamical systems in order to locate and map the region of the cognitive systems.

In the last section of chapter 4, | finally sketch a broad outline of a theory of
minds consistent with the dynamical approach. In the first place, [ think of minds
as a special type of cognitive systems which satisfy at least four further properties:
(1) are realized by concrete physical systems; (2) have intentional states; (3) have
conscious states; (4) are cognitively universal. | then ask whether a dynamical
theory of minds'® can in principle explain these properties. My thesis is that it
can, and that these explanations are at least as good as those provided by the
information processing theory of the mind. In fact | take them to be superior, for
they do not presuppose the computational character of the mind, but only the
weaker hypothesis that minds are dynamical systems realized by concrete physical

systems.

'8 By a “dynamical theory of minds" | mean any theory which entails the hypothesis: minds are
dynamical systems realized by concrete physical systems.
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Chapter 1

1. introduction
1.1 Classic computation theory
1.2 The symbolic approach in cognitive science
1.3 Plan
2. Deterministic dynamical systems
3. Isomorphic systems and computational systems
4, Emulation of a system
5
6
7

. Reversible versus irreversible systems
. Realization of a system
. Virtual systems, the realizability of irreversible systems, and the existence of
universal reversible systems
8. Appendix

1. Introduction
The aim of this chapter is to provide a formal analysis of three concepts which
are at the heart of both computation theory and cognitive science: the general

notion of a computational system, the relation of emulation between computational

systems, and the relation of realization between a computational and a physical

system.

1.1 Classic computation theory
Effective procedures are traditionally studied from two different and

complementary points of view, the function-approach and the system-approach.
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The function-approach is concerned with the question of individuating those
numeric functions which are effectively calculable. This approach has reached its
systematization with the theory of the partial recursive functions (Gddel, Church,
Kieene). This theory is not directly concerned with computing devices or
computations. Rather, the effective calculability of a partial recursive function is
guaranteed by the algorithmic nature of its definition.

The system-approach focuses on a group of abstract mechanisms, which are
then typically used to compute numeric functions. These devices can be divided
in two broad categories: automata or machines {Turing and Post), and systems of
rules for symbol manipulation (Post). Below are some of the mechanisms which

have been studied:

a. AUTOMATA OR MACHINES

[11 gate-nets and McCulloch-Pitts nets

[2] finite automata (Mealy and Moore machines)
[3] push-down automata

[4] stack automata

[5] Turing machines

{6] register machines

{7] Wang machines

[8] cellular automata

b. SYSTEMS OF RULES
[9] monogenic production systems in general
[10] monogenic Post canonical systems
[111 monogenic Post normal systems
[12] tag systems.

All these mechanisms have much in common, and the system-approach has
been traditionally interested in studying the relations between each kind of device

and the others, and in establishing what class of numeric functions each
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mechanism can compute. Accordingly, two kinds of theorem’ are typically proved:

(a) it is shown that systems of a given kind emulate systems of another kind
{examples: Turing machines emulate register machines and cellular automata,
cellular automata emulate Turing machines, etc.);

(b) systems of a certain kind are proved to be complete relative to the class of the
partial recursive functions, that is, the systems of this kind compute all and only
the partial recursive functions (examples of complete systems: Turing machines,
register machines, cellular automata, tag systems, etc.).

functions from
the natural numbers to
the natural numbers

1=computability ]
relation partial recursive

Z2=emulation
relation

3=realization
relation

e = N
concepts to
be analyzed

1 1 1 1 1
monogenic computational
/ production systems
systems
cellular
autormata ..
y/ 2 finite
Z automata
2
2
register '
frachines 2
Turing
machines
hysical
gysg:ems

Figure 1 Classic computation theory

' Theorems of the first kind are often lemmas to theorems of the second kind. Sometimes, the
proof that a certain type of system emulates another type is simply given as parnt of the proof that

the first type can compute all partial recursive functions.
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Nevertheless, it is not at all clear what, exactly, all these mechanisms share.
The received view is that they are all different types of computational systems. It
is usually said that a computational system is a deterministic system which evolves
in discrete time steps, and that it can be described in an effective manner. While
this informal characterization is certainly useful, and it conveys a concept which
delimits the field of classic éompuratfon theory?, it is clear that this concept is not
sufficiently rigorous. It seems that we face here a typical example of a formal
problem (Giunti 1988, 431). A precise definition of what a computational system
is would give us a deeper, and more unified, insight into the whole field of
computation theory and its applications.

| have mentioned above that one of the typical thecrems of computation theory
consists in showing that, for each device of a first type, there is a device of a
second type which is able to emulate the first device. If we look at several
instances of these proofs, we discover two things. First, in many cases, the

emulation relation is not formally defined. Second, it is not clear whether the

? Several authors have studied computational devices whose basic operations are
transformations of real numbers or, even more generally, transformations which define some
abstract mathematical structure on some set (Blum & al. 1989, Friedman 1971; Shepherdson 1975,
1985, 1988). These devices may not be computational systems in the classic sense, for an
operation on real numbers involves the manipulation of an infinite amount of information, and so
it may not in general be possible fo effectively describe the basic operations of these machines.
Within classic computation theory it is possible to define computable functions on the real numbers,
but the values of these functions can never be exactly computed. Rather, these values are
calculable to any desired degree of accuracy (Turing 1965; Pour-El and Richards 1989). By
contrast, the basic operations of the devices mentioned above are assumed o have infinite
precision, in the sense that they yield the exact values of a real-valued function. Other devices
which may not be classic computational systems are unrestricted cellufar automata. These cellular
automata either operate on arrays with an infinite number of cells in a non-blank state, or they do
hot satisfy the restriction that a neighborheood whose cells are all in the blank state never changes
the state of its central cell.

18



relation which is proved to hold in different cases is in fact the same relation. For
example, it can be-proved that cellular automata emulate Turing machines and
that, conversely, Turing machines emulate cellular automata. The emulation
relation between cellular automata and Turing machines, however, has not been
adequately defined®, and it turns out that cellular automata emulate Turing
machines in a way which is prima facie different from the way Turing machines
emulate cellular automata®.

The emulation relation is also usually invoked to introduce the concept of a
virtual system, which is one of the basic concepts of both computation theory and
cognitive science. Whenever a computational system 8, emulates a second
computational system S, it is claimed that it is possible to define a third system
S, in terms of S,, and that S, tumns out to be essentially the same system as S,.
The system S, is called a virtual system, and this story is usually told in order to
explain how different computational architectures can be implemented by the same
computer. However, since no general concept of emulation is defined, no general
theorem which ensures the existence of a virtual system can be proved.

We encounter a third formal problem when we consider the relation between

the abstract mechanisms studied by the system-approach and the physical

* Alvy Ray Smith defines the emulation refation between cellular automata and Turing machines
(1971, def. 4). However, his definition only applies to cellular automata emulating Turing machines,
not to the converse case.

* The main difference is that cellular automata are able to emulate each step of a Turing
machine in real time, while Turing machines take several steps to emulate one step of a cellular
automaton. Furthermore, a Turing machine will in general emulate different steps of a cellular
automaton in different times.
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systems which supposedly implement or realize them. This relation is never
explicitly defined, but several facts about it are usually assumed. For example, it
is usually believed that computational systems are in principle realizable by
physical systems. The informal account of how a physical system would realize
a computational one typically goes like this: some of the states of the physical
system are identified with the states of the computational one, so that each
transition of this system corresponds to a transition between physical states. This
is a very plausible idea, but a simple oﬁservation shows that it needs some
refinement. Many physical systems are reversible, while most computational
systems are irreversible. In reversible systems no transition can take two different
states to the same state, while this is exactly what happens in irreversible systems,
Therefore, transitions between computational states cannot in general be identified
with physical transitions. This observation and other anomalies® thus suggest that

a formal analysis of the realization relation is badly needed®.

1.2 The symbolic approach in cognitive science

The symbolic approach in cognitive science maintains that some computational

® A second fact about the realization relation which is assumed without proof is its transitivity
with respect to emulation: if S realizes C’ and C’ emulates C, then S realizes C. This is the
principle which is usually invoked to explain the multiple realizability of a computational system C.
C can be realized by many physical systems because, in order to concretely realize C, we only
need to implement a second computational system, C', which emulates C.

® Unless we are willing to accept that irreversible computational systems are not in principle
realizable by reversible physical systems.

20



systems’ have cognitive abilities, and that the brain (or the nervous system)
concretely implements, or realizes, these systems. This basic principle is thus the

hard-core of a definite research program.

cognitive system = emulates compurationsl system P
compuiational system = === | specified by a program %

realizes yealizes

tbrain or nervous system computer hardware

if:
1. program output reproduces observable aspects of cognitive
. . system ¢
then hypothesis 2 is formulated:
2. computational system P emulates cognitive system €

3. further evidence that C is indeed emudared by P is produced

Figure 2 The symbolic approach in cognitive science

Whenever we are interested in studying some cognitive ability (say, for
example, language understanding} we should try to determine the computational
system C which has this ability and is concretely realized by the brain. This, in
turn, will be done in three steps. First, we will try to write a computer program
whose performance cannot be distinguished from the performance of a subject

with that ability®. Second, we will formulate the hypothesis that the computational

|}

" Sometimes, the words "program”, "digital computer”, "information processing system", etc. are
instead used. "Computational system" is the most appropriate term, because it encompasses the
intended reference of all other terms.

® That is, the program should pass a Turing-test (Turing 19586) limited to the particular ability
that we are studying.
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system P specified by the program emulates the computational system C which
has that ability and is realized by the brain. Third, we will seek further evidence
that the system P does indeed emulate C. This evidence may be of two different
kinds: based on psychological experiments, or on knowledge of the neuro-
physiological structure of the brain®.

It is thus clear that, to understand the methodological foundations of the
symbolic approach, we need an adequate analysis of such basic concepts as
computational system, emulation, and realization. This analysis is in fact
necessary for giving a definite meaning to at least two assumptions on which this
approach rests. First, that computational systems specified by computer programs
may emulate computational systems with arbitrary cognitive abilities™. Second,
that these systems are realized by the brain. The clarification of these
assumptions in turn implies that we formally define the three concepts of
computational system, emulation, and realization. This is precisely the goal of this

chapter. Searle has recently expressed a similar concern:

There is little theorstical agreement among the practitioners on such absolutely
fundamental questions as, What exactly is a digital computer? What exactly is a
symbel? What exactly is a computational process? Under what physical conditions

exactly are two systems implementing the same program? (Searle 1990, 24)

Searle raises these questions to conclude that the problem of whether the

® it should also be noticed that, if C is indeed emulated by P, the relation between the brain and
C is exactly the same as the relation between the computer hardware and C. This is implied by
the principle: i a system S realizes P and P emulates C, then S realizes C.

'% As far as we know, computational systems specified by programs and computational systems

which have cognitive abilities may be of very different kinds, so that it is not immediately clear in
what precise sense systemns of one kind may emulate systems of the other kind.
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brain realizes a computational system is not a factual one but, rather, a matter of
conventions. The results of sections 3, 4, 6, and 7, however, imply that his

conclusion is unjustified. | will explicitly discuss Searle’s argument in chapter 4.

1.3 Plan

Dynamical system theory provides the natural mathematical framework for
carrying out this analytical task. Cellular automata are devices which have aiready
been fruitfully studied from this point of view (Wolfram, 1983a; 1984c; Farmer,
Toffoli, and Woifram 1984: Wolfram, ed. 1986). However, since all computational
systems are deterministic systems, they all fall under the scope of dynamical
system theory. This discipline is traditionally interested in the study of those
dynamical systems which arise from the solution of differential or difference
equations. It is, however, possibie to define a dynamical system in such a way
that it captures the idea of an arbitrary deterministic process. Once this definition
is adopted, it is quite obvious that all known computational devices are dynamical
systems, and looking at them under this light makes it possible to analyze the
concepts of computational system, emulation, and realization in a completely
general and extremely natural manner. The detailed plan is as follows.

Section 2 states the definition of a dynamical system and introduces the
concept of a cascade, that is, a dynamical system with discrete time. This is a
crucial concept, for [ will later define a computational system as a cascade which

can be described in an effective manner.
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Section 3 carries out the analysis of the concept of a computational system.
| introduce first the relation of isomorphism between dynamical systems. Two
systems which satisfy this relation are equivalent from the point of view of their
dynamical behavior or, in other Kwords, they can be identified as far as their
dynamical properties are concerned. | then define computational systems by
means of this relation, of the concept of a cascade, and of the concept of a Turing
computable function. This definition presupposes the reducibility of the class of
all effective transformations of finite symbo! structures to the class of the Turing
computable functions. This hypothesis is traditionally called Turing’s thesis. In
chapter 2, | will propose a natural generalization of this thesis, and | will then give
a more comprehensive definition of a computational system’".

Section 4 analyzes the emulation relation, and proves that this relation is a
quasi-ordering (reflexive and transitive) on the set of all deterministic dynamical
systems.

Section 5 introduces the distinction between reversible and irreversible
systems, and studies the possible types of orbits and t-advances (or state
transitions) in both kinds of systems. | define three mutually exclusive and
exhaustive classes of irreversible systems: quasi-reversible, weakly irreversible,
and strongly irreversible. Strongly irreversible systems are the only systems with
merging orbits, and it turns out that most computational systems are in this class.

These results set the stage for Theorem 6 of the next section. This theorem

| call a system which satisfies this more general definition a "generalized computational
system on a regular pattern field” (see ch. 2, def. 8).
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and the definition of the emulation relation entail the important consequence that
all universal computational systems are strongly irreversible, and that they have
all possible types of orbits: periodic, eventually periodic, aperiodic, and merging.
Theorem 6 also shows that the realization relation cannot be identified with the
concept of emulation. | then turn to the formal analysis of this relation. | give two
equivalent definitions. The first definition allows me to show that a physical
realization of a Turing machine, as usually described, does indeed realize the
dynamical system which defines the Turing machine. 1 then use the second
definition to prove that the realization relation is reflexive and transitive.

In section 7, | prove two general results. | first show that, whenever a system
8, either emulates or realizes a second system §,, it is possible to define a virtual
S, by means of the states and the t-advances (or state transitions) of §,, and that
this system is isomorphic to S,. Finally, | prove that, given an arbitrary irreversible
system S, it is always possible to construct a corresponding reversible system
which realizes S. An immediate and important consequence of this theorem is the

existence of universal reversible systems'.

" This does not contradict the result of section 8, that all universal computational systems are
strongly irreversible. Universal systems can be defined in two ways, depending on whether they
emulate or realize all computational systems. If the first definition is chosen, all universal systems
turn out to be strongly irreversible. The second definition, instead, allows for universal reversible

systems.
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2. Deterministic dynamical systems

A property which is shared by all (standard) computational devices is that they
are deterministic systems. Intuitively, this means that the future time evolution of
the complete (or total) state of the system is determined by the state at the present
time. Dynamical system theory allows us to precisely define a deterministic
system. Such a structure is an ordered triple <T M g(t x)>, where T is a set which
represents time, M is the set of all total states of the system, and g is a function

from TxM to M. Intuitively, a total state completely describes the system at some

instant, in the sense that

it contains all the

= <T M {g'}> for anv t, g% M > MI

information sufficient

if, at time tl]‘ S is in stats X

tJ, g“l - (and necessary) for

. . . t 1 a
then, at time tu“i“ t. S is in state & (X) determin]ng the future

(and past) behavior. The
function glt x) precisely

expresses this idea. In

fact, once an initial total

Figure 3 Deterministic dynamical systems
state x is fixed, g{tx)

tells us the total state which the system will reach at an arbitrary time t. [f we take
t to be a parameter, the function g(t x) can be identified with a set of functions
{g'(x)} from M to M. Each of these functions is called a {-advance of the system.

The t-advances of a dynamical system shouid satisfy two obvious properties. First,
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the t-advance g° should be the identity function, for the state reached after O time
when the system starts in state x obviously is x itself. Second, the composition of
any two t-advances ¢' and g” should be equal to the t-advance obtained by adding
t and w, for the evolution of the system up to time t+w can always be thought as
two successive evolutions, the first up to time w, and the second up to time t.
That is, g'(g"(x)) = g"™(x). These properties are all expressed by the following

definition:

Definition 1 (deterministic dynamical system)

S = <T M gt x)> 1s a deterministic dynamical system iff:

{1} Tis either Z, Z*, Q, Q", R, R', where Z, Q, and R are, respectively, the integers,
the rationals, and the reals, and Z*, Q7, and R", are the non-negative integers,
rationals, and reals;

(2} M is a non empty set;

(3) gis a function from TxM to M such that, for any t € T, the functions g M --> M
defined by g'(x) =: g{t x} satisfy:

(a) g°is the identity function on M;
(b) g = g" o g (o is the composition operation and g" is applied first)"”.

The intuitive meaning of this definition is as follows. T represents time, which
can either be discrete (Z or Z*), dense (Q or Q"), or continuous (R or R™), and M

is the set of all possible total states of the system S we are studying. A total state

'* This definition is, essentially, the one given by Arnold (1977, 4). See also Szlensk (1984).
The only difference between my definition and that of Amold is that I afiow time = T to be either
R, R, Q, Q" Z orZ', while Arnold exclusively considers the case T = R. Traditionally, dynamical
system theory is concerned with those dynamical systems which arise from the study of differential
or difference equations. As a consequence, the phase space of these systems is not a bare set,
hut it has a richer structure (a differentiable manifold or, at least, a metric space). As Arnold
makes clear, this further structure is not relevant if we are interested in a formal characterization
of any possible deterministic process.
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completely describes the system S at some instant. M is called the phase space
of S, and g(t x) has two possible interpretations. If we take t to be a parameter,
we obtain a set of functions of the variable x, {g'}. Suppose that, at the present
time t, the state of S is x (relative to some initial state y); then g'(x) is the state of
the system at time {,+t (relative to the same initial state y). For this reason each

function g' is called a t-advance, or a state transition, of S. If, instead, we take x

to be a parameter, we obtain a set of functions {g*} of the variable t. Each of
these functions represents the time evolution of the state of the system when the

state at time 0 is x. Each function g* is thus calied a state evolution, or a motion,

of S. It thus follows that g(t x) can either be interpreted as the set of all possible
t-advances or as the set of all possible state evolutions of S. Forany x € M, the
image of g* is calied a phase curve in M, or the orbit of x, which is abbreviated

orb(x). The phase portrait of S is the set of all orbits of S. The extended phase

space of S is the set TxM, and each state evolution (or motion) of S is also calied

an integral curve in extended phase space.

Example 1.1 (the Galilean model of free fall)

A very simple example of a deterministic dynamical system is the Galilean model
of free fall 8 = <T YxV {g'}>, where: T is time, Y are the vertical positions of a freely
falling body, V the vertical velocities, and g" YxV -->YxV is defined by:
gy v) = <(y + vt + 1/2ct?) (v + ct)>.

Let us verify that conditions {3a) and (3b) of definition 1 hold. We must prove:
(a) g%y v) = <y v>
(b) g™y v) = g'(g"(y v)
from the definition of g:

1 g%y v) = <y + v0 + 1/2¢0) (v + cO)> = <y v>  [/a}is proved//
from the definition of g:
1. "y v} = <(y + v(t+w) + 1/2c{t+w)’) (v + c(t+w))>
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from the definition of g:

2. g{(g™(y v) = gy + vw + 1/2cw?) (v + cw)) =
<(y + vw + 1/2cw? + (v + ewit + 1/2ct?) (v + cw + ct)> =
<y + vw + 1/2ew* + vt + cwt + 1/2ct%) (v + c(t+w))> =
<(y + v(t+w) + 1/2c(w” + 2wt + tZ2) (v + ct+w))> =
<(y + v(t+w) + 1/2c(t+w)) (v + c(t+w))>

from 1 and 2:

3. g™y v) = gg"y v)) /(b}y is proved//.

Definition 1 entails the following properties:

IfT =2, Q, or R, then: iT -~ R, Q Z, wem

POS3SIBLE ORBITS POSSIBLE t—ADVANCES

(1) {g"l is a commutative iy

group with respect to

the composition

operation e, The

unity is g° and, for
any t € T, the inverse

M = phase space

£ . .

Of g Ielatlve tO ° 185 1 = periodic orbit all t—advances are

g‘t- Z = aperiodic orbit injective and sur jective
E

Figure 4 Orbits and t-advances in reversible
systems

(2) for any t e T, g'is a bijection; therefore, the inverse function of g', (g"}, is also a
function from M to M, and (g" = g

(3) for any x € M, there is exactly one orbit which passes through x; for any t € T,
x € M, there is exactly one state evolution g* such that g(t) = x (in fact z = g'(x)).
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HT=2" Q" or R, then: . . .
i T = R, Q, Z, then:

POSSIBLE ORBITS POSSIBLE t—ADVANCEDR

(4) {g" is a commutative
monoid with respect
to the composition
operation o, and the
unity is g%

phase space

M
1 = periodic
(5) for any x, y, ze M, 2 = aperiodic
for any t, W e T’ if 3 = event'ually periodic
¢ w 4 = merging and
gix) = g"(y) = 2, then aperiodic
% = merging and M = phase space
Orb{Z) o Orb(X} and eventually periodic 1 = injective and sur jective
14 2 = injective but not surjective
Orb(z) & Orb(y) ! 3 = surjective but not injective

4

neither injective nor surjective

Figure 5 Orbits and t-advances in . irreversible
systems

If S is a deterministic dynamical system and T =12 or Z%, then g{t x} is
generated recursively by the two t-advances g° and g'. In fact:

g(0x) = gx) = x
g(t+1 x) = g'{glt x))

I T =2Z, ¢ is injective and surjective (by property (2)). For negative instants,
the following eguality holds:

g{t-1 x) = (g') (gt x)) where (g')' = g' (by property (2)) is the
inverse of g'.

Conversely, if T=2Z or Z', and a function G: M --> M is specified, we can

define recursively gt x) by first stipulating g' =: G, and g° =: identity function on M.

* This property expresses the fact that in irreversible systems (that is, systems where time is
limited to the non-negative portion of R, Q, or Z) there may be merging orbits, but no intersecting
orbits.
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7T = Z, G must be

T = 2% gh(x) = gl(gj‘(, . .gl(x), )

k times

gi(gl(. .. gi(x> .. ))
k times <T M g(t X)>, where g is

g (gt(. .. g(x)...)
L ]

k times

injective and surjective.

It is easy to verify that

T = 2. g¥(x)

H

and —k
87 defined by the equations

above, is a deterministic

Figure 6 Cascades
dynamical system. A deterministic system which is generated in this way by

G: M -->M is called a cascade on M and it can thus be simply indicated by

<T M G>, where T = Z or Z', and G is injective and surjective if T = Z.

Example 1.2 (iteration of the logistic function)

A family of simple cascades on R which leads to an extremely complex dynamical
behavior is the one generated by the logistic function. Here T=Z7Z*, M = R, and G is
defined by G(x) =: ax(1 - x), where a is a parameter. For example, the cascade
determined by the value @ = 4 displays chaotic behavior. f 0 < x < 0.50r0.5 <x <1,
the orbit of x almost completely fills up the unit interval®.

S Kocak (1986, 23). For a complete analysis of the dynamical behavior of the logistic function
see Devaney (1989).
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3. Isomorphic systems and computational systems

An important problem
8,= <T M,{g*}> S,= <T M{h' }>

concerning  dynamical
f: Mz“‘"‘%’ Ml is a bijection

systems consists in

determining whether two
M,

systems are equivalent

from the point of view of

their dynamical behavior.

Intuitively, this will be the

case if there is a one to Figure 7 Isomorphic systems

one mapping between the states of the two systems so that each state evolution
of one system will correspond, through this mapping, to a state evolution of the

other {and conversely). We can make this idea precise as follows:

Definition 2 (isomorphic dynamical systems)

S, is isomorphic to S, iff:

(1) 8, = <T'M, g(t x)> and S, = <T M, h(t x)>

(2) there is f: M, --> M, such that {is a bijection and, for any t ¢ T, for any x ¢ M,
fg'(x)) = h'(fx)).

It is easy to verify that the isomorphism just defined is in fact an equivalence
relation on the set of all deterministic dynamical systems. This set is thus divided
into equivalence classes, and any two systems in each of these classes can be

taken to be the same system as far as their dynamical behavior is concerned.
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Theorem 1

The relation of isomorphism between dynamical systems is an equivalence relation

proof:
we must prove that the relation of isomorphism between dynamical systems is

reflexive, symmetric, and transitive. These three properties follow immediately from
definition 2. For the details see the appendix g.e.d.

The main thesis of this chapter is that all computational systems are a special
type of dynamical systems, and that recognizing this fact allows us to better
understand many. important properties of computational systems. As a first
confirmation of this thesis, | show that any Turing machine can naturally be
identified with two different cascades which, however, turn out to be isomorphic.

The future behavior of a Turing machine is determined once the position x of
the head, the internal state g, and the content of the tape p are specified. Any
such a triple <x q p> can thus be identified with a fotal state of the Turing
machine. For technical reasons, however, it is often convenient to identify a total
state with the finite string of symbols vgaz, where g is the internal state of the
Turing machine, a is the symbol on which the reading head is positioned, v is the
string of symbols to the left of a up to the leftmost non-blank symbol (included),
and z is the string of symbols to the right of a up to the rightmost non-blank
symbol (included); v (or 2) is empty if the leftmost {or rightmost) symbol is not to
the left (or to the right) of a. | show below that these two natural representations
of the total states of a Turing machine are in fact equivalent. This means that the

two different cascades which correspond to the two representations are isomorphic
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dynamical systems.

Example 2.1 (two isomorphic dynamical systems which individuate the same
Turing machine}

An arbitrary Turing machine can be naturally identified with at least two
different dynamical systems which are, intuitively, the same system. The two systems
which correspond to the same Turing machine turn out to be isomorphic in the sense
of definition 2.

Let C be an arbitrary Turing machine. Let A =: {a} be the alphabet of C, where
A contains m symbols (0 < m e Z%). One of the symbols in A {say a,} is called the
blank and is indicated by "b". Let @ = {qg,} be the set of all internal states of C, where
@ contains k states (0 < k € Z*). A quadruple is any string of the form q,a,Dq,, where
D = a, L, or R, "L" stands for "left", and "R" stands for "right”. An arbitrary Turing
machine C is specified by a consistent set G of km quadruples™, where k is the
number of internal states in @, m is the number of symbols in 4, and two quadruples
are consistent just in case they are identical or they do not begin with the same pair
state/symbol. Consider now W, =: the set of all finite strings vq.a;z, where & is an
arbitrary symbol in A, g, is an arbitrary internal state in §, v and z are finite strings
of symbols in A (v or z may be empty). The Turing machine C is supposed to be in
internal state g, and read the symbol a, immediately to the right of q,. Each string
in W, is thus a total state of C because, given the set of quadruples G, and we W,
the complete future behavior of C is determined. In fact, G determines a function'’
glGl;: W, --> W, which is defined as follows. Let q.aDq, be the quadruple in G which
begins with qa. If D=a, glGl(vqaz)=: vqaz if D=L and v is empty,
glGl(vg,az) = vqbz, where ' = az; if D=1 and v = v, glGl(vgaz) = vqaz,
where 2’ = az; if D = R and z is empty, glGl,(vq,az) =: viq,bz, where v’ = va;; if D = R
and z = az, g[Gl,(vq.az) = viqaz’, where v’ = va, We can then consider the cascade
S, = <Z* W, glGl,>», and we can thus identify C with S, = <Z* W, g[G],>.

On the other hand, it is also clear that we could identify an arbitrary total state
of C with a triple <x ¢ p>, where x is a position of the machine’s head, ¢ is an internal
state, and p is a finite string of symbols in A surrounded by an infinite number of
blanks (that is, p is the content of an arbitrary tape). Let W, be the set of all such

*® This definition of a Turing machine is apparently more restrictive of the usual one which
allows any consistent set of quadruples, but in fact it is not. If such a set does not contain a
quadruple beginning with ga, we simply add the quadruple qaag,, and we adopt a slightly different
convention to determine when a Turing machine stops. A Turing machine stops iff its head
position, its intemal state, and all the symbols on the tape no longer change. This is equivalent
to requiring that the Turing machine’s total state no longer change (see below for the definition of
a total state).

" }f G is a consistent set of km quadruples, g[G], is a function defined for all total states of C;
if G were allowed to be any consistent set of quadruples, g{G], might be undefined for some total
state w.
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triples. Then G determines a function g[Gl,;: W, --> W,, and C can also be identified
with the cascade S, = <Z" W, g{Gly>.

The two dynamical systems S, and S,, however, turn out to be isomorphic in the
sense of definition 2. This is clear when the obvious one to one correspondence
between W, and W, is considered.

A second fact about Turing machines which is usually accepted without proot
is that changing the alphabet, or switching the direction of motion, does not matter.
In other words, if a machine C* can be cbtained by relabeling the symbols and the
states of another machine C, and by switching Left and Right, then C” is
essentially the same machine as C. This can be formally proved once the
cascades which correspond to C and C* are considered. In fact, these two

cascades are isomorphic in the sense of definition 2.

Example 2.2 (changing the alphabet of a Turing machine, and switching Left and
Right, generates an isomorphic machine)

If C is an arbitrary Turing machine, let C* be a second Turing machine obtained
by relabeling the symbols and the states of C, and by switching L and R. It is
intuitively clear that C and C* are essentially the same machine. This can be
formally proved once the dynamical systems which correspond to C and C* are
considered. These two dynamical systems turn out to be isomorphic in the sense of
definition 2.

Let A and A¥ be, respectively, the alphabets of C and C¥, where h: A --> A* is a
bijection. Let Q and Q¥ be, respectively, the state-sets of C and C¥, where f: Q --> Q*
is a bijection. If gaa,q, is a quadruple of C, fig)h(a)h(a,)fq) is a quadruple of C*; if
q:a,Rq, is a quadruple of C, flg;)h(a;)Lflg) is a quadruple of C*; if q;aRq, is a quadruple
of C, f{g)h(a)Lfq,) is a quadruple of C*; nothing else is a quadruple of C*. C can be
identified with S = <Z" W g[G]>, where W =: the set of all finite strings vqaz such
that a, is an arbitrary symbol in A, g, is an arbitrary internal state in Q, v and z are
finite {possibly empty) strings of symbols in A, and the Turing machine C is supposed
to be in internal state gq; and read the symbol a, immediately to the right of g,
Similarly, I identify C* with S* = <Z® W* g{G*]>, where W* =: the set of all finite
strings us;p;r such that s, is an arbitrary symbol in A*, p, is an arbitrary internal state
in Q% u and r are finite (possibly empty) strings of symbols in A*, and the Turing
machine C* is supposed to be in internal state p, and read the symbol s; immediately
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to the left of p. For any finite string w* of symbols in A*UQ®, c(w*) is the finite
string obtained by reversing the order of all the symbols in w¥ Let p: W --> W*
satisfy: p(vqaz) = c(h(v)f{qyh{a)h{z)), where h(v) (or h(z)) is the string obtained by
applying h to each symbol in v {or in z) and by concatenating the results. By its
definition, p is a bijection between W and W*, and it is immediate to verify that p
satisfies definition 2. S and S* are thus isomorphic dynamical systems.

We are now in the position of defining a proper subset of the deterministic
dynamical systems which can be identified with the class of all computational
systems. Computational systems have two essential features. First, they are
deterministic systems which evolve in discrete time steps. Second, they can
always be described in an effective manner.

The first condition can be made precise by requiring that any computational
system be a cascade. | propose o express the second condition by means of the
relation of isomorphism between dynamical systems. The intuitive idea is that a
cascade S = <T M G> is describable in an effective manner just in case S is
isomorphic to a second cascade S, = <T M, H> such that (i) there is an effective
procedure for determining the possible states of its phase space M,; (i) its
transition function H is effective.

Turing’s analysis of an effective procedure is usually accepted (Turing 19685,
sec. 9). According to this view, any effective procedure for transforming finite
symbol structures can be reduced to a function which can be computed by a

Turing machine'®. It we accept Turing's thesis, we can thus define a

% 1 will take up this issue again in chapter 2, where | will propose a more general analysis of
the intuitive concept of an effective transformation of finite symbol structures. Ordinary Turing
machines operate on finite symbol structures (strings} written on an infinite support (a linear tape)
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computational system as a cascade S = <T M G> isomorphic to a second cascade

S, = <T M, H> whose phase space M, is decidable’, and whose transition

function H is computable by some Turing machine. That is:

Deﬁmtmné ST <T M G> S,- <T M,H>
{computational system) S and S, are isomorphic cascades

i M—%Mi is a bijection

s ; P{A)=set of all finite strings built out of finite
S 15 a Computatlonal ( ) alphabet A;Mlis meluded in P(A), and
System lff: the characteristic function of I\,II1 is
S . de and th i computable by a Turing machine
15 a casca ere 18 H: Mlﬁ M1 is computable by a Turing machine

S, such that:
(1) S;=<TM, H> 15 a

cascade; P(a) M M
(2) S is isomorphic to S;; f
(3) if P(A)is the set of all
finite strings built H G
out of some finite ¢

alphabet A, M, c P(A)
and there is a Turing
machine which

computes®® the
characteristic function Figure 8 Computational systems

whose topography is extremely simple. But one can think of effectively transforming finite symbol
structures written on an infinite support whose topography is arbitrarily complicated. it is in fact
possible to define generalized Turing machines which operate on these ‘supertapes’ in exactly the
same way as ordinary Turing machines operate on linear tapes. The interesting result is that some
of these generalized Turing machines are able to compute non-recursive functions. At the end of
chapter 2, | will propose a more comprehensive definition of a computational system {(a generafized
computational system on a regular pattern field, ch. 2, sec. 5, def. 8), which is based on the
concept of a generalized Turing machine. The definition of a computational system which | give
below {def. 3) turns out to be a special case of the one | give in chapter 2. In fact, generalized
computational systems on a regular pattern field reduce to computational systems when the pattern
field is identified with the tape of an ordinary Turing machine.

'® This means that the characteristic function of M, is computable by some Turing machine.

20 A Turing machine C computes a function f: X - Y (where X, Y c P(A)) just in case $ and
# are two symbols which do nhot belong to the alphabet A and, for any x ¢ X, when C is started
in initial state q,, on the left marker $ of a tape whose content is ...bb$x#bb..., C stops and the
content of the final tape is ...bb%f(x}#bb...

The characteristic function of M, ¢ P(A) is c: P{A} --> {b bb}, where b is the string which only
cortains one blank, bb is the string obtained by concatenating two blanks, and c(x) =: bif x & M,,
c(x) = bbif x e M,.
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of M;;
{4) there is a Turing machine which computes H and, if T = 7, there is also a Turing

machine which computes H™.

If definition 3 does indeed capture the intuitive concept of a computational
system®', any system which is usually studied by computation theory must fall
within its scope. In particular, Turing machines themselves must turn out to be

computational systems. This is in fact the case, as the following example shows.

Example 3.1 (all Turing machines are computational systems)

Let C be an arbitrary Turing machine with alphabet A, state-set §, and
guadruple-set G. As we have seen in example 2.1, C can be identified with
S = <Z' W g{GG]>, where W =: the set of all finite strings ugaz such that ¢ is an
arbitrary symbol in A, g is an arbitrary internal state in @, u and z are finite (possibly
empty} strings of symbols in A, and the machine is supposed to be in internal state
g and read the symbol @ immediately to the right of ¢. This shows that, for an
arbitrary Turing machine C, C is a cascade. Conditions (1) and (2) of definition 3 are
also obviously satisfied for C = 8 = 8,. Condition (3) holds because W is a proper
subset of the set P(AU®) of all the finite strings built out of the alphabet AU, and
it 1s obvious that there is a Turing machine C, which computes the characteristic
function of W. Finally, condition (4) is also satisfied because we can construct a
second Turing machine C, which computes the transition function g[(G] of the Turing
machine C. The alphabet of C, is AUQU($ #}, and C, operates as follows. C, is
started on the left marker $ of a tape whose content is ...bb$ugaz#bb..., and it goes to
the right until it encounters g. Then, C, operates the transformation which
corresponds to the quadruple of C which begins with ga, taking care of repositioning
the left marker $ or the right marker # if needed. After this, C, stops. Also notice
that this argument does not depend on the particular cascade I have chosen to
represent C. [f C were identified with any other cascade isomorphic to S, definition
3 would still be satisfied.

2! Notice that being a cascade corresponds to the property of being a deterministic system
which evolves in discrete time steps, On the other hand, being isomorphic to a second cascade
whose phase space is decidable and whose transition function is Turing computable expresses the
- fact that a computational system can always be described in an effective manner.

38



Example 3.1 also shows that there is nothing wrong with the apparent
circularity of definition 3. The general concept of a computational system is
defined by means of the notion of a Turing machine, which obviously is a special
kind of computational system. Therefore, in a certain sense, the notion of a
computational system is presupposed, and one might worry that this circularity
invalidate definition 3. But this is not a real problem. In the first place, the
circularity of definition 3 is not complete, because the general concept of a
computational system is defined by means of one of its specifications, but it is not
directly defined in terms of itself. In the second place, the partial circularity of
definition 3 would be vicious if the specific concept | have used to define the
general one could not be proved to be a special case of the defined concept. But
example 3.1 does in fact provide this proof.

A complete proof of the adequacy of definition 3 is out of the question, for that
would involve showing that any possible formal specification of the concept of a
computational system is a special case of definition 3. QObviously, we cannot know
all the possible specifications of this concept, so that such a proof cannot be
produced. It is not however difficult to show that all the known formal definitions
of specific computational systems (register machines, cellular automata,
monogenic production systems, etc.} satisfy definition 3. Intuitively this is to be
expected, for each of these systems can be emulated by a suitably designed
Turing machine. The next example outlines the proof for linear cellular automata.

Analogous arguments can then be given for all other cases.
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Example 3.2 (all linear cellular automata are computational systems)

A linear cellular automaton is constituted by a doubly infinite sequence of cells.
At any time, each cell is in one of n possible states. The next state of each cell is
determined by its present state and by the present state of & cells to its left and & cells
to its right. Updating is synchronous. Each cellular automaton C is thus specified by
arule ¢: A% .> A, where A is the set of all possible cell states. One of the n states
is called the blank state, and is conventionally indicated by b. 1 also require that the
function ¢ take the sequence of 2k+1 bs to b, and that, at any time, only a finite
number of cells be in a non-blank state®. A cell is quiescent just in case all the cells
. in its neighborhood are in the blank state. I now show that all linear cellular
automata satisfy definition 3.

Let C be an arbitrary <n £> linear cellular automaton®, and let ¢ be its rule. A
total state of C can be identified with the finite sequence of cell states between the
leftmost and the rightmost non-gquiescent states (included). Iidentify the total state
whose cells are all quiescent with the finite sequence which only contains one blank.
Let W be the set of all total states of C. The rule ¢ obviously determines a function
®: W --> W, and C can thus be identified with S = <Z* W &>, This shows that C is
a cascade. Conditions (1) and (2) of definition 3 are also obviously satisfied for
S, =S = C. Condition (3) also holds because w e W just in case either (i) w only
contains one blank, or (ii} w = b...ba uazb...b, where q, and a, are, respectively, the
symbols on the leftmost and rightmost non-blank cells, u is the string of symbols
between a, and a (¢ may be empty and, if this is the case, a; may be equal to a,),
and b...b, is a string of k£ blanks. Therefore, W ¢ P(A), and it is cbvious that there is
a Turing machine which computes the characteristic function of W.

I finally show that the transition function @ of S is computable by a Turing
machine. This Turing machine starts on the left marker $ of a tape ...bb$w#bb...
whose content represents an arbitrary total state w ¢ W of the cellular automaton.
Each square of the tape can thus be identified with the corresponding cell of the
cellular automaton. The Turing machine then goes to the right, sequentially updating
all the cells up to the right marker #, according to rule ¢. When the new state a, of
a cell is computed, the Turing machine provisionally assigns to that cell the symbol
a;3; which codes for both the present state a, and the new state a. This allows for the
correct updating of the next cell. When all the new states have been computed, the
Turing machine first repositions the right marker # (if needed) and then goes back,
replacing each provisional symbol aa with the updated state a, of each cell. The
Turing machine ends this routine as soon as it encounters the left marker §, it then
repositions this marker (if needed), and it stops. I have thus shown that C is a
computational system.

22 If either condition is not satisfied, an infinite number of cells may need to be updated in one
time step. No Turing machine could thus compute this step in a finite time. Cellular autornata
which do not satisfy these conditions may thus be mere powerful than Turing machines, and they
may not be computational systems in the sense of definition 3.

2 G is a <n k> linear cellular automaton iff: each cell has n possible states and the updating
of each cell is determined by a neighborhood of radius &
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4. Emulation of a system

The fact that a

state evolution of the emulated system

certain system can be

1 E2 =3 By 35 5
. t t t t t
emulated by a different >
system is familiar to any
>
student of computation w r s v L
A 2 V3 % ¥5 %6

theory. The relation

state evolution of the emulating system

which holds between any Figure 9 Two state evolutions of two systems in

the emulation relation
two such systems can be

intuitively characterized as follows: some state evolutions of the emulating system
can be divided into consecutive parts so that the two states reached by this
system at the end of two consecutive parts correspond to one step in the evolution
of the emulated system. The emulation relation is not peculiar to computational
systems, but it may in fact hold between two arbitrary deterministic dynamical
systems.

This concept can be made precise by considering two functions, u and v, which
relate the states and the t-advances of the two systems. The function u injectively
maps the states of the emulated system into the states of the emulating one.
Therefore, under this mapping, each state of the emulated system can be
identified with a corresponding state of the emulating one. The function v, instead,
maps each step of the emulated system into a corresponding step of the emulating

one. Each step is individuated by the state involved in that step and by the length
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of the step, that is, by the time S = <T, M, {h* }> _ S,= <T, M, {g'}>
necessary for transforming the w M, My ks injective
. MZ
state into another state. The .
function v tells us the length
of the corresponding step of o
the emulating system. For
instance, suppose we consider u
state x and t-advance g. The
iemu ates r

function v, when applied to x Figure 10 Emulation of a system

and 1, gives us the time v(x t) which the emulating system will employ to transform
the state u{x) which corresponds to x into the state u(g'(x)) which corresponds to
g'(x). Therefore, the functions u and v must satisfy: u{g(x)} = h"*(u(x)), where
h'*" is the t-advance of the emulating system which corresponds to step g'(x).
Obviously, we should also require that v assign longer times to longer steps, and
that a step of length zero correspond to time zero. Finally, since each state in the
image of u is identified with a state of the emulated system, we should require that
a transformation of any two such states correspond to a step of the emulated
system. That is, if h'(u(x)) = u(y), there must be a time w such that g"(x) = y and

v(x w) = t. [ give below the formal definition of the emulation relation:

Definition 4 (emulation)

S, emulates S, iff:
(1} S, =<T, M, h(t x)> and S, = <T, M, g(t x}>;
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{2) there are u and v such that:
(a} w M, --> M, and u is injective;
(b)Y let T, =: {t: t € T, and t = 0}; v: MyxT,, --> T,. such that:
vix 0) = 0; if w < t, then v(x w) < v(x t);
{¢) for all t e T,,, u(gix)) = h"*“(u(x)}
(d) for all te T,,, if h'(u(x)) = uly), there is a time w such that g"(x) =y and

v(x w) = t.

it follows from conditions (2b) and (2¢) of definition 4, that the function v also

satisfies:
vixw)=0iffw=20

vixw)>0iffw>0
vix w+z) = vix w) + v(g"(x) z).

The function u maps the states of the emulated system into states of the
emulating system which thus represent them. Intuitively, the meaning of the
function v is the following: v(x t) is the time which the emulating system employs
to emulate the step from x to ¢'(x) of the emulated system. This time may depend
on ‘*how long' such a step is (that is, on t) and also on the particular state x which
is transformed by such a step. Conditions (2b) ensure that the dependence of v
on time is correct, in the sense that a ‘zero step' (x transformed into x) is
emulated in zero time, and longer steps are emulated in fonger times. Condition
(2c) ensures that any step of the emulated system is emulated by the emulating
system. Conversely, condition (2d} ensures that any step of the emulating system
which transforms states which represent states of the emulated system does in
fact emulate a corresponding step of this system.

The reason for restricting conditions (2b), (2c), and (2d) to positive instants is
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that | want definition 4 to apply to ‘mixed cases', that is, cases in which one of the
systems only evolves through positive times, while the other one may also perform
negative steps. If the restriction to positive instants were dropped, an arbitrary

mixed case would not satisfy the emulation relation.

Example 4.1 (a simple cellular automaton which emulates another one)

Stephen Wolfram has noticed that there are very simple cellular automata which
emulate other cellular automata (Wolfram 1983a, 629-30). Let C, and C, be linear
cellular automata with cell states {0 1. The next state of each cell depends on its
present state and on the present states of its left and right neighbors. These two
automata are individuated by the following rules:

rules 22 and 146 (in binary)

0 0 0 1 0 1 1 0 (rule 22)

1 0 0 1 0 0 1 0  (rule 146)

It turns out that C, emulates C, in the sense of definition 4. Let W be the set of
all doubly infinite sequences of 0s and 1s which contain a finite number of 1s. W is
thus the phase space of both C, and C,. To see that C, emulates C,, let w: W --> W
be the function which, for an arbitrary w € W, replaces 0 with 00, and 1 with 01. Let
v: WxZ" ~> Z7 be defined by: viw k) =: k, if w does not contain any 1; 2k, otherwise.
It is then easy to verify that u and v satisfy definition 4 (substitute 00 for 0 and 01
for 1 in each transformation of rule 146, and then apply rule 22).

Example 4.2 (linear cellular automata emulate Turing machines)

For an arbitrary Turing machine C,, there is a linear cellular antomaton C, such
that C, emulates C,. C; 1s a linear cellular automaton with a neighborhood of
radius 3, and C, is constructed as follows*.

# This construction is simple and extremely natural, but it is not the most economical one. |f
C, has m symbols and n internal states, C, has m+n states. It is possible to reduce this number
to max(m+1 n+1) (Smith 1971, th. 3).

44



If A and Q are respectively, the alphabet and the state-set of the Turing machine
C, (where AnQ = @), AUQ is the state set of the cellular automaton C,. If b is the
blank of C,, b is the blank state of C,. If ...aaagaaa... is an arbitrary total state of C,,
..bababagababa... is the total state of C, which represents ...aaagaaa... . Given the
quadruples of C,, the rule of C, is obtained as follows. An arbitrary quadruple of C,
has three possible forms: gaa,q, gaRaq, galg. Fach of these quadruples can be
rewritten as a matrix of two rows and eleven columns, where a is a place-holder®
for an arbitrary symbol in A, and b is the blank state of C:

1 2 3 4 5 6 7 8 9 10 11
1 a & a b a q a & a b a corresponds to gqa,a,q;
2 G 8

1 2 3 4 5 6 7 8 9 1011
1 a b a & a g a b a b a corresponds to g;aRq,
2 b q

1 2 3 4 5 6 7 8 9 10 11
1 a b a b a g 3 & a b ¢ corresponds to q;a;Lg;
2 q, b

Each of the quadruples may change the state of at most two cells: cells 6 and 7 for
the first quadruple, cells 6 and 8 for the second, and cells 4 and 6 for the third. All
other cells maintain their previous states. Each quadruple thus corresponds to fwo
transformation-forms of the cellular automaton:

o correspond to qaa,q,

b a g a b a b

% This means that different copies of a may represent different symbols of the alphabet A.
Therefore, a is not a variable.

45



b correspond to g;aRq,

q; correspond to g.alq

The cellular automaton rule which individuates C, is obtained from these
transformation-forms by substituting all possible symbols in A for each occurrence
ofa. Any sequence of seven cell states which cannot be obtained from these
transformation-forms is taken to the state of its central cell. Let u and v be defined
by: ul...aaaqaaa...) =: ...bababaqababa...; v(...aaaqaaa... k) =: k. Then, by construction
of C,, and by the definitions of u and v, C, emulates C,.

The emulation relation is reflexive and transitive, but it is not symmetric. ltis
thus a quasi-ordering on the set of all deterministic dynamical systems. The proof
that reflexivity holds is immediate, once u is taken to be the identity function and
v the function which takes <x t>tot. As for transitivity, suppose S, emulates S,
S, emulates S;, and that u; M, > M, Uusx M;->M, v MxT,, ->T,,,
v,: MgxT,, --> T,, satisfy definition 2. Then it is easy to verify that u, =: u,(u,(2))
and v,(z t) = v,(u,(2) v,{z 1)) satisfy definition 2. | give the details of the proof in

the appendix.
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Theorem 2

The emulation relation is a quasi-ordering on the set of all deterministic dynamical
systems

proof:
see the appendix
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5. Reversible versus irreversible systems

Let T be the reals, the rationals, or the integers, and let T' be the non-negative

reals, non-negative rationals, or non-negative integers. Then, S is a reversible
system just in case S =<T Mgt x)>, and S is jrreversible if, and only i,
S = <T" M glt x)>. We have seen above (section 2, properties 1-3) that, for any
reversible system, {g'} is a group with respect to the composition operation and

that the inverse of ¢' = (¢)" = g". Therefore, if x is the state of the system at the

Deterministic dynamical systems
Reversible Irreversible
T =R, Q, Z T =R Q, ZF
Time Quasi- Not guasi-reversible
symmetric rewversible
Not time There is For any t, There is @ such that:
symmetric - M-—>M: 8 &
—{ st — = _._..................) b4
(g &) = >
_t i
gHx) b/
Weakly Strongly
irreversible irreversible
Irreversible, = t
not guasi— w 3
reversible, and | &
not strongly )
irreversible 7 g
Figure 11 Types of dynamical systems
present time t,, we can always find the state of the system at any previous time

t,-t by simply considering the negative t-advance g'(x). If a system is irreversible
this is not possible, because no negative t-advance is in {g'}. Yet, one might

consider whether ¢' is injective for any t. H this is the case, and x is the state of
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the system at the present time t,, we can still find the state of the system at any
previous time 1,-t > 0 by considering the inverse of the t-advance g, that is (g') (x).
Any irreversible system such that g¢' is injective for any t will be called

guasi-reversible®®,

Suppose now that S is irreversible, but not quasi-reversible. 1t is useful to

further distinguish two cases: S is strongly irreversible just in case there are

t-advances ¢ and g’ and there are x and y such that x # vy, g'(x) = g*(y) and, for

all times w, g*(x) = y and g*(y) # x; S is weakly irreversible just in case S is

irreversible, S is not quasi-reversible, and S is not strongly irreversible.
If a system S is reversible, then ¢ is surjective for any t. In irreversible
systems this property usually fails. Any system such that ¢' is not surjective for

some t will be called a contracting system.

| now prove two theorems which are direct consequences of the definition of
strongly irreversible system. The first theorem gives a necessary and sufficient
condition for a system to be strongly irreversible: a system is strongly irreversible
just in case there are two state evolutions whose images intersect, but are not in
the subset relation. The second theorem simply states that a strongly irreversible
system is irreversible, and has some t-advance which is not injective (that is, it is

not quasi-reversible).

?® Bennett (1973) calls these systems “logically reversible”.
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Theorem 3

S is strongly irreversible iff there are two state-evolutions, g* and g°, such that x zy
and Im(g" ¢ Im(g") and Im(g’) ¢ Im(g") and Im{g*)nIm(g”) # &

proof:
assume that S is strongly irreversible. Then, there are x and y such that x # y and

Im(g")nIm(g”) = @. If Im(g") < Im(g") or Im(g") < Imig"), thereis wsuchthatg™(x) =y
or g"(y) = x. But there is no such w because S strongly irreversible. Conversely,
suppose first that S is reversible. Then, since Im(g")nIm(g’) # &, Im(g") = Im(g"),
against the hypotheses. S is thus irreversible, From the hypotheses of the theorem,
it follows that there are x, v, t and z such that g'(x) = gy} and x # y. I thereis w =0
such that g¥(x) = y or g*(y)} = %, then Im(g") ¢ Im(g") or Im(g*) < Im(g"), against the
hypotheses g.e.d.

Theorem 4

If S is strongly irreversible, S is irreversible and S is not quasi-reversible.

proof:

suppose that S is strongly irreversible and reversible. Then, from theorem 3, there
are x and y, such that x#yv and Im(g" ¢ Im{g") and Im(g’) ¢ Im(g") and
Im{g9nIm{g’) # &. But, since S is reversible, for all x and y, either Im(g") = Im(g’} or
Im{g"nIm(g") = &.

Suppose now that S is strongly irreversible and quasi-reversible. Then, for all t, g* is
injective, and there are g', g°, x, and y such that x # y, g'(x) = g(y) and, for all times
w, g¥(x) # v and g"(y) # x. Ift = z, g" is not injective. Suppose t > z. Then, g(g™(x)) =
g (x) = g¥x) = g'(y). But g"(x) #y, hence g* is not injective. Analogously if t < z
g.e.d.

It is useful to look at the previous definitions and theorems from the following
point of view. Recall first that the orbit of a point x is the image of the state
evolution g* whose initial state is x. I indicate the orbit of x by "orb(x}". In
reversible systems, for any two orbits orb(x) and orb(y), there are only two possible
cases: orb(x) = orb(y), or orb(x}orb(y) = &, and the first case holds iff x & orb{y)

or y € orb(x). In guasi-reversible systems or weakly irreversible systems four

50



orb(x) = orb(y)

@,

orbi{x) orb{y)
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Reversible
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or weakly
irreversible

Strongly
irreversible

Figure 12 Set theoretical relationships between two orbits in different types
of dynamical systems

cases are possible: orb(x) = orb(y), or orb(x)norb(y) = &, or orb(x) c orb(y), or
orb(y) < orb(x). In strongly irreversible systems also a fifth case is possible:
orb(x) ¢ orb(y), and orb(y) & orb(x), and orb(x)morb(y) # &; that is, the orbits of x
and y intersect, but neither is a subset of the other. Hence, only in strongly
irreversible systems are there orbits of different points which merge with time. |
now define four types of different orbits, and | then study the relations between the

classes of irreversible systems | have previously introduced and these four types

of orbits.
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Let, for any x € M, orb(x) =: Im(g*). Then:
orb(x) is periodic iff: there is t > 0 such that g'(x) = x;
orb{x) is eventually periodic iff: orb(x)} is not periodic, but there are y and t: g'(x) = y
and orb(y) is periodic;
orb(x}) is aperiodic iff: orb(x) is neither periodic, nor eventually periodic;
orb(x) is merging iff: there is y such that x # y, orb(x)norb(y) # &, orb(x) ¢ orb(y), and

orb(y) ¢ orb(x).

Any point (state) whose orbit is periodic, eventually periodic, aperiodic, or
merging, is called a periodic, eventually periodic, aperiodic, or merging point.

eriodic
\e//_)\ Reversible
aperiodic
periodic
Quasi—
reversible

aperiodic irreversible

eventually
periodic

merging and
aperiodic

Strongly
irreversible

merging and
eventually perindic

Figure 13 Possible orbits in different types of dynamical systems

In the first place, since the orbit of x is the image of the state evolution g*, we

can restate theorem 1 as foliows:
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Corollary 3.1

S is strongly irreversible iff S has merging orbits

proof:
from theorem 3 and the definition of merging orbit g.e.d.

Corollary 3.1 characterizes strongly irreversible systems in terms of a specific
type of orbit they possess. A similar characterization of weakly irreversible
systems is possible, but we first need two lemmas. The first lemma states that
any system which has eventually pericdic orbits or merging orbits has some
t-advance which is not injective. |f there are merging orbits, the thesis follows
immediately from corollary 3.1 and theorem 4. As for the case of eventually
periodic orbits, the thesis follows (with some fiddling) from the definitions of
eventually periodic orbit and periodic orbit. The details of the proof are in the

appendix.

Lemma 5.1

If S has eventually periodic orbits or S has merging orbits, there is t such that g' is
not injective

proof:
see the appendix

An interesting consequence of Lemma 5.1 is that any Turing machine which
halts after at least one step has some t-advance which is not injective. The

interesting point is that the halting problem for the class of all quasi-reversible
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Turing machines is thus decidable. In fact, given any input, we can just check
whether the machine immediately halts. If it does not, it will never halt for,
otherwise, some f-advance would not be injective. What this means is that the
unsolvability of the halting problem depends on the fact that some Turing machines
are not quasi-reversible”. We will see later that a second important property of

Turing machines, universality, is necessarily associated with strong irreversibility.

The second lemma states that any system which does not have merging orbits,
but has some t-advance which is not injective, has eventually periodic orbits. The
hypotheses of the lemma, together with the definition of merging orbit, corollary
3.1, and the definition of strongly irreversible system, imply that there are t, w, X,
y, and z such that x 2 y, ¢'(x) = g'(y) = z, and g"(x) = y. Then, by the definition of
eventually periodic orbit, the lemma will be proved if we can show that orb(z) is
periodic and orb(x) is not periodic. The proof that orb(z) is periodic is immediate.

The proof that orb(x} is not periodic proceeds by reductio. We first assume that

77 Also notice that the class of all quasi-reversible Turing machines is decidable. In fact, the
t-advances of a Turing machine are injective iff the transition function is injective, and we can
decide this condition by inspecting the quadruples. If W is the set of all total states of a Turing
machine, each quadruple is an injective function from X ¢ W to W, and the domains of any two
quadruples are disjoint. Therefore, the transition function of a Turing machine is injective iff the
imageses of any two quadruples do not overlap. Furthermore, the following conditions hold: (i) two
quadruples gaa,q, and g,aa,q, have overlapping images iff m = k and n = {; (i) two quadruples
galq, and qalg (gaRq, and gaRq) have overlapping images iff n=1 and i=r; (i) two
quadruples galq, and g.aa,q (9aRq, and gaa.q) have overlapping images f n =1, {iv) two
quadruples qal.q, and g.a Rq, have overlapping images iff n = I. Obviously, these conditions aflow
us to decide whether there is a pair of quadruples with overfapping images. [f no such a pair
exists, the Turing machine is quasi-reversible, and its halting problem is thus decidable. For
example, a simple quasi-reversible Turing machine is specified by the quadruples G = {q,bRq,

Qo114 g;bba, g,1Rq, q,bRq, g,1Rq,}.
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orb(x) is periodic, that is, there is s such that g°(x) = x, and we then consider the

three cases s = t, s > 1, and s <t. In each case, we deduce the contradiction

X = z and x # z. The details are in the appendix.

Lemma 5.2

If there is t such that g'is not injective, and S has no merging orbits, S has eventually
periodic orbits

proof:
see the appendix

We can now characterize weakly irreversible systems as those systems which

have eventually periodic orbits but do not have merging orbits:

Theorem 5

S is weakly irreversible iff S has eventually periodic orbits and S has no merging
orbits

proof:
from lemma 5.1, lemma 5.2, corollary 3.1, and the definition of weakly irreversible

system q.e.d.

If some t-advance is not iniective, that is, if a system is not quasi-reversible,
there must be either eventually periodic or merging orbits, and also the converse

statement holds:
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Corollary 5.1

S has eventually periodic orbits or S has merging orhits iff there is t such that g'is
not injective

proof:

left/right is lemma 5.1. As for right/left, suppose there is t: g' is not injective. Then,
either S has merging orbits, or S has not merging orbits. From this and lemma 5.2
the thesis follows g.e.d.

Computational systems are usually strongly irreversible, while most systems
of classical dynamics are reversible. In fact, these systems satisfy an even
stronger property: they are time symmetric, in the following sense. A total state,
x, of a system of classical dynamics is specified when all the positions and

velocities are given. If we consider the state -(x), obtained from x by changing the

H

sign of all velocities, it holds: -(g'(-(x))) = g'(x), for alit and x. That is, the ‘inverse'

of the forward evolution from state -(x} is equal to the backward evolution from
state x. Obviously, if the previous property holds, -(-(x)) = x, for all x; in fact:
-(-(x}) = ~(g°(-00) = g®(x) = x. This motivates the following definition: S is time
symmetric iff: S is reversible and there is a function -1 M --> M such that, for all x

and t, (g'(-(x))} = g*(x).

Example

The Galilean model of free fall S = <T YxV {g'l> is a time symmetric system.
Recall that T'is time, Y are the vertical positions of a freely falling body, V the vertical
velocities, and g': YxV --> YxV is defined by: gy v) =: <(y + vt + 1/2ct?) (v + ct)>. Let
- YV -> YxV be defined by «(yv) =: <y -v>. Then: -(g({yv))) = -(g¥y -v}) =
{y vt + 12t (vacet)= <(y-vt+ 12t (v-cth>= g¥yv). 8 is thus time
symmetric.
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6. Realization of a system

We have seen in section 5 that strongly irreversible systems have merging
orbits, while any two orbits of a reversible system either coincide or are separated.
It is then intuitively clear that reversible systems cannot emulate strongly
irreversible ones. This is in fact a special case of a more general result: no
system which is not strongly irreversible can emulate a strongly irreversible
system. The proof of this theorem is by reductio. We assume first that a strongly
irreversible system S, is emulated by a system S, which is not strongly irreversible,
and we then use the definition of strongly irreversible system, and the definition of
emulation, to deduce a contradiction. Notice that this proof employs both
conditions (2¢) and (2d) of the definition of emulation. That is, merging orbits
cannot be emulated by a system which lacks this type of orbit because (i) each
step of the emulated system is in fact emulated by the emulating system and
(i) each step of the emulating system which transforms states which correspond

to the states of the emulated system emulates a step of this system.

Theorem 6

If S, is strongly irreversible and 8, is not strongly irreversible, S, does not emulate S,

proof:

suppose S, 1s strongly irreversible, and S, is not strongly irreversible; suppose for
reductio that S, emulates S,. Since S, i1s strongly irreversible, there are x and y, x # y,
such that, for some t and z, g'(x) = g’(y} and, for all w, g"(x) # y and g"(y) # x. Since
S, emulates S,, from condition (2¢) of definition 4, u(gfx)) = h"™ “(u(x)) and
ulg’(y)) = b “(uly)). Hence, ™ *(u(x)) = h*"" “(uly)}. Since S, is not strongly
irreversible, S, has no merging orbits. Therefore, either orb(u(x}} ¢ orb(u(y)) or
orb(u(y)) ¢ orb(u{x}). Thus, there is a time s =0 such that h%(u(x)) = u(y) or
h¥u(y)) = u(z). Then, since S, emulates S, from condition {(2d) of definition 4, there
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is a time w such that g¥(x) = y or g*(y) = x. But, for all w, g"(x) # y and g"(y) # x. We
have thus reached a contradiction, whence S, does not emulate S, g.e.d.

An immediate, and important, consequence of theorem 6 is that all universal

computational systems are strongly irreversible. C is a universal computational

system iff: C is a computational system which emulates all computational systems.
Such a class is not empty, for there is a Turing machine which is universal in this
sense®. Furthermore, all universal computational systems must be strongly
irreversible. This follows from their universality, from theorem 6, and from the fact
that some computational systems are strongly irreversible. This result is also
interesting because it highlights a necessary, qualitative, feature of the
phase-portrait of all universal systems: all these systems must have merging
orbits. More in general, the definition of universal computational system, theorem
6, and definition 4 imply that a universal computational system has orbits of all
possible types: periodic, eventually periodic, aperiodic, and merging?®. 1f some

type is missing, the system cannot be universal.

% If S is an arbitrary computational system, the transition function of a system S, isomorphic
to S is computable by a Turing machine. We can thus modify this Turing machine to obtain a
Turing machine which emulates S,. Also, there is a Turing machine which emulates any other
Turing machine. From this, and the transitivity of the emulation relation, it follows that this machine
emulates all computational systems.

* There are two types of merging orbits: merging and eventually periodic or merging and
aperiodic. Both types must be present in a universal system. The proof that a system S, which
lacks a type of orbit cannot emulate a system S, with that type of orbit is analogous to the proof
of theorem 6. We assume first that S, emulates S,, and we then deduce a contradiction from the
definition of that orbit type, and from the definition of emulation. These theorems thus show that
the emulation relation preserves the qualitative features of the phase portrait of the emulated
system. We will see shortly that a natural generalization of the emulation relation, the realization
relation, does not satisfy this property.
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Theorem 6 implies that no strongly irreversible system can be emulated by a
reversible one. Nevertheless, some strongly irreversible systems can be
implemented, or realized, by reversible systems. For example, Norman Margolus
(1984) has proved that a certain reversible system is computationally universal.
But | have just shown that all computationally universal systems are strongly
irreversible, so that these two results seem to be inconsistent. This apparent
paradox in fact shows that the emulation relation cannot be the relation which
holds between an arbitrary computational system and a universal reversible
system. 1| am now going to analyze this second relation, and | will always use the
word "realization" for referring to it. The word "emulation”, instead, always refers
to the relation defined in section 4. Finally, | leave the terms "implementation” and
"simulation” unanalyzed.

To get an intuitive understanding of the concept | want to analyze, think of the
relation between a Turing machine and its physical realizations as usually
described. We have seen in section 3 {(examples 2.1 and 3.1) that an arbitrary
Turing machine can be identified with any member of a class of isomorphic
dynamical systems. None of these systems, however, can be a physical system,
for two basic reasons. In the first place, all these systems evolve in discrete time
steps, while physical systems evolve continuously. In the second place, the phase
space of a Turing machine has a denumerable number of states, while the phase
space of a physical system has the power of the continuum. Therefore, Turing

machines are not physical systems. Nevertheless, they can be implemented, or
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realized, by physical systems™.

A standard realization

C = Turing machine gE_G} = total transition function

S)_f g Tur]nq mach'ne |S a M - {<z g p>} phese space G = sct of gquadruples

® = position of the head

g = internal state

physical system which p = tape configuration

satisfies a certain

Cc=<z"MglG]>

T
macroscopic  definition. .
The deta”S Of '[hiS standard raaliz_étinn of C
n state part
definition may vary, but B posd per
Toloie|o]j0]ol0l0l0lLldi0j ti(t]ij0jii0/o0oloioloialaio]
. tape part
the story typically goes

the Figure 14 Standard realization of a Turing
machine

system is deterministic, and it has three parts, which correspond to the tape, to the

like this. First,

head, and to the control unit of the Turing machine. The tape partis a linear array
of distinct addresses, and each address is in one of a finite number of different
states, which correspond to the symbols of the Turing machine. The head partis
a mechanism which is always located on exactly one tape address, has the
capacity of changing the state of that address, and of moving to the address
immediately to the left or to the right. Finally, the state part (or control unit) is in
one of a finite number of mutually exclusive configurations, which correspond to

the internal states of the Turing machine. Second, whenever the head part is set

* The same argument also applies to any computational system. No computational system
is thus identical to a physical system. However, some physical systemns realize some

computational systems.
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(or reset) on address x, the state part is set (or reset) to configuration q, and the
tape part is set (or reset) to configuration p, the head part will move to address x’,
the configuration of the state part will change to g’, and the tape configuration will
change to p’, at a later time which only depends on X, g, and p. Furthermore, X',
', and p’ correspond to the position, internal state, and tape configuration in which
the Turing machine goes in one step when it is started on the position, internal

state, and tape configuration which correspond to X, q, and p*.

i a physical system

8, = <T, M, {H}> S, = <T, M,{g'}>
SaTISfIG‘S the GEfInIUOH D‘= set of mutuaily exclusive instantaneous descriptions of Sl
u: Mz-——> T’ is = bijection
stated above, then this R

/‘\D
system is in a definite i, at 0 . S, satisties/ Ufx) u

Y

relation with the Turing
v{x t)
machine. | will call this

. n . H *U €
re;ation reahzatlon ’ in then, at V(X t} . Sisat.isfies u(gt(X)

the first place, notice that S, realizes* 5,

the definition of standard Figure 15 The realization relation (first version)

realization of a Turing machine involves a set of mutually exclusive instantaneous

' | intend that, if t, is the time at which the physical system is set to x, q, and p, and t, is the
time at which the physical system resets itself to x’, ', and p’, then, for any time t between t, and
t,, and any X, q, and p, the physical system does not reset itself to X, g, and p att. This implies
that, if x, q. and p are the position, internal state, and tape configuration of the Turing machine
which correspond to x, q, and p of the physical system, and u{x g p) is the instantaneous
description of the physical system "the head part is set {or reset) on address X, the configuration
of the state part is set {or reset) to q, and the configuration of the tape part is set (or reset) to p",
then there is a function f(u{x g p}} =: the time necessary for resetting the head part, the slate part,
and the tape part to X', q’, and p’, where X', q', and p’ correspond to the position, internal state,
and tape configuration in which the Turing machine goes in one step when it is started on x, g, and
p. Furthermore, f{u(x g p)) > 0.

61



descriptions of the physical system. Each of these descriptions has the form: the
head part is set (or reset) on address x, the configuration of the state part is set
(or reset) to q, and the configuration of the tape part is set (or reset) to p.
Obviously, there is a bijection u between the set of these descriptions D* and the
set of all total states of the Turing machine, so that each total state <x g p> can
be identified with the corresponding instantaneous description u(x q p) of the
physical system. Furthermore, each transition of the Turing machine from total
state <x g p> to total state <x’ g’ p*> is mirrored by a transition between the
corresponding descriptions of the physical system. This implies that there is a
function v(<x g p> t) which tells us how much time the physical system employs
to mirror the step® from <x g p> to <x’ g’ p> = g[GJ(x g p). Therefore, if the
physical system satisfies description u(x g p) at time 0 relative to initial state v,
then it must satisfy description u(g[G]'(x g p)) at time v(<x g p> 1) relative to initial
state ¥*°. Also, since any description u(x g p) of the physical system is identified
with the total state <x g p> of the Turing machine, if the physical system satisfies
description u(x g p) at time 0O relative to initial state v, and description u(x’ ¢’ p’) at

timet > O relative to initial state v, then there must be a step of the Turing machine

% G[g] is the transition function of the Turing machine, and G[g]' is an arbitrary t-advance (or
state transition) of the Turing machine. G[g] is obtained by iterating t times (0 < t) the transition
function G[g].

% We need to explicitly take into account the initial state v of the physical system S because,
depending on v, S will in general satisty different instantaneous descriptions at time t. This
becomes obvious once we identify an instantaneous description u(x q p) of S with a set of states
of 8, and we interpret "S satisfies description u(x q p) at t relative to ¥' as "there is « € u(x g p)
such that h'(a) = v*, where {h'} are the t-advances of S. See definition 6, and the discussion
between definitions 5 and 6.
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which corresponds to the transition from u(x g p) to u(x’ g’ p). That is, the
following condition holds: if the physical system satisfies description u(x g p) at
time O relative to initial state v, and it satisfies description u(x’ g’ p) attme t>0
relative to initial state v, then there is a time w such that g[G]"(x g p) = <x' @’ p*>
and v(<x g p> w) =t. Finally, the function v assigns longer times to longer steps
of the Turing machine, and it assigns time 0 to the step of length 0. All these
properties of the relation which holds between a Turing machine and its standard
realizations may also hold when we consider the relation between two arbitrary

dynamical systems. Therefore, | abstractly define the realization™ relation as

follows:

Definition 5 (realization, first version)

S, realizes™ S, iff:
(1) 8, =<Ty M, h{t a}> and 8, = <T; M, g(t x)>;
(2) there are u and v such that:
(a) u: M, -->D* wu is a bijection, and D* is a set of mutually exclusive
instantaneous descriptions of S;;
(b) let T, =: {t: t € T, and t = 0}; v: M,xT,, --> T, such that:
v(ix 0) = 0; if w < t, then v(x w) < v(x t);
(c) for any t e T,,, ye M, if S, satisfies u(x) at time O relative to vy, then S,
satisfles u(g'(x)) at time v(x t) relative to y;
(d) for any te T,,, ye M,, if S, satisfies u(x) at time 0 relative to y, and S,
satisfies u(y) at time t relative to vy, then there is a time w such that g*(x) = y
and v(x w) = t.

| now verify that any standard realization of a Turing machine does satisfy

definition 5.
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Example 5.1 (any standard realization of a Turing machine realizes* that machine)

Let C be a Turing machine, and let p(C) be a standard realization of C. Then,
p(C) realizes® C. By the definition of a standard realization of a Turing machine, p(C)
is a deterministic system; let p(C)=3S,=<TM {h'}>. [ identify C with
S, = <Z* W, g[Gl,> of example 2.1; condition (1) of definition 5 thus holds. Let
<x g p> € W, be an arbitrary total state of C; u(x g p) is the following instantaneous
description of p(C): the head part of p(C) is set (or reset) on address x, the
configuration of the state part of p(C) is set (or reset) to g, and the configuration of the
tape part of p(C) is set (or reset) to p, where x, q and p correspond to x, ¢, and p. Let
D* = {ulx ¢ p): <x ¢ p> € W,}; D* is thus a set of mutually exclusive instantaneous
descriptions of p(C), and u is a bijection from W, to D*. Condition (2a) of definition
5 is thus satisfied. Let f* D* --> T be defined by flu(x ¢ p)) =: the time necessary for
resetting the head-part, the state part, and the tape part of p(C) to X, ¢’, and p’,
where g[Glx g p) = <x’ ¢’ p’> (see footnote 31). By the definition of p(C),
flu(x g p)) > 0. Let vi<xgp>0)= 0 and, for all ke Z', vi<xgqp>k+l)=
vi<x g p> k) + flu(g[Gl,(x ¢ p)); condition (2b) of definition 5 thus holds, and condition
(2¢) is also obviously satisfied by u and v. To see that condition (2d) also holds,
suppose 0 <t, S, satisfies u(x g p) at time 0 relative to vy, and S, satisfies
u(glGly(x g p)) at time t relative to y. By the definitions of p(C) and of D¥, for any
instantaneous description u(x ¢ p) € D¥, and any t: 0 <t, <t, S does not satisfy
u(x g p) at time t relative to y (see footnote 31). From this, and the definitions of u
and v, condition (2d) of definition 5 follows. Therefore, p(C) realizes™® C.

If realize* successfully analyzes the relation between a dynamical system and
its realizations, whenever a high level description of a physical realization of some
dynamical system is given, realize* should hold between this dynamical system
and any physical system which satisfies this description. Example 5.1 shows that
this is in fact the case for the standard definition of a physical realization of a
Turing machine. Many other examples can be found in computation theory. For
instance, one can define a physical realization of a register machine (or of a
cellular automaton) in the cbvious way, and then prove that any system which
satisfies this definition is in the relation realize* with the register machine (or with

the cellular automaton). In general, realize* should also hold whenever a higher
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level dynamical system is reduced to, but not identified with, a lower level one.

lf a system S : :
y 1 S, = <y M1{ht}> 5,= <, NIz{gt}:>

) = set of mutually disjoint subsets of ].\Iﬂ:1

realizes* a second

w M,—> D is a bijection

system S,, each state

ux)

O(

N (=t}

of S, is univocally
represented by an

instantaneous description

f\lggt@)

of 8,, but definition 5

does not explicitly relate

Figure 16 Therealization relation (second version)

these instantaneous
descriptions to the states and the t-advances of S,. However, each state of a
dynamical system completely describes the system at some instant, so that any
set of states can be thought as being expressed by an instantaneous description
of that system. Conversely, any instantaneous description of a dynamical system
always expresses a set of states of the system®. Any two mutually exclusive
instantaneous descriptions can thus be identified with two disjoint subsets of the
phase space, and the phrase “system S, satisfies description u(x) at time t relative
to ¥ simply means that "there is a state o & u(x) such that h'(y) = o', where {h'}

are the t-advances (or state transitions) of S,. With this interpretation in mind we

¥ A complete instantaneous description expresses a set which only contains one state. An
incomplete instantaneous description expresses a set which contains at least two states.

% Notice that, if t and y are fixed, the state o is unique.
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can thus put definition 5 into an equivalent form:

Definition 6 (realization, second version)}

S, realizes S, iff:
(1) S, = <T\ M, h(t o)> and 8, = <T, M, glt x}>;
(2) there are u and v such that:
(a) u: M, --> D, u is injective and surjective, and D is a set of mutually disjoint

subsets of M,;
(b) let T, =: {t: t ¢ T, and t = 0); v: MyxT,, --> T, such that:
vix 0) = 0;if w < t, then vix w) < v(x t);
(¢) for any t e T,,, for any o ¢ u(x), there is B e u(g(x)), such that h"™ %) = B;
{(d) for any t € T,,, for any o e u(x), for any B € u(y), if (o) = B, then there is a
time w such that g%(x) = y and v(x w) = t.

Definitions 6 and 5 are equivalent if an arbitrary set of states u{x) in D is
identified with the instantaneous description u(x) in D*, and the phrase "S, satisfies
description u(x) at time t relative to ¥ is interpreted as "there is a state o € u(x)
such that h'(y) = «". The equivalence of the two definitions of the realization

relation is thus expressed by the following theorem:

Theorem 7

Definition 6 and definition 5 are equivalent under the interpretation:

(1) D*=D

(2) S, satisfies description u(x) at t relative to v iff there is a state o € u(x) such that
h'(y) = o

proof:
the thesis follows from definitions 5, 6, and from the interpretation stated above. For

the details see the appendix gq.e.d.

Two further requirements that the realization relation should certainly satisfy
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are reflexivity and transitivity. | prove in the appendix that these properties are in
fact entailed by definition 6. The proof that reflexivity holds is immediate. In fact,
the realization relation reduces to the emulation relation once each state x of a
system is identified with the set {x} which contains that state. The proot that
transitivity holds is analogous to the corresponding proof for the emulation relation
(see theorem 2). However, the functions u, and v, must be defined in a somewhat
different way. Suppose S, = <T, M, gt x>, S, = <T, M, g,{t y)>,
S, = <T; M, g,(t z)>, and that S, realizes S, and S, realizes S;. Furthermore, let
t: M, > Dy, v MxXT,, -->T,,, u, My-->D,, and v,: MxT,, > T, satisty
definition 6. We then must show that there are u;: My --> D and v, MxT,, --> T,
which also satisfy definition 8. Recall that, to prove transitivity for the emulation
relation, we defined u,(z) =: u,(u,(2)) and v,4(z 1) =: vi{u,(2) v,(2 1)). The problem
is that, now, u,(z) is not a state of 5, but, rather, a set of states, so that the two
compositions u,'(ug(z)) and v, (u,(z) v,(z t}) do not make sense. However, we can
solve this problem with a simple trick. Instead of u,; M, -->D,, we use a
function® f: M, --> M, which satisfies f(z) e u,(z) and f(g,'(2)) = g, ?(f(2)), and
we then define u,(z) = w,({(z)) and v,(z t) =2 v {f v,(z 1)). It is then easy to prove

that u, and v, satisfy definition 6. | give the details in the appendix.

Theorem 8

The realization relation is a quasi-ordering on the set of all dynamical systems

% The existence of such a function is guaranteed by the fact that u, and v, satisfy definition 6.
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proof:
see the appendix

Finally, transitivity with respect to emulation, and transitivity with respect to

isomorphism, immediately follow from the previous theorem:

Corollary 8.1

(a) If 8, realizes S, and S, emulates S, then S, realizes S,
(b) if S, realizes S, and S, is isomorphic to S;, then S, realizes S,

proof of (a):
notice that, if S, emulates S;, then S, realizes S;. From this and theorem 8 the thesis

follows /q.e.d//

proof of (b):
notice that, if S, is isomorphic to S;, then S, emulates S;. From this and (a) the thesis

follows //q.ed// qe.d

Example 5.1 {continued)

In example 5.1 I have shown that, once an arbitrary Turing machine C is
identified with the dynamical system S, = <Z* W, g[Gl>, p(C) realizes™ C, where p(C)
is a standard realization of C. Corollary 8.1(b) and theorem 7 imply that this proof
does not depend on the particular system I have chosen to represent C.
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7. Virtual systems, the realizability of irreversible systems, and the existence
of universal reversible systems

in computation
p Sj_: <T1 M1{g:}> Szz <T:‘2 Mz{g§}>

ur Mz — M1 iz injective Siemula.ten SZ

theory it is customary to
M

talk of the wvirtual

computer implemented
by a system. The

implementing system

may either be a physical

system or a second [V(S,5) =<T, My{gi > M, = ulM)|

Figure 17 The virtual system V(8, S,) when 8,
emulates S,

computer is supposedly defined in terms of the lower level workings of the

computer, and the virtual

implementing system. The relations of emulation and realization allow us to make
this idea precise. Whenever a system S, either emulates or realizes a second
system S,, the states and the t-advances of S,, together with the functions u and
v, can be used to define a third system V(S, S,) which turns out to be isomorphic
to S, | will thus call this system the virtual S, in S;. The basic idea of the
definition is that we may identify each state of S, with u(y), where u(y) is the state
(or set of states) of S, which represents the state y of 5,. We can then use v(y t)
to define the t-advance g, of the virtual system which corresponds to g,'(y), where
g,' is an arbitrary t-advance of S,. If u(y) is a state of S,, that is, if S; emulates S,,
g (u(y)) is simply defined as g,"¥ "(u(y)).

If u(y) is a set of states of S,, that is, if S, realizes S,, let us first choose an
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arbitrary x e u{y), and
Y {y) S, = <T, Mi{g:}> S,= <T, M, {g, >
. = set of mutua 1% joi sets of V]
then deflne gsl(u(y)) as b t of tually disjoint subset; f 1
1L Mz"“"*} I} is a bijection Sl realizes SZ
the set in Im(u) which
contains g,""¥ "(x). =
1 gty ) =:
Definition 6 ensures the | the set in M,
which contains
vy ey —
existence and | & &
. . u(g (v u
unigueness of this set,
1
and that g, does not |"v(S2 8) =<, My{gt}l> M, = ulM)=D|

Figure 18 The virtual system V(S, S)) when S,

depend on the particular
P P realizes S,

x we choose to represent u(y). Below is the formal definition.

Definition 7 (virtual system)

V{8, S,) is the virtual S, in S, iff:
S, = <T\ M, g,(t x)>, S, = <Ty M, g,{t y)>, and V(8, 5,) = <Ty M, g4(t z)> satisfy:
(1) either S, emulates S, or S, realizes S, and, if T, =R, Q, or Z, then T, = R, Q, or Z;
(2) for some u and v which either satisfy definition 4 or satisfy definition 6:
{a) M, = Im{u);
(b) for all y € M,, if u and v satisfy definition 4, let ¥(u(y)) = o(u{y)} = uly); if u
and v satisfy definition 6, let y(u(y}) € uly) and, for all x: x € u(y) for some y,
let o(x) = u(y). Then, for allt € T,,, g, (u(y)) = o(g," "x(uyM)). T, =R, Q,
or Z, first define v also for negative instants: v(x -t) =: -v(x t). Then set:
gs (uly)) = ofg,"Y xluly))).

I now prove that V(S, 8,) is indeed a deterministic dynamical system, and that
it is isomorphic to S,. This theorem is a straightforward consequence of the
definitions of virtual system, dynamical system, isomorphism, emulation, and

realization. In particular, the proof that g,""(u(y)) = g,"(gs (u(y))) employs the
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equality g,"" "y (uy))) = g;'(gam e Wy”(x(u(y))), which follows from the definition of

v(u(y)) and from condition (2¢) of the definitions of emulation (definition 4) and

realization (definition 8).

Theorem 9

{a) V(8, S,) is a deterministic dynamical system
(b) V(8, S,) is isomorphic to S5,

proof of (a):

g (ulyy = o(g,"? f’(x(u(y)))) = olg,"(xta(y))) = o(x(u(m))) = uly);

gg“’*“t(u )) = 0( v liduly)D) = ,
o(gi ; (W) = olgr ™ g ")) = olgr™®” ulola!® " u)) =

g, (o(g," ylaly)) = g,"g,(aly) Hq.eds/

proof of (b):
first notice that u: M, --> M, is injective and surjective; furthermore, from (2b} of

definition 7:
g,'(u(y)) = olg," "orluly)))) = ulg,(y) _ /q.e.d.// g.e.d,

We have seen above (thecrem 8) that no strongly irreversible system can be
emulated by a reversible one. Strongly irreversible systems, however, can be
realized by reversible ones. | now prove an interesting general result: given an
arbitrary irreversible system S, it is always possible to construct a reversible
system R(S) which realizes S. The basic idea of such construction is this.
Suppose S is an irreversible system and that the state of S at the present time t
is y. If the initial state was x, the state y has been achieved by going through a
series of previous states (the actual history of x up to t) but, since S is irreversible,

y could have been achieved through a history which starts from a different initial
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state z. Thus, if we want to recover the past of y, we must take into account the
actual history which produced y, not only the present state y. This observation
leads to the idea of considering, for any irreversible system S, a corresponding
reversible system R(S) whose states are all the histories of an arbitrary initial state

X up to an arbitrary time t. 1 will then prove that this system realizes S.

phase space = M

g™(v)

HIST(y) =
hist(t =) | T
hist(t x) /

-4

a t t+w time = T

ﬁ"(hist(tx)) == hist(t+w x)

S =<T"M {g*}>
R(S) = <T H {h'}>

Figure 19 Construction of a reversible system R(S) which realizes an
irreversible system S

Let us first see the details of the construction of R(S). Let S = <T* M {g'}> be
irreversible. Then, R(S) = <T H {h'}> satisfies the following conditions. If T* = R",
Q", or Z', then respectively T = R, Q, or Z. Let us define, for eachte T and

x € M, the history of x up to time t. This is in fact the state evolution which starts
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with x up to the time t. Furthermore, let us add the pair <w x> for each time

w < 0. Formally:

hist(t x) =: {cwy>:we Tand w<tand y e M and,
ifw<0,y=x;
ifw>0, y=g"x).
Let H =: {y: y = hist({t x), for some t € T and x ¢ M}. The group {h'} is then
defined as follows:
h¥(hist(t %)) =: hist(t+w x), forallx e Mand w,t e T.

Let us now verify that R(S) is a reversible dynamical system:

h%hist(t x)) = hist(t+0 x) = hist(t x)
h¥(h*(hist(t x))) = h"¥(hist(t+z x)) = hist(t+z+w x) = hist(t+w+z x} = K" (hist(t x)).

I now prove that R(S) realizes S, and that the virtual S in R(S) is isomorphic
to S. Obviously, the second part of the thesis follows from the first part and from
theorem 9. The proof that R(S) realizes S is based on the following idea. Ify is
an arbitrary state of S, consider all the histories which might have produced y at
some time t. | indicate this set by "HIST(y)". Intuitively, since HIST(y) is the set
of all histories which produce y at some t, we can identify y with HIST(y). To show
that R(S) realizes S we must exhibit two functions u and v which satisfy
definition 6. Since we have identified y with HIST(y), the natural choices are
u(y) = HIST({y), and v(y t) = 1. It is then easy to prove that u and v satisfy definition

6. 1 give the details below.

73



Theorem 10 (any irreversible system can be realized by a reversible system)

For all irreversible systems S, there is a reversible systemm R(S) such that
R(S) realizes S and V(S R(S)) is isomorphic to S

proof:
let R(S) be the system defined above. For all y ¢ M, let HIST(y) =: {hist(t x):

<t y> e hist{t x), for some te T and xe M} I show first: if y=z,
HIST(v)~HIST(z) = &. Suppose y # z, hist(t x} ¢ HIST(y), and hist(t x) e HIST(z).
Then, <t y> e hist(t x) and <t z> € hist(t x). By the definition of hist{t x), y = z,
against the hypothesis. Let us now define: u(y) =: HIST(y); v(y t) =: t. I now show
that u and v satisfy definition 6. Conditions (1}, {2a), and (2b) obviously hold. As for
condition (2c), suppose hist(t x) € u(y)} = HIST(y); h™¥*(hist(t x)) = h"(hist(t x}) =
hist(t+w x) € HIST(g"(v)) = wig*(y)). 1 finally prove condition (2d). Suppose
hist(t x) € u(a), hist(w yv) € ulb), and h*(hist(t x)) = hist(w y). Hence, hist{t+z x} =
hist(w y). Therefore, hist{t+z x) € u(b). From this, the definition of u, and since
hist(t x) € ula), ga) = b. Finally, by the definition of v, v(a z) = z. R(S) thus realizes
S. From this and theorem 9, V(S R(8)) is isomorphic to S q.e.d.

We have seen in section 6 that all universal computational systems are
strongly irreversible.  This result depends on the fact that we have defined
universal systems by means of the emulation relation. U, instead, we use the
realization relation, we obtain a more comprehensive concept of universal system.
S is universal* iff: S realizes all computational systems. An immediate
consequence of this definition, of theorem 10, and of corollary 8.1(a) is the
existence of universal® reversible systems. In fact, if C is a universal Turing
machine, C is irreversible® and C emulates all computational systems.
Therefore, by theorem 10, R(C) realizes C. Also, since the realization relation is
transitive with respect to emulation (corollary 8.1(a)), R(C) realizes ali

computational systems. It thus foliows that R(C) is a universal* reversible system.

¥ Recall that all universal computational systems are strongly irreversible. See the discussion
after theorem 6.
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8. Appendix

Theorem 1

The relation of isomorphism between dynamical systems is an equivalence relation

proof:
we must prove that the relation of isomorphism between dynamical systems is (a)

reflexive; (b} symmetric; (c) transitive.

proof of (a):
let f be the identity function on the phase space; definition 2 is then obviously

satisfied /q.e.d//

proof of (b}

suppose S, is isomorphic to S,; consider £; M, --> M,; f! is injective and surjective,
and forallte T and y € My

g(f'(y)n = g (f (=) = g'(x)

f'(h'(y) = £1(h(Rx)) = (g ) = g(x)

therefore:

fhiy) = gy Jgeds

proof of (ch

let S, = <T M, g,(t x>, S, = <T M, g,(t y)>, S; = <T M; gt z)>; suppose S, is
isomorphic to S, and S, is isomorphic to S,. Let f: M, --> M, and f,: M, --> M; satisfy
definition 2; consider f; =: f, o f}; f; is injective and surjective from M, to M, and, for
allte Tandxe M;:

g, (6(x0) = g (B ED)) = £(g, (0N = £(f(g,'x) = fi(g,(x)  /fged/ ged

Theorem 2

The emulation relation is a quasi-ordering on the set of all deterministic dynamical
systems

proof:
we must prove that the emulation relation is (a) reflexive, and (b) transitive

proof of (a)

let u: M --> M be the identity function on M; let v: MxT, --> T, be defined by:
vix t) = t. Obviously, u and v satisfy conditions (2a) and (2b) of definition 4.
Conditions (2¢) and (2d) are also satisfied:

u(g(x) = g'x) = g™ (ulx);

suppose g{u(x)) = u(y); then g'x) = y, and vix t} = t; /q.e.d/
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proof of (b):

let S, = <T\ M, g,(t x>, S, = <T, M, g,(t y)>, S; = <T, M, gt z)}>.

Suppose S, emulates S, and S, emulates S,.

Let ug M, -> M, u;M;-->M, v;:MxT,, ->T,, v; MgxT, -->T, satisfy
definition 2.

Let uy = w; o w,; u, is injective from M, to M,. Condition (2a) of definition 4 1s thus
satisfied.

Let vy: MxT,, --> T, be defined by: vz t} =: v,(u,(z) vy(z 1)).

v, satisfies conditions (2b} of definition 4:

vy(z 0) = v,(u,(2) vy{z 0)) = v, (u,(z) 0) = 0 //g.e.d. first condition//
suppose:

l.t<w

from the definition of v,:

2. vy(z t) = v,(u,z) vy(z t))

from the definition of v,

3. vylz w) = vi{ufz) vy(z w))

from 1 and since v, satisfies definition 4:

4, vz t) < v{z w)

from 4 and since v, satisfies definition 4:

5. vi{uy{z) vy(z 1)) < v, (uy(z) v,(z w))

from 5, 3 and 2:

6. vy(z t) < vz w) /lq.e.d. second condition//

u, and vy satisfy condition (2c) of definition 4:
uS(gSt(Z)) = u1(u2(g3t’{ Z}) =
u gy Nuydz)) = g Ny = g luglz)) lig.e.d.)

u, and vy satisfy condition (2d) of definition 4:
suppose:

1. g (uy(x) = uyly)

from 1 and the definition of u:

2. g (0, (uy(x))) = u,(u,(y))

from 2 and since u, and v, satisfy definition 4:

3. there is w: g,"(1,(x)) = w,(y) and t = v,(0,(x)} w)
from 3 and since u, and v, satisfy definition 4:

4. there is s: g%(x} = y and w = v,(x s)

from 4 and 3:

5. there is s: g,(x) = y and t = v{u,(x) v,(x §))
from 5. and the definition of v,:

6. there iz s: g%(x) = yand t = v,(x 8) /lg.e.d./ Theorem 2 is thus proved q.e.d.
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Lemma 5.1

If S has eventually periodic orbits or S has merging orbits, there is t such that g' is
not injective

proof:

suppose:

1. S has eventually periodic orbits

let:

2. orb(x) be eventually periodic

from 2 and the definition of eventually periodic orbit:
3. there are v and t: g(x) = ¥ and orb(y} is periodic
from 3 and the definition of periodic orbit:

5. there is w > 0 such that g'(x) = y and g*(y) = ¥
from 2 and the definition of eventually periodic orbit:
6. orh(x) is not periodic

from. 5:

7.2x) =y = g%(y) = g"(g'(x) = gg"(x)

from 6, 5 and the definition of periodic orbit:

8 g'x)#x

from 8 and 7:

9. ¢" is not injective /{done with case 1/
suppose:

10. S has merging orbits

from 10, corollary 3.1, theorem 4, and the definition of quasi-reversible system:
11. there is t such that g'is not injective  //done with case 10/ g.e.d.

Lemma 5.2

If there is t such that g"is not injective, and S has no merging orbits, S has eventually
periodic orbits

proof:

suppose:

1. thereare t, w, %, v, 2:x#2y, gx) =gy} =z, and g'(x} = y
We first show that orb(z) is periodic

from 1:

2, z = gy) = g{g"(x) = g"(g'(x)) = g"(z), whence orb(z) is periodic //q.e.d.//
We now show that orb(x) is not periodic

from 2 and 1:

3. X#4%

suppose for reductio:

4. there 1s 8. g} = x

suppose:

5.5=¢
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from 4,5, 1and 3:

B.x=px)=g'x)=zandx 2z //done with case 5/

suppose:

7.8>1

from 4, 7, and 1.

8. x = g{x) = g(g(x) = g7(z)

from 2, 7, and 8:

9. 7z = gw(-z) — gt+w-s+s-t(2) — gL+w-5(gsft(Z)) - gwqu(X)

from 8, 9, 2 and 3:

10, x = &g (%) = @™ x) =g x) = zand x # 2z //done with case 7//
suppose:

1.8 <t

from 4 and 11:

12. x = gi(x) = g"(g¥(x)) = g"(x)

from 1, 11 and 12:

13. z = g'{x) = g(g"(x)) = g(x)

from 13, 12 and 3:

4 z=gx)=xand x#z //done with case 11 done with 4 q.e.d./

Lemma 5.2 is thus proved g.e.d.

Theorem 7

Definition 5 and definition 6 are equivalent under the interpretation:

(1) D* = D;

(2) 8, satisfies description u(x) at time t relative to y iff there is o € u(x) such that
hi{y) = a

proof:

suppose:

1. D¥=D

2. 5, satisfies description u(x) at time t relative to v iff there is o € u(x) such that
h(y) = o

suppose:

3. S, realizes* 5,

from 1, 3, and conditions (1), (2a) and (2b) of definition 5:

4. conditions (1), {2a), and {2b) of definition 6 are satisfied

from 2, 3, and condition (2c) of definition 5:

5. for any te T,,, ye¢ M,, if there is o € u(x) such that h"(y) = o, then there is
B e u(g(x)) such that "™ *(y) = B

from 5:

6. foranyte T, forany o e u(x), thereis B e u(g'(x)), such that h"* “(¢y = B; hence,
condition {2¢) of definition 6 is satisfied

from 2, 3, and condition {2d) of definition 5:

7. for any te T, ye M, if there is o € u(x) such that h°y) = o, and there is
B e u(y)such that h'(y} = B, then there is a time w such that g"(x) = yand vix w) = t
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from 7:

8. foranyte T,, forany o e u(x),if thereis B € u(y) such that h'{o) = B, then there
15 a time w such that g¥x) = y and v(ix w) = 1;

from 8:

9. foranyte T,,forany o e u(x), for any B e u(y), if h(o) = B, then there is a time
w such that g"(x) =y and v(x w) = t; hence, condition (2d} of definition 6 is
satisfied

from 4, 6, and 9;

10. S, realizes S, //done with hypothesis 3/

suppose:

11. S, realizes S,

from 1, 11, and conditions {1}, (2a) and (2b) of definition 6:

12. conditions (1), (2a), and (2b) of definition 5 are satisfied

from 2, 11, and condition (2c¢) of definition &:

13. for any t e T,,, for any o € u(x), S, satisfies u(g'(x)) at v(x t} relative to «

from 2:

14. condition {2c} of definition 5 is equivalent to 13

from 13 and 14:

15. condition (2¢) of definition 5 is satisfied

from 11, and condition (2d) of definition 6:

16. forany t € T,., for any o € u(x), if there is § ¢ u(y) such that h'(o) = B, then there
is a time w such that g"(x) =y and vix w) =t

from 16 and 2:

17. for any t « T, for any o € u(x}, if' S, satisfies u(y) at t relative to &, then there
is a time w such that g"(x} = y and v(x w) = t

from 2:

18. condition (2d) of definition 5 is equivalent to 17

from 17 and 18:

19. condition (2d) of definition 5 is satisfied

from 12, 15, and 19:
20. S, realizes™ S, //done with hypothesis 11/ qg.e.d.

Theorem 8§

The realization relation is a quasi-ordering on the set of all dynamaical systems

proof:

we must prove:

{(a) S realizes S

(b) if 8, realizes S, and S, realizes S, then 5, realizes S,

proof of (a):

for any state x of S, let u(x) =: {x}. Notice that, by identifying x with {x}, the
realization relation reduces to the emulation relation. Therefore, by theorem 2, the
realization relation is reflexive //q.e.d.//
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proof of (b):

let S, = <T, M, g,(t x}>, S, = <Ty M, g,(t y)>, 85 = <Ty M, g,(t z)>.

Suppose S, realizes S, and S, realizes S,.

Let u,;: M, --> D, and v;: MyxT,, --> T,, satisfy definition 6.

Let uy: M, --> Dy, and v,: MxT,, --> T,, satisfy definition 6.

Forallz e Myand t ¢ T, let £ M, --> M, satisfy iz} e uy(z) and f{g;(2)) = g,"*" *({2)).
For all z € M,, let u(z) =: u,{fiz)). Let D be the image of u,. By definition, D is a set
of mutually disjoint subsets of M,, and u, is injective and surjective from M; to D.
Condition (2a) of definition 6 is thus satisfied.

Let v, MxT,, --> T\, be defined by: vy(z t) =: v,(f{z} v,(z t)).

v, satisfies conditions (2b} of definition 6:

vy(z 0) = v{flz) vi{z 0)) = v,(fz) 0) = 0 //q.e.d. first condition//
suppose:

l.t<w

from the definition of vy

2. vz t) = v,(flz) vz t))

from the definition of vy:

3. vylz w) = v,(fz) vy(z w))

from 1 and since v, satisfies definition 6:

4. v,z t) < vz w)

from 4 and since v, satisfies definition 6:

5. v,(flz) vy(z 1) < v (fzZ) vy(z W)

from 5, 3 and 2:

6. vi(z t) < vz w) /lq.e.d. second condition//

u, and v, satisfy condition (2¢) of definition 6:

we must prove: for all o ¢ uyz), g,"* (o) e u,{g,(2))
from the definition of v

1. vz t) = v {flz) vy(z t))

from the definitions of u; and f:

2. uy(g,1(2)) = u,(flg,(z) =

u (g5 (Rm

from the definition of u,:

3. uylz} = u,(flz})

since u, and v, satisfy condition (2c) of definition 6:
4. for all o e u,(flz)),

v (flz) vz 10, (z 1)
g o) e ulg,” (Rz2))

from 1, 2, 3, and 4:
5. for all o e uyz),

W O uges(z)) Hg.ed.t

&y
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u,; and v, satisfy condition (2d) of definition 6:

suppose:

1. oe uylx), fe uly), and g,"(a) = B

from 1 and the definition of uy

2. o e w,(flx), B e uw,fly), and g,(c)) = f§

from 2 and since u, and v, satisfy condition (2d) of definition 6:

3. there is w: g,"(flx)) = f{y) and t = v,(fx) w)

from 3, from the definition of f, and since u, and v, satisfy condition (2d} of
definition 6:

4. there is s: g,%(x) = y and w = v,(x §)

from 4 and 3:

5. there is s: g,%(x} =y and t = v,(f{x} v,{x s}

from 5 and the definition of vy

6. there is s: g.%(x) = y and t = v4(x 8) /fq.e.d.// Theorem 8 is thus proved g.e.d.
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Chapter 2

1. introduction

2. Pattern fields and generalized Turing machines

3. The relation between generalized Turing machines and ordinary ones

4. Is a non-recursive pattern field necessary for computing non-recursive
functions?

5. Generalized computattonal systems on regular pattern fields

1. Introduction

The definition of a computational system which | have adopted in the first
chapter presupposes that the class of all effective transformations of finite symbol
structures be reducible to the class of the functions computable by a Turing
machine. This identification is known as Turing’s thesis. This thesis is usually
justified in two different ways. First, one gives an informal argument which shows
that any symbolic computation which can be performed by using paper and pencil
can always be reduced to a series of operations of a Turing machine. The best
justification of this type is still the argument which Turing put forth in the thirties
(Turing 1965, sec. 9). The justification of the second type is instead based on a
series of theorems of computability theory. These theorems show that all known
computational systems can only compute numeric functions which can also be

computed by a Turing machine. These numeric functions are all, and only, the
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(partial) recursive functions. This second argument thus provides a direct
justification of Church’s thesis, which affirms that all the effective numeric functions
are (partial) recursive. Nevertheless, these theorems also provide an indirect
confirmation of Turing’s thesis, which is more general. In fact, any numeric
function cah always be thought as a transformation of finite symbol structures.
Therefore, if Church’s thesis turned out to be false, Turing’s thesis should be
rejected as well.

Turing presented his machines as an idealization of a human being which
transforms symbols by means of a specified set of rules. Turing proposed four
hypotheses: (1) the capacity of recognizing, transforming, and memorizing
symbols and rules is finite. It thus foliows that any transformation of a complex
symbol must always be reduced to a series of simpler transformations. These
operations on elementary symbols are of three types: recognizing a symbol,
replacing a symbol and, finally, shifting the attention to a symbol which is
contiguous to the symbol which has been considered earlier. (2) The series of
elementary operations which are in fact executed is determined by three factors.
First, the symbol which the subject considers at a given time; second, the subject’s
mental state when he considers that symbol; third, a rule chosen from a finite
number of alternatives. Turing also assumed that the number of possible mental

states is finite', and that the rules are of two different types: [a] if the symbol

' This follows from the hypothesis that the capacity of memorizing symbols is finite. In fact, if
the number of mental states were infinite, each of them might be used to memorize a different

symbol.
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considered at a given time is a, and the mental state at that time is g, replace g,
by a, and change mental state from g, to ¢, [b] if the symbol considered at a
given time is a, and the mental state at that time is g, shift the attention 1o a
contiguous symbol (to the right, to the left, above, below, etc.), and change mental
state from g to q,. (3) The elementary symbols are written on a support with an
infinite capacity. This support (for example a sheet of paper which can be
extended in any direction as needed) is divided in cells, and each cell may contain,
at. most, one elementary symbol. The number of cells which actually contain
symbols is finite. (4} All different types of support can always be reduced to a tape
divided in an infinite number of cells, and this reduction does not limit the
computational capacity.

If we think of a transformation of symbols which a human being can perform
by applying a finite number of rules, the first three of Turing’s hypotheses are
natural idealizations. The adequacy of the fourth hypothesis, however, is not so
immediate. In fact, we can imagine of having a support whose division in cells is
very complicated, and which also satisfies the following condition. Each cell
communicates with a fixed number of other cells or, in other words, for an arbitrary
cell, there are exactly m different types of path which lead to other cells. Now, if
each type of path can always be distinguished from the others, we could use this
support to perform a symbolic computation which satisfies Turing's first three
hypotheses. The rules would be of the two forms: [a] if you are considering cell

x whose symbol is a, and your mental state is g, replace a with a, and change
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state from g, to q,; [b] if you are considering cell x whose symbol is a, and your
mental state is g, consider next the cell at the end of path number r (1 <r <mj,
and change state from g to q,.

More concretely, we can think of a magic castle with an infinite number of
rooms, each room with the same number of doors. Suppose the doors of each
room are numbered, and that each door leads to a corridor which ends in some
other room. There may be magic doors: if you are in a room, and foilow the
corridors which correspond to these doors, you will reach the very same room.
Also, two different corridors may end in the same room. Imagine that, on the floor
of a finite number of rooms, a strange symbol is designed. You enter the castle.
Unfortunately, you will be allowed to go out only after you have completed a very
tedious job. You are given a finite list of instructions, and a spell modifies your
mind so that it can only assume a finite number of different states. Your job
consists in looking at the symbol on the floor and noticing your mental state, then
comparing the menta! state and the symbol with the list, finding the corresponding
instruction, and executing it; if you cannot find any matching instruction, your job
is finished. You only have two types of instructions: if your mental state is ¢ and
the symbol on the floor is a, change the symbol to &, and your state to q; if your
state is g and the symbol is &, go through door number and change your state
to g,. No two different instructions begin with the same pair state-symbol. It is
clear that, even if the design of the castle is extremely complex, you will be able

to perform your job. There is only one hitch: your task might never end. But this

85



sometimes happens when you enter magic castles ...

Now, this is the interesting question: if the topography of the castle is
sufficiently complex, could it happen that the symbolic transformations performed
in it are not reducible to those of a simpler topography? In particular, are we sure
that any topography is always reducible to the extremely simple structure of a
linear arrangement of cells? The standard answer to this question is based on
empirical considerations. It can be proved that many different types of topography
are in fact equivalent. For example, we can let a Turing machine operate on a
checkerboard or, more in general, on a n-dimensional regular lattice. We can then
show that a Turing machine of this type is not more powerful than an ordinary one.
These proofs are then usually taken as conclusive evidence that, in any case, the
computational power of Turing machines cannot change. Nevertheless, this
argument is not convincing. The topographies for which we can prove the
invariance are in fact quite simpie. But what happens if the cells are connected
in arbitrarily complex ways?

The first goal of this chapter is to give a definite answer to this question. One
of the surprising results is that some Turing machines which operate on sufficiently
complex topographies are capable of computing numeric functions which are not
recursive. It thus follows that these machines are indeed more powerful than
ordinary Turing machines, so that Turing's fourth assumption is false.

The basic ideas which permit to prove these facts are extremely simple. Inthe

first place, given an arbitrary topography on which a Turing machine operates, we
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need an effective way of representing numbers as some particular configurations
(or patterns) of symbols. For example, if the topography is just a linear tape,
number n is usually represented by a block of n+1 consecutive 1s. We thus need
a similar convention for the general case. Notice now that the usual convention
for ordinary Turing machines is based on the fact that the squares can be
effectively enumerated by means of the relations Left and Righf. We can then
effectively define a block of n+1 consecutive 1s by means of this enumeration’.
Analogously, if there were an effective way of enumerating the cells of an arbitrary
topography by means of its relational structure, we could then use this
enumeration to effectively specify the form of a pattern which represents number
n. In fact, we could just stipulate, if we wished, that number n is represented by
n+1 1s, where the first 1 is on the first cell, the second 1 is on the second cell, ...
the n+1st 1 is on the n+1st cell, and all other cells are blank.

Let us call any enumeration of the cells which depends effectively on the
relational structure of a topography an intrinsic enumeration. The second
observation consists in realizing that there is a large class of topographies for
which an intrinsic enumeration of the cells exists. Suppose a Turing machine is

started on a topography whose cells are all blank, and that this machine will then

2 For example, we can effectively enumerate the squares by means of the relations Left and
Right as follows: e(0) =: an arbitrary square x; e{1) =: the square to the left of x; e(n) =: the square
to the right of square e(n-2), if n is even; e(n) =: the square to the left of square e(n-2), if n is odd
andn=> 1.

® For example, let e be the enumeration defined in footnote 2. Two squares x and y are
consecutive just in case the numbers n and m such that e(n) = x and e(m) = y satisly one of the
foliowing conditions: (a) both n and m are even, and n = m+2 or m = n+2; (b) both n and m are
odd, andn=m+2orm=n+2;{c)n=0,andm=1orm=2;{dm=0, andn=1orn=2.
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move from cell to cell in such a way that it will visit all the cells. Obviously, this
computation of the Turing machine generates an enumeration of the cells, so that
it makes sense to talk of the first, the second, the third ... cell reached by the
machine. Furthermore, this enumeration is intrinsic, for it depends on the relational
structure of the topography in an effective way. Therefore, any topography for
which such a Turing machine exists allows us to effectively represent numbers as
patterns®. 1 call any such a topography a regufar pattern field.

The third observation consists in realizing that there are some regular pattern
fields which contain a non-recursive power hidden in the connections between their
cells. In fact, | have assumed that each cell is connected to other cells by m
different paths. Each of these paths can thus be identified with a function
f. (1 <i< m)whose argument is a cell, and whose value is another cell. if e is the
intrinsic enumeration of the pattern field generated by a fixed Turing machine,
each cell corresponds to a number, so that the function f, corresponds to a numeric
function f,. The point now is that the numeric function t; may not be recursive.
If this is the case, the cells are connected in an essentially non-recursive way, and
it turns out that this non-recursive power may then be used for computing numeric
functions which are not recursive.

The next three sections of this chapter make the previous observations precise,

and prove five general theorems about the computational power of Turing

* For example, we can stipulate that number n is represented by n+1 1s, where the first 1 is
on the first cell, the second 1 is on the second cell, ..., the n+1st 1 is on the n+1st cell reached by
the Turing machine, and all other cells are blank.
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machines which operate on arbitrary topographies. The detailed plan of these
sections is the following. In the second section, | define the concept of a pattern
field and of a generalized Turing machine which operates on it. Formally, a
pattern field is a pair F = <U {f}> where U is a denumerable set, and each f,
(1 <i<n)is a function from U to U. A Turing machine which operates on F is
completely analogous to an ordinary Turing machine, except that it can move in
n different ways, which correspond to the functions f. Therefore, a quadruple
which specifies to move from the current cell to another one has the form gafa..
| then define regular pattern fields’, and | show how numbers can be effectively
represented as patterns of symbols when an intrinsic enumeration is fixed. This
aflows me to define the concept of a numeric COMPUTABLE function relative to
a fixed intrinsic enumeration of the pattern field (definition 6). | then show that all
the numeric functions computable by an ordinary Turing machine with the usual
conventions satisfy this definition (example 6.1).

In the third section, | first introduce the distinction between recursive and
non-recursive pattern fields. When an intrinsic enumeration e is fixed, a regular
pattern fieid F = <U {f}> is recursive just in case all the numeric functions {f_}
which correspond to the functions {f} are recursive. | then prove four theorems.

The first states that there is a recursive pattern field on which all the {partial)

*F = <U {f}> is a regular pattern field just in case there is an intrinsic enumeration e of F. Any
intrinsic enumeration e is generated by a generalized Turing machine C which, when started in
some internal state g, and some node x ¢ U of a completely blank pattern, reaches all the nodes

in U.
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recursive functions are COMPUTABLE (theorem 1)°. The second affirms that any
function which is not (partial) recursive is COMPUTABLE on some, appropriately
chosen, regular pattern field. However, the pattern field which permits this
computation turns out to be non-recursive {theorem 2). tthen consider the relation
between COMPUTABILITY on regular pattern fields and the usual concept of
relative computability (see Davis 1958), and | show that all the (partial) recursive
functions relative’ to {f} are COMPUTABLE on® F = <Z' {s vjui{f}> relative to the
identity function on Z* (theorem 3).

When an intrinsic enumeration e of a regular pattern field F = <U {f}> is fixed,
e determines a set of numeric functions {f,} which correspond to the neighbor
functions {t}. It is thus natural to ask whether the numeric functions {f,} are
COMPUTABLE on F relative to e. Theorem 4 shows that this is in fact true. An
immediate consequence of this theorem is that being a regular, but non-recursive,
pattern field is a sufficient condition for COMPUTING non-recursive functions
(corollary 4.1). In fact, since the pattern field F is not recursive, at least one of the
numeric functions {f,} must be non-recursive. By theorem 4, however, this function

is COMPUTABLE on F relative o e.

® This pattern field turns out to be the tape of an ordinary Turing machine.

7 Let {f} be a finite set of numeric functions. A numeric function g is (partial) recursive relative
to {f} just in case g can be obtained from f, and the set of the basic recursive functions (successor,
zero function, and identity functions) by applying a finite number of times the operations of primitive

recursion, composition, and minimization.

SF = <2Z' {s v}u{f}> is the regular pattern field such that Z" are the non-negative integers, s is
the successor function, v is the predecessor function {(where v(0) =: 0), and {f} is an arbitrary finite
set of numeric functions.
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fn the fourth section, 1 consider the converse problem: /s a regular, but
non-recursive pattern field, necessary for COMPUTING non recursive functions?
The answer to this question is provided by theorem 5. This theorem states that
any numeric function COMPUTABLE on a regular pattern field F = <U {f}> relative
to an arbitrary intrinsic enumeration e is (partial) recursive relative to the numeric
functions {f,} which correspond to the neighbor functions {f}. In particular, if F is
recursive, all the numeric functions {f,} are recursive, so that the class of the
(partial) recursive functions relative to {f,;} is identical to the class of the (partial)
recursive functions. It thus follows that, for any recursive pattern field F, and any
intrinsic enumeration e, any numeric function COMPUTABLE on F relative to e is
(partial) recursive. Therefore, being a non-recursive pattern field is a necessary
condition for COMPUTING non-recursive functions (corollary 5.3). A second
consequence of theorem 5 (and of thecrem 3} is that the class of the (partial)
recursive functions relative to (f} is identical the class of the functions
COMPUTABLE on’ <Z* {s vju{f}> relative to the identity function on Z* (coroflary
5.4).

Finally, in the fifth section, | consider the implications of these results for the
definition of a computational system which | have given in chapter 1 (def. 3). That
definition presupposes that the class of all effective transformations of finite symbol

structures be reducible to the class of the functions computable by an ordinary

*F = <Z" {s v}u{f}> is the regular pattern field such that Z* are the non-negative integers, s is
the successor function, v is the predecessor function {where v(0) =: 0), and {f} is an arbitrary finite
set of numeric functions.
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Turing machine. The results of sections 3 and 4, however, show that the concept
of an effective transformation of finite symbol structures is not absolute, but instead
depends on the relational structure of the infinite support on which the elementary
symbols are written. In fact, if a generalized Turing machine operates on a regular
but non-recursive pattern field, its transformations of finite symbol structures may
permit the computation of non-recursive functions. On the other hand, Turing
machines which operate on recursive pattemn fields can only compute recursive
functions. The goal of the fifth section is to give a more general definition of a
computational system which takes into account these results. 1 thus define the
concept of a generalized computational system on a regular pattern field F
(definition 8). This definition is completely analogous to definition 3 of chapter 1,
except that | now require that the transition function of an isomorphic system be
COMPUTABLE on F relative to any intrinsic enumeration e, and that a
characteristic function of its phase space be also COMPUTABLE on F relative to e.
This new concept turns out to be a generalization of the previous one, in the sense
that definition 8 reduces to definition 3 of chapter 1 when F is identified with the
tape of an ordinary Turing machine. Finally, as a partial confirmation of the
material adequacy of definition 8, | prove that all generalized Turing machines on
any regular pattern field are generalized computational systems on that pattern

field {theorem 6).
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2. Pattern fields and generalized Turing machines

A finite symbol structure is a spatial arrangement of a certain number of
elementary symbols. A typical example of a finite symbol structure is a string of
symbols. In this case there are only two relations between the symbols: left and
right. We can obtain richer structures if we add other relations like above and
below. For instance, a word with superscripts and subscripts conforms to this
model. | will call an arbitrary finite symbol structure a pattern'®. John Winnie
suggested thinking of the relational structure of a pattern as an infinite space, or
a pattern field, in which the pattern is embedded. Patterns are usually taken to be
finite, however, the field in which they occur is usually infinite. A typical example
of pattern field is the infinite tape of an ordinary Turing machine. Another example
is the infinite checkerboard of a bidimensional Turing machine'’. John Winnie
pointed out that a pattern field basically consists of an infinite set of locations, or
nodes, with a neighborhood structure which allows a finite machine to find its way
from one location to its neighbors, by following a finite set of instructions and
distinguishing, at most, a finite set of differences. Formally, a pattern field can be

defined as follows:

1% The word “"pattern” is used in a similar sense by Smith (1971). See in particular definition 3.
According to Smith, a pattern manipulation system is a pair <P v>, where P is an effectively
indexed (i.e. there is an effective enumeration of P) set of patterns, and v is a recursive function
which maps pattern indexes to pattern indexes. Computational systems on regular pattern fields
(see sec. 5, def. 8) are more general than the pattern manipulation systems defined by Smith.
Smith's patterns turn out to be a special case of the patterns on regular pattern fields which | will
define later.

" Turing machines which operate on an infinite checkerboard have been discussed in Dewdney
(1989). The only difference between these machines and ordinary ones is that they can also move
upwards and downwards.
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Definition 1 (pattern field of dimension n, or the magic castle)
F = <U {f}> is a pattern field of dimension n iff:

(1) U is a denumerable set; the elements of U are called the nodes of F,
(2) {f}is a set of n (n > 0) functions from U to U; £ is called a neighbor function of F.

Example 1.1 (a tape infinite in one direction is a pattern field)
Let U =: the set of all squares of a tape infinite in one direction (say to the right),
and let {L R) satisfy: L{x) =: the square to the left of %, if x is not the leftmost square;

L(x) =: x, otherwise. R(x) =: the square to the right of x. Then, by definition 1,
F, = <U {L R}>» is a pattern field of dimension 2.

Example 1.2 (a tape infinite in two directions is a pattern field)

Let U =: the set of all squares of a doubly infinite tape, and let {L. R} satisfy:
L(x) =: the square to the left of x; R(x) =: the square to the right of x. Then, by
definition 1, F, = <U {L R}> is a pattern field of dimension 2.

Example 1.3 (an infinite checkerboard is a pattern field})

Let U =: the set of all squares of an infinite checkerboard, and let {I. R U D}
satisfy: L(x) =: the square to the left of x; R(z) =: the square to the right of x;
Ulx) =: the square above x; D(x) =: the square below x. Then, by definition 1,
F, = <U {L. R U D}> is a pattern field of dimension 4.

| define a generalized Turing machine C on a pattemn field F of dimension n as
follows. Let F = <U {f}> and suppose a finite alphabet A; = {a} with at least one
symbol, and a non-empty finite set Q. = {q} of internal states are given. A
quadruple of the Turing machine C is of the two forms gaagq, or gafg,. A
quadruple of the first form means: if the machine is in state q, reading a;, it will

replace symbol a with symbol &, and it will change state to g,. A quadruple of the

894



second form means: if the machine is in state g, reading a; it will go to neighbor
f(x) (where x e U is the node where the machine is currently located), and it will

change state to g..

Definition 2 (Turing machines on a pattern field)

A Turing machine C on a pattern field F of dimension n is individuated by a
consistent set G, of km quadruples, where k is the number of internal states in the
state-set Q. = {q,), m is the number of symbols in the alphabet A, = {a}, and two
quadruples are consistent just in case they are identical, or they do not begin with the
same pair state/symbol™%

I will consider the first symbol a, of an arbitrary alphabet A = {a} a special
symbol -- the null symbol, called the blank -- which | will also indicate by "b".
A finite pattern (or more simply a patiern) of F = <U {f}> relative to alphabet
A = {a} is a function from U to A which assigns non-blank symbols to a finite
number of nodes. | will indicate the set of all finite patterns of F relative to
alphabet A by "P-(A)".

Let C be a generalized Turing machine on pattern field F = <U {f}»>, and let
A; = {a} and Q, = {g} be the alphabet and the state-set of C. Intuitively, a total

state of a generalized Turing machine, specifies the information sufficient (and

necessary) for determining the future behavior of the machine. Therefore, a total

21 have chosen this definition for technical reasons, namely, to make the total transition
function of C (see below) a function which is defined for all total states of C. This definition is in
fact equivalent to the usual one which allows any consistent set of quadruples. [f such a set does
not contain a quadruple beginning with ga, | simply add the quadruple gaagq, and | adopt a
slightly different convention to determine when a Turing machine stops. A machine stops iff its
total state no longer changes (see below for the precise definition).
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state is determined when a pattern p € P:(Ay), an internal state g, € Q;, and a
node x € U are fixed. It is however useful to identify a total state with a special
pattern. Suppose the total state of a Turing machine C is determined by pattern
p, node x, and internal state g, and that the symbol on node x is a;, Consider now
the pattern w such that, on node x, w has the pair g,g;, and w agrees with p on all
other nodes. Obviously, the total state determined by p, x, and g, can be identified
with this pattern w e Pc(B), where B; = Acu{ga}. Therefore, | formally define a
total state as follows.

Let Q; = {q} and A; = {a} be, respectively, the state-set and the alphabet of
a generalized Turing machine C on pattern field F = <U {{}>. Let k be the number
of internal states in Q. and m be the number of symbols in A,. Let B, be the set
which contains all symbols in A; and all the pairs ga, where g, € Qg and a, € A..

B.. has thus m+km members. | will call this set the iotal alphabet of Turing

machine C. Then, w is a total state of C iff w: U --> B, and there is exactly one
node x € U such that w(x) = q.a, for some g € Q; and a, e A,. We thus see that
the total states of a Turing machine are a proper subset W, of the set P(B.) of
all finite patterns of F relative to the tofal alphabet of that machine. [f, at time
a Turing machine C is on node x of pattern p € P(A.), and C is in internal state
g, the total state of C at t is w such that w(x) = gp(x) and, for all y = x,
w(x} = p(x).

It G are the quadruples of a generalized Turing machine C, G, determines a

function g{G.]: W, --> W, where W, ¢ P(B,) is the set of all total states of C;
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glG.] is called the total transition function of C.

Once an initial pattern, an initial node, and an initial internal state are chosen,
a generalized Turing machine C performs a computation on the pattern field, and
C stops iff: for some time t, g[G.)(w) = w, where w is the total state of C at time .

We can now define a computation of a function on pattern fields. Let C be a
generalized Turing machine on pattern field F, and let P(B.) be the set of all
patterns of F relative to the fotal alphabet B, of C. Let f: X --> Y be the function
we want to compute. A coding of X to P.(B.) is a function v X --> P(B.). A

decoding of P(B.) to Y is a {partial) function™ &: Pc(B.) --> Y. | then stipulate:

Definition 3 (computation of a function on a pattern field)

C computes fon F relative to v and 8 iff:

C is a generalized Turing machine on pattern field F, f is a (partial) function from X
to Y, vis a coding of X to Pu(B,), & is a decoding of Pi(Bg) to Y and, for any x € X, if
C is started on total state y(x) and f{x) is defined, C stops and, if the final total state
of C is w, 8(w) is defined and equal to fix). If f{x) is undefined, C does not stop.

According to definition 3, if some generalized Turing machine computes f, f is
a (partial) function whose domain and codomain are arbitrary sets. Furthermore,
I have not imposed any restriction on the coding and decoding functions v and d.

However, since we want to use generalized Turing machines to compute numeric

® The reason why | aflow a decoding to be a partial function is that, usually, decodings are only
defined for fotal states of a Turing machine C, and the set W, of all total states of C is a proper
subsst of P(B.}.
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functions™, we must introduce some appropriate convention for representing
numbers as patterns.

If the pattern field satisfies some further conditions, there is a natural way of
obtaining this representation. Suppose that, given a pattern field F = <U {t}>,
there is a Turing machine C on F, an internal state g, of C, and a node x € U such
that, when C is started on a completely blank pattern, node x, and internai state
g, C will then visit all the nodes in U. If these conditions are satisfied, we can use
this computation of the Turing machine to effectively enumerate all the nodes in U.
In fact, let the number n (0 <n) correspond to the n-th step of such a computation.
At each step, the machine is on exactly one node, and any node will be reached
at some step. We thus obtain a (repetitive) enumeration of the nodes. We can
then get a bijection e: Z* --> U by first eliminating all the repetitions, and by then
closing the gaps. | will call any bijection e: Z* --> U which is obtained in this way

an intrinsic enumeration' of the pattern field <U {f}>. A pattern field which has

some intrinsic enumeration is calied a regular pattern field. | give below two

examples of regular pattern fields. In particular, | show that the tape of an ordinary

" 1 will only consider numeric functions from Z* to Z* because any n-tuple of numbers can be
recursively coded as one single number. More precisely, it can be proved that, for any n, there
is a recursive bijection ¢: 2™ --> Z*. This bijection can thus be used to code any n-tuple
<m, ... m> as the number ¢(m, ... m,). Furthermore, it can also be proved that there are n
recursive functions ¢, ... ¢, which satisfy ¢(¢p{m, ... m)} = m; (Boolos and Jeffrey 1985, 161).
These functions allow us to recover the i-th component of any n-tuple from its code. Therefore,
for any (partial) function g:Z™"->2Z' the following equality holds: g{m,..m}=

<Py (Go(d(my .. M) ... 0 {,(@(my ... m)))>, where go(d(m ... m)) = ¢(g(m, ... my)). This means
that any (partial) function g cn n-tuples of numbers can always be identified with the correspending

function g, from Z* to Z'.

'* This enumeration is intrinsic in the sense that it depends on the neighborhood structure of
the pattern field in an effective way.
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Turing machine {infinite in one or two directions) is a regular pattern field.

Example 1.1.1 (a tape infinite in one direction is a regular pattern field)

Let F, = <U {L R)> be a tape infinite in one direction (see example 1.1). The
Tuaring machine C, specified by the set of quadruples G, = {g;bRq,} reaches all the
squares when started on the leftmost square of a completely blank tape. Therefore,
F, is a regular pattern field.

Example 1.2.1 (a tape infinite in two directions is a regular pattern field)

Let F, = <U (L R}> be the doubly infinite tape of an ordinary Turing machine (see
example 1.2). To show that F, is a regular pattern field, we must exhibit a Turing
machine C, which, when started on a completely blank tape, reaches all the squares.
Let A = {b 1} be the alphabet of C,. C, is individuated by the set of quadruples
G, = {gyblq, q;,11Lq, g,blq, q,1Rq,}. When C, is started on a blank tape in state g, it
first writes a 1 and changes state to q,. Then, it goes to the first square to the left,
where it writes a second 1, and changes state to q,. Now, it moves to the right
skipping all the ones, and as soon as it finds a blank, writes a 1. Then, it moves to
the left skipping the ones, replaces the first blank with a 1, and repeats. Therefore,
C, visits all the squares of the tape. C, thus determines an intrinsic enumeration of
the tape F,. This enumeration assigns the number 0 to the square where C, starts,
Increasing even numbers to the squares to its right, and increasing odd numbers to
the squares toits left. I will call this intrinsic enumeration the standard enumeration

of the tape.

Consider now a regular pattern field F = <U {f}>, and let e: Z* --> U be an
intrinsic enumeration of F. This bijection transfers the natural ordering of the
non-negative integers to the set of nodes U. It thus makes sense to talk of the
first, the second, the third, ... node of U. Let P.(A) be the set of all finite patterns
of F relative to alphabet A = {a}, where A has m elements. Once e is fixed, each
finite pattern p is a numeral in base m, whose least significant digit is the symbol

on the first node of U relative to e, and whose highest digit is the symbol on the
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last non-blank node according to the order induced by e. Therefore, when e is
fixed, each finite pattern p denotes a number n. 1 make explicit this fact by
indicating a finite pattern p by "n.", where n is the number denoted by p when the
intrinsic enumeration e of F is specified.

We are now in the position of effectively coding numbers as patterns. In fact,
since e is fixed, each finite pattern p can be identified with the number n such that
p = n,. Therefore, an effective coding of numbers as patterns reduces 1o an
effective rule which, to any number, assigns another number. Now, such an
effective rule can obviously be identified with a recursive function. Let F be a
regular pattern field with a fixed intrinsic enumeration e, and let C be a generalized
Turing machine on F with total alphabet B.. Let P(B.) be the set of all finite

patterns of F relative to B.. Then, | define:

Definition 4 (coding numbers as finite patterns)

¢ is a coding of Z7 to P(B.) relative to e iff:
¢ is a coding of Z* to P(B.), and there is a recursive function ¢, such that, if c¢(k) = n,,
then ¢ (k) = n.

Example 4.1 (the usual conventions for representing input numbers as total states
of ordinary Turing machines specify a coding relative to the standard
enumeration of the tape)

Suppose C is an ordinary Turing machine with alphabet A, = {a} = {0 1}, where
0is the blank. Input number k is usually represented on the tape by means of a block
of k+1 1a. Let e be the standard enumeration of the tape (see example 1.2.1}, and let
x be the first square of the tape relative to the ordering induced by e. 1 assume that
the block of n+1 1s which represents number n has its leftmost 1 on square x. This
convention thus individuates a function n: Z° --> P{Ay), where Px(A_} is the set of all
finite patterns relative to the alphabet A, = {0 1}. I now verify that there is a

100



recursive function 7, such that, if n{k) = n,, then n(k) =n.

The standard enumeration e assigns the number 0 to the square x, increasing
even numbers to the squares to its right, and increasing odd numbers to the squares
to its left (see how the Turing machine C, of example 1.2.1 works).

Therefore, 1 assigns to number k the finite pattern n(k) = n, which denotes the
number n = 102° + 002 + 1027 + 002% + .. + 0271 4+ 1422 TLet then n:Z" -->Z°
satisfy:

m (k) =: 102° + 0027 + 1027 4 0027 4 .. + 0Qe2% 7 & 1427
by its definition, =, is recursive and, if n(k) = n,, © (k) = n.

The usual start-convention o: Pi(A.) --> Pu(B,) for an ordinary Turing machine
consists in letting the machine start in state q, on the leftmost 1 of the tape, if such
a 1 exists. Otherwise, ¢ is undefined. Suppose the state-set Q. = {q;} of Turing
machine C has s (0 £j € s-1) elements, and let the elements of the total alphabet

B, = {ajulga;) be alphabetically ordered™, We have just seen that the initial pattern
n, is a numeral in base two which denotes the number:

1= 102° + 002 + 1022 + 0e2° + ... + 00297 4 1022

on the other hand, the initial total state o(n,} = m, determined by the start-convention
0 18 a numeral in base 2+s2 which denotes the number:

m = (2+1)e(2+52)" + Oe(2+52)" + 1a(2+82)% + 06(2+52)° + ... + 06(2+52)* ! + 1e(2+52)%%
let ofn)=:m, if the expression in base two of n is of the form
1027 + 0027 + 1027 4+ 0e2% 4+ .. + 0027 4 142%; otherwise, o{n) =:n. Then, by its
definition, ©, is recursive and, if ¢(n,) = m,, 6.(n) = m.

Finally, let us define ¢: Z* --> P(B.) by c(k} =: o(n{k)). Then, by definition 4, ¢ is
a coding of Z" to Py(B,) relative to e.

The inverse probiem of retrieving, or decoding, a number from a finite pattern
can easily be solved in an analogous manner. When an intrinsic enumeration is
fixed, decoding a number from a pattern reduces to specifying an effective rule
which, to the number denoted by the pattern, associates another number.

Therefore, we can identify such a rule with a recursive function. | thus define:

'® Since B, is alphabetically ordered, the symbol a, (0 < i < 2} corresponds to number i, and the
pair q,a, corresponds to number 2+i.
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Definition 5 (decoding numbers from finite patterns)

d is a decoding of Pi(B,) to Z* relative to e iff:
d is a decoding of Pu(B.) to 27, and there is a recursive function d, such that, if

d{n,) = k, then d(n) = k.

Example 5.1 (the usual conventions for retrieving cutput numbers from total states
of ordinary Turing machines specify a decoding relative to the
standard enumeration of the tape)

Suppose C is an ordinary Turing machine with alphabet A, = {a} = {0 1}, where
0 is the blank. The usual convention for retrieving output numbers is that a tape
with n 1s represents number n. This rule thus determines a function n: Pu(Ag) --> 727,
where Pe(A_) is the set of all finite patterns relative to the alphabet A, = {0 1}. Let
e be the standard enumeration of the tape (see example 1.2.1). I now verify that
there 1s a recursive function n, such that, if n(n,) = k, then n(n) = k.

Since e is fixed, any finite pattern n, is a numeral in base two which denotes
number n and, by the definition of n, n assigns to pattern n, the number of 1s in the
binary expression of n. Let then v Z* --> Z" satisfy:

n.(n) =: the number of 1s in the binary expression of n;

by its definition, n, is recursive and, if n{n,) = k, n(n) = k.

Suppose the state-set Q¢ = (g} of Turing machine C has 3 (0 < j < s-1) elements,
and let the elements of the total alphabet B, = {a;ju{g;a} be alphabetically ordered'’.
Let ¢: PiBg) —> Pi(A:) be the partial function which, to any total state
w e W, c Pi(B,), assigns the pattern p e Py(A;) such that p(x) = w(x), if w(x) # qa,
otherwise, p(x) = a. Since the standard enumeration of the tape e is fixed, an
arbitrary total state w of C is a numeral m, in base 2+s2 which denotes the number

m = ¢, 2+52)" + ¢, o(2452)" + ... + ¢, (2+82)",

where exactly one coefficient ¢, = 2+j2+i, for some j(0 £j < s)andi(0 <1 < 2}). Onthe
other hand, the pattern p = ¢(m,} is a numeral n, in base two which denotes the
number

o= dge2® + de2t+ ..+ d e,

where all the coefficients agree with the corresponding coefficients of m, except for
d, =i Let ¢, Z" --> Z' satisfy:

¢ (m) = n, if m is a number denoted by some total state m,; ¢, (m) = m, otherwise;

' Since B, is alphabetically ordered, the symbol a, (0 < i < 1} corresponds to number i, and the
pair ga {0 < | < s) corresponds 1o number 2+2+.
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then, ¢, is recursive and, if ¢(m,) = n,, then ¢ (m) = n.

Finally, let d: PiB.) --> Z* be the partial function such that d(m,) = n(¢(m,)) if m,
is a total state of C; undefined otherwise. Then, by definition 5, d is a decoding of
Pn(B.) to Z* relative to e.

For regular pattern fields with a fixed intrinsic enumeration e, we can finally
stipulate that a numeric function is COMPUTABLE just in case a Turing machine
computes that function relative to some numeric coding ¢ and decoding d. | give

below the formal definition:

Definition 6  (numeric COMPUTABLE functions on a regular pattern field with a
fixed intrinsic enumeration)

fis a COMPUTABLE function on F relative to e iff
f is a (partial) function from Z* to Z*, there is a generalized Turing machine C on F,

and there are ¢ and d such that ¢ is a coding of Z* to Py(B,) relative to e, d is a
decoding of Py(B,} to Z* relative to e, and C computes f on F relative to ¢ and d.

| prove below that any numeric function which is computable by an ordinary
Turing machine with the usual conventions satisfies definition 7 (when e is

identified with the standard enumeration of the tape).

Example 6.1 (all the numeric functions computable by an ordinary Turing machine
with the usual conventions are COMPUTABLE relative to the
standard enumeration of the tape)

Let F, = <U (L R}> be the doubly infinite tape of an ordinary Turing machine (see
example 1.2). Let e be the intrinsic enumeration of F, determined by the Turing

'® m is a number denoted by some total state just in case its decomposition in base 2+s2 has
exactly one coefficient ¢, = 2+j2+i, for some j {0<j<s} and i (0<i<2). This condition is
recursive. Therefore, ¢, is recursively defined by cases, and it is thus recursive.

103



machine C, of example 1.2.1. Then, all the numeric functions computable by an
ordinary Turing machine with the usual conventions are COMPUTABLE on F,
relative to e. Let ¢ be the coding of Z* to P(B.) relative to e of example 4.1, and d be
the decoding of Py(B.) to Z* relative to e of example 5.1. The usual definition of a
numeric Turing computable function is the following:

A (partial) function f from Z* to Z* is Turing computable iff:

there is a Turing machine C such that, when C is started in state g,, on the leftmost
1 of a block of n+1 1s, C stops with f{ln) Is on the tape, if fin) is defined. If f{n) is not
defined, C does not stop.

By the previous definition, and by definition 3, if f is Turing computable, there is
a Turing machine C such that C computes f on F, relative to ¢ and d. Since ¢ and d
are, respectively, a coding of Z* to P(B,.) relative to e, and a decoding of Py(B,) to 47
relative to e, by definition 6, { is COMPUTABLE on F, relative to e q.e.d.
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3. The relation between generalized Turing machines and ordinary ones

We have seen in example 1.2.1 that the tape of an ordinary Turing machine
is a regular pattern field. Therefore, these devices are a special type of
generalized Turing machines. We have also seen that all the numeric functions
computable by an ordinary Turing machine with the usual conventions are
COMPUTABLE functions relative to the standard enumeration of the tape (see
example 6.1). It is now natural to consider the converse question: are all the
numeric functions which can be computed by a generalized Turing machine also
computable by an ordinary one? If we believe in Turing's fourth hypothesis (see
sec. 1), we must conclude that generalized Turing machines cannot be more
powerful than ordinary ones. However, before accepting this conclusion, we
should take a closer look to the capabilities of a generalized Turing machine which
depend on the neighborhood structure of its pattern field. The pattern field of
ordinary Turing machines has a very simple relational structure. But what happens
if the connections between the nodes are more complicated? Could a more
complex neighborhood structure allow a generalized Turing machine to compute
non-recursive functions?

We will see below that the surprising answer to this question is affirmative.
There are generalized Turing machines which can compute non-recursive
functions. In fact, if we appropriately choose the neighbor functions, any numeric
function turns out to be computable on some pattern field. This result crucially

depends on the fact that some pattern fields have a neighborhood structure

105



essentially more complex than the structure of the tape of an ordinary Turing
machine. The basic intuition can be expressed as foilows. Given a doubly infinite
tape with the standard enumeration of its squares, the neighbor functions Left and
Right individuate two numeric recursive functions”. However, if a more
complicated pattern field is given, there may be an intrinsic enumeration which
allows us to represent the neighbor functions as non-recursive functions. Now, if
this is the case, this non-recursive power embedded in the patiern field may be
used by a Turing machine which operates on it to compute non-recursive
functions. Before proving these results, however, we need to precisely define the
idea of a pattern field whose neighborhood structure is recursive. Intuitively, when
an intrinsic enumeration is fixed, a pattern field is recursive if all the neighbor
functions turn out to be recursive with respect to that enumeration. | formaily

define this concept as follows™:

® | believe that, for any intrinsic enumeration of a doubly infinite tape, the functions Left and
Right individuate recursive functions. However, | have not been able to prove this conjecture. This
proof would be important because it would show that there is no intrinsic way of representing the
neighbor functions of an ordinary tape in a non-recursive way. Theretore, no "non-recursive power"
would be hidden in the infinite tape of ordinary Turing machines, and this wouid explain why such
devices cannot compute non-recursive functions. In fact, | will prove the following proposition
(sec. 4, cor. 5.1): if a pattern field F is recursive relative to an intrinsic enumeration e, and f is
COMPUTABLE on F relative to e, then f is (partial) recursive. Consequently, if the tape of ordinary
Turing machines is recursive relative to any intrinsic enumeration, it is absolutely impossible for
these machines to COMPUTE non-recursive functions.

2 | believe that this definition does not depend on the intrinsic enumeration e that we choose.
However, | have not been able to prove this conjecture. More precisely, the following hypothesis
is likely to be true: if a pattern field F is recursive relative to e, then F is recursive relative to any
other intrinsic enumeration *. If this is true, then being a recursive (or non-recursive) pattern field
is an infrinsic property of the pattern field. In other words, no recursive pattern field has a
non-recursive powetr, and all non-recursive pattern fields have a non-recursive power relative to
any intrinsic enumeration e,

106



Definition 7 (recursive pattern field relative to an intrinsic enumeration)
A pattern field F = <U {f}> is recursive relative to e iff:

F is regular, e: Z* --> U is an intrinsic enumeration of F and, for any i, {: Z* --> Z" 18
recursive, where f.(n) =: ¢'(f(e(n))).

| prove below that the tape of an ordinary Turing machine is a recursive pattern
field relative to its standard enumeration, and ! then give a simple example of a

regular pattern field which is not recursive.

Example 7.1 (the tape of an ordinary Turing machine is recursive relative to the
standard enumeration)

We have seen in example 1.2.1 that a doubly infinite tape F = <U {LR}> 15 a
regular pattern field. Let e be the standard enumeration of F. The numeric functions
L, and R, which, respectively, correspond to I and R under e are defined by:

L(n)=:1,ifn = 0; n+2, if n is odd; n-2, if n is even
R(n)=:n+2,ifn=0orniseven; 0,ifn=1;n-2,ifnisodd andn =1

by their definitions, L, and R, are recursive, whence, by definition 7, F is recursive
relative to e.

Example 7.2 (a regular pattern field which is not recursive)

Let F = <Z* (s fl>, where Z" are the non-negative integers, s is the successor
function, and f is a non-recursive function. Then, the identity function on 7, e, is an
intrinsic enumeration of F, for it is individuated by the Turing machine C whose set
of quadruples is G = {qybsq,). In fact, when C is started on node 0 of a completely
blank pattern, C reaches all the nodes. Therefore, the function which corresponds to
f under e is f itself, whence F is not recursive relative to e.

| am now going to prove two general results. The first theorem states that

there is a pattern field F, and an intrinsic enumeration e, such that F is recursive
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relative to e, and all the (partial) recursive functions are COMPUTABLE on F
relative e. In fact, this pattern field is the tape of an ordinary Turing machine,
and e is the standard enumeration of the tape. This theorem thus is an immediate

consequence of examples 6.1 and 7.1.

Theorem 1 (there is a recursive pattern field on which all the (partial) recursive
functions are COMPUTABLE relative to an intrinsic enumeration)

There is a pattern field F, and an intrinsic enumeration e of F such that F is recursive
relative to e and, if £ Z7 --> Z" is {partial) recursive, fis COMPUTABLE on F relative

toe

proof:

let F be the doubly infinite tape of an ordinary Turing machine, and e be the standard
enumeration of the tape. Then, the thesis follows from examples 7.1, 6.1, and from
the fact that all (partial) recursive functions are computable by an ordinary Turing
machine with the usual conventions q.e.d.

The second theorem states that, for any function f which is not (partial)
recursive, there is a pattern field F, and an intrinsic enumeration e, such that F is
not recursive relative to e, and f is COMPUTABLE on F relative to e. in other
words, given any non-recursive function f, it is always possible to find a pattern
field on which this function can be computed. However, the neighborhood
structure of this pattern field turns out to be non-recursive as well. The proof of
this theorem is based on a very simple idea. The trick consists in letting the nodes
of the pattern field to be the integers themselves, so that f (the function to be
computed) can be taken to be one of the neighbor functions. We then need to

add two more neighbor functions, the successor function s, and the predecessor
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function v. This is sufficient for proving the theorem when f is total. In fact, f can
be computed on the pattern field <Z~ {s v f}>, where Z' are the non-negative
integers, s is the successor function, and v is the predecessor function.

If fis partial, we need to consider the total function ¢ such that, when n # 0,
o(n) = f(n-1) + 1, if f(n-1) is defined; if f(n-1) is undefined, ¢(n) = 0. Whenn =0,
®(n) = 0. For example, suppose f(0) = 3, (1) = undefined, f(2) = 123, (3) = 0,
etc. Then, $(0) =0, (1) = 4, o(2) =0, 0(3) = 124, f(4) = 1, etc. Notice that, since
f is partial, but not partial recursive, ¢ is total but not recursive®’. The pattern
field on which f turns out to be computable is <Z' {s v ¢}>, where Z" are the

non-negative integers, s is the successor function, and v the predecessor function.

Theorem 2 (any numeric function which is not (partial) recursive is COMPUTABLE
on some non-recursive pattern field)

If £ 2% --> Z° is not (partial) recursive, there is a pattern field F, and an intrinsic
enumeration e of F such that F is not recursive relative to e, and fis COMPUTABLE
on I relative to e

proof:
I divide the proof in two cases: (a)  is total but not recursive; (b) f is partial but not

partial recursive

proof of (a):

let F =:<Z" {sv f)>, where Z" are the non-negative integers, s is the successor
function, and v is the predecessor function (where v(0) =: 0). Let e be the identity
function on Z*. By example 7.2, ¢ is an intrinsic enumeration of . Since f is not
recursive, and e is the identity function on Z*, F is not recursive relative to e. 1 now
show that { is COMPUTABLE on F relative to e. Let Pi{Ay) be the set of all finite

21 If ¢ were recursive, ¢ would be computable by an ordinary Turing machine C(¢). Then, we
could construct a second ordinary Turing machine C{f) which computes f. To obtain C(f}, we add
a routine which, whenever, C(0) stops, checks whether the output number is 0. If yes, C{f), enters
an infinite foop. If not, C{f} stops. Since f is computable by an ordinary Turing machine, f is partial

recursive, against the hypotheses.
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patterns of F relative to alphabet A, = {b a;}. Let us represent input (output) number
n as a block of n+l a;s with the first a, on node 0, the second a, on node 1 etc.
Consider now the Turing machine C whose states are Q. = {q, 4, 95 95 U G5 4q, and
whose set of quadruples is Gg =: {q,a,5q, 9,8,bq, qubsq; q,bvq, g;bfa, gsa,fq, q.baq;
gs8,vq, 9,8,8,q5). If we start C in state q,, on node 0, and on a block of n+1 a5, C
stops in state g4 scanning a,, and the output pattern is a block on fin)}+1 a;s. In fact,
C first leaves the marker a, on node 0, then deletes all other a;s. As soon as C finds
the first blank, it goes one node back, and then it jumps according to f. Now the
pattern is completely blank except for node 0 where there is a,, and the machine is
on node f(n). The machine now goes back writing a, on each blank node until it finds
the a, on node 0. At that point, it stops in state q,. Define: n: Z7 --> P(A.), 7ln) =: a
block of n+l a;s with the first a, on node 0, the second a, on node 1 etc;
o: PelAg) > PH(B), alp) =: w ¢ Wy such that wk) = gyp(k), if k is node 0; w(k) = p(k),
otherwise; ¢: Z* --> Pu(B.}, c¢(n) =: o(n(n)); ¢: Pu(By) > P(A.) be the partial function
which, to any total state w e W, < Py(B,), assigns the pattern p € Pg{A.) such that
plk) = w(k), if w(k) # g;a;, otherwise, p(k) = a; n: PllAy > 2", n(p) =.n- 1,ifn# 0,
otherwise, M{(p)=: n, where n is the number of a;s contained in pattern p;
d: Pi(B.) --> Z" be the partial function such that d{m,) = n(¢{m,)}). Then, ¢ is a coding
of Z* to Py(B,) relative to e (the proof is similar to example 4.1}, and d is a decoding
of P(B.) to Z* relative to e (the proof is similar to example 5.1). Furthermore, C
computes f on F relative to ¢ and d. Therefore, by def. 6, f is COMPUTABLE on F
relative to e //g.e.d.//

proof of (b):

let B = <77 {s v §}>, where Z" are the non-negative integers, s is the successor function,
v 1s the predecessor function {where v(() =: 0), and ¢ is the function defined in the
paragraph above the statement of theorem 2. Let e be the identity function on Z*. By
example 7.2, e is an intrinsic enumeration of F. Since ¢ is not recursive (see footnote
21), and e is the identity function on Z7, F is not recursive relative to e. I now show
that f is COMPUTABLE on F relative to e. Let Pi{A,) be the set of all finite patterns
of F relative to alphabet A, = {b a,}. Let us represent input (output) number n as a
block of n+1 a;s with the first a, on node 0, the second a, on node 1 etc. Let c and d
be defined as in proof {a). Consider now the Turing machine C whose states are
Qr=1991929; 9 95 96 7}, and whose set of quadruples is Gg=: {qya,5q,
Q,2,bq; a;bsq; q;bdq, gs2,8,q, 4,2,2,q; 45bvas gsba g gsa,ve5 g52,8,q,). If we start Cin
state q,, on node 0, and on a block of n+1 as, C stops in state g, scanning a,, and the
output pattern is a block on fin)+1 a;s, if f(n) is defined. Otherwise, C does not stop.
In fact, C first leaves the marker a, on node 0, then deletes all other a;s. As soon as
C finds the first blank, it jumps according to ¢. Now the pattern is completely blank
except for node 0 where there is a,, and the machine is on node fin)+1, if f(n) is
defined; otherwise it is on node 0 scanning a,. The machine now checks whether it
1s scanning a,. If yes, it enters an infinite loop (it stays indefinitely on node 0
scanning a, and changing state from ¢ to q,). If not, the machine first goes one node
back, and it then writes a, on each blank node, going back until it finds the a, on node
0. At that point, it stops in state g, Therefore, C computes f on F relative to ¢ and
d. From this, the definitions of ¢ and d, and def. 8, f is COMPUTABLE on F relative
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toe. /fiq.e.d/ Theorem 2 is thus proved” q.e.d.

it is interesting to contrast the way a generalized Turing machine can compute
a non-recursive function with the way an oracle machine can achieve the same
result. QOracle machines are ordinary Turing machines equipped with a special
device (oracle) which always gives the right answer to questions of the form: is
number n a member of set X? The set X is a fixed, arbitrary, subset of the
non-negative integers. In the course of a computation an oracle machine can
pause and ask its oracle whether the number of 1s on the tape at that moment is
a member of X. The machine then resumes the computation by choosing between
two alternatives according to the answer of the oracle. Davis has proved™ that
oracle machines can compute all (and only) the numeric functions which are
obtained from a set of basic functions by applying a finite number of times the
operations of primitive recursion, composition, and minimization. The basic
functions are the usual basic recursive functions (successor, zero function, and

identity functions) and the characteristic function f, of X. Oracle machines can

22 Notice that, since <Z" {s v}> is isomorphic to a tape infinite in one direction, the proof of
Theorem 2 tells us how to enhance the computational power of ordinary Turing machines. if we
want to compute a total non-recursive numeric function f,, we need to add a neighbor function f
which connects the n-th (0 < n) square to the f.{n)-th square. An analogous trick can easily be
found for doubly infinite tapes: the neighbor function f should now connect the 2en-th (0 < n)
square to the 2+f_(n)-th square (where squares are counted according to the standard enumeration
of the tape &). If f_ is partial, and the tape is infinite in one direction, we use the corresponding
total function ¢,, so that we add the neighbor function ¢ which connects the (n+1)-st square to the
(f,(n)+1)-st square. If x is the first square of the tape, ¢{x} =: x and, if f.(n) is undefined, ¢ connects
the (n+1)-st square to x. Analogously, if the tape is doubly infinite.

% Davis (1958). See ch. 1, sec. 4, ¢h. 2, ch. 3, sec. 1, and ch. 4, sec. 2, cor. 2.3,
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thus compute non-recursive functions if X is a non-recursive set.

The main difference between oracle machines and generalized Turing
machines consists in where the non-recursive power is located. The non-recursive
power of an oracle machine is in its oracle. The non-recursive power of a
generalized Turing machine, instead, is in the neighborhood structure of its pattern
field. Nevertheless, we can find a class of generalized Turing machines which
corresponds to an arbitrary class of oracle machines. Consider all the machines
equipped with an oracle which computes the characteristic function f, of a fixed
subset X of the non-negative integers. The generalized Turing machines which
correspond to this class of oracle machines are then all those machines which
operate on the pattern field <Z' {s viu{l,}>, where Z* are the non-negative
integers, s is the successor function and v is the predecessor function.

This class of generalized Turing machines has exactly the same computational
power as the corresponding class of oracle machines. Let {f} be a finite set of

numeric functions. Then, g is (partial) recursive relative to {f} just incase g is a

(partial) numeric function which can be obtained from {f} and the set of basic
recursive functions {successor, zero function, and identity functions) by applying
a finite number of times the operations of primitive recursion, composition, and
minimization. Oracle machines whose oracles compute the characteristic function
f, of X ¢ Z" can compute all and only the (partial) recursive functions relative to
{f.}. Generalized Turing machines which operate on <Z* {s vjU{f,}> can compute

exactly the same class of numeric functions. In fact, I will prove below that all the
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(partial) recursive functions relative to {f} are COMPUTABLE on <Z' {s vjuif}>
relative 1o the identity function e on Z*. That only these numeric functions are
COMPUTABLE on <Z” {s viu{f}> relative to e will then follow from a more general

theorem which | will prove in the next section (th. 5).

Theorem 3 (the class of the {partial) recursive functions relative to {f) is included in
the class of the functions COMPUTABLE on <Z" (s viU(f}> relative fo the

identity function on Z")

If g: Z* --> 77 is a (partial) recursive function relative to {f} then g is COMPUTABLE
on F = <Z" {s v}U{f]}> relative to the identity function e on Z*

proof:

in the first place, notice that each node k € Z* can be identified with the square of a
a tape infinite in one direction, and that s and v thus correspond, respectively, to the
Right and Left functions of ordinary Turing machines which operate on this kind of
tape. Suppose that we represent input {output) number x as a block of x+1 a;s with
the first a, on square 0, the second a, on square 1 ete. If the input numbers are more
than one, each of them is represented by the appropriate block of a;s, and different
blocks are separated by a blank b. Let us also assume that generalized Turing
machines which operate on F are always started on square 0, and in state g,
Furthermore, they always stop on square 0. Let us call any numeric function of m
arguments which can be computed on F according to these conventions a standard
computable function on F. It is then clear that any standard computable function of
one argument is COMPUTABLE on F relative to the identity function e on 7"
Therefore, I must only show that all (partial) recursive functions relative to {fi} are
standard computable on F.

This can be obtained by slightly modifying Boolos and Jeffrey’s proof that all
{partial) recursive functions are Turing computable (1980, ch. 6 and ch. 7). Boolos and
Jeffrey first prove that all abacus computable functions are Turing computable (ch.
6), and then prove that all (partial) recursive functions are abacus computable (ch. 7).

An abacus is a machine with an infinite number of registers (1] [2] ... [k] ... . Each
register can hold an arbitrary non-negative integer, and the machine performs just
two types of operations on the registers: -->1[k]- and -->1[k}-/-, The 1,lk}
operation goes to register [k], adds 1 to the number in this register, and then exits
along path --. The 1[k] operation goes to register [k] and checks whether the number
x in this register is different from zero. If x # 0, it subtracts 1 from x, and then exits
along path --,. Otherwise, it simply exits along path --,, Any abacus is specified by
a program, that is, a flow graph which indicates the sequence in which these two
types of operations are to be performed. A (partial) numeric function f is abacus
computable just in case there is an abacus such that, when it is started with the
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arguments x, ... x, of the function in registers [0] ... [m], and with all other registers
empty, it stops and the content of a specified register [n] is equal to f{x, ... x) if
flx, ... x,,} is defined. Otherwise, the abacus does not stop. It is then easy to prove
that all (partial) recursive functions are abacus computable (see Boolos and Jeffrey
1980, ch. 7).

In fact, abaci can be modified so that they are able to compute all (partial)
recursive functions relative to {f}. This can simply be obtained by adding the
operation -->f[k]--, for any i. If the number in register [k] is x, this operation goes to
that register, changes x to f(x), and then exits along path --. Let us call any abacus
with these special operations an (f)-abacus. Then, it is obvious that all (partial)
recursive functions relative to {f} are {f}-abacus computable (the proof is exactly the
same as the one for (partial) recursive functions).

According to Boolos and Jeffrey, a (partial) numeric function f is Turing
computable just in case there is a Turing machine with alphabet (b a;} which
computes f according to the following conventions: (1) the tape is infinite in only one
direction, and input (output) number x is represented by a block of x+1 a;s. The
leftmost a, is on the third square of the tape. If there are more than one input
numbers, each of them is represented by the appropriate block of a,s, and different
blocks are separated by exactly one blank b; (2) the Turing machine always starts on
the third square of the tape, and stops on the same square. Boolos and Jeffrey then
show how an arbitrary program of an abacus which computes a function f can be
transformed into a table of a Turing machine which computes the same function
according to conventions (1) and (2). Abacus programs are flow graphs with just two
types of operations: -->1,{k]-- and -->1[kj--/--,. Boolos and Jeffrey give the tables of
two Turing machines with alphabet {b a,} which correspond to these two types of
operation. In broadest outline, these machines work as follows. The number x in
register [k] is represented on the tape by a block of x+1 a;s. This block is the k-th
block of a;s on the tape, blocks are separated by blanks, and the leftmost a, of the first
block is on the third square of the tape. The machine which corresponds to the 1 [k]
operation starts on the leftmost a, (that is on the third square), and then goes to the
right until it finds the k-th block. It then writes a, at the end of this block, shifts all
the remaining blocks one square to the right, and then goes back to the third square
and stops. The machine which corresponds to the 1[k} operation starts on the
leftmost a, (on the third square), and then goes to the right until it finds the k-th
biock. It then checks whether this block only contains one a,. If yes, it goes back to
the third square and stops. Otherwise, it deletes the rightmost a, of the k-th block,
shifts all the remaining blocks one square to the left, and then goes back to the third
square and stops. It is thus clear that, by appropriately combining these two types
of machines, the program of an abacus which computes function f can be transformed
into the table of a Turing machines which computes the same function according to
conventions (1) and (2).

I am now going to modify this proof in order to show that any program of an
{£}-abacus which computes function f can be transformed into the table of a
generalized Turing machine on F which computes the same function according to
conventions (1) and (2). This obviously implies that f is standard computable on I,
Therefore, since all (partial) recursive functions relative to {f] are {f}-abacus
computable, all these functions are standard computable on F, and theorem 3 is thus
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proved.

The only difference between an [f}-abacus program and a normal abacus program
is the presence of nodes of type -->f[k]-->. Therefore, | must only describe a
generalized Turing machine C, which corresponds to this type of node. Assume that
the number x in register k is represented on the tape by the k-th block of a,s, and that
this block has x+1 a,s. C, has alphabet (b a, ba, a,a, # #,... #) and it starts on the
leftmost a, (on the third square). It then goes to the right until it finds the k-th block
of a,s. Then, C, makes a special copy of this block. Recall that the k-th block has x+1
a,s. C, writes a copy of the k-th block on the first x+1 squares of the tape. This copy,
however, is written without deleting the content of these squares, This is obtained
by using the special symbols "ba," and "aa,". That is, if square y (0 <y < x+1)
contains symbol "b”", then C, replaces "b" with "ba,”; if square y contains symbol "a ",
then C, replaces "a," with "a,a,". To keep track of the progress of the copying process
C. may use some of the markers #, #,... #,. All the markers, however, are deleted
when the copying is complete and, at the end of this process, C, is on the first square
of the tape.

At this point, C, starts a second routine which computes the function f. The
quadruples G, of this subroutine are obtained from the quadruples G, given in
proof (a) of theorem 2, by identifying "a,” with "ba,” or "a;a,", and "b" with "b" or "a "
That is, G; = {qg(ba)sq, q,(ba)bg, qfaa)aq, q:bsq; g.a:8q, qbvy, g;8,vq; ggblg,
qsa,fia, a2, £q, gslba g, q,blba)g; q.a,(aja,)qs gs(baiva, gslaya vy, g lba;Xba,ggl. At
the end of this routine, C, is on the first square, in state g, scanning "ba,”. Each of
the first f(x)}+1 squares contains the special symbol "ba,” or the special symbol "a,a,".
All other squares contain "b" or "a,".

Finally, C, must change the number of symbols in the k-th block from x+1 to
fi{x)+1, and replace all the special symbols "ba,"” and "a,a," with "b" and "a,". This is
accomplished by means of a third routine. This routine uses the special symbols on
the first £(x)+1 squares as a counter and, if necessary, keeps track of the progress of
the computation by means of some of the markers #, #,... #. When the k-th block
contains exactly £(x)+1 symbols, all the markers and the special symbols "ba," and
"a,a," are replaced by either "b" or "a,", and the machine finally goes back to the third
square where it stops.

I have thus shown that any program of an {f}-abacus which computes function f
can be transformed into the table of a generalized Turing machine on F which
computes the same function according to conventions (1) and (2). Theorem 3 is thus
proved g.e.d.

We have seen (th. 2 and th. 3) that non-recursive pattern fields of a simple
kind allow the computation of non-recursive functions. These resuits thus suggest
that being a non-recursive pattern field might be a sufficient condition for

computing non-recursive functions. This conjecture turns out to be true. | will in
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fact prove below that, for any regular pattern field F = <U {f}> each numeric
function f, which corresponds to f, under an intrinsic enumeration e is
COMPUTABLE on F relative to e. If, in particular, F is not recursive relative to e,
at least one of the numeric functions 1, is not recursive. This function, however,
is COMPUTABLE on F relative to e. It thus follows that any non-recursive pattemn

field allows the computation of some non-recursive function.

Theorem 4 (the numeric functions which correspond to the neighbor functions of any
regular pattern field are COMPUTABLE on that pattern field)

For any regular pattern field F = <U {f}>, and any intrinsic enumeration e,
£,: 2" --> 7" is COMPUTABLE on F relative to e

proof:
let us count nodes according to the intrinsic enumeration e, and let us represent input
number k as a pattern inp, which has marker # on node k and is otherwise blank.

The intrinsic enumeration e is generated by some Turing machine C which, when
started in state g, on a completely blank pattern, reaches all the nodes. I am now
going to modify C to obtain a second machine C, which computes f;. Let A. be the
alphabet of C, where # ¢ A.. The alphabet of C, is then Agu(#] = {a) = A, If Gy is
the set of quadruples of C, the set of quadruples of C, is Gy = Goul{g#bq,mp QumpPfillmark
QD #eep) WhEre Qs Gron @nd g, are three states which are not in the set of
states Qq = {g} of C. Therefore, when C, is started on node 0, in state gy, and on input
pattern inp,, C, works exactly as C does, until it finds the marker #. At that point,
C, deletes the marker, jumps to node f(k), writes the marker # on this node, and stops
1n state Q.

Let B, = {a,\uiga,) be the total alphabet of C,, and define: m: Z* --> Py(A,),
(k) =: inp,; 6: Px(A,) --> Pu(B,), olp) =: the total state of C, which agrees with pattern
p on any node different from node 0 and, on node 0, has symbol g,p(0); ¢: 2" --> Pu(B,),
ck) =: oln(k)); o: Pe(B,) --> Pp(A,) be the partial function which, to any total state
w e W, c P«(B,), assigns the pattern p e Pg(A,) such that p(x) = w(x) if w(x) # q,a,,
otherwise p(x) = a;n: P{A,) --> Z%, n(p) =: the number of the first node which contains
the marker #, if such a node exists, otherwise n(p} =: 0; d: P(B,) --> Z* be the partial
function such that d(w) =: n(¢p(w)) if w is a total state of C,, undefined otherwise.

By the construction of C,, by the definitions of ¢ and d, and by def. 3, C, computes
f, on F relative to ¢ and d. Therefore, to show that £, is COMPUTABLE on F relative
to e, I must only verify that (a) ¢ is a coding of Z* to Pu(B,) relative to e, and that (b)
d is a decoding of Pp(B,} to Z" relative to e;
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proof of (a):
suppose that A, = {aJ has u elements, that the blank b = a,, and that the marker
# = a,,. The function n assigns to number k the finite patern n(k) = inp,. Since e is
fixed, this pattern is a numeral n, in base u which denotes the number
n = dyen’ + deut + ...+ d_eu"! + deu*, where d, = u-1 and all the other coefficients
are equal to 0. Let thenr,: Z* --> Z" satisfy n (k) =: n. By its definition, r, is recursive
and, if n(k) = n,, (k) = n.

Suppose the state set Q, = {g,} of C, has v elements, and that the total alphabet

B, = {a,;uiq.a,} is alphabetically ordered24 Then, ¢ assigns to the initial pattern n,

a total state o(n,) = m, which is a numeral in base u+vu, and which denotes the
number = co-(u+vu)° +cpo(utval + ..+ ¢ lo(uwu)i‘1 + ¢o(u+vu)®, where
¢y = u»i~0u+d0, and all the other coefﬁcients agree with the corresponding coefficients
of the expression in base uof n. Let ¢,(n) =: m. Then, by its definition, ¢, is recursive
and, if o(n,) = m,, c(n)=m

Finally, let us define c,: Z* --> Z*, ¢,(k) = 6,(n(k)). Then, c, is recursive and, if
c(k) = m,, c(k) = m. Therefore, by def. 4, C is a coding of Z* to Py(B,) relative to e
Hq.e.d./

proof of (b):

suppose the alphabet A, = {a} has u elements and the state-set Q, = {q} has v
elements. The total alphabet B, = {a}u{g,a ) has thus n+vu elements, and let B, be
alphabetically ordered.

Since e is fixed, any total state w e W, « Pi(B,) is a numeral m, in base u+vu
which denotes the numberm = cpe(ut+vu)® + ¢ o(u+va)' + ... + ¢,o(u+vu)’, where exactly
one coefficient ¢, = u+ru+s for somer (0 € r < v) and s (0 £ s < u). On the other hand,
the pattern p=¢(m,) is a numeral m, in base u which denotes the number
n = dyen’ + dyeu’ + ... + d su% where all the coefficients agree with the corresponding
coefficients of m, except for d, = 5. Let 0, satisfy ¢,{m) =: n, if m is a number denoted
by some total state m,; otherwise ¢,(m) =: m. Then, ¢, is recursive and, if ¢(m,) = n,,
¢ (m) = n.

Let # = a_, e {a} = A, where (0 <s < u). Since e is fixed, any finite pattern p is
a numeral n, in base u which denotes the number n and, by the definition of n, n
assigns to pattern n, the index y of the smallest term d u’ in the u-ary expression of
n such that d, = u-1, if such a term exists; otherwise, n(n )=0. Let thenn,: 2" -> Z*
satisfy: n,(n) = the index y of the smallest term d,u’ in the u-ary expression of n such
that d, = u-1, if such a term exists; n(n,) = 0, 0thexw1se By its definition, n, is
recursive and, if n(n,) = h, n(n) = h.

Finally, let us define d: Z* --> Z*, d,(m) = n.(¢,{m}). Then, d, is recursive and, if
d(m,) = h, d(m) = h. Therefore, by def. 5, d is a decoding of Px(B,) to Z" /q.e.d.//

Theorem 4 is thus proved g.e.d.

2 Therefore, according to this order, the symbol a, corresponds to number s, and the pair ga,
corresponds to number u+ru+s.
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An immediate consequence of theorem 4 is that any regular, but not recursive,

pattern field allows the computation of non-recursive functions:

Corollary 4.1 {(being a regular and non-recursive pattern field is sufficient for
COMPUTING non-recursive functions}

For any regular pattern field F, and any intrinsic enumeration e, if F is not recursive
relative to e, there is a non-recursive function which is COMPUTABLE on F relative

toe

proof:

since F is not recursive relative to e, at least one of the numeric functions {f,;} which
correspond to the neighbor functions {f} is not recursive. By th. 4, this non-recursive
function is COMPUTABLE on F relative toe q.e.d.

If we think of a regular pattern field F = <U {{}> as an infinite world in which
generalized Turing machines ‘live and operate', then the set of the neighbor
functions {f} can be thought as specifying the ‘spatial structure' of this world.
Then, according to this interpretation, theorem 4 tells us that any numeric
representation of this structure can always be computed in that world, even if this

representation turns out not to be recursive.
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4. Is a non-recursive pattern field necessary for computing non-recursive
functions?

We have seen in the previous section that any non-recursive function can be
computed on an appropriate pattern field (see th. 2). However, the neighborhood
structure of the pattern field which permits this computation turns out to be
non-recursive. This is in fact a special case of a more general result. | will prove
below (th. 5) that any numeric function COMPUTABLE on an a regulfar patterm field
F = <U {f}> relative to an intrinsic enumeration e is (partial) recursive relative to
the functions {f.} which correspond to the neighbor functions. In particular, if F is
recursive, the class of the (partial) recursive functions relative to {f.} is identical to
the class of the (partial) recursive functions. It thus follows that any numeric
function COMPUTABLE on a recursive pattern field relative to an intrinsic
enumeration e is (partial) recursive. In other words, being a non-recursive pattern
field is a necessary condition for the computability of non-recursive functions.

The proof that all the numeric functions COMPUTABLE on a regular pattern
field F = <U {f}> are (partiaf) recursive relative to {f,} (see th. 5 below) is a natural
generalization of the analogous proof for ordinary Turing machines and (partial)
recursive functions. To understand the strategy which | will use to prove
theorem 5, it is thus useful to review first the main ideas of the corresponding
proof for ordinary Turing machines.

The computation of a numeric function always involves three different steps.
Suppose we want to use a Turing machine C to compute the numeric function f(n).

First, we need to represent, or code, the number n as a total state of the Turing
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machine C. Second, once the initial total state which codes the number n is fixed,
we let the machine start on that state, and we then wait until it stops. Third, given
the final total state of C, we need to decode the number represented by that total
state. lf, for any n, this number is equal to f(n), we conclude that f is computable
by C.

Each of these three steps can be identified with a function. The first step
consists in applying a coding function ¢ to the number n. The second step
corresponds to a (partial) function p. which, to the initial total state c(n),
associates the final total state of the computation, if the Turing machine C stops.
Otherwise, p.{c{n}) is undefined. Finally, the third step applies a decoding function
d which retrieves the number represented by the final total state p(c(n)).
Therefore, fis computable by C just in case, for any n, f(n) = d{p.{c(n))), if f(n) is
defined; otherwise, p.(c(n)} is undefined.

Suppose now that we have a way of representing total states as numbers.
Then, under this representation, the functions d, p., and ¢ correspond to three
numeric functions d,, p, and c¢.. It thus follows that, for any n,
d{pcle(n))) = d{p.clc.(n)) = f(n}). Now, if we can prove that each of the numeric
functions d,, p.., and c, is (partial) recursive, then f must be (partial} recursive as
well. If the Turing machine C which computes f is an ordinary one, a naturai

representation of total states as numbers is the one induced by the standard
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enumeration e of the tape®. Furthermore, if the computation is performed with
the usuai conventions, we have already proved that the functions ¢, and d, (which
correspond to ¢ and d under such a representation) are recursive®™. Therefors,
we need only prove that the function p.. is (partial) recursive. In the first place,
it is quite obvious that p.; can be recursively defined if the numeric function g{G¢J,
which corresponds to the total transition function g[G.] of C is recursive. And this,
in turn, can be proved by showing that the numeric functions which correspond to
each quadruple in G, are recursive, and by then defining g[G.], by cases. it is
important to notice that this proof depends on the fact that the numeric functions
which correspond to the neighbor functions Left and Right are recursive. In other
words, the numeric function which corresponds to the total transition function of an
ordinary Turing machine is recursive because the tape is a recursive pattern field.
We will see shortly that this is always true: if a pattern field F is recursive relative
to an intrinsic enumeration e, and g[G.], is the function which corresponds to the
total transition function of a generalized Turing machine on F, then g{G_], is
recursive.

The proof for the general case, when C is a Turing machine on an arbitrary

% The standard enumeration of the tape is defined in example 1.2.1. Recall that, when the
order of the squares is fixed according to the standard enumeration e, each total state of a Turing
machine C is a numeral m, in base k+rk, where k is the number of symbols in the alphabst
A; ={a} and r is the number of internal states in Q; = {q}. Also, if the total alphabet
B; = {aju{qay} is alphabetically ordered, number m is denoted by some total state just in case the
expression of m in base k+rk has exactly one coefficient equal to k+jk+i, for some j {0 < | < ryand
i {0 £i< k). This condition is recursive. Therefore, the standard enumeration of the tape induces
a hijection between a recursive subset of the non-negative infegers and the set of all total states.

% See examples 4.1 and 5.1,
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regular pattern field F = <U f> with a fixed intrinsic enumeration e, follows an
analogous strategy. | will first prove two lemmas. The first affirms that, if the
numeric function g[G,], is recursive relative to {f,}, then the numeric function pg
is (partial) recursive relative to {f,}. The second states that g[G.l, is recursive
relative to {f,}. These two lemmas, together with the definition of COMPUTABLE
function (def. 8), thus imply: for any regular pattern field F = <U {f}>, and any
intrinsic enumeration e, if a numeric function fis COMPUTABLE on F relative to

e, then f is (partial) recursive relative to {f,}. | now give the details of the proof.

Let C be a Turing machine on a regular pattern field F = <U {{}> with a fixed
intrinsic enumeration e. Let A, = {a} (0 < | < k) be the alphabet of C and Q = {q}
(0<j<rt) be the state-set of C. Let the elements of the total alphabet
B. = {aju{ga} be alphabstically ordered”’. Since e is fixed, any total state n, is
a numeral in base k+rk which denotes the number n. Let giG.] be the total
transition function of the Turing machine C, and let g[G.l;: Z7 --> Z" satisty
glGal(n) =k, if g[Gal(n,) = k. Hf the number n is not denoted by any total state,
I set g[G.L(n) = n. Let p, be the function which, to any total state n,, associates
the final total state r, of the computation which starts with n,. If such a
computation does not end, p, is undefined. Let p,.: Z* --> Z7 satisty po(n) = 1, if
pc(ng) = 1. I pe(n,) is undefined, p.c(n) is undefined and, if the number n is not

denoted by any total state, | set p..(n) = n. Let {f,} be the numeric functions which

¥’ Therefore, according to this order, the symbol &, corresponds to number 1, and the pair ga,
corresponds to number K+jk+.
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correspond to the neighbor functions {f} of F. | show below that p; is (partial)

recursive relative to {f.} if g[G.], is recursive relative to {f }.

Lemma 5.1

If g[G.l, is recursive relative to {f,}, then p,; is (partial) recursive relative to {f;}

proof:

suppose that g[Gl, is recursive relative to {f,;}. In the first place, I recursively define
the m-th iteration of g[G.l, as follows: (0 n) = n, y(m+1n)= glGlly m n)). I
then define a function H, which checks whether the computation which starts with
total state n_halts at time m. This function returns 0 if the computation halts at time
m, 1 otherwise. Recall that a computation halts just in case the total states at two
consecutive times are identical. H_ can thus be recursively defined as follows:
H.(m n}=: 0, if y,(m+1 n) = y,(m n); 1, otherwise. I now define a function T, which
returns the time at which the computation halts. If the computation does not halt,
T, is undefined. Obviously, T, can be obtained from H_ by applying the minimization
operator, that is: T.(n) =: the least m such that H(m n)=0. T, is thus (partial)
recursive relative to {f,}. Finally, the function p.; can be expressed in terms of y, and
T.. In fact, po(n) = y(T,(n) n}. Therefore, p.c is (partial) recursive relative to (f,}
g.e.d.

[ now prove that the function which corresponds to the transition function of a
generalized Turing machine on a regular pattern field F = <U {f}> is recursive

relative to {f,}:

Lemma 5.2  {for any regular pattern field, the numeric function which corresponds
to the transition function of an arbitrary Turing machine is recursive
relative to the numeric functions which correspond to the neighbor
functions)

For any regular pattern field F = <U {f}>, and any intrinsic enumeration e, g[Ggl, is
recursive relative to {f}

proof:

let Ac = {a)) (0 £1 < k) be the alphabet of Turing machine C, and Q; = (g} (0<j< 1)
be the state-set of C. Let the elements of the total alphabet B; = {a}ulga]) be
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alphabetically ordered?. The quadruples of C are of two kinds: gaa,q, and g;afg,.
I first show that the numeric function which corresponds to each type of quadruple
is partial recursive relative to {f,}, and that its domain is a recursive subset of Z";
g[G], can then be defined by cases by means of these functions, and it 1s thus
recursive relative to {f,}.

Since any total state m, is a numeral in base k+rk, the decomposition of the
number m denoted by m, is:

m = cyo(k+rk)’ + ¢ o(k+rk)’ + ... + ¢ o(k+rk)”

where exactly one coefficient ¢, = k+jk+1, for some j (0 <j<r)and1(0 <1< k).
Let[qaa,q,], be the numeric function which corresponds to a quadruple of the first
type. This function thus transforms the number m into the number n such that

n = dge(k+rk)’ + d o(k+rk)’ + ... + d o(k+rk)"

where all the coefficients agree with the corresponding coefficients of m, except for
d, = k+tk+z. It thus follows that [qaa,q,], is partial recursive, and its domain is a
recursive subset of Z*. In fact, [g,aa,q,].(m) is defined just in case there is exactly one
coefficient ¢, such that ¢, = k+jk+L

Let f = f,, be the numeric function which corresponds to the neighbor function £
under the intrinsic enumeration e, and [qafq,], be the numeric function which
corresponds to a quadruple of the second type. This function thus transforms the
number m into the number n such that

n = dge(k+rk)’ + d,e(k+rk) + ... + d,eo(k+rk)’

where, if f(s) # s, all the coefficients agree with the corresponding coefficients of m,
except for d, = 1, and for dy,, = k+tk+cy,,. Iff(s) = s, all the coefficients agree with the
corresponding coefficients of m, except for d, = k+tk+l. It thus follows that [gafq,],
is partial recursive relative to {f;}, and its domain is a recursive subset of Z*. In fact,
[gafiq](m) is defined just in case there is exactly one coefficient c, such that
¢, = k+jk+l

Finally, since the domains of the partial numeric functions which correspond to
each quadruple are recursive and mutually exclusive, g[G], can be recursively defined
by cases. Therefore, g[G.], is recursive relative to {f,} q.e.d.

The previous two lemmas, together with the definition of COMPUTABLE

function, imply that any numeric function which is COMPUTABLE on a regular

%8 Therefore, according to this order, the symbol a, corresponds to number |, and the pair qa,
corresponds to number K+jk+l.
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pattern field is (partial) recursive relative to the numeric functions which correspond

to the neighbor functions:

Theorem 5 (any numeric function COMPUTABLE on a regular pattern field is
(partial) recursive relative to the numeric functions which correspond to
the neighbor functions)

For any regular pattern field F = <U {f}>, and any intrinsic enumeration e, if
g: 7+ --> Z* is COMPUTABLE on F relative to e, then g is (partial} recursive relative
to {f,)

proof:

suppose F is regular, and g is COMPUTABLE on F relative to e. Then, by definition
6, there is C, ¢, and d such that C is a generalized Turing machine on F, ¢ is a coding
of Z* to Pi(B,) relative to e, d is a decoding of Px(B.) relative to e, and C computes g
on F relative to ¢ and d. By definition 3, C computes g on I relative to ¢ and d just
in case, for any n, d{p{c(n)) = g(n), if g(n) is defined; otherwise, p{c(n)) is undefined.
Therefore, since C computes g on F relative to ¢ and d, d{p.{c.(n)) = gln) if g(n) is
defined; otherwise, p.{c{n)) is undefined. By definitions 4 and 5, the numeric
functions ¢, and d, are recursive. By lemmas 5.2 and 5.1, since F is regular, p,. 18
(partial) recursive relative to {£,}. It thus follows that g is (partial) recursive relative
to (£} qe.d

| finally deduce six corollaries which sum up the results of this section and of

the previous one.

Corollary 5.1 (any numeric function COMPUTABLE on a recursive pattern field is
(partial) recursive)

If a pattern field F = <U [f}> is recursive relative to an intrinsic enumeration e, and
g: 77 --> 7" is COMPUTABLE on F relative to ¢, then g is (partial) recursive

proof:
by theorem 5, g is (partial) recursive relative to (f,}. Since F is recursive relative to
e, each function £, is recursive. Therefore, g is (partial) recursive q.e.d.
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Corollary 5.2 (the class of the (partial) recursive functions is identical to the class
of the functions COMPUTABLE on recursive pattern fields}

g: Z* > Z* is (partial) recursive iff there is a pattern field F and an intrinsic
enumeration e such that F is recursive relative to e, and g is COMPUTABLE on F
relative to e

proof:
right-left follows from corollary 5.1. The implication from left to right follows from

theorem 1 g.e.d.

Corollary 5.3 (being a regular and non-recursive pattern field is a necessary and
sufficient condition for COMPUTING non-recursive functions)

there is a non-recursive function g: Z* --> Z* such that g is COMPUTABLE on F
relative to e iff F is regular and F is not recursive relative to e

proof:
right-left is corollary 4.1. Left-right follows from definition 6 and corollary 5.1 g.e.d.

Corollary 5.4 (the class of the {partial) recursive functions relative to {f} is identical
to the class of the functions COMPUTABLE on® <Z' {s viU{f)>

relative to the identity function on Z*)

g: 7+ --> Z*is (partial) recursive relative to {f} iff g is COMPUTABLE on <Z* {s viUif]>
relative to the identity function e on Z°

proof:
left-right is theorem 3. Right-left follows from theorem 5 q.e.d.

Corollary 5.5 (the class of the (partial) functions computable by oracle machines is
identical to the class of the functions COMPUTABLE on

<Z' {s viu(fy}> relative to the identity function on 2, where fy is the
characteristic function of X < Z%)

A (partial) function g: Z* --> Z' is computable by an oracle machine whose oracle
computes the characteristic function f; of X ¢ Z" iff g is COMPUTABLE on
<Z" ts viuify)> relative to the identity function e on Z°

# Recall that s is the successor function, and v the predecessor function {where v{0} =: 0).
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proof:
oracle machines whose oracles compute f, compute exactly the class of the (partial)
recursive functions relative to (fg}. Therefore, the thesis follows from corollary 5.4

g.e.d.

Corollary 5.6 (the class of the (partial) recursive functions is identical to the class
of the functions COMPUTABLE on <Z' {s v}> relative to the identity

function on Z°)

g: 7* --> Z* is (partial) recursive iff g is COMPUTABLE on <Z° (s vl> relative to the
identity function e on Z*

proof:
g: Z* --> Z* is {partial) recursive iff g is (partial) recursive relative to the empty set.

Therefore, from corollary 5.4, the thesis follows g.e.d
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5. Generalized computational systems on regular pattern fields

in chapter 1, | have proposed to identify a computational system with a discrete
dynamical system (a cascade) which can be effectively described. This means
that the phase space of an isomorphic cascade is decidable, and that its transition
function is an effective transformation of finite symbol structures. If we assume
that any effective transformation of finite symbol structures can be reduced to a
function computable by an ordinary Turing machine, we can then define a
computational system as a cascade isomorphic to a second cascade whose phase
space is decidable, and whose transition function is Turing computable (ch. 1,
def. 3). However, the results of this chapter show that the concept of an effective
transformation of finite symbol structures is not absolute, but instead depends on
the relational structure of the infinite support on which the elementary symbols are
written. In fact, if a generalized Turing machine operates on a regular but
non-recursive pattern field, its transformations of finite symbol structures may
permit the computation of non-recursive functions. On the other hand, Turing
machines which operate on recursive pattern fields can only compute recursive
functions. The goal of this section is to give a more general definition of a
computational system which takes into account these results.

In the first place, the concept of an effective transformation of finite symbol
structures should be relativized to the pattern field on which these structures are
written and manipulated. In oher wards, | propose the following generalization of

Turing's thesis. Let F be a given pattern field, and let X and Y be two subsets of
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the set P-(A) of all finite patterns of F relative to some alphabet A. Then, a
(partial) function f: X --> Y is effective, just in case fis COMPUTABLE on F relative
to some intrinsic enumeration® of F. In the second place, also the concept of a
computational system should be relativized to the pattern field which aflows us to
describe the system in an effective way. | will thus define below the concept of a
computational system on pattern field F. This concept is in fact a generalization
of the one | have defined in chapter 1, for it reduces to the previous one when the
pattern field F is identified with the tape of an ordinary Turing machine®'.

Before giving this new definition, however, | need a few preliminaries. in the
first place, | need to modify the definition of a COMPUTABLE function (def. 6) in
order to include the case of a symbolic function, that is a function f: X --> Y such
that X and Y are subsets of the set P(A) of all finite patterns of F relative to
alphabet A. This can easily be obtained by introducing first the twe concepts of
a coding of X to P(B.) relative to an intrinsic enumeration e, and of a decoding
of P(B,) to Y relative to e®. These two definitions are analogous to definitions
4 and 5. Thatis: ¢ is a coding of X to P-(B.} relative to g iff: ¢ is a coding of X to

P:(B.), and there is a recursive function ¢, such that, if c(k,) = n,, then ¢ (k) = n;

% See below for the definition of "f is a COMPUTABLE function on F relative to an intrinsic
enumeration " when f is a symbolic function, that is a function whose domain and codomain are
included in P.(A), for some alphabet A.

¥ More precisely, it is possible to prove the foliowing: S is a computational system (ch. 1, def.
3) iff S is a generalized computational system on F (def. 8 below), where F is the tape of an

ordinary Turing machine.

*2 Recall that P.(B,,) is the set of all finite patterns of F relative to the total alphabet B, of Turing
machine C.
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there is a recursive function d, such that, if d(n,) = k., then d.(n) = k. I then modify

definition 6 as follows: f is a COMPUTABLE function on F relative to g iff: fis a

(partial) function from X to Y, where X and Y < P.(A) for some alphabet A, there
is a generalized Turing machine C on F, and there are ¢ and d such that c is a
coding of X to P-(B,) relative to e, d is a decoding of Pr(B;) to Y relative to e, and
C computes f on F relative to ¢ and d.

In the second place, | need to define the concept of characteristic function for

a subset X of P-(A). That is: f, is a characteristic function of X in P.(A) iff:

X < Pe(A), there is {p, p,} < Pe(A) such that f;: P(A) --> {p, p,}, and f(x) = p, if

xe X, f(x) =p, if xe X. Finally, | can define:

Definition 8 (generalized computational systems on a regular pattern field)

S is a generalized computational system on F iff:

S is a cascade, F is a regular pattern field, and there is a second cascade
S, = <T M, H> such that

(1) S is isomorphic to S;;

(2) there is a finite alphabet A such that M, c Py(A) and, for any intrinsic

enumeration e of F,
(a) some characteristic function of M, in Py(A) is COMPUTABLE on F relative

to e;

(b) the transition function H: M, --> M, is COMPUTABLE on F relative to e
and, if T = Z, also H" (the inverse of H) is COMPUTABLE on F relative
toe.

Intuitively, if F is a regular pattern field, all generalized Turing machines on F
are computational systems on F. Therefore, if the previous definition is materially

correct, we should be able to prove that it is satisfied by any Turing machine which
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operates on a fixed regular pattern field. The foliowing theorem shows that this

is in fact true.

Theorem 6 (all generalized Turing machines on a regular pattern field F are
generalized computational systems on that pattern field)

For any regular pattern field F, if C, = <Z* M, glG,]> is a generalized Turing machine
on F, then C, is a generalized computational system on F

proof:

let C, be a generalized Turing machine on pattern field F = <U {f}>. Let A, = (a}
(0 <1 < k) be the alphabet of C,, and Q, = {q;} {0 $j < r) be the state-set of C,. Inow
construct a second Turing machine C, which computes the transition function g{G,]
of C, on the same pattern field F. Let B, = (alulqa) = A, be the alphabet of C,. The
quadruples of C, are of two types: qa,aq, and gafq,. For each quadruple of the first
type, C, has a subroutine specified by the quadruple Qg,(q;a,)(q.8.)0,, For each
quadruple of the second type, C, has a subroutine specified by the quadruples
Q.start(q‘jai)aiQonve(u]s qmove(u)aifiqur quau(quao)qstop’ e quak-l(q_uak-l)qstnp‘ Suppose that C:z
is started on a total state of C,, in internal state qg,., 00 the node which contains the
pair qa;. If this pair corresponds to a quadruple of the first type, C, replaces qa, by
q,3; and then stops in state q,,, Otherwise, it first replaces g;a; by a,, it then moves
to a new node according to f,, adds the symbol q, to the symbol on this node, and stops
in state Qgp-

Let B, be the total alphabet of C,, and M, < Py(A,;) = Pi(B,) be the set of all total
states of C,. Define: ¢: M, --> Pn(B,}, c(w) =: the total state of C, which agrees with
w except for the node which contains a pair ga; c(w) assigns to this node @..(qa,).
Let S, « Pi(B,) be the set of all total states v such that C, stops on v when started on
c(w), for some w e M,. Let d: Pi(B,) --> M, be the partial function which, to any
s € S,, assigns the total state of C, obtained from s by replacing ¢,(q,a,) with g,a;
if s e S,, d is undefined. Then by the definitions of ¢ and d, and by def. 3, C,
computes the transition function g{G,] of C, on F relative to ¢ and d. Therefore, to
show that g[G,] is COMPUTABLE on F relative to any intrinsic enumeration e,  must
only verify that (i) ¢ is a coding of M, to PiB,) relative to e, and that (ii) d is a
decoding of Pi(B,) to M, relative to e.

Let e be an arbitrary intrinsic enumeration of F, and let A, = {ajulga;) be
alphabetically ordered. Since e is fixed, any pattern p € Pi(A,) is a numeral m, in
base k+rk which denotes the number m = ¢ s(k+rk)® + ¢ o(k+rk) + ... + ¢, o(k+rk),
Furthermore, m, is a total state of C, just in case exacly one coefficient c, is equal to
k+jk+i, for some j (0 £j <r)and i (0 €1 < k). Let t be the number of elements of the
total alphabet B, of C,. Then, the function ¢ assigns to m, a numeral n, in base t
which denotes the number n = dy»t’ + d;»t' + ... + d,*t?, where all the coefficients
agree with the corresponding coefficients of m except for d, = (k+rk)+Olk+rki+c,
(assuming that q.,,. = d,, and that B, is alphabetically ordered). Define c: 2" --> Z7,
c(m) =: n if m, is a total state of C,, ¢,(m) =: m otherwise. Then, c_is recursive and,
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if c(m_) = n,, ¢,(n) = m. Therefore, c is a coding of M, to Pr(B,) relative to e.

Let e be an arbitrary intrinsic enumeration of F, let Q, = {q;} be the state-set of
C,, where 0 < j < h, and assume that g, = Q,.;. Also assume that the total alphabet
B, of C, has t elements, where t = (k+rk}+h(k+rk), and that B, is alphabetically
ordered. Since e is fixed, any pattern p € Py(B,) is a numeral n, in base t which
denotes the number n = d»t° + d;st’ + ... + d,t*. Furthermore, ifn, € S,, exactly one
coefficient d, = (k+rk)+(h-1)(k+rk)+(k+uk+l), for some u{0<u<r)jand 1 (0 < 1<k
The function d assigns to n, a numeral m, in base k+rk which denotes the number
m = ¢yo(k+rk)’ + ¢ o(kirk) + ... + ¢ o(k+rk)’, where all the coefficients agree with the
corresponding coefficients of n except for ¢, = k+uk+l. Defined: Z2*--> 7%, d(n) =:m
if exactly one coefficient d, in the expression in base t of n,is equal to
(k+rk)+(h-1)(k+rk)+(k+uk+]), d(n) =: n otherwise. Then, d, is recursive and, if
din,) = m,, d(n} = m. Therefore, d is a decoding of Py(B,} to M, relative to e.

I now prove that, for any intrinsic enumeration e of F, a characteristic function
g, of M, in Pi(B,) is COMPUTABLE on F relative to e. Let us count nodes according
to the intrinsic enumeration e, and let g;: P«(B,) --> {p, p.} < P(B,), where p, is the
completely blank pattern and p, is the pattern which has the pair g,a, on the first
node, and is otherwise blank. let g(p)=:p, ifpe M, gfp)=p, if pe M,. The
intrinsic enumeration e is generated by some Turing machine C, which, when started
in state g, on node x of a completely blank pattern, reaches all the nodes. I am now
going to modify C, to obtain another machine C, which computes g,. Let A, = {a}
(0 < u < n) be the alphabet of C,, and Q, = {q,} (0 £ v < m) be the state-set of C,. If
the total alphabet B, of C, is {a}uiga]), the alphabet of C, is A, = {aa,Juigaa,lwi#.
The quadruples of C, are of two types q,a,a,q; and q,a,fq,. For each quadruple of the
first type, C, has a subroutine specified by the quadruples:
{g,(aa,)aa)qluqlqaa)@a)a,luig(aa,)(aa)d,). For each quadruple of the
second type, C, has a subroutine specified by the quadruples:
{g,(aa)fgulglgaa)(aa)qalviggaa g, vid(aa,)fq,). Finally, C, has the
halting conditions: {q,##q,, q..##d,.Jwq.{qaa,lgaa,)q,,). Suppose that C, is
started in state (,, on the first node x {according to the intrinsic enumeration e) and
on a pattern p, which represents pattern p € Pi(B,) in the following way. The marker
# is located on the first node after the last non-blank node of p. All nodes after the
node where # is located are blank (where the blank is symbol a,a,). For any other
node y, if p(y) = a,, py) = aay if ply) = q;a, p,(y} = qaa,. If pis completely blank, the
marker # is located on the first node x. There are three possible cases: (1) there 1s no
node y such that p(y} = qa; {2) there is exactly one node y such that p(y) = ga; (3)
there are at least two node y and z such that y = gja, and z = q,a,. Furthermore,
p € M, just in case (2) is satisfied. C, is designed so that, when started in state qq on
the first node x of pattern p,, it stops in state q,,, if (2) holds; if (1) or (3) holds,
instead, C, stops in state q,,. In fact, C, moves from node to node looking for either
the marker # or a triple gaa,. If it finds the marker # first, it stops in state q,,
(case 1). If it finds a triple ga;a, first, it memorizes this fact by going into state qu,
and then starts looking again for the marker or a second triple. If it finds the marker
# first, it stops in state qy,, (case 2). Otherwise, it stops in state q,, (case 3).

Let B, be the total alphabet of C, and define ¢: Pi(B,) --> Pp(B,), c(p) =: the pattern
which has q,p(x)a, on the first node x and agrees with p, on all other nodes, if p is not
completely blank; otherwise c(p) has q,# on the first node x and all other nodes are
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blank {where the blank is symbol a,a,); d: Pi(B,) > {p, p,} be the partial function
which assigns p, to any pattern which contains exactly one node with either q,,.# or
O..(Q;38,), and assigns p, to any pattern which contains exactly one node with q,..#.
Then by construction of C,, by the definitions of ¢ and d, and by def. 3, C, computes
g, on F relative to ¢ and d. Therefore, to show that g, is COMPUTABLE on F relative
to e, I must only verify that (i) ¢ is a coding of Py(B,) to P(B,) relative to e, and that
(i1} d is a decoding of Pi(B,) to {p, p,} relative to e.

Since e is fixed, and B, has k+rk elements, any pattern p € Py(B,) is a numeral m,
in base k+rk which denotes the number m = cyo(l+rk)® + co(k+rk)’ + ... + ¢ o(k+rk)".
Since the alphabet A, of C, has n elements, the alphabet A, = {aa Juigaa Ju# of Gy
has kn+rkn+1 elements. Let the marker # correspond to number kn+rkn, and A, be
alphabetically ordered. Therefore, aa, corresponds to number in+u and gaa,
corresponds to number kn+jkn+in+u. Suppose the state set Q, has of C, has t
elements. Then the total alphabet B, of C, has (kn+rkn+1)+t(kn+rkn+1} elements.
Suppose B, is alphabetically ordered. Then, q,(aa,) corresponds to number
(kn+rkn+1)+0(kn+rkn+1)+(in+u), dq,(q;a,a,) corresponds to number
{kn+rkn+1)+0(kn+rkn+1)+(kn+jkn+in+u), and q# corresponds to number
(kn+rkn+1)+0(kn+rkn+1)+(kn+rkn). The function ¢ assigns to pattern m, a total state
of C, which is a numeral v, in base (kn+rkn+1)+t(kn+rkn+1) = h and denotes the
number v = deh + d;sh! + .. + d,oh® + d,,,sh™*’ where, if m#0, d,,, =kn+rkn,
d, = (kn+rkn+1)+(in+0} if ¢, = 1, d, = (kn+rkn+1)+(kn+jkn+in+0} if ¢, = k+jk+1, any
other coefficient d, = in+0 if ¢, = i, d, = kn+jkn+in+0 if ¢, = k+jk+i; if m = 0, then
v = dh’, where d, = (kn+rkn+1)+(kn+rkn). Define ¢, Z, --> Z,, ¢,(m) =1 v. Then, ¢ is
recursive and, if ¢(m,) = v,, ¢{m) = v. Therefore, ¢ is a coding of Py(B,) to Pu(B,)
relative to e.

Suppose that gy, corresponds to number t-2, and that q,, correspons to number
t-1. Then, g, # corresponds to number Y = (kn+rkn+1+(t-2)kn+rkn+1+(kn+rkn),
q,..# corresponds to number N = (kn+rkn+13+{t-D(kn+rkn+1)+(kn+rkn), and q,,(gaa,)
corresponds to number N, = (kn+rkn+1)+(t-1 ) kn+rkn+1D+(kn+jkn+in+ua).
Furthermore, the completely blank pattern p, is a numeral in base k+rk which
denotes the number 0, and pattern p, is a numeral in base k+rk which denotes
number k. Define: d.: Z': --> Z*, d(v) =: k if the expression in base h of v has exactly
one coefficient equal to Y, d(v) =: 0 if the expression in base h of v has exactly one
coefficient equal to N, d(v) =: 0 if the expression in base h of v has exactly one
coefficient equal to N, for some j, i and u, d{v) =: v otherwise. Then, d, is recursive
and, if d(v,) = m,, d(v) = m. Therefore, d is a decoding of Pi(B,) to Py(B,) relative to e.
Theorem 6 is thus proved q.e.d.

133



Chapter 3

---------------------------------------------------------------------------------------------------------------

1. Introduction
2. Dynamical phenomena
2.1 Magnitudes and dynamical models
2.2 The correspondence between models and systems, and the concept
of a dynamical phenomenon
2.3 Dynamical studies as attempts to solve dynamical problems
3. Frameworks and explanations
3.1 Frameworks
3.2 Dynamical explanations
3.3 Explanations as solutions of dynamical problems, and the inductive
method
4. Principles, laws, and theories
4.1 Theoretical principles, specific principles, and laws
4.2 Theoretical frameworks and thecretical explanations
4.3 Dynamical theories
4.4 The deductive method for solving dynamical problems, and the
heuristic value of dynamical theories
5. Two examples of dynamical theories
5.1 The theoretical principles of impetus theory (or Aristotelian & Impetus
dynamics)
5.2 The standard models of Impetus theory
5.3 The theoretical principles of Newtcnian dynamics
5.4 The standard models of Newtonian dynamics
5.5 Two inconsistent theories which explain the same phenomena
5.6 The heuristic values of Impetus theory and Newtonian dynamics

1. Introduction
In this chapter, | propose a theory of the explanation of a deterministic process.
This theory is based on a general view of scientific explanation according to which:

(i) explanations are solutions of explanatory problems; (ii) these problems
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essentially consist in specifying a modef of a system or process which we want 10
explain; (iii) explanatory problems come in different types; (iv) the type of
explanatory problem depends on the type of modef/ which we attempt to specify;
(v) the type of model depends on the type of mathematical structure attributed to
the system which we want to explain. In the first three sections, | articulate this
general view for one particular type of problem, which | call a “dynamical problem".
This problem consists in specifying a deterministic dynamical model of some
system or process, and | propose to think of a dynamical explanation as a solution
of a dynamical problem.

The main goal of the last two sections is to show that this theory of the
explanation of a deterministic process also allows us to better understand the
structure and function of dynamical theories. According to this view, a dynamical
theory determines a set of dynamical explanations, and it also gives us heuristic
rules for generating these explanations. | thus propose to think of the heuristic
value of a dynamical theory as a rough measure of the efficiency of these rules.
| finally suggest that the heuristic value of dynamical theories may play an
important role in the choice between two competing theories.

This chapter analyzes a problem which is the main focus of many empirical
sciences. This problem can be described as the attempt to explain a dynamical
phenomenon. Some classic examples of dynamical phenomena are those which
Galileo explained: free fall, the motion of a sphere on an inclined plane, projectile

motion, etc. But dynamical phenomena are not limited to the domain of mechanics
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or physics. Many other sciences try to explain phenomena of this kind. For
example, demography is interested in the laws which govern the growth of a
population under specified conditions. Chemistry may be interested in studying
how the concentration of some substance varies during a certain reaction.
Cognitive science attempts to explain the mental operations of a subject involved
in some intellectual activity. Very probably, all sciences are interested in the
explanation of some dynamical phenomenon. Obviously, this is not the only type
of problem which an empirical science deals with. Nevertheless, if we were able
to describe the logical structure of this type of explanation, we could demonstrate
a deep structural identity between scientific disciplines which, at a more superficial
level, may seem worlds apart.

| take "scientific explanation” to properly refer to those explanations which
scientists attempt to produce as the result of their empirical or theoretical research.
What | intend is thus best expressed by the words "explanations of phenomena’.
To have an idea of what qualifies as a scientific explanation in this strict sense,
and what does not, it is best to start with socme typical examples. The simplest
examples | can think of are Galileo’s explanations of free fall, projectile motion, and
the motion of a sphere on an inclined plane. Another typical example is the
explanation of planetary motion provided by a modei of classical mechanics. On
the other hand, most of the concrete examples discussed in the literature on
scientific explanation do not qualify as scientific explanations in this strict sense,

for they are not explanations of phenomena. This literature has been mostly
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concerned with the explanation of singular events. But, in the first place, singular
events are not phenomena, for phenomena are organized complexes of events.
in the second place, the explanation of singular events (if it is scientific in a
derivative sense) presupposes the expianation of the phenomena of which those
events are parts. The second favorite topic of the literature on scientific
explanation is the explanation of a law. These are not scientific explanations in the
strict sense either, for they are not explanations of phenomena. The reason,
again, is that a phenomenon is not a law but, rather, a system or process which
can be described by means of an organized complex of laws.

The problem of scientific explanation is usually studied from a very general
point of view. The standard approach starts by specifying a set of conditions
which an empirical theory should satisfy, and then asks how a theory of this kind
could produce explanations of specific phenomena'. As a consequence, this
approach has not paid much attention to the specific structure of the phenomena

which scientists attempt to explain. | believe that the general problem of scientific

! See for example Hempel (1965), Nagel {1961}, and Braithwaite (1964). A good introduction
to the huge literature on scientific explanation is Salmon (1990). For some of the most recent
contributions see Kitcher and Salmon (1989). Even those approaches which reject the received
view of explanation still maintain that scientific explanation can only be understood after we analyze
the structure of empirical theories. See, for example, van Fraassen (1980) and Suppe (1989).
Aiso notice that the doctrine of the priority of the analysis of scientific theories does not depend on
the choice of a particular solution to this problem. In fact, the received view of explanation
presupposes a syntactic analysis of theories, while van Fraassen (1970, 1972, 1980, 1989) and
Suppe (1974, 1989) subscribe to different versions of the semantic view. Uther versions of the
semantic view can be found in Suppes (1957, 1967, 1969), Przelecki (1969), Sneed (1971},
Wessels (1974), Stegmiller (1976, 1979), Dalla Chiara and Toraldo di Francia (1981), Baltzer,
Moulines, and Sneed (1887), Giere (1984, 1985, 1988). None of these analyses is completely
satisfaclory, but their detailed criticism goes beyond the scope of the present work. See, however,
sections 2.2, 2.3, 4.3, and 4.4.
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explanation can only be attacked by recognizing that all scientific explanations (in
the strict sense of this term) are explanations of specific types of phenomena. In
other words, to study scientific explanation in general -- without reference to the
specific form of the phenomena which are to be explained -- is not a good
strategy. In fact, each specific type of phenomenon has a specific mathematical
structure, and individuating this structure is a necessary condition for
understanding the specific form of the explanations of that type of phenomenon.

This may sound as an extremely strong form of Platonism but, in fact, it is not
a metaphysical claim. It is rather a methodological claim about the structure of a
typical problem which science attempts to solve. By definition, a system, object,
entity, or process « is a phenomenon of type [1, if it belongs to a certain subset
[1, of an appropriate set A of mathematical structures. My methodological point,
then, is that science attempts to construct explanations of specific types of
phenomena. What this means is that these explanations are solutions of a special
kind of problem. A constitutive part of this problem is the hypothesis that a
concrete process v (the explanandum) belongs to a specific phenomenon-type I1,,
that is, the hypothesis that v is a phenomenon of type I1,. In other words, my
methodological claim is that science attempts to explain concrete systems which
are assumed to be phenomena of a specific type, and thus are assumed to have
a specific mathematical structure.  Science does not attempt to explain
unstructured, or bare, objects. Therefore, if we are to understand scientific

explanation, we'd better understand first the specific mathematical structure of the
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phenomena which science attempts to explain.

Therefore, this chapter is not intended to discuss all scientific explanations, let
alone the general nature of explanation. Rather, its scope is limited to a specific
type of scientific explanations, that is, expfanations of dynamical phenomena.
Even though the literature on explanation is huge, this particular problem has been
neglected so far’. Dynamical phenomena obviously are an important type of
scientific explanandum, but not all explananda are of this kind. For example,
statistical phenomena certainly have a different structure. To elaborate an
adequate classification of the different types of phenomena is not a trivial matter,
and | believe that this is one of the primary goals of the philosophy of science. |
also believe that this goal cah only be achieved by employing a piece-meal
strategy. That is, we need to individuate specific types of phenomena, and then
to make explicit the mathematical structure proper of each type, and the structure
of the explanations adequate for that type. This chapter is thus a first step
towards the achievement of this general goal. In other words, | belisve that
dynamical phenomena are one of the types which will be included in a broader
classification of phenomena.

Instead of starting from a general view of the structure of empirical theories,

¢ Van Fraassen's early semantic view of theories employs a dynamical approach (van
Fraassen 1970, 1972; Wessels 1974). However, his analysis of scientific explanation is extremely
general. Very briefly, van Fraassen (1980) provides two general theoties. The first tells us what
an empitical theory is, the second what an explanation is, and scientific explanations are
explanations which use scientific theories in a certain way. More precisely, all scientific
explanations are answers to why questions which draw upon scientific theories to provide the
requested information. No attempt is made to understand the specific structure of the explanations
of dynamical phenomena.
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| start from the analysis of dynamical phenomena. This analysis will then shed
fight on the concrete scientific explanations of such phenomena. Eventually, we
will also be able to understand the structure of those empirical theories which
subsume these explanations under general principles, namely dynamical theories.
The conceptual framework which allows this inversion of perspective is dynamical
system theory. Very briefly, we can study the explanations of dynamical
phenomena independently from empirical theories because dynamical system
theory permits us to understand the basic mathematical structure which is
constitutive of any dynamical phenomenon. In fact, this mathematical structure
turns out o be a dynamical system®.

My general view of scientific explanation is that alf scientific explanations® are
explanations of specific types of phenomena, and that explanations of phenomena
are solutions of a special kind of problem. In general, this problem has three
components, and it can thus be identified with an ordered triple <y H, F>. The
first element v is the concrete system or process which we want to explain (that
is, the explanandum); the second element H, is the hypothesis of the problem,
which states that y belongs to a certain phenomenon-type I1,; the third element F
is the request of the problem, whose general form is: find a specification of a

model of y. The thrust of this chapter is to show how this general view of scientific

® Recall that a dynamical system is a structure <T M {¢'}> which satisfies: T is a set which
represents time, and T = reals, rationals, or integers (or the non-negative parts of these structures);
M is the set of all complete states of the system (the phase space); ¢- M —> M, g°(x) = x, and
g""(x) = g'(g*(x)). See section 2 of chapter 1 and, in particular, definition 1.

*In the strict sense of this term.
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explanation can be developed in detail for one particular type of phenomena, that
is, dynamical phenomena.

The concept of problem which | use throughout this chapter is a special case
of what Newell and Simon call the set representation of a problem (1972, 73-75).
Newell and Simon’s concept is in turn a special case of a more general set
theoretical definition which has been recently proposed by Veloso (1284). Veloso’s
definition expresses in a rigorous way Polya’s conception of problems (1945, 1962,
1965), and it is the foundation of an elegant mathematical treatment of the
concepts of problem-reduction and problem-decomposition. Nickles (1978, 1980,
1981) has proposed a concept of problem which is essentially equivalent to Newell
and Simon’s.

Let me now briefly sketch the content of each section. The main goal of the
next section is to make explicit the mathematical structure which is shared by all
dynamical phenomena. Intuitively, a dynamical phenomenon is a deterministic
process or system y which can be truly described by means of a finite number of
interdependent magnitudes. These magnitudes, together with their time evolution
functions, can thus be thought as a dynamical mode/ of the system y°. Some of
these magnitudes are observable, others may not be so, but the values of all
magnitudes are determined if the evolution functions and the initial conditions are

known. This analysis does not presuppose special properties of the evolution

® For example, consider the free fall of a body. Then, the Galilean model of free fall can be
identified with the magnitudes position and velocity together with their time evolution functions
defined by Yy vi{t) =y + vt + 1/2¢ct” and V[y v}{t} = v + ct {(where y and v are, respectively, the
initial position and velocity of the falling body, and ¢ is a constant).
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functions, such as continuity or differentiability, and | also treat the magnitude time
very generally. As a special case, time is allowed to be discrete. An interesting
consequence of this approach is that computationa/ models turm out to be a special
type of dynamical models®.

In section 2.3, I introduce the concept of a dynamical problem. This is the
crucial step of my analysis, for I will later identify a dynamical explanation with a
solution of a dynamical problem. A dynamical problem has three components.
First, a concrete system or process w which we want to explain; second, the
hypothesis H, which states that v is a dynamical phenomenon; third, the request
F, which asks of finding a specification of a dynamical model of y. Therefore, a
solution of an arbitrary dynamical problem <y H F> is a specification of a
dynamical mode/ of y. | have mentioned above that a dynamical model can be
thought as a finite number of magnitudes together with their time evolution
functions. A dynamical model thus is an abstract entity. However, this abstract
entity can always be linguistically specified by means of a finite number of
mathematical formulas which express the time evolution functions of each
magnitude’. A solution of a dynamical problem <y H F> will thus in general have
two components: a linguistic part, and a dynamical model of y which is specified

or determined by the linguistic part.

§ In particular, computational models of cognition can thus be thought as models of a special
type of dynamical phenomena.

| require that the time evolution functions of an arbitrary dynamical model be definable by
means of some mathematical operators.
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These considerations thus introduce the main topic of section 3, where | finally
make explicit my view of the explanation of dynamical phenomena. Intuitively,
explaining a dynamical phenomenon consists in specifying one of its dynamical
models. This means that we must find a finite number of mathematical formuias
which express the time evolution functions of the magnitudes constitutive of one
of these models. Usually, however, these mathematical formulas are not
determined directly. Instead, one explicitly states some hypotheses from which the
evolution laws of each magnitude can be deduced. For example, Newton's
principle of universal gravitation and the second principle of dynamics (together
with other specific assumptions) allow us to deduce the positioh and velocity laws
of a planet which revolves about the sun. | thus propose to think of a dynamical
explanation of a system y as a structure with two components. The first element
is a set of hypotheses, and the second element is a dynamical mode/ of y whose
evolution laws can be deduced from the hypotheses. The set of hypotheses thus
specifies or determines the dynamical model, so that any dynamical explanation
can also be thought as a solution of a dynamical problem. To illustrate these
ideas, | consider four classic examples of scientific explanations. [n particular, |
show that Galileo’s explanation of free fall conforms to this model. A second
example is the explanation of free falt which can be formulated in the context of
Impetus theory. | show that my analysis also applies to this case which, at first
glance, might seem of a different kind.

The definition of a dynamical explanation which | propose in section 3 is quite
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general, in the sense that it does not impose any special condition on the set of
hypotheses which specify a dynamical model of a given system y. However, the
hypotheses which are usually employed in theoretical explanations have a special
form. The goal of section 4.1 is to analyze the specific form of these hypotheses.
In particular, | focus on theoretical principles. Intuitively, a theoretical principle is
an equation which expresses the time evolution function of a magnitude as a
mathematical function of the time evolution functions of other magnitudes. A
typical example is the second principle of dynamics A(t) = F(t) / M{t), where A(t),
F(t), and M(1) are the time evolution functions of the acceleration, force, and mass
of an arbitrary body. We thus see that a theoretical principle holds for some
specified types of time evolution functions. [n this sense, a theoretical principle is
general. QOther assumptions employed in theoretical explanations, instead, are
specific, for they are supposed to hold only for the particular system or process
which we want to expiain.

These considerations thus introduce the main topic of section 4, where |
propose a new view of the structure of dynamical theories. In its simplest form,
a dynamical theory is composed of three elements. The first element, the domain
of the theory, is a set of processes or systems which the theory intends to explain.
The second element is a set of theoretical principles, and the third element is a set
of theoretical explanations of some of the systems in the domain of the theory. In
section 4.3, | express this general view of dynamical theories in a precise form,

and | then compare it to the syntactic and to the semantic approach. My basic
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point is that either approach highlights one essential component of dynamical
theories, namely, the linguistic component and the mode/ theoretic component.
However, dynamical theories cannot be reduced to either component.

The main thesis of section 4.4 is that some dynamical theories are extremely
useful tools for generating or producing dynamical explanations. [n other words,
[ maintain that some dynamical theories allow us to efficiently solve dynamical
problems. This property of dynamical theories depends on three different sets of
heuristic rules which are respectively associated with three different components
of a dynamical theory. | thus propose to think of the heuristic value of a dynamical
theory as a rough measure of the power of these three sets of heuristic rules.

To illustrate these ideas, | then consider two examples of dynamical theories.
The first theory, which | cali "Impetus theory", expresses some of the basic
intuitions of Aristotelian dynamics, conjoined with some ideas taken from impetus
dynamics. The second theory, which 1 call "Newtonian dynamics”, is the fragment
of classical mechanics whose only theoretical principles are the second principle
of dynamics, and the definitions of velocity and acceleration. The main thrust of
section 5 is to show that my analysis of dynamical theories allows us to
understand the conceptual relations between these two theories, and that it is
possible to give a detailed story which explains how Newtonian dynamics could
have been produced starting from Impetus theory. These considerations are
based on a quite surprising thecrem which | prove in section 5.5. This theorem

affirms that Newtonian dynamics and Impetus theory are translatable even though,
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under the natural interpretation which identifies the concepts of total force of the
two theories, they are inconsistent. What makes the translation possible is in fact
an unnatural interpretation which identifies the Newtonian total force with the
propulsive force of Impetus theory.

Finally, in section 5.6, | compare the heuristic values of Newtonian dynamics
and Impetus theory, and | conclude that, even though the two theories are
translatable, Newtonian dynamics is a much more useful tool for representing and

solving dynamical problems.
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2. Dynamical phenomena

Mutation or change is perhaps the most basic feature of our experience®. At
any given time, we perceive the world as a collection of different objects which are
constitutive of certain magnitudes’. These magnitudes assume different values
at different times, and their values belong to exactly one of the objects which are
constitutive of a specific magnitude. For example, consider position and force.
Position usually has one constitutive object, while force often involves a pair of
objects. We may in fact measure the position of a body x, or the force on a body
y exerted by a body x. If x and y are two different objects, the two expressions
*the magnitude position of x* and “the magnitude position of y* refer to two
different magnitudes. The expression "the magnitude force on y exerted by X"
refers to a third magnitude. The object x is constitutive of the first magnitude, y
is constitutive of the second, and both x and y are constitutive of the third. Any
magnitude determines a set of possible values and, at any given time, exactly one
of these values belongs to one of the constitutive objects of that magnitude. An

appropriate name for this special object is "the substance of a magnitude"'®. The

® The subject of this paragraph (‘we"} has a specific referent: that group of scientists who
attempt fo construct deterministic dynamical models of systems which evolve through time. What
this paragraph attempts to convey is a general picture of motion which | believe is often implicit in
this scientific discipline.

° The sense in which a sequence of objects is constitutive of a magnitude is explained below.

'° This name is not intended to evoke all the meanings traditionally associated with the term
*substance”. However, this name is intended to evoke the idea of an entity which is constitutive
of certain properties, and which is the subject to which these properties are attributed. Each value
of a magnitude can be thought to determine a different property, and this property belongs to the
substance of that magnitude. Furthermore, the substance of that magnitude is constitutive of each
of these properties. For example, i v is the position of x, then x has the property of having y which
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substance of a magnitude is thus that object which is constitutive of that particular
magnitude, and to which the vaiues of that magnitude belong. For example, the
substance of the magnitude position of x is the body x, while the substance of the
magnitude force on y exerted by z is the body y'". The values of position and
force belong, respectively, to the bodies x and y. Consider now all the possible
magnitudes. At any given time, exactly one value of each magnitude belongs to
its substance. Therefore, for each magnitude, there is a function whose domain
is time and whose codomain is the set of possible values of that magnitude. This
function is the time evolution, or the motion, of that particular magnitude. Mutation
or change can thus be identified with the set of all these functions.

An important feature of change is that the time evolution functions of some sets
of magnitudes may form a closed system, so that they are independent from the
motions of all other magnitudes. This means that, for any such set, the variation
of any of its magnitudes may depend on the magnitudes which belong to the same
set, but this variation does not depend on any other magnitude which is not in this
set. As a first approximation, we may identify the time evolution functions of all the
magnitudes in each of these closed sets with a dynamical model. In what follows,

I will exclusively consider dynamical models which involve a finite number of

is the position of x. The substance of the magnitude position of x is x, x is constitutive of the
property of having y which is the position of x, and this property belongs to x.

! Notice that also the body z is constitutive of the magnitude force on y exerted by z.
Nevertheless, the substance of this magnitude is y, because the value of the magnitude force on
y exerted by z belongs to y, not to z. It might seem that this value could belong to z as well.
However, the force on y exerted by z is a component of the total force on vy, it is not a component
of the total force on z. This is why the choice of y is not arbitrary.
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interdependent magnitudes'”. A typical example of a dynamical model is the
Galilean model of free fall. This model only involves two interdependent
magnitudes: the position and the velocity of a falling body. The time evolution of
the velocity depends on the initial velocity alone, but the time evolution of the
position depends on both the initiat position and the initial velocity. Therefore,
taken together, the position and the velocity of a falling body form a closed
system',

Any dynamical model has four basic properties. First, some of its constitutive
magnitudes can be observed, measured, or detected. For example, if we consider
again the Galilean model of free fall, all magnitudes are observable. In general,
however, the observable magnitudes are a subset of all the magnitudes
constitutive a dynamical model, and this subset always includes the magnitude
time.

Second, the time evolution functions of a dynamical model are related in such
a way to generate a dynamical system. In the first place, this means that the time
evolution function of each magnitude may depend only upon the initial values of
the (other) magnitudes constitutive of the model. Therefore, strictly speaking, each

magnitude M, is associated with a set of time evolution functions {f[x; ... x; ... X, (1)},

2 A generalization to infinite sets is possible, but it involves technical complications which are
not necessary for my present purposes. The basic problem is that we want to be able to specify
or determine the time evolution functions of each magnitude of an arbitrary dynamical model. If
there were an infinite number of such functions, we should then require that: (1) all these functions
be definable in some language; (2) that the set of all formulas which define these functions be

{partially) recursive.

¥ 'Closed system" is not intended here in the usual sense of classical mechanics -- an isolated
system whose internal forces only depend on the positions of its constitutive particles.
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where x, is the initial value of magnitude M, This implies that.

[1] filx ... % ... ,1(0) = x;
for example, in the case of the Galilean model of free fall, the time evolution
functions of the position and velocity of a falling body are determined by the
equations Y[y v]({t) = y + vt + 1/2 ct® and V[y vl{t) = v + ct, where c is a constant.
These equations obviously imply Y[y v](0) = y and V[y v](0) = v. In the second
place, the time evolution function of each magnitude also satisfy the composition
principle:

[2] filx ... x J(t+w) = £IElx ..o x (6 L filx e x J0)10w);
it is easy to verify that, for the Galilean model of free fall, Yy vi(t+w) =
YIYIy vi(t) VIy vI(O)}w) and V]y vi{t+w) = V[Y[y v](t) V[y vit)}(w}. The important
point is that, whenever the time evolution functions of a set of magnitudes satisfy
conditions [1] and [2], it is possible to use these functions to define a dynamical
system (see sec. 2.1, th. 1). In this sense, the magnitudes constitutive of a
dynamical model form, induce, or generate, a dynamical system.

Third, all the time evolution functions of a dynamical model can be specified,
or determined, by means of some mathematical formula. That is, if { is an
arbitrary time evolution function, there is some mathematical formula o; such that
"X .. xJ(t) = of" defines f.

Fourth, for any magnitude which is not observable, the time evolution function

of at least one observable depends on it. In other words, non-observable

magnitudes are allowed to be components of a dynamical model only if they
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contribute to the observable behavior of the model. [f they do not, we'd better
eliminate them.

The goal of the next section is to formulate the previous observations about a
dynamical model in a rigorous way. Intuitively, a dynamical phenomenon is a
deterministic process or system which can be truly described by means of a finite
number of interdependent magnitudes. | will then use the definition of a dynamical
model which | give in the next section to express this idea in a precise manner.
In fact, | wilt define a dynamical phenomenon as any system or process which is

isomorphic to the dynamical system generated by some dynamical mode! (see

section 2.2).

2.1 Magnitudes and dynamical models

A magnitude is usually referred to by means of a description of the form "the
magnitude n of s relative to o, ... 0,". We have already seen two examples of
such descriptions: "the magnitude position of X' and "the magnitude force on y
exerted by 2. Usually, "n" is the ordinary name of the magnitude, s is its
substance, and o, ... ¢, are the other objects constitutive of that magnitude. An
arbitrary value of a magnitude is usually taken to be a number or, more generally,
some object which belongs to the domain of a specified mathematical structure.
For example, the values of the magnitude force on y exerted by z are three

dimensional vectors. For our purposes it is convenient to think of a magnitude as

having two components. First, the set of all possible values and, second, the
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sequence <'n" 5 0, ... 0,> which is used in the description of that magnitude. For
example, the magnitude force on y exerted by z can simply be identified with
<R® <"force" y z>>, where R® is a Euclidean three-dimensional vector space.
From the set theoretical point of view, each magnitude is thus an ordered pair
<M i>. The first element M, is the set of all the possible values of the magnitude.
This set must be the domain of some specified mathematical structure, and M, is
called "the quantity" of the magnitude. The second element i is a finite sequence
<a, ... a,> which | call "the label' of the magnitude. This is expressed by the

following definition:

Definition 1 (magnitude)
M, is a magnitude iff:

M, = <M, i>, where M, is the domain of a specified mathematical structure, andiisa

finite sequence'”.
M. is called the guantity of M,, i is called the label of M, and each element x € M, is

called a value of the magnitude M.

We see that, by definition 1, a magnitude simply is a set of mathematical
objects with a fixed label. This allows the same set to stand for different
magnitudes, as it is customary in science. For example, the set of the real
numbers, R, may represent time, position, velocity, etc. In the simplest case, we
can think of the label of a magnitude as the sequence whose only element is the

usual name of that magnitude. For example:

* Notice that the symbol "M in italics refers to the magnitude <M, i>, white the symbol "M," in
normal font refers to the quantity of this magnitude.
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time = <R <"time">>;
horizontal position = <R <"horizontal position">>;
vertical velocity = <R <"vertical velocity'>>, where R are the real numbers.

| have suggested above that a dynamical model can be identified with a finite
number of interdependent magnitudes whose time evolution functions form, or
generate, a dynamical system. Some of these magnitudes are observable and,
for any magnitude which is not observable, there is at least one observable whose
time evolution function depends on it. Furthermore, each time evolution function
can be defined by means of some mathematical formula. All these requirements

are expressed by the following definition:

Definition 2 (dynamical model)

P is a dynamical model iff:

P=<<M;..M,T> <§ .f> O> and

(1) each magmtude in <M .. M, T> has a different label;

(2} the magnitude T is tame and its quantity T is one of the following: R, R", Q, Q",
7, Z*, where R are the real numbers, Q the rationals, Z the integers, and R are
the non-negative reals, Q' the non-negative rationals, and Z* the non-negative
integers;

(3} for any function £ in <f ... fi>, fi Mx..xMxT --> M; satisfies:

(a) fix ... x100) = x;;
(b) fix .. xl(t+w) = {[flx; .. Xk](t) Adx L x W),
{c) there is a function form o such that flx, ... xJ(t) = o

* Intuitively, a function form is a mathematical formula which can be used to define a the time
evolution function of a magnitude. For example, the formula "y + vt + 1/2ct™" is a function form,
for it can be used to define the function Y{y vJ{t) (by writing a function term in italics, | refer to the
function associated with that term, not to a value of that function}. The reason why | require all the
evolution functions of a dynamical model to be definable is that we want to be able to express,
specify, or determine, these functions. For a precise characterization of the concept of a function
form, see the text below example 2.1.
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(4) O is a set' whose elements are T and at least one more magnitude in
<M; ... M, T> and, if magnitude 3, is in <M, ... M;> and M, g O, there is at least
one magnitude M, e O, such that f, depends'” on M, (that is, for each component
which is not observable there is at least one observable which depends on it).

If we look at this definition from the point of view of the semantic conception
of theories, then a dynamical model is a special type of what is usually called a
"“theoretical model" (Giere 1984, 1985, 1988; van Fraassen 1980, 1989). The
empirical substructure of a dynamical model consists of the time evolution
functions of the observable magnitudes of that model. The set of all dynamical
models is thus a theory in the semantic sense. We may call this theory "the theory

of dynamics", or "dynamics”.

Example 2.1 (The Galilean model of free fall)

Let T = time, Y = vertical position, and V = vertical velocity of a freely falling
body. Let Y[y vi(t) =y + vt + 1/2 ct?, and V[y vI(t) =: v + ct, where y is the initial
position of the falling body, v the initial velocity, and ¢ is a constant. Itis trivial to
verify that P = <<Y V % <¥Y[y v/} Viy vi®)> (Y V T)> is a dynamical model®. T will
call this dynamical model "the Galilean model of free fall”.

% Intuitively, O is the set of all the observable magnitudes of the dynamical model P. | take
an observable magnitude to be any magnitude for which we have some measurement procedure.
This, however, is not the only possible view about observables. What follows is compatible with
any view which satisfies the minimal requirement that any observable magnitude be measurable
or detectable.

7 The time evolution function f, depends on magnitude M, iff: there is x; ... Xy, ... X t such that
£Ix X)) = Ry X

7

" By writing a function term in itafics | refer to the function associated with that term, not to a
value of that function. For exampie, Yy v](t}is the function Y: YxVxT --> Y defined by Y]y v](t) =
y +v + 1/2ct2. Also, for notational convenience, | will often use the same symbolto refer to either
the quantity of a magnitude, or to its time evolution function. For example, the first accurrence of
mye iy YT --> Y refers to the time evolution function of the vertical position of a falling body,
while the second and third occurrences refer to the quantity of this magnitude.
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| have used the concept of a function form to formulate condition (3c) of
definition 2. Intuitively, a function form is a mathematicat formula which can be
used to define the time evolution function of a magnitude. The concept of a
function form can be made precise in the following way. First, let us stipulate that
the variable "t" varies on the set T of all possible values of the magnitude time.
Second, for each magnitude <M, i> different from time, let us introduce the
individual variable x whose range is M, (that is, the quantity of the magnitude), the
function constant “{", and ali function terms of the form "{[x, ... xJ(t})", where all the
variables x, ... x, may be missing. Third, let us assume that the function constant
"f" expresses a function whose codomain is M, and whose domain is fixed by the
context'. For instance, if " occurs in the function term "f(t)", the domain of {,
is T. However, if " occurs in the function term "{[x ... xJ(1)", the domain of f, is
Mx ... xMxT. Finally, let us specify the mathematical operators which are allowed
to occur in an arbitrary function form o, and the formation rules which permit us to
construct more complex forms from simpler ones, in such a way that no function
constant "f", or function term "fx; ... xJ(t)" occurs in any function form
*Furthermore, let us also require that any equation of the form "fix ... x,](t) = o’
be a syntactically correct definition of "f[x, ... xJ(t)" (where any variable different

from "x" ... "x" "t" which occurs in a is taken to be a constant).

The concept of a function form alsc allows us to define the concept of a law.

"® | refer to the function expressed by "f" in context "f[x, ... xJ(t)", by writing the context in italics.
For example, f{t) is the function expressed by "f" when "f" occurs in "f(1)".

155



A law is any equation of the form "i(t) = ", where « is an arbitrary function form.
For example, the equations "Y{t) = y + vt + 1/2c¢t® and "Y{t) =y + mvt/m + 1/2ct*
are two equivalent /aws of the position of a falling body. [ will reserve the definite
description "the faw ... " for the equation which is customarily used to express that
law. For example, the law of the position of a falling body is the equation

"Y{t} =y + vt + 1/2¢t*"

P = <<M ... M, T> <f, ... f> O>is a dynamical model, P naturally induces or
generates a dynamical system n(P) = <T Mx..xM, {¢g'}>. What this means is the
following. Each magnitude M, can be thought to be a component of the phase
space of =(P), and the time advances of this dynamical system are defined by
means of the time evolution functions <f ..f> that Iis, gux ... x) =
<fx % J() - A% X J()>. The precise definition of the system generated by

a dynamical model is the following:

Definition 3 (the dynamical system generated by a dynamical model)

nP) is generated by P iff:
P = <<M, .. M, T> <f ... f> O> is a dynamical model, ©(P) = <T Mjx...xM, [g'}>, and
g' Mx..xM, --> Mx..xM; is defined by g'(x; ... xJ = <flx ... xJ(t) .. £I% .. % ](t)>.

Notice that, by definition 3, for any dynamical model P, there is exactly one

system n(P) generated by P. It is easy to prove that n{P) is a deterministic
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dynamical system. Before proving this theorem®, however, let us look at a

simple example of a dynamical system generated by a dynamical model.

Example 3.1 (the dynamical system generated by the Galilean model of free fall)

Let P be the dynamical model defined in example 2.1, Then, <T YxV {g'}> is the
system generated by P, where gy v) = <Y[y vI(t) VIy vl(t}>, Y[y vI(t) =y + vt + 1/2¢t?,
and V[y vl{t) = v + ct.

Theorem 1 (the system generated by a dynamical model is a deterministic dynamical
system

If n(P) is the system generated by a dynamical model P, then n{P} is a deterministic
dynamical system?!

proof:
let P=<<M, ..M T><f. fi>0> be a dynamical model, and let

oP) = <T ij.:.ka {g"}> be the system generated by P. Then, by definition 3:
[1] for all t e T, gx; ... x) =0 <flx .. x]J0t) .. filx .. x>

Recall that n(P) is a dynamical system iff

(a) g%x ... %) = <x .. x>

(b) g"™x ... %) = g(g"(x ... x))

proof of (a):

from [1], and (3a) of definition 2:

1. g%(x; . %) = <€x .. x JJ0) o filx o x J(0)> = < x> Hg.e.d.//

proof of (b):

from [1], and (3b) of definition 2:

g (x, ... ox ) = <filx, .oox d0tew) o £y o x dtew)> =

<flx o xJiwrt) Rl xdwH)> =

<% . xJW) o Bl 1) B 2] £l xJW > =

2 The proof of this theorem depends on conditions (3a) and (3b) of definition 2. These
conditions not only are sufficient for a dynamical modet to generate a dynamical system but, in a
certain sense, they are also necessary. In fact, suppose we are given a structure P=
<<M, ... M, T> < ... f,> O> which satisfies all conditions of definition 2 except (3a} or (3b). Then,
it is easy to prove that the system n(P} = <T Mx AUNN(T1577 {gh>, where g'{x ... x) =
<fx .. x () - fdx . x>, is not a dynamical system. That is, if either condition (3a) or (3b} is
not satisfied, the system generated by P is not a dynamical system.

2 Recall that <T M {g'}> is a deterministic dynamical system iff: T is the reals, rationals, or
integers (non-negative reals, non-negative rationals, or non-negative integers}, M is a non-empty
set, gt M —> M, g"(x) = x, and g*"(x) = g'{g"(x)}.
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gl ... x (W) . % . x])w) = g'(g™(x, . x,)) Hq.e.d.//
Theorem 1 is thus proved q.e.d.

2.2 The correspondence between models and systems, and the concept
of a dynamical phenomenon

We have seen in the previous section that any dynamical model P generates
a dynamical system n(P). If we now consider an arbitrary system = which is

isomorphic® to n(P), we can take P to be a dynamical model of n. | thus define:

Definition 4 (dynamical model of a system or process)

P is a dynamical model of 1 iff: P is a dynamical model, and 7 is isomorphic to the
dynamical system w(P) generated by P.

| take this definition to express in a precise way the intuitive idea that a
dynamical model P corresponds, or is similar in specified respects, to a system .
The hypothesis "P is a dynamical modei of n" is thus a particular type of what

Giere calls "a theorstical hypothesis™®. That is, | take an arbitrary theoretical

2 This is an isomorphism befween dynamical systems ot, in other words, a dynamical
isomorphism. Recall that S, is {dynamically) isomorphic to S, just in case 8, = <T M, {9},
S, = <T M, {h'}>, 8, and S, are dynamical systems, and there is a bijection f: M, --> M, such that

f(R(x)) = g'(fx).

* See Giere (1984, 1985, 1988). To be completely honest to Giere, he maintains that a
theoretical hypothesis should be of the form "P is similar to = in specified respects and to specified
degrees" (Giere 1985, 80). | believe that (as far as dynamics is concerned) “P is a dynamical
model of &' is the correct explication for “P is similar to n in specified respects”. 1do not claim that
this explication also captures the intended meaning of the clause "to specified degrees”. In fact,
| maintain that this clause should not be included in the formulation of a theoretical hypothesis.
Rather, | maintain that "P is similar to r to specified degrees" should be construed as a separate
hypothesis that states the empirical adequacy of P. That is, | take "P is similar to & to specified
degrees” to be equivalent to P is an empirically adequate model of n". What this means is that
P is a dynamical model and, for each magnitude M, in P, its evolution law "f(t) = o;" is consistent
with all the (possible} measurements of that magnitude.

158



hypothesis of dynamics to have the form "P is a dynamical model of n*. This
hypothesis affirms that the dynamical system generated by P and the system n
have the same dynamical properties™. In this sense, the model P is similar to
the system = as far as the purely dynamical properties of n(P} are concerned.
These are all those properties which exclusively depend on the dynamical
(semi)group {g'} which is associated with P. More precisely, the properties which
depend on the (semi)group {g'} which is constitutive of the dynamical system
n(P) = <T M {g'}> generated by P. Any other property of this system need not be
shared by n. For example, if n(P) has a topological structure, its topoiogical
properties need not be preserved, for | am nof requiring the isomorphism between

n(P) and & to be a homeomorphism. In fact, = might not be a topological space

at all.

Intuitively, a dynamical phenomenon is a deterministic process which can be
truly described by means of a finite number of interdependent magnitudes. We
can finally make this idea precise by identifying a dynamical phenomenon with any

system or process which has some dynamical model. | thus define:

2 A dynamical property is, by definition, any property of a dynamical system which is shared
by all the dynamical systems isomorphic to that system. That is, P is a dynamical property of S
iff: S is a dynamical system, S has property P and, for any system S* such that $ is isomorphic to
S*, S* has property P. Therefore, if a system has a dynamical property, it is a dynamical system,
and any two dynamical systems which are isomorphic have exactly the same dynamical properties.
Conversely, if two systems have exactly the same dynamical properties, they must be isomorphic.
Suppose they are not. Then, system S, has the property P, = being isomorphic to S, Since
system S, is not isomorphic to S,, S, has not property P,. However, P, is a dynamical property
of S,. Therefore, since by assumption S, and S, have the same dynamical properties, S, has
property P,.
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Definition 5 (dynamical phenomenon)

7 is a dynamical phenomenon iff:
there is P such that P is a dynamical model of n.

By definition 5, a dynamical phenomenon = can be identified (up to an
isomorphism) with the dynamical system n{P) generated by any P which is a
dynamical model of x. It is very often convenient to take n = ©(P) for some P, so
that we can talk of the components of the total states of 7. However, it should be
kept in mind that, in general, = and =n(P) are different systems, which are
guaranteed to be identical onfy with respect to their dynamical properties.

The class of all dynamical phenomena is not empty, for definition 4 implies that
the system n(P) generated by an arbitrary dynamical model P is a dynamical
phenomenon. Therefore, the class of all dynamical phenomena will in general
contain abstract systems. This class may however contain concrete systems as
well®®. We can thus identify an actual dynamical phenomenon with any concrete
system or process which is a dynamical phenomenon. More precisely, y is an

actual dynamical phenomenon just in case y is a concrete object, entity, system,

% | take a physical system to be any system or process which might be an object of physical
study. Therefore, some, but not all, physical systems are concrete systems. | take concrete
systems to satisfy the following conditions. First, | assume that there are basic concrete systems,
and that all basic concrete systems are physical systems. Second, a system v is concrete iff y
is a basic concrete system, or there is some basic concrete system which realizes y. An abstract
systemis any system which is not concrete. The analysis of the reaiization relation (for the case
of dynamical systems) is in ch. 1, def, 5 and def. 6. This relation is a quasi-ordering (reflexive and
transitive).
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or process, and v is a dynamical phenomenon®,

Example 4.1 (the phenomenon of free fall)

Suppose v is the free fall of a body”. If this concrete process  is identical to
some dynamical phenomenon, then y is an actual dynamical phenomenon. If we take
the Galilean laws for position and velocity to be empirically true, then we can take y
to be isomorphic to the dynamical system W(P) generated by P, where P is the
dynamical model determined by those laws (see examples 2.1 and 3.1). In other
words, we can take P to be a dynamical model of y, and v itself to be an actual
dynamical phenomenon®.

2.3 Dynamical studies as attempts to solve dynamical problems

My basic methodological postulate is that the objects which are studied by the

2 Equivalently, y is an actual dynamical phenomenon just in case y is a concrete system, and
the hypothesis "y is a dynamical phenomenon” is true. Obviously, this hypothesis might very well
be false, namely if y is not a deterministic process, or if y cannot be truly described by means of
a finite number of interdependent magnitudes (therefore, if determinism is false, the class of all
actual dynamical phenomena is empty). The important methodological point, however, is that for
many concrete processes, there are concrete epistemic contexts in which we take this hypothesis
for granted. 1 will discuss this point below.

27 By *free fail of a body", | mean the motion of a medium sized body released from any initial
position in a small specified region on earth, with any initial vertical velocity.

2% An evolution law "f (1) = o," is empirically true just in case it is consistent with any (possible)
measurement of the magnitude M, If we assume the precision of a possible measurement of time,
position, and velocity to be within appropriate limits, then we may take the Galilean laws of free
fall to be empirically true. This concept of empirical truth is simitar to the concept of "physical truth”
proposed by Dalta Chiara and Toraldo di Francia (1981). However, physical truth is more general
than my empirical truth, for my concept only applies to evolution laws, that is, formulas of the form
"f(t) = or”. Furthermore, | believe that the concept of physical truth (and also my empirical truth)
does not capture ali the relevant usages of the term "true” in the physical sciences.

A dynamical modet P is an empirically adequate model of y just in case all its laws are
empirically true. | do not claim that accepting the hypothesis "P is an empirically adequate model
of y" is sufficient for accepting the stronger "P is a dynamical model of y". | only claim that it is
necessary. However, | claim that, given the empirical adequacy of a model P, there may be
concrete epistemic contexts in which also the acceptance of "P is a dynamical model of y" is
justified. 1 take this to be historically confirmed. Galileo maintained that his laws were true {not
just empirically true) and, if we look at his concrete episternic context, his claim was fully justified
(obviously, | am thinking of "justification” in a sufficiently broad sense, in which values play an
important roie}.
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science of dynamics are better seen as concrete systems which are faken to be
identical to some dynamical phenomenon. My basic tenet is that the dynamical
study of a concrete process y presupposes the (implicit) identification of this
process with some dynamical phenomenon =, that is, with a dynamical system
which can be described by means of a finite number of interdependent
magnitudes. In other words, i claim that the science of dynamics studies concrete
processes (implicitly) identified with a specific type of mathematical structure. The
science of dynamics does not study bare, or unstructured, objects”.

If this is true, we can think of any concrete dynamical study as the attempt to
solve a specific type of problem. This problem involves three components. First,
a concrete system or process y which is the object of our study. Second, the
hypothesis of the problem: "y is a dynamical phenomenon”. Third, the request of
the problem, whose form is “find a specification of a dynamical model of y". We
can thus represent this problem as an ordered triple <y H F>, where y, H, and F
are, respectively, the object, the hypothesis, and the request. The hypothesis of
the problem entails that y has some dynamical model, so that, /f this hypothesis

is true, the request of the problem can be satisfied®. | will call any problem of

2 We have seen that this mathematical structure is a dynamical system. Dynamical systems
have a quite simple structure, for they are essentially groups. If time is restricted to the
non-negative reals, rationals, or integers, then the set {g'} of ali t-advance of n = <T M {g}>is a
commutative monoid with respect to the composition operation. In other words, {g} is a
commutative semigroup with unity, where the unity is ¢° = the identity function on M. Otherwise,
{g" is a commutative group.

 Notice that also a specification of a model of y must exist, for any dynamical model can be
specified by listing: (1) a finite sequence of magnitudes, (2) a definition for each time evolution
function, and (3) the observable magnitudes of the model. Condition (3c) of the definition of a
dynamical model ensures that each evolution function f/x; ... x,J(t) is definable.
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the form <y H F> a dynamical problem.

The goal of any concrete dynamical study is thus to solve a particular
dynamical problem <y H F>. This goal is accomplished if we are able to specify
a dynamical mode/ of the given process y. The interesting fact about this problem
is that a solution exists just in case the hypothesis of the problem H is true. This
implies that this problem might in fact be unsolvable®. However, to start with,
we simply disregard this possibility or, in other words, (i) we just assume H to be
true®. What we do next is (ii) specify some dynamical model P, and then (iii)
produce empirical evidence and arguments which make us (provisionally) accept
the specific hypothesis "P is a dynamical model of y**. Obviously, if the
epistemic context changes, the new evidence and arguments may prompt us to
withdraw our claim. We thus recognize that what we believed to be true is ‘in fact’

false®. Furthermore, if we fail to accept any model which we come up with, then

¥ |f the hypothesis of the problem H is false, then the definition of a dynamical phenomenon
implies that the set of dynamical models of y is empty, so that the request of the problem cannot
be satisfied.

% Jf as far as we know, it is reasonable to assume that y is a deterministic process which can
be described by means of a finite number of interdependent magnitudes (recall that H = "y is a
dynamical phenomenon”). Any stronger initial justification for assuming H is neither necessary nor
desirable. See the next footnote to understand why.

# Notice that this specific hypothesis entails the hypothesis of the problem H. This is why, to
start with, we may just take H for granted. If, later on, we come up with a model which we accept
as a model of y, our 'bold' initial assumption will be vindicated. On the other hand, if we are not
able to accept any model which we have come up with, at that point we may have sufficient
grounds to reject H and, thus, abandon the problem which we ‘*know' is unsolvable.

¥ This involves two things: (1) we recognize that the specific hypothesis P is a dynamical
model of y* is false and, consequently, (2) we recognize that the model P is a false description of
v (that is, that the system y(P} generated by P is not isomorphic to ).
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we may even (provisionally) conclude that, after all, the concrete process y is not
a dynamical phenomenon. if this is the case, we recognize that the hypothesis of
the problem H is ‘in fact' false, so that the problem ‘is' unsolvable and we
(provisionally} abandon it®.

Even if a concrete process y were a dynamical phenomenon, and we were
able to specify one of its models P, we might not be able to know or recognize that
P is a model of w. The problem of understanding the conditions under which we
accept or reject a specific hypothesis of the form "P is a dynamical model of y" is
very important, but | will not explicitly address it. The reason is that | am now
interested in establishing the general methodological framework in which
epistemological questions should be posed. The elaboration of a detailed
epistemology compatible with this framework goes beyond the scope of this
chapter. It is, however, clear that this epistemology must be some form of

fallibilism.

* |et me stress that this paragraph is only intended to convey a general picture of the process
through which we attempt to solve a specific dynamical problem <y H F>. in particular, much
more should be said about the {provisional} acceptance or reiection of a specific hypothesis of the
form °P is a dynamical model of y". A necessary condition for accepting this hypothesis is that we
accept the weaker hypothesis "P is an empirically adequate model of y", where P is an empirically
adequate model of y just in case, for any magnitude M, in P, its evolution law "f{t) = o" is
consistent with any {possible) measurement of that magnitude.

it is also interesting to notice that a dynamical study is itself a dynamical process, so that we
should be able to specify a dynamical model of a dynamical study. This implies that the
methodology of dynamics is itself a branch of dynamics, The observations of this paragraph can
thus be interpreted as an attempt at specifying the general features that a detailed dynamical
model of a dynamical study is likely to have. Also see sections 3.3 and 4.4, where | propose two
more detailed models of a dynamical study: the inductive model, and the deductive model. Both
models are special cases of the general mode! which [ have sketched in this paragraph.
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One might wonder whether the acceptance of a specific hypothesis "P is a
dynamical mode! of y" could ever be justified. If we only consider empirical
evidence, we may at most infer that all the evolution laws of the magnitudes in P
are consistent with all the measurements, and this is obviously not enough to
conclude "P is a dynamical model of y". There are many different approaches for
dealing with this problem. The empiricist approach recommends that we weaken
the specific hypothesis so that this weaker form can be empirically justified. The
correct form of the specific hypothesis would thus be: "P is an empirically adequate
model of y". What this means is that, for each magnitude M, in P, its law
"t(t) = o" is consistent with all the (possible) measurements of that magnitude. |
believe that this form of the specific hypothesis can be empirically justified™.
However, | disagree with the empiricist’s further proposal that we should never
accept anything more than "P is an empirically adequate model of y"'. My basic
reason depends on the observation that, in concrete epistemic contexts, scientists
do accept hypotheses of the form "P is a dynamical model of ", and that, when
they do this, they mean what they say. What they mean is that the dynamical
properties determined by the mode! P are, exactly, the dynamical properties of y
or, more precisely, that  is isomorphic to the dynamical system y(P) generated
by P. The real epistemological problem is thus to explain how, in specific
epistemic contexts, this claim is accepted or rejected. Giere has recently argued

that a decision theoretic approach may adequately explain how realistic

* If we only consider actual measurements this is obvious, but | believe that some form of
inductive justification can be devised even if all possible measurements are considered.
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hypotheses are accepted in concrete epistemic contexts (1985, 1988). In general,
a realistic hypothesis affirms the existence of a specific isomorphism between a
structure generated by a model and a concrete system. Therefore, "P is a
dynamical model of y" is a special type of realistic hypothesis. Giere’s decision
theoretic approach might thus explain how a hypothesis of this type is concretely
accepted or rejected.

Let me also stress that accepting the specific hypothesis "P is a dynamical
model of y" does not entail any strong realistic commitment. In particular, nothing
follows about the reality of theoretical magnitudes which may occur in P (like, for
example, mass or force). On the other hand, no ‘empiricist’ commitment follows
either, for we cannot assert the reality of any magnitude, be it theoretical or not.
What follows is that the concrete process v is a deterministic dynamical system
(essentially a group structure) which is isomorphic to the dynamical system w(P)
generated by P. However, even though the system wy can be truly described as
if it were composed by all the magnitudes which are components of the dynamical
system y(P), none of these magnitudes must be constitutive of y*’. Finally, a
(weak) commitment to the existence of modalities does foliow, for "P is a

dynamical modei of y" entails "y is a dynamical system", and any such system

¥ The isomorphism between y(P) = <T M, {g'}> and y = <T M, {h'}> only preserves the purely
dynamical properties of y(P), that is, those properties which exciusively depend on the dynamical
(semi)group {g}. Therefore, if the hypothesis "P is a dynamical model of y" is true, y(P) and y
are guaranteed to be similar only with respect to their purely dynamical properties. Any other
property that w(P} may have need not be preserved. In particular, the property of having
components is not a dynamical property of y{P), because it is always possible to find a system
isomorphic to y(P) which does not have components. Therefore, "P is a dynamical model of y"
does not entail anything about the reality of any component magnitude of P (be it theoretical or

not}.
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has a simple modal structure®™. Therefore, the philosophical position implied by
my view of dynamics is a weak form of constructive realism (where weak modifies
"realism").

From the epistemological point of view, this position is realistic in three different
senses: (1)the existence of concrete systems or processes is assumed;
(2) concrete systems are attributed a modal structure; (3) concrete systems are
attributed specific dynamical properties. t is constructive because the attribution
of a modal structure and of specific dynamical properties depends on the
acceptance of a hypothesis of the form "P is a dynamical model of ", In other
words, modal structure and specific dynamical properties are not initial features of
the concrete systems. Rather, they are the results of our successful scientific
inquiries. From these remarks, it should be quite clear that the appropriate name
for this philosophical position is "dialectical realism". Perhaps, this needs to be
better explained. For any concrete system wy, either y is a dynamical
phenomenon, or it is not. If it is, then y objectively has a modal structure and
some dynamical properties. If it is not, v objectively lacks a modal structure or
dynamical properties. Therefore, from the ontological point of view, this
philosophical position is realistic in the usual sense. However, from the
epistemological point of view, it is dialectical, for wﬁat we know about the modal
structure and the specific dynamical properties of a particular system v is the

result of our attempts to solve a concrete problem. Furthermore, our knowledge

% See Giere {1985) for an interesting discussion of modatities in the context of the debate
between empiricist and realist positions.
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may change with time, and what we know at a later time is typically inconsistent

with what we knew at previous times.

The definition of a dynamical model implies that a system may have models
with some component which is not an observable magnitude. It is important to
notice that, if we have a theory™, the theory may tell us what these additional
magnitudes are. For example, according to classical mechanics, the total states
of any mechanical system can be identified with the values of position and
momentum. This means that any mechanical system has at least one dynamical
model whose only components are position and momentum®. Some authors do
not consider momentum to be observable. If we take this view, then classical
mechanics tells us that any mechanical system has at least one model with a
non-observable component, namely momentum. I should also be noticed,
however, that many mechanical systems also have modeis whose components are

all observable. In fact, if the mass is constant, a mechanical system has a model

% By "theory" | mean something sufficiently similar to what we take to be our best examples
of theories. One of these typical examples is classical mechanics. If we agree on this intended
meaning (which | take to be the usual one), then | believe that the semantic view is too general
to provide an adequate explication of this term. This is clear when we realize that the set of all
dynamical models is a theory in the semantic sense. Obviously, this set of models is hot a theory
in the usual sense.

“*? This can also be taken as a definition of a "mechanical system": n is a mechanical system
iff © has some dynamical model whose only components are positions and momenta. This
definition {together with the definition of dynamical phencmenon) implies that any mechanical
system is a dynamical phenomenon, Furthermore, if © is a concrete system or process, then nt is
an actual dynamical phenomenon.
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whose only components are position and velocity".

“11f the mass is a constant m, and P, is a dynamical model of & which only contains position
Y.[y pif) and momentum P.,[y pj(t), then =(P,) is isomorphic to =(P,) whose components are
position Y[y vi(t) and velocity V.,y v/it), where Y,[yvitti= Y,y nmv]{t), and V,yv]#t)=
P.ly mvi(t) / m.
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3. Frameworks and explanations

We have seen in section 2.3 that any dynamical study can be thought as the
attempt to solve a specific dynamical problem <y H F>, where y is a concrete
system or process, H is the hypothesis "y is a dynamical phenomenon®’, and F is
the request "find a specification of a dynamical model of y". We now must
consider more closely what a specification of a dynamical model is. 1t will then be
clear that any such specification can be identified with a possible dynamical
explanation, and that a dynamical explanation of the concrete process vy is just a

solution of the dynamical problem <y H F> (that is, a specification of a dynamical

model of ).

3.1 Frameworks

Any dynamical model P = <<M, ... M, T> <f, ... f;> O>is a set theoretical entity.
This abstract structure, however, can be linguistically specified by listing (i) all the
magnitudes M,... M, which occur in it; (i) a definition "f{x ... xJ(t) = o’
"fIx ... xJ{t) = " for each evolution function in P; {iii) the observable magnitudes

in O. Condition {3c) of definition 2 ensures that any dynamical model can be

specified in this way”. Very often, however, we do not directly list a definition

2 This condition ensures that for each evolution function fix. ... xj(t} there is a function form
o such that fx ... xJ(t) = o, Therefore, each evolution function can be specified by listing the
definition "f[x ... xJ{t) = o".

| use the word “specified" because, from the epistemic point of view, the definitions of the
functions of a possible model P may not completely determine this model. In fact, the function
forms in these definitions may contain constants whose values are unknown to us so that, by listing
these definitions, we only know a class of possible models to which P belongs. From the logical
point of view, however, each definition "f[x; ... xJ() = o;" determines the function flx; ... xJ(t).
Therefore, by listing ali these definitions, the possible model P is linguistically determined, even
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of each evolution function. What we do, instead, is specity a set of hypotheses A
which entails a set of laws {"f(t) = o ... "{{t) = 0"}, and we then take the functions
fix, .. xJt) ... &% ... xJ(t) to be respectively defined by o .. o A possible
dynamical explanation can thus be thought as having two components. First, a set
of hypotheses A which entails a finite set of laws {"f(t) = o" ... "{t) = o} second,
a dynamical model P = <<M, ... M, T> <f; ... f> O> whose evolution functions are
defined by o; ... op. | will call this semi-linguistic structure a framework. A
framework is minimal if its set of hypotheses A is identical to the set of laws

(") = o ... " (1) = o). All this is expressed by the following definition:

Definition 6 (framework and minimal framework)

(a) <A P> is a framework iff:
(1) P=<<M, ... M, T> <f, ... f> 0> 1s a dynamical model,
(2) A is a set of hypotheses®® which entails a set of laws {"f(t)=o" ...
"£0t) = o), and £, ... x () = o, ... and fx, .. % J() = o

{(b) <A P> 1s a minimal framework iff*

(1) P=<<M, ... M, T> <f ... fi> O> is a dynamical model;
(2) A={"ft) =o' .. "£t)=o'}, and flx .. x,}t) = o, ... and Llx .. x b)) = oy

Below are four classic examples of possible explanations or frameworks.

though P may still remain partially unknown to us because function forms may contain constants
whose values are unknown.

“ For the moment, | do not impose any condition on the form of the hypotheses which are
allowed to be members of A. Also, A may be redundant, in the sense that it may contain a proper
subset A* which also entails a set of laws {"f(t) = B" ... "{{t} = B,"} such that f[x .. xJ(t} = B,
.. and £[x ... x]J(t} = B,. Furthermore, the hypotheses in A may be ad hoc, in the sense that they
may hold exclusively for a specific system or process y. These problems will be solved later, when

| analyze the concept of a theoretical framework.
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Example 6.1 (the Galilean framework for free fall)

In Two New Sciences, Galileo implicitly presupposes the definitions of velocity and
acceleration {1914, ch. "Third day"}. These two theoretical principles are expressed
today by means of the derivative operator":

[H] V) =DJ{Y(t}} (the velocity is the instantaneous rate of increase of the
position)

[H,] A(t) = D(V(t)) (the acceleration is the instantaneous rate of increase of the
velocity)

When Galileo discusses the accelerated motion of a falling body (1914, 169) he
explicitly assumes the specific hypothesis:

(Hy] Alt)=c¢ (the acceleration is equal to a constant; I take ¢ < 0)

Let G = {H, I, H,}, and P be the dynamical model defined in example 2.1. Then,
<G P> is a framework. We need only verify that G entails the laws of the position
and velocity of a falling body, which are respectively expressed by:

[A,] Y(t) =y + vt + 1/2 ct®
[A,] Vit =v +ct

Obviously, A, follows from H, and H,, and from A, and H, we obtain® %,, whence
<G P> is a framework; <G P> will be called the Galilean framework for free fall.

Example 6.2 (the Impetus framework for free fall)

According to Aristotelian dynamics, the velocity {not the acceleration} of a body
is proportional to the total force acting on it. We can express this theoretical principle
as:

[H,] V)= F(t)/ R{t)

where R(t)is a scalar which represents the resistance of a body to move (in the sense
of changing place, not velocity) under the action of the total force F(t).

We can take the usual definition of velocity to be a second theoretical principle of
Aristotelian dynamics. That is, the velocity is the instantaneous rate of increase of

the position:

“ Symbols in bold are syntactic schemas.
** This deduction is the integration of the eguation of a straight line. Even though this problem

can be solved today by any high school senior, it was by no means an easy problem at Galileo’s
time. Galileo arrived at the correct solution by employing an ingenious geometrical construction,
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[H,] V(i) = D(Y(t)

According to Impetus theory, when a body is released with a certain positive force,
this force (impetus) does not instantaneously vanish but, rather, decreases or increases
with time. The impetus of the body will increase if another positive force (propulsive
force) is acting on the body. It will decrease if, instead, the propulsive force is
negative. We can now apply this idea to generate some specific hypotheses for the
phenomenon of free fall. In this case, it is natural to assume that the only propulsive
force is the weight of the body whose direction is downwards. Furthermore, since the
body is moving, it must have a certain impetus. Ithus assume that, at any time, the
only two forces acting on the body are the weight and the impetus:

[Hy]  Flt) = W)+ I(t)

It is also natural to assume that the weight and the resistance of the body to
move, are two constants which possibly depend on the body. I take the positive
direction of the y-axis to be upwards, so that we obtain:

[H,] WI(t)=w, where w< 0
[H,] R(t)=r, wherer>0

We now must determine a law for the impetus. Since the weight continuously acts
on the body, it must continuously produce additional impetus. Furthermore, since the
weight is constant, it will produce additional impetus proportionally to the time
during which it acts on the body. To obtain the impetus at an arbitrary time, we must
add this acquired impetus to the initial impetus, so that we can write:

[H,l I(t) = i + wt, where i is the initial impetus

LetI = {H, H, H, H, H, H,}, and P be the dynamical model defined in example 2.1.
Then, <I P> is a framework, We need only verify that the two laws

[A,] Y(t) =y + vt + 1/2 ct?
2, Vit) =v +ct

are derivable from 1. Let us deduce A, first.

From Hg, H;, H,, H,, and H, we obtain:

1.Vt =(w+1+wt)/r={(w+1i)r+twr
from 1:

2.V0)=(w+ilr=v

from 2 and 1, and since w and r are constants:
3.Vit)=v+ct

finally, from 3 and H, we obtain:

4. Y#) = v + vt + 1/2 ct?

Therefore, <1 P> is a framework; <I P> will be called the Impetus framework for free
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fall’.

Example 6.3 (the Newtonian framework for free fall)

Newton’s second principle of dynamics states that the acceleration of a body is
proportional to the total force acting on it, that is:

[H,]  A{t) = F{t)/ M(t)

where M(t) is the mass of the body (that is, the resistance of the body to change
velocity under the action of F(t)).
The usual definitions of velocity and acceleration are:

[H,] V(t) = D{Y(t)) (the velocity is the instantaneous rate of increase of the
position}

[H]  A(t) = D(V(t)) (the acceleration is the instantaneous rate of increase of the
velocity)

If we now consider the free fall of a body, it is natural to assume that the only
force acting on the body is the weight, and that both the weight and the mass are
constant. We thus obtain three specific assumptions:

(H,] F{t) = W(t)
[H  Wit) = w, where w < 0
{H,] M(t) = m, where m > {

Let N = {H, H, H, H, H; H,}, and P be the dynamical model defined in example
2.1. Then, <N P> is a framework. I now verify that the two laws

[A,] Y(t) =y + vt + 1/2 ct?
[2,] Vit =v +ct

are derivable from N. I first derive A,

* Galileo was aware of the possibility of deducing the laws for the velocity and the position of
a faffing body from Aristotelian dynamics and Impetus theory. In fact, in Two New Sciences (1914,
165-6), Sagredo clearly outlines how the velocity law can be deduced from the assumption that the
impetus linearly decreases. Galileo, however, quickly dismisses Sagredo’s suggestion by pointing
out that we do not need an explanation of acceleration to deduce the two laws (1914, 166-7).
Obviously, the explanation to which Galileo refers is the identification of acceleration with the ratio
w/r, which follows from the hypotheses of the Impetus framework and Galileo’s definition of
acceleration. Galileo's point was probably also motivated by his conviction that the Aristotelian
principle which states the proportionality of velocity and force was false. Even though Galileo never
arrived af the modern formulation of the principie of inertia, he clearly recognized the possibility of
motion in the absence of any force. This assumption is inconsistent with the Aristotelian principle.
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From H,, H,, Hy and H;:

1. Alt) = wm

from 1, since w and m are constants;
2. At)=¢

from 2 and H;:

3.Vit)=v +ct

finally, from 3 and H, we obtain:

4. Y(t) =y + vt + 1/2 ct?

Therefore, <N P> is a framework; <N P> will be called the Newtonian framework for
free fali¥’.

Example 6.4 (the Baconian framework for free fall)

Consider the free fall of a body and suppose that, by applying inductive methods,
we arrived at the following empirical generalizations:

(A Y(t) =y + vt + 1/2 ct?
[A,] Vit)=v +ct

Let B = {\, A,}, and P be the dynamical medel defined in example 2.1. Then,
<B P> obviously is a minimal framework; <B P> will be called the Baconian
framework*® for free fall,

3.2 Dynamical explanations
Intuitively, a dynamical explanation of a system or process is a set of
hypotheses which entails all the evolution laws of a dynamical model of that

process. To put it in a different way, a possible dynamical expianation (or a

" This is just one of the possible explanations of free fall which we can construct by employing
Newton's theoretical principles. if we also assume Newton’s principle of universal gravitation, we
obtain a different framework, which is no longer consistent with the Galilean one. Infact, according
to this principle, the acceleration of a falling body is not constant, but varies inversely with the
sguare of the distance between the body and the earth.

* Francis Bacon never formulated this framework. The name, however, is appropriate because
it is in fact possible to discover the laws for the velocity and position of a faliing body by means
of purely inductive methods. This has been demonstrated by the family of computer programs
known as Bacon (Langley et al. 1987, 83-4).
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framework) is an explanation of a given system just in case its set of hypotheses
specifies a model of that system. An explanation of a system is minimal if it is a
minimal framework which specifies a mode! of that system. This is expressed by

the following definition:

Definition 7 (explanation and minimal explanation of a system or process)

(a) <A P> is a dynamical explanation of r iff:
<A P> is a framework, and P is a dynamical model of ©*°,

(b) <A P> is a minimal dynamical explanation of 7 iff:
<A P> is a minimal framework, and P is a dynamical model of .

Example 7.1 (four competing explanations of free fall)

Let y be the free fall of a body, and assume that P (the dynamical model
determined by the Galilean laws -- see example 2.1) is a dynamical model of y. Then,
the Galilean framework, the Impetus framework, the Newtonian framework, and the
Baconian framework are four different explanations of y which, however, specify the
same dynamical model P. Also notice that the Baconian framework is a minimal
explanation of v, while the other three are not minimal.

The Impetus framework and the Newtonian framework are inconsistent, because
the second principle of dynamics contradicts the Aristotelian principle that velocity is
proportional to force™. The Galilean framework, instead, is logically compatible with

“® Notice that © has some dynamical explanation <A P> just in case m is a dynamical
phenomenon. If <A P> is a dynamical explanation of n, then P is a model of n, whence nt is a
dynamical phenomenon, Conversely, if n is a dynamical phenomenon, © has some model P, and
the definition of a dynamicat mode! implies that there is a minimal framework <{"f(t) = o,"} P>.
Therefore, <{"f({t) = &"} P> is an explanation of = q.e.d. it thus follows that, if y is a concrete
process or system, then y can be dynamically explained just in case y is an actual dynamical
phenomenon.  This formal result partially justifies my programmatic slogan “all scientific
explanations are explanations of specific types of phenomena" (see the introduction of this
chapter).

*0 This is true under the natural translation rule "total Newtonian force" = "total Aristotelian
force". However, if we identify the total Newionian force with the propuisive force of impetus
theory, the Impetus framework and the Newlonian framework are consistent. The propulsive force
in impetus theory is equal to the total Aristotelian force minus the impetus. In the case of free fall,
the only propulsive force is the weight. If we then also introduce the concept of acceleration A(t},
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either the Impetus or the Newtonian framework, since both IUG and NUG are
consistent. [Finally, the Baconian framework is consistent with the three other
frameworks, because B follows from either G, I, or N,

The four frameworks also differ on the admissible interpretations for the
constant ¢. The Baconian framework provides no interpretation for ¢. For Galileo,
acceleration is the only admissible interpretation. For the Newtonian, ¢ is either
acceleration or the ratio between weight and mass (that is, the ratio between the
weight and the resistance of the falling body to change velocity under the action of the
weight). Finally, for the Impetus theorist, ¢ is the ratio w/r, where w is the weight,
and r is the resistance of the falling body to move ("move" in the sense of changing
place, not velocity) under the combined action of the weight and the impetus.

Let me explicitly say that definition 7 is a minimal requirement which any
dynamical explanation should satisfy. This definition is not intended to distinguish
between 'deep’ and ‘shailow' explanations. Suppose that y is a concrete system
or process, and that P is a dynamical model of y. Also suppose that somebody
whom we trust {perhaps God the Great Mathematician) told us one of the laws
“f(t) = ¢" for each evolution function f, which is contained in P. Then, we could
jpso facto produce an explanation of y, namely the minimal framework
<{"t(t) = o'} P>. If some of the laws in {"{(t) = 0"} contained some constant, the
framework <{"f(t) = o} P> would not provide us with any interpretation for
them®', and one might object that, for this reason, <{"i(t) = ¢,"} P> would not
‘really explain’ the process y. My view, however, is that this framework is not &

theoretical explanation, but certainly is a minimal explanation of y, for its set of

and the concept of resistance to change velocity under the action of the propulsive force (which
corresponds to our concept of inertial mass M(t)), we obtain A{t) = wir = a = W(t) / M({t) = w / M{t},
whence M(t) = w/a = m (notice that this entails r = m so that, as far as free fall is concerned, we
may freely identify our inertial mass with the Aristotelian resistance to move).

" See example 6.4 for a concrete case.
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hypotheses is one of the weakest set of hypotheses which determines all the
evolution functions of the model P.

Computational models of cognitive processes may provide concrete examples
of minimal dynamical explanations®. For instance, it can be proved that a
version of the EPAM program determines a dynamical modef®. This model is
intended to explain how humans learn a list of non-sense syllables (rote
learning)™. Furthermore, since the program is known, we can also specify a law
for each evolution function of this model. Therefore, EPAM can be identified with
a minimal dynamical framework <{"{(t} = o."} P> The model of this minimal
framework has also been empirically confirmed (at least partially), but the debate
about its adequacy is still open. If the model specified by EPAM (or by some
improved version of this program) is finally accepted as a dynamical modet of the
process of rote learning, EPAM will become an example of a minimal dynamical

explanation ot a cognitive process.

%2 The method used for producing these computational models is not inductive, it is rather a
specific version of what is traditionally called "resolution method". The resolution method is known
in cognitive science as "means-end analysis”. An appropriate name for the specific analysis
involved in producing computational models of cognitive processes is "top-down functional
analysis". See section 1.1 of chapter 4 for a brief sketch of this method.

% This proof is quite long and involves some technicalities. | plan to add it to an enlarged
version of this dissertation. EPAM is a program which learns a series of non-sense syllables,
(Feigenbaum 1959, 1963).

* Roughly speaking, the only observable of this model is the series of responses of a subject
in a standard experiment. In one form of the experiment, a certain list of pairs of non-sense
syllables is selected. The subject is presented the first syllable of each pair and he must respond
with the second syllable. After the subject's response, the correct syllable is presented, until alt
the pairs in the list are exhausted. Then, the same list is presented again until the subject learns
all the correct asscciations. In a second form of the experiment, instead, the syllables are
presented in a sequence, and the subject must respond with the next syllable in the sequence.
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3.3 Explanations as solutions of dynamical problems, and the inductive
method

The definition of a dynamical explanation can also be interpreted as a definition
of the set of solutions of a dynamical problem <y H F>. In fact, an arbitrary
solution of this problem is a specification of a dynamical model of y, and we have
seen that any such specification can be identified with a dynamical explanation
of y. Therefore, we can now express F (the request of the problem) in a different
form, which is: "find a dynamical explanation of y". | have suggested in section
2.3 that an arbitrary dynamical study can be thought as the attempt to soive a
specific dynamical problem <y H F>. We now see that an arbitrary dynamical
study can also be thought as the attempt to find a dynamical explanation of a
given system or process”.

Suppose now that we are trying to dynamically explain a concrete system y
or, equivalently, that we are trying to soive the specific dynamical problem

<y H F>. Also suppose that, in the course of this process, we perform the

5 During the defense of this dissertation, Noretta Koertge raised the objection that, according
to my view of a dynarmical explanation, everything could be taken as the object of a dynamical
study. This is true. However, when we decide that a concrete process or system y should be
dynamically explained, we believe that understanding the dynamical properties of this specific y
is fmteresting, or worthwhile, in other words, it is true that a problem of the form <y H F> can be
posed for any v, but the fact that it can be posed does not entail that, for any vy, this is an
interesting problem. { am not proposing, and not even suggesting, that any problem of this form
should be taken seriously (in other words, not any y is a dynamical explanandumj. It is true,
however, that this leaves open an important question which philosophers of science have
overlooked so far (but Noretta Koertge is the exception to this rule): how do we evaluate and
choose scientific problems? it is clear that, if science is a form of problem solving (as | believe it
is), then problem evaluation is a crucial component of the scientific enterprise. Noretta Koertge
has been working on a general theory of problem evaluation, which is based on the distinction of
several dimensions with respect to which we judge problems. | believe that we badly need this
theory. However, | also believe that, to understand the evaluation of scientific preblems, we must
also understand their specific structure. Therefore, | do not see on opposition between Noretta
Koertge's approach and mine. Rather, | see them as being complementary.

179



following steps: (1) we (implicitly) assume the hypothesis of the problem H; (2) we
determine an appropriate number of observable magnitudes M, ... M,; (3} we add
a number of other magnitudes M, ... M, so that we obtain the component
magnitudes <M, ... M, M,, ... M>; (4) for each component magnitude M, we induce
(or guess on the base of data) a law "f{t) = "%, (5) for each component
magnitude M, we define its evolution function f[x; ... xJ(t)by means of the equation
"flx ... xJ(t) = o"; (6) we check thatthe evolution functions <f .. f f, .. f>
generate a dynamical system, that is, that they are related in such a way to satisfy
[a] fix; ... xJ(0) =x, and [b] f[x; ... xJ(t+w) =f{f[x .. x]J(t) .. flx; ... xJ(O)(w); (7) we
check that, for each non-observable component M,, there is an observable M, such
that its evolution function f depends on the initial value of M, (8) for each
component magnitude M, we empirically confirm its law "f(t) = o"; (9) we finally
accept the hypothesis "P is a dynamical model of w". Then, we have inductively
solved the problem <y H F> or we have inductively produced a minimal
explanation of the system w, namely the minimal framework <{"{(1) = "} P>,
where P = <<M,... M, M, ... M, T> <f, .. > {M, ... M}>.

If the inductive method outlined above were always feasible, we should not

% Notice that, even if the magnitude M, is not observable, it is possible to produce an informed
guess of its law “f{t} = o" on the base of all the available data (that is, data concerning all the
observable magnitudes). To produce this guess we must keep in mind the constraints that (1) the
time evolution functions of ali magnitudes must generate a dynamical system, and that (2) for any
non-observable magnitude there must be an observable whose time evolution function depends
on it. In this sense, it is possible to induce {(or guess on the base of data) a law of each magnitude
M. (observable or not).
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worry about theories at all, except for aesthetical reasons®. Unfortunately, the
problem with this method is that it does not always work. Very often, we cannot
induce (or even guess) ali the dynamical iaws involved in a concrete process
because, if we lack a theoretical perspective, we may not be able to determine an
appropriate set of component magnitudes®. Furthermore, what we can usually
observe are not the laws of these magnitudes but, rather, some lawiike aspects

which depend on these laws. These lawlike generalizations’™ may be very

¥ | would guess that, even in this case, we would still worry about theories, for aesthetical
reasons are powerful ones. The point is that the inductive method can only provide us with
minimal explanations, and we are not usually satisfied with this type of explanations. We feel that
they should be subsumed under a more general point of view, which allows us to synthesize what
we know in a few, simple, words. This systematic function is the characteristic feature of
theoretical principles. But, perhaps, these aesthetical reasons are only the reflection of the great
pragmatic value which theories have for us (for they are efficient tools for solving dynamical
problems). If we had powerful inductive methods, our aesthetical judgements might very well
change and, in that case, we might not care about thecries so much.

* In the absence of a theoretical perspective, steps (2) and (3) of the inductive method may
be extremely difficult. These two steps consist in determining: (2} the observables of a model;
(3) other magnitudes on which the observable magnitudes depend. Even when all the magnitudes
of a dynamical model of a concrete process are observable, it is not a trivial matter to realize that
they are sufficient to specify a dynamical model of that concrete process. For example, it took the
genius of Galileo to realize that position and velocity are sufficient to compietely describe the
dynamical behavior of a falling body. One of the great advantages of having a theory is that the
theory rmay give us powerful heuristic rules for dealing with steps (2) and (3). See sections 4.4 and
5.6

* A typical example of this kind of generalizations are Kepler's three laws of planetary motion.
These are not the laws which specify a dynamical model of planetary motion but, rather, they are
mathematical relations which hold between the observable components of one particular orbit of
that model. In fact, #t so happens that only one particular orbit of this model is actually realized,
and we can thus onily cbserve portions of this orbit { am assuming here that planetary motion is
a dynamical phenomenon). Let me also explicitly say that, in general, there are no faws of a
dynamical phenomenon. If a concrete process v is a dynamical phenomenon, then it has a
dynamical model P, and the laws which specify the evolution functions of this model are the
dynamical laws of the model {or more, precisely, of the dynamical system generated by the model).
However, we cannot serfously talk of the laws of the phenomenen, uniess we identify the concrete
process y with the dynamical system y(P) generated by P. This identification is justified as far as
the dynamical properties of y(P) are concerned but, beyond that, we should keep in mind that y(P)
and v and are different systems. In fact, the property of being a law of y(P) is not a dynamical
property, for it is always possible to find a system which is isomorphic to y(P) and does not have
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important to later discover the dynamical laws, but they should not be confused
with them. Induction very rarely, if ever, allows us to discover anything more than
lawlike generalizations.

Fortunately, there is also a different approach which, in many cases, turns out
to be more efficient. This is the deductive method, which consists in starting from
natural theoretical principles and from plausible specific assumptions, and in then
trying to deduce a set of laws which specify a dynamical model. 1f this theoretical
work is successful, we end up with a possible explanation (or a framework), which
is then provisionally accepted if all the deduced laws are empirically confirmed,

and if the theoretical principles and the other assumptions cannot be criticized in

any other way®.

components.

% The acceptance of the hypothesis “<A P> is an explanation of y" involves two successive
steps: (1) the acceptance of the hypothesis "P is an empirically adequate model of y"; (2) the
acceptance of the hypothesis "P is a dynamical model of y". The second step presupposes the
previous one, but the justification methods involved in the first step are in general different from
those involved in the second one. Furthermore, the acceptance of the hypothesis "<A P> is an
explanation of y" should be distinguished from the acceptance of the stronger hypothesis "<A P> is
an adequate explanation of w'. The acceptance of this stronger hypothesis also involves two
successive steps: (a) the acceptance of the hypothesis "<A P> is an explanation of y"; (b) the
acceptance of the hypothesis "A is an adequate set of explanatory hypotheses for y". The
justification methods for step (b) are specific to this step, and they may involve an evaluation of
the whale theory to which the hypotheses in A belong.
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4. Principles, laws, and theories

A dynamical theory is composed of principles and laws. Some of the principles
are general, for they are supposed to hold for all the systems or processes which
the theory intends to explain. They will be called theoretical principles. Other
principles and all the laws are specific, that is, they are intended to hold only for
one particular process or system. These principles and laws will be called specific
assumptions. The theoretical principles determine a set of frameworks (or possible
explanations). As a first approximation, we may thus identity a dynamical theory
with a triple <IT T ®>, where IT is a non-empty set of processes or systems (the
intended domain of the theory), T is a non-empty set of theoretical principles, and
@ is a set of frameworks determined by T. In order to understand in which sense
the theoretical principles determine the set of frameworks @, we need to look first

at the nature of theoretical principles, specific principles, and laws.

4.1 Theoretical principles, specific principles, and laws

Intuitively, a principle is an equation which expresses the time evolution
function of a magnitude as a mathematical function of the time evolution functions
of other magnitudes. As a typical example, think of the second principle of
dynamics, which is usually written as "A(t) = F(t) / M(t)".

Some principles are intended to hold for all the time evolution functions of a
specified type. For example, the second principle of dynamics is valid for the time

evoliution functions of the acceleration, force, and mass of an arbitrary body. A
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principle which satisfies this requirement is called a theoretical principle. It is thus
clear that the non-mathematical function constants which occur in a theoretical
principle can be regarded as schemas which specify the type of evolution functions
for which the principle is intended to hold®’. | will make explicit this fact by writing
a schema in bold. For example, | will express the second principle of dynamics
by means of the equation schema "A(t) = F(t} / M(t)". A principle is theoretical if
any non-mathematical symbol which occurs in it is a schema™.

Besides theoretical principles, some explanations alsc employ other principles
whose characteristic feature is that they are intended to hold only for the system
or process under investigation. 1 cali a principle of this kind a specific principle.
For example, if we attempt to explain the free fall of a body, we may assume that
the total force on the falling body is equal to its weight. This assumption is a
principle, for it states a mathematical relation between the time evolution functions
of two magnitudes. Nevertheless, the validity of this principle is limited to the
particular process under investigation, namely free fall. A principle is specific if no
schema occurs in it. For example, the specific principle mentioned above is
expressed by the equation "F(t) = W(t)", where F(t) and W(t) are, respectively, the

time evolution functions of the total force and of the weight of a falling body.

* The traditional view takes a different approach. Theoretical principles are usually thought
as universally quantified formulas. For example, the second principle of dynamics would be
expressed by the formula: “for any x, A(x t) = F{x t) / M(x t)". My point is that we do not need to
quantify on objects in order to express theoretical principles. All what we need are function
schemas "f" which specify types of time evolution functions. For example, if f, is the time evolution
function of the posttion of a specific body, the schema "f" expresses the time evolution function of
the position of an arbitrary body.

8 Except the variable "t" whose range are the possible values of the magnitude time.
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The third type of assumptions which are usually employed in theoretical
explanations are equations which specify the mathematical form of the time
evolution function of a magnitude. An equation of this kind is called a /aw. For
example, to explain free fall, we may assume that the weight of the falling body is
equal to a constant. We can express this law by means of the equation "W(t) = c".
Laws, like specific principles, are intended to hold for a fixed system. Therefore,
no schema occurs in any law. Unlike specific principles, however, the right hand
side of a law never contains a non-mathematical function term.

In order to express principles and laws we need individual variables which vary
on the possible values of magnitudes, and function constants which express the
time evolution functions of magnitudes. 1 will use the following conventions. First,
the variable "t ranges on the set T of all possible values of the magnitude time.
Second, if M, = <M. i> is an arbitrary magnitude different from time, the variable "x"
varies on the possible values of M, that is, on M. Third, when the function
constant "f" occurs in the function term "{(t})", "f" expresses a function whose
domain is T and whose codomain is the quantity M, of the magnitude M, This
function is called "the time evolution function of M/", and | will refer to this function
by writing the function term "f(t)* in italics. | also assume that we have specified

mathematical operators™ and formation rules which allow us to define the set of

all admissible function forms {o}, in such a way that no function constant "{" or

% For example, if the theory is classical mechanics, we will include all the usual algebraic and
analytic operators.
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function term *f(t)" oceurs in any function form®. Let o be an arbitrary function

form. | then define:

Definition 8 (principles and laws)

{(a) H is a theoretical principle iff:
H is an equation schema of the form "fi(t) = o(f(t) ... £(t) X, ... X, t)", where all the
variable schemas "x," ... "x," and the variable "t" may be missing, but at least one
function term schema occurs in the right hand side.

{b) H is a specific principle iff:

H is an equation of the form "f(t) = a(f(t) ... fi(t) x, ... x, 1)", where all the variables
" ... "z, "t" may be missing, but at least one function term occurs in the right

]

hand side.

(¢) His alaw ifft
H is an equation of the form "f(t) = o(x, ... x, t)", where all the variables "x." ... "x."
"t" may be missing.

There is an important difference between the form of a principle and that of a
law. A law does not contain any non-mathematical function term in its right hand
side. Therefore, a faw completely determines the function on the left side. A
principle, instead, asserts that the functions on the right side must be in a specified
mathematical relation to the function on the left side. Therefore, a principle only
partially determines this function. The neat point is that this partial determination
is possible even when all the functions related by the principle are unknown. In
fact, to obtain a principle, we need only know a mathematical relation between

these functions. This is one of the reasons why principles are so useful, for

® And, furthermore, for any function form o, and any function term "f(t)", "f(t) = o" must be a
syntactically correct definition of "f{t)" (where all the variables different from "t" which may occur
in o are taken to be constants).
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hypotheses about mathematical relations between unknown functions are in
general easier to formulate than hypotheses which completely determine a
function.

A second feature which makes principles extremely powerful is that we can
often deduce laws from theoretical principles and specific principles alone. This
is what we routinely do when the specific principles are differential equations®.
Suppose we have a theoretical principle which states that the time evolution of a
magnitude of a first type Y is the derivative of the time evolution of a magnitude
of a second type X. This can be expressed by:

[T} Y(t} = D(X(1)}, where "D," is the derivative operator.

Suppose now that we want to find out the time evolution of the magnitude X
for a specific system or process y. If we consider a qualitative description of v,
we may be able to write a plausible mathematical relation between Yand X. This
relation has the form of a specific principle, and it can be written as:

[Si Y{(t) = ol X(t))

Since, by [T], Y{t) is the derivative of X{t), the specific principle [S] is a
differential equation of the first order. We can now apply our mathematical
knowledge and solve this equation. The result is a faw of the form:

(L] X(t)=pB(xt) where x is the initial value of the
magnitude X

we have thus deduced a faw from principles alone.

% | believe that there must be other ways of deducing laws from principles alone, but | cannot
think of any other example.
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4.2 Theoretical frameworks and theoretical explanations

| have proposed above to think of a dynamical theory as a triple <I1 T ®>,
where I1is the intended domain, T is a non-empty set of theoretical principles, and
® is a set of frameworks. | will call any framework <A P> € & a "theoretical
framework". Theoretical frameworks have three characteristics. First, each
hypothesis in A is necessary for specifying the possible model P. Second, the set
of hypotheses of a theoretical framework contains at least one of the theoretical
principles of the theory. Third, all the other hypotheses are either specific
principles or laws. These three conditions are expressed by the following

definition:

Definition 9 (theoretical framework and theoretical explanation)

{a) <A P> is a theoretical framework relative to T iff:
T is a non-empty set of theoretical principles, <A P> is a framework, and
(1) let P = <<M, ... M;> <fj ... f> O>; then, for any A* ¢ A, A* does not entail®®
any set of evolution laws ("f(t) = B" ... "f(t} = B,"} such that f[x; ... x1(t) = B,
.. and fi{x ... xJt) = B;
(2) AnT # &;
(3) forany He A,if He T, then H is either a specific principle or a law.

% In general, this condition is the most difficult to verify because, in order to prove that this
condition holds we need to formalize the language in which the hypotheses are expressed.
A condition which is easier to verify is the following: for any H ¢ A, H is used in a deduction of at
least one of the faws {"f(t) = oy" ... "L (1) = o'}, where f[x ... x](t) = o, ... and filx; ... XJ{t) = 0.  do
not attempt to formally define this condition, but [ take that, in each specific case, we are able to
distinguish deductions in which a hypothesis is used from those in which a hypothesis is redundant
or irrelevant. For example, a deducticn which first deduces [, then introduces the hypothesis v,
and then deduces B again under the hypothesis y (by invoking the a fortiori law "B -> (v -> 3)")
does not count as a deduction of B from ywhere yis used. The concept of relevant deduction can
be made precise by using relevance logic. However, this presupposes that we formalize the
language in which hypotheses are expressed. But then, if we must formalize, we can simply stick
to standard logic and use the condition which | have stated.
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(b} <A P> is a theoretical framework iff:
there is T such that <A P> is a theoretical framework relative to T.

{c} <A P> is a theoretical explanation of x iff:
<A P> is a theoretical framework, and P is a dynamical model of .

Example 9.1 (theoretical and non-theoretical frameworks for free fall)

The Baconian framework for free fall {(example 6.4) i3 not theoretical, for it does
not satisfy condition (a2} of definition 9. The Galilean framework (example 6.1), the
Impetus framework (example 6.2), and the Newtonian framework {example 6.3},
instead, are theoretical®’

If <A* P> is a framework, and A* ¢ A, then 1 call <A P> an extension of <A* P>,
The definition of a theoretical framework implies that the sef of all theoretical
frameworks and the set of all extensions of minimal frameworks are disjoint. | take
this formal result to express the sense of depth which we usually associate with
theoretical explanations. This sense of depth depends on the fact that a set of
laws which determines a dynamical model P is not given directly but, instead, is
deduced from a set of hypotheses which contains at least one theoretical principle
which is necessary for such deduction. The fact that no extension of a minimal

framework is theoretical deserves to be stated as a theorem;

Theorem 2 {(no extension of a minimal framework is theoretical)

If <A* P> is a minimal framework, and A* < A, then <A P> is not a theoretical
framework.

5 If condition (a1) of definition 9 is satisfied. However, notice that each hypothesis of each of
these frameworks is used in the deduction of the Galilean laws. According to this intuitive criterion,
then, we can take condition {(a1) of definition 9 to be satisfied.
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proof:
if A* = A, then, for any T, <A P> does not satisfy condition (a2} of definition 9. If

A¥ < A, then, for any T, <A P> does not satisfy condition (al) of definition 9 q.e.d.

4.3 Dynamical theories

| am now going to give a general definition of a dynamical theory. | have
proposed above to think of a dynamical theory as having three components: an
intended domain T1, a set of theoretical principles T, and a set of frameworks ®@.
First, let me add the requirement that @ be the set of all frameworks which are
theoretical with respect to T. Second, let me complete this proposal by adding two
other components.

We have seen before that, in order to express principles and laws, we must
specify a set {o} of all the admissible function forms. This set may vary from
theory to theory, so that {«} should be considered as a fourth component of each
specific theory. This set can be regarded as the mathematical part of the theory.
In general, the mathematics which a theory presupposes is not explicitly stated but,
quite obviously, it is essential for precisely formulating the theoretical principles, the
specific assumptions, and for deducing the laws which specify possible models of
the systems or processes which the theory intends to explain.

The fifth component of a dynamical theory is associated with an interesting
property which some of these theories satisfy. | have mentioned at the end of
section 2.3 that classical mechanics can be taken to define a mechanical system

as a system which has a dynamical model whose only components are position

190



and momentum. This definition can be interpreted as saying two different things.
First, it specifies a particular class of dynamical models, that is, all those models
whose only components are positions and momenta. This special set of models
can be regarded as the set of all standard models of the theory. Second, it says
that a system is in the intended domain (that is, a system is a mechanical system)
just in case it has a standard model. This example thus suggests that a dynamical
theory also has a fifth component. This fifth component is @ set of dynamical
models ¥ which allows us to state a necessary and sufficient condition for a
system = to be a member of the intended domain I1 of the theory. This condition
affirms that n e I justin case there is P e I such that P is a dynamical model of r.

| finally sum up all these observations with the following definition:

Definition 10 (dynamical theory)

<M ¥ {o T @> is a dynamical theory iff:

(1) 11 is a non-empty set; (IT is the domain of the theory)

(2) T is a set of dynamical models and, if ¥ # J, then n e I1 iff there is P € X such
that P is a dynamical model of «; (¥ is the set of standard models of the theory)

(3) {o} is a non-empty set of function forms; {{o) is the set of admissible function
forms of the theory)

(4) Tis a non-empty set of theoretical principles; (T is the get of theoretical principles
of the theory)

(5) @ is a set of frameworks, and <A P> ¢ @ iff <A P> is a theoretical framework
relative to T; (@ is the set of theoretical frameworks of the theory)

We thus see that a dynamical theory is a complex object. This object can be
thought as having three parts: a non-linguistic part (the domain IT and the standard

models ), a linguistic part {the mathematics {} and the theoretical principles T)
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and, finally, a semi-linguistic part (the set of theoretical frameworks ®} which
connects the linguistic and non-linguistic parts. Traditionally, a theory has been
conceived as either a set of sentences (by the syntactic view), or as a set of
models (by the semantic view). Either view thus highlights an essential ingredient
of any dynamical theory. Where both views go wrong, however, is in claiming that
theories can be reduced to either a set of sentences or to a set of models.

The proponents of the semantic view have done an excellent job in pointing out
the extremely important role of models. However, models have been thought in
the semantic sense of structures which satisfy the theoretical principles. According
to this view, all models of a theory are semantic models, in the specific sense that
all the theoretical principles are true in any model. For example, the principies of
classical mechanics define the predicate "is a classic particle system" and the
models of the theory are all those structures which satisfy this predicate. It thus
follows that all the principles of classical mechanics are true in any of its models.

In the first place, this view overlooks the important fact that some models of
a theory are models in a sense which is nof semantic. Rather, they are models
in the same sense as scale models are, for they are models of processes or
systems™, and this means that a similarity of structure holds between a mode!
and one of these systems. Giere has pointed out that scale models and
theoretical models are alike, and he has also suggested that a model is frue of a

certain system (or corresponds to that system) if there is a similarity of structure

% A model of a theory may be a model in this sense even though it is not a model in the
semantic sense of satisfying the theoretical principles. See below for concrete examples.
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between the model and this system (1984, 1985, 1988). Van Fraassen has
proposed that this similarity of structure should be thought as an jsomorphism
(1989, 226). However, as far as | know, these informal remarks have not been
spelled out in detail for any specific theory. My view is that, for dynamical theories,
the similarity of structure between a dynamical model P and a concrete system
is an isomorphism between dynamical systems, that is, an isomorphism between
the dynamical system y(P) generated by the model and the concrete system .
If this isomorphism holds, then the dynamical system generated by the model and
the concrete system have the same dynamical properties, and the same modal
structure. | believe that, as far as dynamical theories are concerned, this concept
formally expresses the so called "correspondence theory of truth®. However, it
should be noticed that the concept of dynamical model of a concrete system is not
a semantic concept, for the isomorphism between the dynamical system generated
by the model and the concrete system has nothing to do with the satisfaction
relation between the theoretical principles and the model.

In the second place, this formal version of the idea of truth as correspondence
should not be confused with Tarski's analysis of truth for formal languages. The
only connection with Tarski's theory is a trivial one, namely, that the hypothesis
P is a dynamical model of y" is true just in case P is a dynamical model of .
Obviously, this does not explain what "P is a dynamical model of " means. This
point needs to be stressed, for it is usually misunderstood. The so called

"correspondence theory of truth" does not affirm that a sentence corresponds to
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a fact. Rather, it affirms that a mode/ of a certain type (often an abstract model)
corresponds to a concrete system™. Therefore, "P corresponds to ' cannot be
analyzed as: "y" is true iff w°. The correct T-sentence for "P corresponds to y"
is: "P corresponds to y" is true iff P corresponds to y. It is thus clear that
T-sentences do not provide us with any explication of the idea of truth as
correspondence. In general, | believe that this concept must be analyzed in terms
of an isomorphism which holds between a structure y(P) generated by the model
P and the system . Therefore, we cannot specify one isomorphism which
formally expresses the theory of truth as correspondence, for this isomorphism
depends on the type of structure which y(P) is. Furthermore, the type of mode/
which P is also depends on the type of structure which y(P) is. In other words,
there cannot be only one formal theory of truth as correspondence. Rather, there
will be many formal theories, which depend on the type of structure involved in
such correspondence. What | have attempted to do is to formulate one of these

formal theories, namely, the formal theory of truth as correspondence when the

¥ What | mean is that the concept of truth as correspondence, as typically used in empirical
science, does not affirm that a sentence corresponds to a fact. Obviously, there is an intuitive
concept of truth as correspondence which affirms just this. This concept has been explicated by
Tarski, and we all know that Tarski's theory of truth is relevant to logic and meta-mathematics. My
point is that truth as correspondence between sentences and facts is largely irrelevant to empirical
science. Instead, the appropriate concept in this domain is truth as correspondence between
models and systemns,

] n

"0 If y were a fact, then y could be expressed by a sentence "y" and thus, by taking P = “y",
the T-sentence for "P corresponds to y" would be: "y" is true #f .
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structures involved are dynamical systems’".

in the third place, the characteristic function of theoretical principles is not that
of defining a set of models which satisfy the theoretical principles. Rather,
theoretical principles define a set of theoretical frameworks, and the hypotheses
of each of these frameworks specify one model. Ultimately, theoretical principles
thus determine a set of models. However, the models in this set do not usually
satisfy the theoretical principles. In other words, it is false that all models of a
theory are models in the semantic sense of satisfying the theoretical principles, for
some dynamical theories determine models in which some theoretical principles
are neither true nor false. Therefore, the semantic view is contradicted by this
property of dynamical theories. As a typical example think of the model specified
by the Newtonian framework for free fall (example 6.3). Even though the second
principle of dynamics is used to specify this modei, this principte is not true in this

model, for mass, force, and acceleration are not components of this model”.

We must now consider more closely the roles which the set of standard models

™ My general proposal for analyzing "P corresponds to y" is this. "P corresponds to y" should
be analyzed as "P is a A-model of y", where A is a specified type of structure. "P is a A-model of
" should then be defined as "P is a A-model, and y(P) is A-isomorphic 1o y", where the
A-isomorphism is the isomorphism appropriate for the type of structure A, and a A-model is defined
in such a way that each A-model P generates, or induces, exactly one structure yw(P) € A,

2 { am not saying that the second principle of dynamics is false in the Galilean model of free
fall. | am just saying that, in this model, the second principle of dynamics is neither true nor false,
just because this model does not provide any interpretation for the function terms "A(t}", "F(1)", and
"M{E)". In fact, the only components of the model are position and velocity. This example is
typical. Even the standard models of classical mechanics do not satisfy the theoretical principles,
for the only components of these models are positions and momenta.
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3 plays in a theory. In the first place, if this set is not empty, we are given a
necessary and sufficient condition for a system or process  to be a member of
the intended domain IT: n € I1 just in case there is a model P e Z such that P is
a dynamical model of =. Notice that this condition implies that any system = in the
intended domain is a dynamical phenomenon. Furthermore, if n is a concrete
system or process, then n is an actual dynamical phenomenon. We thus see that
any dynamical theory whose set of standard models is not empty determines a
specific subset of the set of all dynamical phenomena. The dynamical phenomena
in this subset are exactly the processes or systems in the intended domain I1. We
will see later that this fact has an important consequence with respect to the
methods which we may use to solve a concrete dynamical problem <y H F>",
In the second place, the set of standard models X is sometimes given in such
a way that each standard model turns out to be completable with respect to the
magnitudes determined by the theoretical principles. Let me explain with an
example. Consider classical mechanics, where the set of standard models X is the
set of all dynamical models whose components are the positions and momenta of
n bodies (n > 0), and the set of theoretical principles T includes the principle of
universal gravitation, the second principle of dynamics, and the definitions of

velocity, acceleration, and momentum’™. For each standard model P e Z, these

® Recall that <y H F> is a dynamical problem just in case vy is a concrete system or process,
H is the hypothesis "y is a dynamical phenomenon”, and F is the request “find a dynamical
explanation of ",

“ These five theoretical principles are respectively expressed by the following schemas:

[T)] Gealt) = (k My(t) My(t) / 1Y, (1) - Y,(0F) (Y,(1) - V(1)
where k > 0, G_,(t) is the gravitational force on body a exerted by body b, Y, (1) is the position
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principles determine a set of magnitudes T(P) whose members are expressed by
the schemas: G; = the gravitational force on body i exerted by body j; F; =the total
force on body i; M, =the mass of body i; Y, = the position of body i; V; = the
velocity of body i; A, = the acceleration of body i; P, = the momentum of body i.
Any standard model P e X includes the positions and momenta of n bodies
(n>0). Therefore, P = <<Y, P, ... Y, P, T><Y,(t) P,(t) ... Y (t) P,(t)> O>, where
O ={Y, ... ¥, T}. Now, even though the magnitudes G, F, M, V, and A, are not
components of P, a set of laws of these magnitudes is derivable from the
theoretical principles and from a set of laws of the magnitudes in P In this
sense, each standard model of classical mechanics is completable with respect to
the magnitudes determined by the theoretical principles. In general, a theory is
complete just in case each of its standard models is completable. Therefore, we

have just verified that classical mechanics is complete’®. The following definition

of a, M_(1) is the mass of a, Y,(t) is the position of b, and M,(t} is the mass of b. Position and
gravitational force are vectors and, if v is a vector, IVl is its modulus. If a=b, then
Y, (1) - Y, ()i = 0, s0 that G,,(t) is not determined by [T,]. | set G,,(t) = O for convenience.
[T,] Aft) = F(t) / M)
where A(t) is the acceleration, M(t) > 0 is the mass, and F{t) is the total force acting on an
arbitrary body;
[Ta] V() = DLY(1)
where V(1) is the velocity, Y(t) the position of an arbitrary body, and “D," is derivative operator;
[T.] A(t) = D(V(H)
[T.] P{t) = M()V(t) where P{t) is the momentum of an arbitrary body.

IEY () = o is given, then, by the definition of velocity, we deduce V{{t) = DJ{o). From this and
the definition of momentum, since P,(t) = B, is given, we deduce M(t) = 3,/ D{e). From the
definition of acceleration, A{t) = D(D{oy)). From the second principle of dynamics,
F(ty = ({(B; / D,(cr)) D(DA{c))). Finally, from the principle of universal gravitation,
Gy(t) = (k (o - o) (B / Difer)) (B, Dulogh) / loy - onf”.

® The third principle of dynamics is expressed by the schema:

[E] F.olt) = - Fo,(t), where F,,(1) is the force on body a exerted by body b.
If we take the theoretical principles of classical mechanics fo also include this principle, then
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expresses the concepts of completable model and complete theory:

Definition 11 (complete theory)

(a) P is completable with respect to T(P) iff:
P = <<M; ... M;> <f ... f> O> is a dynamical model, T(P) is the set of magnitudes
determined by a set of theoretical principles T, and for any magnitude M, € T(P),
a law "fi(t) = " is derivable from T and from a set of laws [("f{t) =0 ..
"f(t) = or,"} such that f[x, ... x, (1) = o, ... and fi[x; ... %)t} = o,

(b) <1 % {0} T D> is complete iff:

<I1Z {o} T @> is a dynamical theory, T # & and, for any P € Z, P is completable
with respect to T(P).

Theorem 3 (completeness of classical mechanics)
Classical mechanics is complete

proof:
see the foregoing discussion,

4.4 The deductive method for solving dynamical problems, and the
heuristic value of dynamical theories

We have seen in the previcus sections that any dynamical study can be
thought as the attempt to solve a specific dynamical problem <y H F>, where y
IS a concrete system or process which we want to explain, H is the hypothesis
"wis a dynamical phenomenon®, and F is the request "find a dynamical

explanation of y". | am now going to censider how we may try to solve this

classical dynamics is no longer complete. However, | believe that the third principle of dynamics
is better interpreted as a heuristic principle which helps us to determine an appropriate set of
specific assumptions for a particular system or process we want to explain,
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problem if we are given a dynamical theory <I1 X {a} T &>"".

Suppose then that we are trying to dynamically explain a concrete system y
or, equivalently, that we are trying to solve the specific dynamical problem
<y H F>, and that we are given a dynamical theory <I1 X {a} T &> such that
T =@ Also suppose that, in the course of this process, we perform the
following steps: [1] we assume the hypothesis "y € T1""; [2] keeping in mind that
y e I1 just in case there is P < X such that P is a dynamical model of vy, we
determine an appropriate number of cbservable magnitudes M, ... M, and [3] we
add a number of other magnitudes M_ ... M,, so that we obtain the component
magnitudes <M, ... M, M,, ... M>"; [4] we select an appropriate subset of the set
of theoretical principles T; [5] we add some specific principles or laws, so that we

obtain a set of hypotheses A*'; [6] for each component magnitude M, we deduce

7 A dynamical theory <IT L {o} T > is given just in case I, {}, and T are specified. The
specification of £, {a}, or T need not be explicit. The ideal case is when: (i) £ is explicitly defined;
(i) {v:} is defined by specifying admissible mathematical operators and formation rules; (il) T is a
finite set of theoretical principles which are explicitly listed.

" If £ = @, then the first three steps below should be replaced by the corresponding steps of
the inductive method (see section 3.3).

’® Notice that, since T = @, the hypothesis "y e 1" implies the hypothesis of the problem "y is
a dynamical phenomenon”.

¥ For example, if the theory is classical mechanics, step [1] consists in assuming that y is a
mechanical system, that is, that there is a model of y whose only components are the positions
and momenta of n bodies. Steps [2] and {3] thus reduce io the following heuristic rules:
{a) determine n bodies whose positicns and momenta might be components of a standard model
of y; {b) choose components <Y, P, ... Y P 7> where Y, and P are, respectively, the position and
momentum of body £,

*"In the case of classical mechanics steps [4] and [5] often reduce to the following heuristic
rules: {a) choose the second principle of dynamics, and the definitions of acceleration, velocity, and
momentum; (b} for each body, write a law which states that its mass is a constant; {¢) for each
body which is part of the model, individuate all the forces acting on it, and write a specific principle
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a law "£(t) = o" from the hypotheses A; [7] for any H € A, we check that we have
used H in the deduction of at least one of the laws {"f{t} = of" ... ",(t) = o'}; [8] for
each component magnitude M, we define its evolution function flx; ... x,J(t) by
means of the equation "{[x, ... x](t) = o;"; [9] we check that the evolution functions
<f ... ffe ... f> generate a dynamical system, that is, that they are
related in such a way to satisfy [a] f[x; ... xJ(0) = x, and [b] f[x ... xJ{t+w) =
FLEDX . % J() - fdx - xJ(OKw); [10] we check that, for each non-observable
component M,, there is an observable M, such that its evolution function f, depends
on the initial value of M,; [11] for each component magnitude M, we empirically
confirm its law "f(t) = «"; [12] we finally accept the hypothesis "P is a dynamical
model of y". Then, we have deductively solved the problem <y H F>, or we have
deductively produced a theoretical explanation of the system y, namely the
theoretical framework <A P>, where P = <<M, ... M, M, ... M> <f, ... f,> O> and
O=<M . M>

| will call the method which | have just sketched the "deductive method". If we
compare this method with the inductive one (see section 3.3}, we see that steps

[8]-[12] of the deductive method are the same as steps (5)}-(9) of the inductive

one. Furthermore, steps [1]-[3] correspond to steps (1)-(3), and step [6]

which states that the total force on that body is equal to the sum of all the forces acting on it. To
simplify this task, keep in mind all the action-reaction pairs; (d} if some of these forces are
gravitational, choose the principle of universal gravitation; (e) if some gravitational force is exerted
by a body which is not part of the model, try to determine a simple law for its position; (f) for the
forces which are not gravitational, try to determine a simple faw first or, if this fails, a specific
principle. To simplify this task, keep in mind alf the action-reaction pairs. The right hand side of
each specific principle should only contain the positions and/or velocities of bodies which are parts
of the model.
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corresponds to step (4). The steps which do not have any inductive analogue are
thus [4], [5], and [7]. These steps (together with [6] and [8]-[10]) ensure that the
result of the deductive method, that is <A P>, is a theoretical framework. We have
seen before that the result of the inductive method is instead a minimaliramework.

The two methods also differ with respect to their generality and to their power.
The inductive method is more general than the deductive one, however, as a rule,
the deductive method is more powerful. The generality of the inductive method
depends on step (1), for this step only presupposes that y is a dynamical
phenomenon. Step [1] of the deductive method, instead, affirms that y belongs
to a subset of the set of all dynamical phenomena, so that this method is more
specific.

This decrease in generality, however, is usually compensated by an increased
power. This is due to the fact that steps [2]-{3] [4]-[5], and [6] are usually
associated with standard heuristic rules which depend on the specific theory
<IT X {a} T ®>. The heuristic rules which permit us to efficiently perform step [6]
are logical and mathematical. The corresponding step of the inductive method
(step (4)) is also associated with heuristic rules, but these rules are inductive. In
general, inductive heuristic is iess efficient than logical or mathematical heuristic.
The heuristic rules associated with steps [4]-[5] depend on the formulation of the
theoretical principles, and on the mathematics of the theory. If the theory is a
good one, these rules may be extremely powerful. Finally, the rules associated

with steps [2]-[3] depend on the definition of the set of standard models of the
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theory. Again, depending on the theory, these rules may be very efficient. By
contrast, there are no standard and powerful heuristic rules to perform the

corresponding steps of the inductive method (steps (2) and (3)).

We thus see that a dynamical theory may be an extremely useful tool for
solving dynamical problems. 1 believe that the heuristic value of theories is the
primary factor to consider if we are trying to understand why theories are so
important to us. Realists typically subscribe to a different view. They interpret

theories as capable of being true or false, in the sense that

there are things in the world to which our laws and theories refer and of which they
are true or false. They are, that is, to be understood as referring to real existents and
ascribing genuine properties to them. (Ellis 1985)

It thus follows that realists primarily value theories because they would reveal
to us deeper levels of reality, which go far beyond what we can apprehend in the
course of our perceptual experience, or in our practical interactions with the
external world. Even though | am a convinced realist, | maintain that dynamical
theories do not have any especially deep ontological consequence.

First, let me explicitly say that the correct realistic interpretation of dynamical
theories does not imply that theoretical principles, specific principles, or laws have
truth values. This property would follow if we subscribed to a theory of truth as
correspondence between sentences and facts. However, this is not the
appropriate concept for dynamical theories. The correspondence relation does not
hold between the hypotheses of the theory and the facts of the external world but,
rather, between some models determined by the theory and some concrete
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systems or processes. Therefore, the theoretical principles (or the specific
assumptions) are not objectively true or false. Instead, objective truth or falsehood
is a property of the models of the theory. To use a Popperian term, the fruth
content of a dynamical theory is the set of all its models which are models of some
concrete system or process®. The hypotheses of the theory specify or determine
these models, but these hypotheses are neither true nor false of the systems to
which these models correspond™.

In the second place, what a dynamical theory reveals to us is, at most, that
some concrete process or system is a specific dynamical phenomenon. Even
though this may be a very important discovery, by no means does is it reveal a
deep ontological level. Let me explain. If P is a modei determined by a dynamical
theory and, furthermore, P is a dynamical model of a concrete system v, then all
what we know is that y is isomorphic to the dynamical system (P} generated
by P. This fact has only two ontological consequences: (a) that v has dynamical
properties which are the same as the dynamical properties of the system y(P) and
(b) that y has a quite simple modal structure, that is, the modal structure proper
of any dynamical system. Therefore, the ontological implications of dynamical

theories are quite minimal, and | take that they are not sufficient to explain why

 The content of a theory <I1 % {0} T ®= is the set C(T) of all dynamical models determined
by the theory, that is, C(T) =: {x: there is <A P> such that <A P> is a theoretical framework relative
to T, and P = x}. The truth content G,(T) is the subset of C(T) which contains all those models
which are models of some concrete system, that is, C{T) =: {P: P & C(T), there is y such that y

is a concrete system or process, and P is a dynamical modef of y}.

¥ Furthermore, we have also seen that, typically, the theoretical principles are neither true nor
false of the models.
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these theories are so valuable to us. My view is that the most important
component of the value of dynamical theories is not epistemological but rather
pragmatic, in the specific sense that these theories may be powerful tools for
producing dynamical explanations™.

The heuristic value of a dynamical theory <I1 £ {o} T ®> depends on the power
of three sets of rules which are typically associated with specific components of
the theory: (i) the rules associated with the definition of the set of standard
models & - these rules allow us to select appropriate sets of component
magnitudes; (ii) the rules associated with the theoretical principles T and their
mathematical formulation - these rules allow us to select appropriate sets of
hypotheses; (iii) the rules associated with the logic and mathematics of the theory
{a} - these rules allow us to deduce a law for each component magnitude. We will
see in the next section that the heuristic value of dynamical theories may also play

an important role in the choice between two competing theories.

8 | et C(T) be the set of all dynamical models determined by a theory <IT Z {«] T ®>, that is,
C{T) = {x: there is <A P> such that <A P> is a theoretical framework relative to T, and P =x}.
Then, there is always a set of minimal frameworks which determines exactly the models in C(T).
Intuitively, C(T) is the complete content of the theory. Therefore, there is nothing which a theory
says of the world which cannot be said without a theory. What this means is that, if we only
consider the epistemological value of theories, then they are on a par with sets of minimal
frameworks. Therefore, what makes theories more valuable must be some other property which
sets of minimal frameworks do not have. My view is that this properly is the heuristic value of a

theory.
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5. Two examples of dynamical theories

| am now going to discuss two examples of dynamical theories. The first is a
theory which is based on ‘unorthodox' physical intuitions. This is a version of
what is known as Aristotelian dynamics, augmented with some ideas taken from
Impetus dynamics. The basic intuitions which lead to the formulation of the
principles of this theory are extremely natural, and are familiar to any student of
the history of science. The only further constraints which | have imposed to
generate these principles are that (i) they be expressed in current mathematical
language, and that (i) they turn out to be theoretical principles in the sense of
definition 8. 1 call this first theory “Impetus theory'’. The second theory is the
‘purely dynamical' fragment of classical mechanics, that is, the theory whose
principles are the definitions of velocity and acceleration and the second principle
of dynamics®. 1 call this theory "Newtonian dynamics’. The surprising result,
which | will prove in section 5.5, is that Newtonian dynamics turns out to be
inconsistent with Impetus theory and transfatable into Impetus theory. The
converse is also true. The exact sense in which this is possible will be clear later.

For the moment, let us see what Impetus theory says.

8 There is really nothing ‘more dynarmical’ in this theory than, say, in the fragment which only
contains the definitions of velocity and acceleration. However, there is a traditional meaning of the
term ‘dynamics’ as the study of motion with reference to the forces involved. According to this
usage, then, dynamics starts with the second principle of dynamics, while the definitions of velocity
and acceleration belong to the domain of kinematics.
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5.1 The theoretical principies of Impetus theory (or Aristotelian & Impetus
dynamics)

| take the usual definition of velocity to be the first principle of Aristotelian
dynamics®. This theoretical principle can be expressed by the equation-schema:

[A,] V() = D{Y(t)), where V(1) is the velocity of an arbitrary body, Y(t} is its
position, and "D," is the derivative operator.

The second principle of Aristotelian dynamics states that the velocity of a body
is directly proportional to the total force acting on it, and inversely proportional to
the intrinsic resistance of the body to move. This can be expressed by the

equation-schema:

(A, Vit) = F(t) / R(t), where R{t) > 0, F(t) is the total force, and R(t) 1s the
resistance of an arbitrary body to move under the action
of F(t).

The magnitude R has some analogy with our concept of inertial mass. Notice,
however, that the inertial mass is the resistance of a body to change velocity, while
R is the resistance of a body to change position. Also, the total force is velocity
multiplied by resistance to move. It is thus somehow similar to our momentum.
But, again, this must be taken cum grano salis, because the resistance to move
is not the inertial mass.

According to Impetus theory, the total force acting on a body can always be
divided into two components: the propulsive force, and the impetus. This principle

can be expressed by:

% Obviously, this is not historically correct, for the concept of derivative is a modern one.
Nevertheless, | am not interested here in historical accuracy. My goal is to use current
mathematical language to state a set of theoretical principles which express the basic intuitions

underlying Aristotelian and Impetus dynamics.
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(11 F(t) = P(t) + I(t), where I{t)is the impetus, and P(t) are all the other forces
acting on the body.

The impetus is an internal force of the body whose change produces a change
in its velocity. The propulsive force, instead, is the external agent which causes
the body to change its impetus. The ultimate effect of the propulsive force thus
is an acceleration. In this sense, the propulsive force can be identified with the
Newtonian total force. The way in which an acceleration is produced, however, is
quite different. The propulsive force ‘consumes’ or ‘produces’ impetus, and it is
this impetus change which then accounts for a change in velocity®’.

From {l,] and [A,] we obtain an equation-schema which allows us to express
the impetus by means of V{t), R(t), and P(t):

[1] I{t) = VIOR(L) - P(t)

From [1], if i, v, r, and p are, respectively, the initial impetus, velocity,
resistance to move, and propulsive force, we obtain:
[2] i=vr-p

We thus see that the initial impetus has always two components. The first is
equal to the initial velocity multiplied by the initial resistance to move. The second
component is equal to the opposite of the propulsive force acting on the body at
time 0. It is thus equal to the force which would be present if the body were at
rest at time O.

What about the impetus at any other time? The basic idea of Impetus theory

¥ The concept of impetus closely corresponds to what, in every day English, is called
"momenturn’. The ltalian word for the same folk concept is "impeto”.
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is this. If a body is released with an initial impetus I, this force does not
instantaneously vanish but, rather, it either decreases or increases, depending on
whether the propuisive force is negative or positive. To understand what this
exactly means, suppose first that the propulsive force is constant, that is, P(t) = p
for any t. In this simple case, the impetus at an arbitrary time t is given by the
equation:

3] i) = i + pt

The meaning of this equation is as follows. If p is positive, this force produces
additional impetus, and this acquired impetus is proportional to the time during
which the force p acts. If p is negative, p will instead produce an impetus loss
which is proportional to the time during which the negative force acts. Finally, if
p is zero, the initial impetus i will be conserved and, by the second principle of
Aristotelian dynamics, the motion of the body will be rectilinear and uniform®.
Equation [3] works only if P(t) is constant. However, this basic idea can be
generalized for any continuous P(t) by means of the concept of definite integral.
If we take a small time interval dt,, we can regard P(t) to be constant in that
interval, so that we can apply [3] and we obtain:

(4] I(t,) =1+ P(t))dt,, where t, is the instant at the end of the interval dt,.

The same obviously holds for a second interval dt,, for a third interval dt,, etc.

The impetus at time t, is thus given by:

[5] I(t,) =i+ > P(tjdt, wherej=1..n

 |f the resistance to move is assumed to be a constant.

208



Now, the limit of this sum for smalier and smaller intervals is the definite
integral of P(t) between time 0 and t. This justifies the following general
hypothesis:

(L] Ity=1i+ ' Pt)dt,  where iis the initial impetus

Equation-schema [l,] gives us the impetus at an arbitrary time as a function of
the total propulsive force acting on the body. 1 will call the term [} P(tydt acquired
impetus®™. Schema [I,] will be called the second principle of Impetus dynamics,
to distinguish it from [1,] which is the first principle. From [L,], [2], [I,}, and [A,] we
finally obtain:

(6]  Vt)=(vr-p+ [ Pt)dt + P(t))/R(t), where v, r, and p are,
respectively, the initial velocity,
resistance to move, and propulsive
force

This schema expresses the velocity as a function of the propulsive force and
of the resistance of the body to move. [A.], [A,], [I,], and [L,] are the theoretical
principles of Impetus theory. Even though [6] is the fundamental schema of this
theory, | do not take this to be a basic principle because it is derivable from the
others.

The specific assumptions of Impetus theory depend on the particular

phenomenon which is considered, and they are either specific principles or laws.

Since [A,] relates the velocity to the total force and to the resistance of a body to

% Notice the formal identity between [| P(t)dt and our concept of impulse. However, this is not
really impulse, because P(t) is not quite the Newlonian total force Fy(t). The reason why we cannot
seriously identify P(t) with () is that impetus theory lacks the concepts of acceleration and inertial
mass, and it also lacks the second principle of dynamics which connects these concepts to Fy(t}.
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move, we first of all need to determine which forces act on a body, and the time
evolution of its resistance to move. By [L], to find the total force, we must
determine the propulsive force and the impetus. Notice, however, that we need
only specify the propulsive force. When this is known, the impetus is also known
by [1,]. Therefore, the general problem of Impetus theory can be put in the form:
specify the propuisive force which acts on a body, and its resistance to move.
How this problem is solved depends on the specific case.

For example, suppose that we want to explain the motion of a projectile. Then,
the natural assumptions are that the propuisive force on the projectile in the
horizonta! direction is zero®®, and that the propulsive force in the vertical direction
is equal to the weight. We thus obtain a specific principle:

[S;1  Pit) = <0 Wity

We also assume that the resistance of the body to move is a positive constant:
(1,1  R(t)=r, wherer >0
and that the weight of the body is a negative constant:

[L,] W(t) = w, where w< 0

Notice that the last two specific assumptions are laws, and that they are
extremely simple. Also, the specific assumptions suggest themselves when a

qualitative description of the phenomenon is considered. The three specific

* One might think that the propulsive force at time 0 is not null, because when the projectile
is set in motion, there is a force acting on it. According to Impetus theory this initial force is not
a propulsive force but, rather, is the initial impetus of the projectile which is equal to its initial
velocity multiplied by its resistance to move. In fact, if we throw a stone, we are not applying a
force to the stone at the moment of its release.
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assumptions, together with the theoretical principles, imply that the motion in the
horizontal direction has constant velocity and that the motion in the vertical
direction is uniformly accelerated. In fact, from [S,], [L,], [L,], and [6]:
[l V(E) = <(vyr - 0+ 0t + 0) /1), (vyr - w + ([ wdt) + W)/ 1)> = <v,, (v, + tw/r)>
Impetus theory thus determines a theoretical framework for the phenomenon
of projectile motion, and the model of this framework is the same as the mode| of
the Newtonian framework obtained by assuming that weight and mass are
constant. This particular case suggests that, with convenient translation rules, we
may always transform a theoretical framework of Impetus theory into a Newtonian
one, and conversely. Under certain restrictions, this is in fact true but, before

proving this result, we need some further preliminaries.

5.2 The standard models of impetus theory

| take a standard model of Impetus theory to be any dynamical model whose
components are the positions and velocities of n bodies, where n > 0.
Therefore, P is a standard model of Impetus theory, just in case P =
<Y, V,.. Y, V, T><Y,t) V() .. V)V (t)>{Y, V, .. Y,V T> where ¥, and V,
are, respectively, the position and velocity of body . Notice that, given this
definition of a standard model, Impetus theory is not complete. In fact, the set of
magnitudes T,(P) determined by the theoretical principles T, of Impetus theory is
expressed by the following schemas: Y, V, P, F, R, and I, where P, F, R, and

1. are, respectively, the propulsive force, the total force, the resistance to move,
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and the impetus of body i. If Y1) = o and V|(t) = B, are given, the theoretical
principles of Impetus theory do not allow us to deduce a law for P, F, R, or I

Hence, Impetus theory is not complete.

5.3 The theoretical principles of Newtonian dynamics

| take the theoretical principles of Newtonian dynamics to be the definition of
velocity, the second principle of dynamics, and the definition of acceleration. The
definition of velocity states that the velocity is the derivative of the position:
[N,] V()= DJY(t)

The second principle of dynamics states that the acceleration of a body is
directly proportional to the total force acting on it, and is inversely proportional to

its mass:

[N,]  A(t) = F(t)/ M(t), where M(t) > 0, A{t} is the acceleration, M(t) the mass,
and F(t) the total force acting on an arbitrary body.

Finally, the definition of acceleration states that the acceleration is the
derivative of the velocity:
Nl A®t) = DLV(t)

The specific assumptions of Newtonian dynamics, as it happens for any other
theory, depend on the particular system which is considered, and so they cannot
be explicitly listed. 1t is for this reason that, to understand a theory, we need 1o

look at those possible explanations which have become classic. Kuhn called these
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typical frameworks “paradigms'®’. Newtonian dynamics has many paradigms.
One of the simplest is the framework for a harmonic oscillator. A harmonic
oscillator consists of a body attached to a spring, where the only force acting on
the body is the restoring force of the spring. This can be expressed as a specific
principle:

[S,] F(t) = F,(t), where F(t)is the total force on the body &, and F\,, is the force
exerted on & by the spring s

The restoring force is proportional to the displacement of the body, so that we
obtain a second specific principle:

[S,] F,(t)= -k Y(t), where k is a constant, and Y(t) is the position of &,
measured from its equilibrium point

We also assume that the mass of the body is a constant. This can be

expressed as a law:
(L] Mt)=m

From [L,], [S,], [S,] and [N,] we obtain:
[E] At) = - K/m Y(t)

Since the acceleration is the second derivative of the position, [E] is a
differential equation of the second order, whose solutions, together with their first
derivatives, determine themodel P = <<Y V T> <Yy V](t) V[y v]{t) {Y V T}>>. The
pair <A P>, where A = (N, N, N; S, S, L,} is thus a theoretical framework of

Newtonian dynamics (the harmonic oscillator framework).

° Or “exemplars®. This is one of the two basic meanings which Kuhn gave to the term
"paradigm”. The other basic meaning refers to a whole theory which has become the received
view for a scientific community, and is routinely used and developed by the members of this
community (Kuhn 1970).
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5.4 The standard models of Newtonian dynamics

| take the standard models of Newtonian dynamics to be the same as the
standard models of Impetus theory, that is, the set X of all dynamical models
whose components are the positions and velocities of n bodies, where n > 0.
Notice that, given this choice of £, Newtonian dynamics, like Impetus theory, is not

complete.

5.5 Two inconsistent theories which explain the same phenomena

it is surprising to realize that, in a sense which will soon be clear, Impetus
theory and Newtonian dynamics are translatable, even though they contradict each
other. That Newtonian dynamics and Impetus theory are inconsistent follows from
their different interpretations of the concept of total force. The second principle of
dynamics [N,] affirms that the total force acting on a body is proportional to its
acceleration. By contrast, the second principle of Aristotelian dynamics [A,] states
the proportionality between fotal force and velocity. The conjunction of [N,] and
[A,] is inconsistent, as it can be quickly verified by considering the case of a body
which moves with a constant velocity v = 0. From [N,], we obtain F(t) = 0, but
from [A,] we obtain F(t) = vR(t}), where R(t) # 0. Therefore, F(t) # 0 and F{t) = 0.

It remains to be seen how we can translate Newtonian dynamics into Impetus
theory and conversely. This is possible in the following sense. Let <A P>bea
framework of Newtonian dynamics such that P is a standard model. Ay thus

entails the position and velocity laws of all the bodies constitutive of P.  Also
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assume that the set of hypotheses A, is equal to Ty {"M(t) = o'} {"Fi(t) = B/},
where T, are the theoretical principles of Newtonian dynamics, "M(t) = o" is a law
for the mass of an arbitrary body constitutive of P, and "F(1) = 3" is a law for the
total force of an arbitrary body constitutive of P. Under these hypotheses, it is
possible to find an Impetus framework <A, P> whose set of hypotheses A, is equal
to TO{"R{t) = v"}{"P|(t) = 8"}, where T, are the theoretical principles of Impetus
theory, "R(t) = " is a law for the resistance to move of an arbitrary body
constitutive of P, and "P(t) = §" is a law for the propulsive force of an arbitrary
body constitutive of P. Furthermore, A, entails the same position and velocity laws
as A,, so that <A, P> and <A, P> share the same model P. However, A\UA is
inconsistent.

The converse is also true, in the sense that, if we start from the Impetus
framework <A, P>, then we can find the corresponding Newtonian framework
<A, P>, where A UA, is inconsistent. The trick consists in using the appropriate
translation rule. In order to transform an Impetus framework into a Newtonian one
{(and conversely) we must not use the naturaltranslation rule fotal force of Impetus
theory = total force of Newtonian dynamics. Instead, we must identify the
propulsive force of Impsetus theory with the fotal force of Newtonian dynamics.

Let us first see how we can obtain a Newtonian framework <A, P> if we start
from an impetus framework <A, P>. Since Pt} = §, from the second principle of
Impetus dynamics we obtain: 1t} = i + [ 18, dt. From the first principle of Impetus

dynamics, Fit} =8 +i +J, 8 dt. Since R(t) =y, from the second principle of
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Aristotelian dynamics, Vi(t) = (8 + i + ;' & dt) / v. From this, and the definition of
acceleration, A(t) = D5 + i, + §i 8 dt) / v). Since we identify propulsive force and
Newtonian total force, F(t) = 8. Finally, from the second principle of dynamics
M) =8 / D& + i, + [, & dt) / v).

Conversely, let us start from a Newtonian framework <A, P>. Since F(t) =
and M(t) = o, from the second principle of dynamics, Aft) = B/oy.  From the
definition of acceleration, V{t) = v, + [, B/o, dt.  Since we identify the Newionian
total force with the propulsive force, Pi(t) = B. Therefore, from the second principle
of Impetus dynamics, L(t) =i, + [,/ B, dt, and from the first principle of Impetus
dynamics, F{t) = B, + i + J;' B, dt. Finally, from the second principle of Aristotelian
dynamics, R{t) = (B, + i, + [ B, dt) / (v, + J;' B/oy dt). We have thus proved the

following theorem:

Theorem 4 (Newtonian dynamics and Impetus theory are translatable and
inconsistent)

(a) Let <Ay P> be a framework of Newtonian dynamics such that: (i) P is a standard
model; (i) Ay is equal to Tyu{"M(t) = o"JU{"F{t) = B;"}, where Ty are the
theoretical principles of Newtonian dynamics, "M(t) = o" is a law for the mass of
an arbitrary body constitutive of P, and "F(t) = B," is a law for the total force of
an arbitrary body constitutive of P. Then, there is an Impetus framework <A; P>
such that A, is equal to Tpo{"Ri(t) = v"1U['P(t) = &), where T, are the theoretical
principles of Impetus theory, "Ri(t) = v," is a law for the resistance to move of an
arbitrary body constitutive of P, and "P{t) = 8" is a law for the propulsive force
of an arbitrary body constitutive of P. Furthermore, ApJAy is inconsistent (under
the natural interpretation total force of Impetus theory = total force of Newtonian
dynamics}.

(b) Let <A, P> be a framework of Impetus theory such that: (i) P is a standard model,
(ii) A; is equal to TyU{'R{t) =1, 1U{'P(t) = §"l, where T, are the theoretical
principles of Impetus theory, "Ry(t) = v" is a law for the resistance to move of an
arbitrary body constitutive of P, and "P{t) = 8" is a law for the propulsive force
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of an arbitrary body constitutive of P. Then, there is a Newtonian framework
<Ay P> such that Ay is equal to TyU{"M(t) = o,"}{"Fi(t) = B"}, where Ty are the
theoretical principles of Newtonian dynamics, "M(t) = o;" is a law for the mass of
an arbitrary body constitutive of P, and "F,(t}) = B," is a law for the total force of
an arbitrary body constitutive of P, Furthermore, AyA| is inconsistent (under
the natural interpretation fotal force of Newtonian dynamics = total force of
Impetus theory”).

proof:
see above,

I am now going to consider a consequence of the proof of this theorem which
[ take to be quite interesting. Let us first look at the relations between the
concepts of Impetus theory and Newtonian dynamics. The concepts ot Aristotelian
dynamics are position, velocity, total force, and resistance to move. Impetus
dynamics then adds the concepts of propulsive force and impetus. On the other
hand, the concepts of Newtonian dynamics are position, velocity, acceleration, total
force, and mass. Position and velocity are the same concepts as those of
Aristotelian dynamics. Acceleration and mass are new concepts, while we have
seen that the Newtonian concept of total force is in fact the concept of propulsive
force in disguise. We can thus summarize the conceptual relations between

Impetus theory and Newtonian dynamics as follows. Newtonian dynamics

% However, if we introduce two different concepts of total force F, and F, which respectively
are the total force of Impetus theory and the total force of Newtonian dynamics, then AjUA, is
consistent under the identification propuisive force = F,. Even though this interpretation is logically
possible, it is quite unnatural, for the idea that there are two different fotal forces acting on the
same body sounds like a joke (this seems even more paradoxical when we realize that, since F, =
propulsive force, F, is a component of F and, at the same time, F, is a total force). Notice,
however, that it is exactly this ‘paradoxical interpretation which makes possible to translate an
Impetus framework into a Newtonian cne and conversely. [t is also interesting to notice that
looking at things from this point of view ailows us to undetrstand how the conceptual shift from
impetus theory to Newtonian dynamics is possible. More on this point later.
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(i) preserves the old concepts of position and velocity; (i) introduces the two new
concepts of acceleration and mass; (iii) reinterprets the old concept of propulsive
force by means of the two new concepts of acceleration and mass, and finally
(iv) eliminates the three old concepts of impetus, total force, and resistance to
move.

The interesting point is that it is possible to think of this result as being
obtained by first extending Impetus theory, and by then dropping certain parts of
this theory. The result of the extension step is a new theory whose conceptual
structure is unwieldy. Once this extension is obtained, however, the extended
theory is simplified by cutting those parts of the previous theory which have
become superfluous. The final result of this process is a new theory inconsistent
with the old one.

Let me explain. The extension of Impetus theory consists of two successive
steps. The first is the introduction of the new concept of acceleration together with
its definition [N,]. The second, is the introduction of the new concept of mass
together with the second principle of dynamics [N,] which relates the new concepts
of acceleration and mass to the old concept of propulsive force. The theory thus
obtained, even though consistent, is clumsy and conceptually redundant. The
propulsive force is in fact related to the velocity in two different ways. On the one
hand, the velocity depends on the propuisive force through the concepts of

impetus, total force and resistance to move™. On the other hand, the velocity

% By the first principle of Impetus theory and the second principle of Aristotelian dynamics.
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depends on the propulsive force through the concepts of acceleration and
mass™. Furthermore, either dependence can be eliminated without essentially
changing the content of the theory, as theorem 4 has shown. Therefore, there are
two possibilities. Either we drop the new concepts of acceleration and mass®
and we stick to Impetus theory, or we eliminate the old concepts of impetus, total
force, and resistance to move®, and we thus produce Newtonian dynamics. 1 will
call the first alternative "the conservative move', and the second one "the
revolutionary move". Finally, notice that the revolutionary move leaves us with
only one concept of force (the old propulsive force). This concept can thus be
naturally interpreted as a new concept of total force inconsistent with the old
concept of total force. Therefore, the result of the revolutionary move is a new
theory (Newtonian dynamics) inconsistent with the theory from which we started
(Impetus theory). 1 am now going to tell a story which plausibly describes how the
revolutionary move might have come about. Quite obviously, the heroes of my

story are called "Galileo" and "Newton".

Impetus theory had two different problems. In the first place, the theory lacked

a definite formulation. There were many different versions of the same basic

# By the second principle of dynamics.

% Together with the principles in which these concepts occur, that is, the definition of
acceleration and the second principle of dynamics,

% Together with the principles in which these concepts occur, that is, the second principle of
Aristotelian dynamics, and the first and second principle of Impetus theory.
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ideas, and none of these was completely satisfactory from the formal point of view.
There was no agreement on the details of the basic principles which relate
velocity, total force, resistance to move, impetus and propulsive force®”. In the
second place, the theory had not provided so far any quantitative explanation of
any phenomenon.

(Galileo was aware of both problems, and he was especially concerned with the
second. He complained that nobody, so far, had set out to find the mathematical
laws of real phenomena. He then decided to work on this problem, and in fact he
produced the first complete theoretical frameworks for several concrete dynamical
processes: his explanations of free fall, of the motion on an inclined plane, and of
the motion of a projectile. Furthermore, he also developed experimental methods
which gave a very strong empirical support to his mathematical models. In the
course of his work, Galileo realized that he could dispense with the concepts of
total force, resistance to move, impetus, and propulsive force. This was
accomplished by explicitly introducing the concept of acceleration. Once this
concept is clearly understood, hypotheses about accelerations are sufficient for
deducing the laws of free fall, of the motion on an inclined plane, and of the motion
of a projectile. He thus chose to present his explanations in this form®®. This

move gave him a great tactical advantage, because Galileo could thus avoid the

¥ This is not surprising, because an adequate formulation requires the concept of definite
integral.

* Galileo discovered the law of free fall in 1604, but he published the correct derivation only
in 1638, in Two New Sciences (Galilei 1914).
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problem of precisely formulating the theoretical principles of Aristotelian and
Impetus dynamics. On the other hand, this also was the weak point of his
explanations. They did not provide any explicit story about the forces involved or,
as Galileo put it, they did not explain the cause of acceleration.

Then came Newton. Galileo had mainly focused on the empirical inadequacies
of Impetus theory. In doing this, he had set aside the formal problems of this
theory, and he had stressed the importance of the concept of acceleration. He
had thus implicitly proposed a new theory whose only concepts were position,
velocity, and acceleration, and whose theoretical principles were the definitions of
velocity and acceleration. This theory, however, had one basic problem: it did not
say anything about the causes of motion, for any consideration of the forces
involved had been eliminated. Newton found an elegant way of solving this
problem of Galileo’s theory. He reconsidered the concept of force within the new
Galilean context which only involved kinematic concepts, and he thus realized that
the old propulsive force could be thought as the cause of acceleration. He then
considered the simplest mathematical formula which relates acceleration to force,
namely, the direct proportionality A(t) = (KF(t)), and he interpreted the
proportionality term K as a new concept analogous to the old Aristotelian concept
of resistance to move. That is, K, was to be understood as the inverse of the

resistance to change velocity. The result of these thoughts was thus the second
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principle of dynamics®™ A(t) = F(t) / M(t). Newton finally added this principle to
Galileo’s theory, and he thus created Newtonian dynamics.

Newtonian dynamics only contains one concept of force, which corresponds
to what Impetus theory had called "propulsive force”. Within Newtonian dynamics,
however, this is a new concept, for the external forces acting on a body directly
produce a change in its velocity while, according to Impetus theory, they first
produce a change in the impetus which then produces a change in velocity.
Furthermore, this new concept of force is the onfy concept of force needed to
explain motion. Newton thus interpreted this concept as the fotal force acting on
a body, so that his theory became inconsistent with impetus theory. In this way,
the conceptual shift from Impetus theory to Newtonian dynamics was
complete’®.

At that time, the new theory also appeared to be clearly superior on both
formal and empirical grounds. In the first place, its theoretical principles were

explicitly stated as mathematical principles. By contrast, the theoretical principles

of Impetus theory were never formulated in a sufficiently clear manner and, in

* The second principle of dynamics is the simplest hypothesis which can be formulated if one
is looking for a refation between propulsive force and acceleration. In fact, the principle states the
direct proportionality between propulsive force and acceleration. So, this really is the first thing that
comes to mind if the goal is a mathematical relation between propulsive force and acceleration.
One might then wonder why Galilee did not discover the second principle of dynamics. He
probably did not take this problem seriously because he thought that forces were not necessary

to explain motion.

%% Obviously, Newton accomplished much more than this. However, the explicit formulation
of the second principle of dynamics is the crucial point of the story. Without this principle, any
explanation of motion in terms of forces was bound to be cast in the traditional framework of
Aristotelian and Impetus dynamics. A similar interpretation of Newton's contribution is convincingly
defended by Richard Westfail (1971, ch. Vill, ch. {, ch. ill).
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particular, they were never put in the form of mathematical principles. In the
second place, Newtonian dynamics was able to produce accurate quantitative
explanations of real phenomena. Due to its lack of a mathematical formulation,
impetus theory could not match these explanations. In the presence of a better
competitor, the formal and empirical weakness of Impetus theory finally
condemned it. The theory was thus abandoned, and its problems were never

solved.

5.6 The heuristic values of Impetus theory and Newtonian dynamics

In principle, however, the problems which condemned Impetus theory could
have been solved. In the first place, we have seen that it is possible to give an
adequate mathematical formulation of the principles of this theory. In the second
place, the lack of explanatory power was not due to an intrinsic lack of content but,
rather, to the historical contingency that this content had not been made explicit.

Let me explain. We have seen that Newtonian dynamics is translatable into
Impetus theory (see theorem 4). This implies that the content of Impetus theory
includes alt the models P of Newtonian dynamics determined by any set of
hypotheses A, equal to Ty{"M(t) = o"}U{"F(t) = B"}, where T, are the theoretical
principles of Newtonian dynamics, "M(t) = o" is a law for the mass of an arbitrary
body constitutive of P, and "F{t) = ;" is a law for the total force of an arbitrary

body constitutive of P. Even though this set of models may not be the whole
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content of Newtonian dynamics, it is nevertheless a relevant fraction™'.
Furthermore, Impetus theory might even have an ‘excess content’, in the sense
that some of its models might not be members of the content of Newtonian
dynamics. Therefore, if we had to choose between Newtonian dynamics and this
version of Impetus theory, we'd better consider other factors besides the content
and the formal adequacy of the two theories. In fact, there is one basic reason
why Newtonian dynamics should be preferred to Impetus theory: the heuristic
value of Newtonian dynamics is much higher.

We have seen at the end of section 4 that the heuristic value of a dynamical
theory <IT X {o} T ®> depends on the power of three sets of rules which are
typically associated with specific components of the theory: (i) the rules associated
with the definition of the set of standard models Z - these rules allow us to select
appropriate sets of component magnitudes; (ii) the rules associated with the
theoretical principles T and their mathematical formulation - these rules allow us
to select appropriate sets of hypotheses; (iii) the rules associated with the logic
and mathematics of the theory {«]} - these rules allow us to deduce a law for each
component magnitude. Let us then describe these three sets of rules for both
Impetus theory and Newtonian dynamics, and compare their respective powers.

Since the standard models of the two theories are the same, the sets of rufes

1% Notice that, by theorems 3 and 4, this set of models includes any modei P such that (1) the
components of P are the positions and velocities of n bodies; (2} P is specified by a framework
<A P> of classical mechanics such that, for any body i constitutive of the model P, the specific
hypothesis "M(t) = m" is a member of A (where m; is a constant and Mt} is the mass of body ).
Now, all the usual models of classical mechanics are in this set, for the mass of an arbitrary body
is typically taken to be a constant,
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for selecting component magnitudes of a given process or system v are also
identical. These rules are: (a) determine n bodies whose positions and velocities
might be components of a standard model of y; (b) choose components
<Y, V,.. Y, V, T> where Y,and V, are, respectively, the position and velocity of
body i. 1 take these two rules to be quite powerful. However, since they are the
same for both theories, their power does not discriminate between the heuristic
values of the two theories.

The same is true of the rules for deducing a law for each component
magnitude. These rules depend on the logic and mathematics of the two theories.
However, | have implicitly assumed that these two components are the same,
namely classical logic and standard analysis. The deductive rules can thus be
identified with all the heuristic rules of these two disciplines. Again, this set of
rules is very powerful but, on this count, Newtonian dynamics and Impetus theory
are on a par.

We are thus left with the sets of rules for selecting appropriate hypotheses.
| take the standard set of rules of Newtonian dynamics to be the following:
(a) choose the second principle of dynamics, and the definitions of acceleration,
and velocity; (b) for each body, write a law which states that its mass is a
constant, (¢) for each body which is part of the model, individuate all the forces
acting on it, and write a specific principle which states that the total force on that
body is equal to the sum of all the forces acting on it. To simplify this task, keep

in mind all the action-reaction pairs; (d) for each component force, try to determine
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a simple law first or, if this fails, a specific principle. To simplify this task, keep in
mind all the action-reaction pairs. The right hand side of each specific principle
should only contain the positions and/or velocities of bodies which are parts of the
model.

The heuristic rutes listed above are expressly designed to obtain a system of
differential equations of the second order. In fact, the second principle of
dynamics states a relation between acceleration, mass, and force
[N,]  A(t) = F(t) / M(t),
and the other two principles of Newtonian dynamics imply that the acceleration is
the second derivative of the position. Therefore, if n (0 < n) bodies are given, and
the total force and the mass of an arbitrary body | (0 < i < n) only depend on the
positions and velocities of these bodies, the second principle of dynamics
determines a system of differential equations of the second order. The mass rule
(b) implies that any mass Myt) is equal to a constant m, The conjunction of rules
(c) and {d) implies that the total force F,(t) of an arbitrary body / depends (at most)
on the positions and velocities of the (other) bodies. It thus follows that the result
of the application of these rules will always be a system of differential equations
of the second order. Furthermore, the solutions of this system, together with their
first derivatives, determine a dynamical model P.

The power of these rules is quite high for, first, they often lead to correct
resulfts and, second, they are not too difficult to apply. The power of these rules

essentially depends on the fact that we are never requiredto guess a law. In fact,
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the mass rule (b) explicitly tells us what the mass law of an arbitrary body is,
namely, M(t) = m, where m, is a constant. The force rule (d), on the other hand,
does suggest to look for a simple law of each component force. However, if this
is not possible, this rule tells us to look for a specific principle which expresses the
component force as a function of positions and velocities, and this is usually easier
than guessing the correct form of the force law. Therefore, the rules of Newtonian
dynamics allow us to select hypotheses with a reasonable chance of being correct.
Impetus theory, on the other hand, does not fare as well on this count.

Recall first that the fundamental schema of Impetus theory [6] expresses the
velocity as a function of the propulsive force and of the resistance to move.
Therefore, in order to determine the velocity, we need some heuristic rule for
determining the resistance to move. The basic problem, however, is this: if the
mass rule (b} of Newtonian dynamics is correct, then there cannot be any simple
rule of Impetus theory which tells us a law for the resistance to move. In
particufar, the natural heuristic rule "take the resistance to move of an arbitrary
body to be a constant" is almost always incorrect'®.

To see why, let us assume that the mass of an arbitrary body 7is a constant,
that is, M(t) = m,. Let us then use schema [6] of Impetus theory to express Rt)

as a function of mass, velocity, and acceleration. We thus obtain:

R} R(t) = (MA{) - ma, + vr, + [ mA®) at) / V()

%2 However, this rule is correct if the acceleration is constant (see below). This, by the way,
explains why Impetus theory works fine to generate framewaorks for free fall, the mation of a body
on an inclined plane, and projectile mation: in all these phenomena, the accelerations involved are
constant,
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We thus see that, if the mass is constant, the resistance to move depends on
both the acceleration and the velocity. Therefore, its law will in general have a
quite complicated form. Equation [R] thus implies that, in general, guessing a law
for the resistance to move is at least as difficult as directly guessing a velocity
law'®. We can thus safely conclude that the heuristic value of Impetus theory
is much lower than the heuristic value of Newtonian dynamics'®, and that this
lack of heuristic value is a decisive reason for not considering Impetus theory as

a serious alternative to Newtonian dynamics.

% With one exception. If the acceleration is constant, then equation [R] implies that the
resistance to move is also constant and equal to the mass.

% Unless there is some way of not guessing a Jaw for the resistance to move. To avoid this
step, one might try to guess a specific principle which expresses the resistance to move as a
function of other magnitudes (for instance of the velocity). However, this will not in general work
for, given the form of equation {6], we will not be able to write systems of differential equations.

Nevertheless, there is one specific principle which is always guaranteed to work, namely:
[8] R(t) = (P{D) - p, + vir, + [ mDV()) dt) / V{t), where m, is a constant;
in fact, by substituting the right hand side of [S] for R(t) in equation [6], and by differentiating both
sides, we obtain mD(V,(t)) = P(t). Butthis is just the second principle of dynamics when the mass
is taken to be a constant! Therefore, the existence of this method cannot count in favor of Impetus
theory. It is rather a further reason why we'd better directly represent a dynamical problem in
Newtonian dynamics.

It should also be kept in mind that all this discussion of the heuristic value of Impetus theory
depends on the assumption that the mass rule of Newtonian dynamics is correct. If the mass were
not constant, then taking the resistance to move to be constant might be a good strategy. To see
in which cases this might work we can derive an equation similar to [R] for the mass. Let us then
assume R{t} = r, and let us use equation [6] to express the velocity as a function of the propulsive
force. By differentiating both sides of [6], we cbtain A(t) = (Pt} + D{P,())) / r.. From the second
principle of dynamics, and since we identify the propulsive force with the Newtonian total force, we
finally obtain:

M M) = F @) / (RO + DEO)

We thus see that, if the resistance to move were constant, then the mass would in general
depend on the Newtonian total force and its first derivative. Also notice that equation {M] implies
that M) is constant if F{t} is constant.
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O W

1. introduction

According to some authors, the goal of cognitive science is to understand
human intelligence (Anderson 1990, 2). Other authors are more daring, they take
the mind to be the object of their study (Johnson Laird 1988, part |). Even though
these definitions are intuitively appealing, they need further specifications to be of
some use. According to the first view, we should exclude from the domain of

cognitive science any process which is not human or is not intelligent. The
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problem with this prescription is its ambiguity. For example, should vision be an
object of cognitive science? No, because vision is not typically human. Yes,
because vision plays an important role in human intelligence. No, because vision
is not an intelligent activity. Yes, because vision may be affected by some process
in which intelligence is involved. This list of equally plausible arguments for
excluding or including vision could be expanded as we like. If we just used a little
imagination, we could easily produce similar lists for almost any other process or
activity which we might consider. The situation with the second definition seems
even worse, for the mind notoriously is an elusive object’. Nevertheless, we
should not be bothered too much by these skeptical reflections, for cognitive
science, as any other science, simply aims to explain the systems or processes
in its domain. At first sight, this definition may seem even less informative than the
other two, but this impression is wrong. In the first place, this characterization
gives us a sociological criterion for deciding whether a system should be
considered cognitive. If this system has been studied by some member of the
cognitive community, then we should certainly presume that it is a cognitive
system. Second, and more important, this definition makes explicit that the object
of cognitive science is a specific set of natural systems or processes. The hope
is that we can learn more about some interesting general properties of the

elements of this set. This is in fact the aim of this chapter.

' If this dismissal seems too quick to you, pay a little patience. | will discuss this view in due
details when | turn to the analysis of the information processing theory of the mind.
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1.1 The information processing theory of the mind

Newell and Simon maintain that the explanations of cognitive science are not
in principle different from the explanations of any other science which is concerned
with the dynamical behavior of some system®. These and other authors assume
that the mind is a computational system realized by a concrete physical systen’,
and that cognitive science studies the dynamical behavior of this computational
system. Since any computational system is a dynamical system, it foliows that the
problem which a cognitive scientist is trying to solve is structurally analogous to the
problems which are the usual focus of other sciences. For example, classical
mechanics attempts to dynamically explain systems of a certain type, namely
mechanical systems. We have seen in chapter 3 that a dynamical explanation of
a system or process consists in specifying one of its dynamical models. The basic
idea of the information processing theory of the mind is that cognitive science is
doing something which is essentially similar: it is trying to specify a dynamical
model of a very complex system, namely the mind. The way in which this problem
is solved, however, depends on the particular nature of the system which cognitive
science studies. Since, by assumption, the mind is a computational system and
a very complex one, the natural way of studying this system consists in trying to

write computer programs which emulate its behavior in some specific type of

? See Newell and Simon (1972, 11-12), and also Langley et al. (1987, 32-34).

% | take a physical system to be any system which could be an object of physical study.
Therefore, some, but not afl, physical systems are concrefe,
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situation®. For example, we may be interested in studying how a subject learns
a list of non-sense syllables. In the first place, we will gather all the relevant
information about this task. This may involve reports of experimental studies,
psychological, mathematical, or philosophical theories about the mind or some of
its constitutive parts and, possibly, introspective reports of the mental activities
involved in performing this task. On the basis of this information we will try to write
a first sketch of a process which might lead to learn a list of non-sense syllables.
This first sketch will usually take the form of a simple flow-chart®, so that the
whole process is broken down in a number of simpler subprocesses. Then, we
will try to add details to this first diagram. This is done by applying the same
procedure recursively to each part of the diagram. For each subprocess, we will
ask how its goal could be achieved. To come up with a possible solution for this
problem, we will consider again all the relevant information, perhaps gathering new
data if the ones we have are not sufficient for suggesting a plausible hypothesis.
At the end of this work, we will have produced a more detailed sketch. We will

then repeat the whole procedure until the diagram is so detailed that we can

* Newell and Simon explicitly assume that the mind is a universal computer, very similar to a
concrete digital computer. This means that the operations of the mind wilt depend on the programs
which are stored in its memory. Different programs specify different computational systems, and
these systems have particular cognitive abilities appropriate for specific situations or tasks.
Therefore, the aim of a concrete empirical research is to specify a dynamical model of one of these
special purpose computational systems. This can be obtained by writing a computer program
which specifies a second computational system, and this computational system must emulate the
special purpose computational system which we want to explain.

® Any other equivalent representation, obviously, will do. The important point is that the whole
process be broken down in simpler parts, and that the order in which these subprocesses are

executed be univocally specified.
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translate it in some computer language. Once we have a running program, we can
claim that we have a possible explanation of how a list of non-sense syllables may
be leamed. At that point, we will test the performance of our program against the
performance of some subject in the same task. If the match is sufficiently close,
we may provisionally conclude that we have explained the dynamics of the

subject’s mind in that particular task®.

This view of the aims and methods of cognitive science seems to be on the
right track. Nevertheless, it leaves open some serious problems. This theory
stands on the basic assumption that the mind is a computational system realized
by a concrete physical system. This methodological principle’ raises at least five
different types of question. First, how do we explain the intentional aspects of our
mental life? This question can also be put in the more concise form: how do we
explain meaning? Second, how do we explain the relation between the mind and
the underlying physical (chemical, biological) structure which realizes it? This is
a contemporary version of what philosophers traditionally call "the mind-body
problem". Third, how do we explain the subjective aspects of mentality? Or,

equivalently, how do we explain consciousness? Fourth, why assume that the

® A clear statement of the methods involved in constructing computational explanations of
mental processes can be found in Feigenbaum and Feldman (1963, 269-76).

" Some cognitive scientists maintain that this principle has been discovered, and that it is a
theoretical principle like, for instance, the law of universal gravitation. Be that as it may, there is
little doubt that this principle is also taken to be the foundation of the correct methods of cognitive
science. The basic question | am interested in is whether this principle can justifiably function as
a methodological one.
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mind is a computational system? Could the mind be a system which is not
computational? This question can also be rephrased: could the mind be a system
which cannot be emulated by a Turing machine? Could the mind be essentially
more powerful than, or essentially different from, a Turing machine? Fifth, why
assume that the mind is a computational system? This question may seem
identical to the fourth one, but notice the different emphasis. The fourth question
does not challenge the fact that we need some assumption about the mind to
justify the aims and methods of cognitive science. It only challenges the specific
form of this assumption. The fifth question, instead, is much more radical. It may
be rephrased: could the primary object of cognitive science be something different

from the mind, and could this something not necessarily be computational?

These five questions are serious ones. | will discuss each of them in turn. My
analysis will show that the information processing theory of the mind can provide
very good answers to the first three questions, but that it is not able to solve the
fourth problem. | will then consider the implications of the fifth question, and | will
finally propose an alternative methodological view - the dynamical approach -

which | take to be superior to the information processing theory of the mind.

1.2 Pian

This chapter is divided in six further sections. The second section deals with

the problem of meaning. | first consider an abstract version of Searle’s Chinese
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room argument (1980, 1984, 1990a), which supposedly shows that the information
processing theory of the mind cannot ascribe intentionality to mental states.
Searle maintains that this conclusion follows from two basic facts: (1) syntax is not
sufficient for semantics; (2) the information processing theory of the mind identifies
mental states with completely uninterpreted strings of symbols. My reply
challenges the second premise. While it is true that mental states are identified
with strings of symbols which may not have a reference, it is false that these
strings lack any meaning. In fact, any such string can always be thought as a
sentence of a theory, and any such sentence has an intensional meaning which
is determined by the theorems of the theory®. | then argue that the information
processing theory of the mind can also in principle deal with the problem of the
referential content of mental states.

The third section discusses the nature of the relation between the body and the
mind®. Searle (1990b) has claimed that a physical system cannot be said to
realize a computational one in an objective sense. If Searle were right, the
information processing theory of the mind would face a serious problem, for the
proponents of this approach maintain that the mind is a computational system

realized by the brain, and they take this hypothesis to be a synthetic one. 1 have

® This, obviously, is not a new idea. However, my argument shows how this view has a simple
and. | befieve, natural interpretation in terms of the accessibility relations between the possible
states of a computational system. :

® What i intend is: if we identify the mind with a cornputational system, can we describe the
relation between the body and the mind in an objective and precise manner? Searle {1990b)
maintains that this is impossible.
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shown in section 8 of chapter 1 that the realization relation between two dynamical
systems does not involve any conventional element, for it depends on the
existence of a mapping between the states of the realized system and sets of
states of the realizing one. The relation between the mind and the brain
postulated by the information processing theory is in fact a special case of the
realization relation between two dynamical systems. | thus conclude that Searle’s
claim about the conventional character of this relation is unjustified.

The fourth section is dedicated to the problem of consciousness. The thesis
| defend is that the information processing theory of the mind can in principle
explain the nature of conscious states, and | also suggest that a detailed
hypothesis constructed along the lines | sketch might be empirically tested.

The fifth section discusses whether the identification of the mind with a
computational system is justified. | first consider Lucas’ classic argument {1961,
1968a, 1968b) which has been recently revived in a slightly different form by
Penrose (1989, 108-12, 416-18). According to Lucas, we could deduce a
contradiction from Godel's incompleteness theorem for arithmetic conjoined with
two other premises: (i) the mind is a computational system; (ii) if the mind is a
computational system, then it can be identified with a theory which satisfies the
conditions of Godel’s Theorem. Lucas then interprets his argument as a reductio
of the first premise, and he thus concludes that the mind is not a computational
system. My reply points out that the second premise of Lucas’ argument is false

if the first premise is true. In fact, all the theories to which Gddel's theorem

236



applies are not decidable, but any computational system can be identified with a
decidable theory. My point is based on the definition of a computational system
which | have given in chapter 1.

| then discuss whether the identification of the mind with a computational
system is consistent with the connectionist approach to cognitive science. | argue
that it may not be, provided that the mind can be identified with a finite neural net
whose units have continuous activation levels. Furthermore, the question of
whether this identification is possible is an empirical one.

The conclusion of the fifth section implies that the hypothesis of the
computational character of the mind is a bold step, possibly a ‘misstep'. In the
sixth section, | propose a new view of the aims of and methods of cognitive
science which does not presuppose this assumption. The basic idea of this
methodological theory is that cognitive science attempts to expiain a particular set
of dynamical systems, which | call "cognitive systems". Therefore, cognitive
science can be thought as a special branch of dynamics. The dynamical approach
which | propose is characterized by three basic tenets: (a) the explicit recognition
of the dynamical character of cognition; (b} the disposition to apply methods and
concepts from dynamical system theory to the study of ‘the mental; (c) the
disposition to explore the whofe space of the dynamical systems in order to locate
and map the region of the cognitive systems.

Finally, the seventh section discusses some implications of the dynamical

approach for a theory of minds. | state four general properties of minds, and |

237



then ask whether a dynamical theory can in principle explain these properties'.

My thesis is that it can, and that these explanations are at least as good as those

provided by the information processing theory of the mind. In fact they are
superior, for they do not presuppose the computational character of the mind, but
only the weaker hypothesis that minds are dynamical systems realized by concrete

physical systems.

' These properties are: minds (1) are realized by concrete physical systems; (2) have
intentional states; {3) have conscious states; (4) are cognitively universal. By a dynamical theory
of minds | intend any theory which accepts the hypothesis: minds are dynamical systems realized
by concrete physical systems.
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2. The problem of meaning

In a now classic series of articles, Searle put forth an elegant argument which
clearly shows the deep significance of the first question'’ (Searle 1980; Searle
1984, ch. 2; Searle 1990a). The goal of this argument is to prove that it is
impossible to ascribe intentionality to mental states if we identify them with
computational states. The argument, in its simpler form, goes like this. Mental
states are intentional, therefore meaning is essentially involved in them.
Computational states, on the other hand, are purely syntactical entities, because
they can always be identified with strings of uninterpreted symbols. Therefore, if
we identify a mental state with a computational one, it does not have any meaning.
It thus follows that mental states are not intentional. This contradicts the
hypotheses. We must thus conclude that a mental state is not a computational
state’®

This is a clever argument and, even though many replies have been devised,
none of them is completely adequate. Notice first that the argument, in this simple
form, is certainly valid. This means that some replies will not work against this

form. One of these is the so called "system reply". This reply shows that the

" Recall that the first question asks how we can explain intentionality (or meaning) if we identify
the mind with a computational system.

'Z Notice that this conclusion implies that the mind is not a computational system, for the
identification of a mental state with a computational state follows from the identification of the mind
with a computational system.
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original form of Searle's argument’ involves a non sequitur because the
assumptions of the original argument only warrant the conclusion that one part'*
of a computational system cannot have intentionality, while Searle should deduce
this conclusion for the whole system. Clearly, this type of counter attack will not
work against the abstract form of the argument. In this form, there is no confusion
between a system and its parts. Intentionality is ascribed to mental states in the
premises, and the conclusion denies this attribution. This is a real contradiction,
and there is no formal way of dismissing it. The only possible replies are those
which question whether the premises are true, or at least probable.

We certainly do not want to deny the truth of the first premise. That mental
states are intentional is one of those facts which are rooted in our most basic
intuitions. From the logical point of view, we could still reject these intuitions, but

it is sensible to require that this move should be our last resort. We are thus left

% In the original form of the argument, Searle (1980) imagines that a "Chinese understanding
program" has been written. A computer equipped with this program ‘understands' Chinese in the
sense that it is able to carry on a Chinese conversation, and that its Chinese output cannot be
distinguished from the output of a native Chinese speaker engaged in a similar conversation. That
is, this computer ‘understands' Chinese in the sense that it is able to pass a Turing test (Tuing
1858) for understanding Chinese. Searle further assumes that the program consists of a series
of rufes which, to any possible Chinese input associate an appropriate Chinese output. Searte then
imagines to simulate the operations of the computer’s interpreter, which reads the Chinese input,
looks for the appropriate program instruction, interprets it, and then produces an appropriate
Chinese output. Searle then claims that going through all this process does not enhance his
capacity of understanding Chinese, which is zero to start with, and zero after he has performed the
purely syntactical operations prescribed by the Chinese understanding program. Searle thus
concludes that the computer equipped with the Chinese understanding program does not
understand Chinese, because the computer performs exactly the same operations which he has
performed, and he has not acquired any Chinese understanding by performing these operations.

* Namely, the computer's interpreter (see footnote 13) which manipulates input Chinese
symbols according to a specified set of rules (the Chinese understanding program) and then
outputs other, appropriate, Chinese symbols.
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with the second premise. This premise affirms that computational states are
strings of uninterpreted symbols. As many people have remarked, this is not true
in general. This reply is known as "the robot reply”. Suppose a computer is given
sensors and effectors through which it can interact with the external worid. Then,
through the chain of causal interactions in which the computer is involved, some
of its symbols may come to represent external objects. Since these symbols now
represent external objects, they have a meaning or, in other words, they are
interpreted symbols. The problem with this reply, though, is that it is too specific.
What if the computer does not have sensors and effectors, or if it is not involved
in causal interactions which confer an external reference to its symbols? Shouid
we then agree with Searle and conclude that, in this case, computational states
have no meaning? Many people in the cognitive science community are willing to
accept this conclusion. But the problem with it is that it is at odds with the

functional approach which they also accept.

2.1 The intension of mental states

To see why, we must go back to Frege's distinction between two aspects of
meaning: the extension of a symbol, and its intension'®. The extension is the
entity to which a symbol refer. For instance, if we consider the description "the

morning star’, its extension is Venus. Obviously, twe different symbols may have

5 | use the adjective “intentional" to refer to that aspect of mental states which involves
meaning or semantic content. As usual, | then divide meaning into two components: extension and
intension. The intentional character of mental states thus includes both extensional and intensional

meaning.
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the same extension. For example, both symbols "Venus" and "the morning star”
refer to the planet Venus. However, these two symbols do not have the same
meaning. In fact, we usually take "the morning star shines in the mormning"” to be
true of the morning star but, if we do not know that the morning star is Venus, we
may not take "Venus shines in the morning" to be true of Venus. Therefore, what
we know about Venus may differ from what we know about the morning star. But
this would be impossible if "Venus" and "the morning star" had exactly the same
meaning. On the other hand, "Venus" and "the morning star" have the same
extension. We must thus conclude that the complete meaning of at least one of
these two symbols has an additional part. Let us call this additional meaning the
intension of a symbol. The problem now is: where do intensions come from?
We can take at least two different approaches to answer this question. First,
we can assume the existence of a subject which confers intensions to symbols.
This is the metaphysical stance which is preferred by some philosophers. Second,
we can simply regard intensions as coming from the relations which a symbol
bears to other symbols. The basic idea is that, whenever a set of symbols has a
theoretical structure defined on it, it is this structure which confers an intension to
its elements. Ancther way of expressing the same idea is: it is the functional
retation of a symbol to other symbols in a conceptual system which produces its
intensional meaning. Going back to Frege’s example, this means that, to
understand where the intensions of "the morning star" and "Venus" come from, we

should consider the conceptual system in which these symbols are embedded.
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In this case, this system can simply be identified with the deductive closure of all
known (astronomical) facts. This deductive closure, C(K), can be expressed as
a set of sentences and, among these sentences, there are some which contain the
symbol "the moming star” and some which contain the symbol "Venus®. Let M be
the first set, and V be the second one. Intuitively, M and V are all the known facts
which explicitly contain the symbols "the morning star” and *Venus". The complete
intensional meaning of these two symbols can thus be identified with the deductive
closures'® of M and V, which i indicate by "C({M)" and "C(V)". Presumably, we
know that the morning star shines in the morning, so that the sentence “the
morning star shines in the moming" is in C(M). However, if our conceptual system
does not also contain "Venus = the morning star", the deductive closure of the set
associated with "Venus" may differ from C(M), and this explains how the
intensional meanings of the two symbols may be different. This also explains why,
if we do not know that the morning star is Venus, we may not take "Venus shines
in the morning” to be true, for this sentence may not follow from any other known
fact in K.

This sketchy view of intensional meanings makes also clear what we intend
when we say that the axioms of a theory implicitly define its terms. The classic
example is the partial definition of the primitive terms "point" and "line" which is

provided by the axioms of Euclidean geometry. One of these axioms is: for any

'® The deductive closure of M {or V) wilt in general contain sentences in which "the morning
star” (or "Venus") does not occur. However, these sentences are parts of the intension of "the
morning star* (or “Venus") for they are ‘implicitly contained’ in our explicit knowledge about the
morning star (or "Venus),
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two points, there is exactly one line which passes through them. Now, let us
simply take the intension of "point" ("line"} to be the deductive closure of the set
of all geometric theorems in which this term occurs. Since any axiom is a
theorem, the intension of "point" ("line") contains the axiom "for any two points,
there is exactly one line which passes through them". Therefore, the intensional
meaning of either term is partially determined by this axiom. Definitions also
contribute to the meaning of the terms which they contain, because all definitions
can always be considered to be new axioms'. In general, the intension of a
symbol can always be identified with the deductive closure of the theorems (or
definitions) in which that symbol occurs’®. Analogously, the intension of a
sentence is its deductive closure, that is, alf other sentences which that sentence
implicitly contains.

The idea that the meaning of a symbol is (partially) determined by the
theoretical system of which this symbol is a part is not new. For example, we
have just seen that the interpretation of the axioms of a formal system as parial

definitions of its primitive terms expresses the same idea. Carnap’s view of

"7 Notice an interesting consequence of this view. Suppose a predicate P is introduced by
means of the definition "X is a P iff a(x}". Then, this definition contributes to the meaning of P and
of all primitive or defined ferms which occur in a{x). This is why adding definitions to a theory is
not a purely formal expedient. A new definition expands the meaning of the terms which are
already in the theory. Obviously, a definition is not creative. This, however, only implies that the
additional meaning of an old term must always involve the newly defined term. That is, what you
tearn when you define a new term is a new way of expressing old facts. facts stay the same, but
their meaning changes.

¥ We can take this to be true even for logical symbols, If a logical symbol is a part of a theory,
then it has intensional meaning, even though it does not have any extension. [ts intension is
completely determined by the set of theorems in which it cceurs.
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analytic truth is also a version of this idea, for the meaning of a term is determined
by a subset of the axioms of a theory (the meaning postulates). Feyerabend
(1975) and Kuhn (1970) have advocated an extreme version of the same idea,
according to which the meaning of a term is completely determined by the theory
of which it is a component. Finally, the implications of this view for the philosophy
of mind have been variously expounded by several authors (see, for example,
Churchland 1979, ch. 3; Churchland 1988, 31, 83; Rapaport 1988; Tye 1989,
67-75).

Still, my version of this view may not seem to solve the problem of the
intension of mental states. If we identify mental states with the states of a
computational system, any mental state is a string of symbols in a specified set.
Since this set is the phase space of a dynamical system, there is a structure
defined on it. But this structure may not seem to be a theory, so that we may not
conclude that mental states have intensions. This, however, is a false impression,
for any computational system can be identified with a theory. Recall that a
computational system can be identified with a discrete dynamical system (a
cascade) <Z M H>, where Z are the integers (or the non-negative integers), M is
a decidable set of finite strings of symbols, and H is a function from M to M which
can be computed by a Turing machine'®, Among other things, this means that
this system can be identified with a theory. The axioms of this theory are all the

strings in M, and its inference rules are the transition function H and the identity

'? See the definition of a computational system (ch. 1, def. 3).
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function on the phase space M. Therefore, if we identify the mind with a
computational system <Z M H>, any mental state x e M is a theorem, so that x
has an intensional meaning®: namely, the set of all other mental states which
can be deduced from x. This set is equal to the orbit of x. We can thus conclude
that, if the mind is a computational system, then the intensional meaning of a
mental state x is the orbit of x in the mind’s phase space.

We can now make explicit the implications of my view for Searle’s argument.
If we identify a mental state with a state of a computational system, it /s false that
this string of symbols does not have any meaning’'. It may not have an
extension, but it certainly has the intension determined by the structure of the
phase space. In conclusion, the information processing theory of the mind can
deal very well with one aspect of the problem of the intentionality of mental states,

namely, with their intensional meaning. We must now consider the extensional

aspect.

2.2 The extension of mental states

We have seen above that, if the mind is a computational system, then any

2 Any theorem of a theory is a sentence of that theory, and | have proposed to identify the
intensional meaning of a sentence with its deductive closure. Therefore, the intensional meaning
of a theorem is the set of all sentences which can be deduced from that theorem.

# Searle claims that his argument is a decisive refutation of the information processing theory
of the mind because it is based on the logical fact that syntax is neither constitutive of, nor
sufficient for, semantics {1990a, 27). We may concede that this is a logical fact, but it is irrelevant.
What Searle has not considered is that a theory is sufficient for one aspect of semantics, namely
for determining intensional meaning. Obviously, a theory is not sufficient for the other aspect of
semantics, that is, extensional meaning. ! will discuss this point below.
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mental state can be identified with a finite string of symbols, and this string of
symbols is a sentence of the theory whose axioms are all the possible states of
the system, and whose inference rules are the transition function of the system
and the identity function on the phase space. Any mental state thus has an
intensional meaning which is the set of all other mental states which can be
deduced from it. The question | am now going to address is whether this view
also allows us to attribute an extensional meaning to mentai states. By now, it
should be clear that the identification of the mind with a computational system /s
not sufficient for determining the extension of mental states. Since any mental
state can be thought to be a sentence, its extension must be a truth value: true,
if the state of affairs expressed by that sentence occurs, false otherwise. The
problem, however, is that nothing ensures that this sentence does in fact express
a state of affairs, for the reference of its constitutive parts has not been fixed
so far.

it might seem that a quite simple solution of this problem is available. The
information processing theory of the mind identifies the mind with a computational
system realized by a concrete physical system. This concrete physical system can
causally interact with its environment, so that these interactions may determine an
external reference for the constitutive parts of (some) mental states. Therefore,
(some) mental states may, after all, come to express states of affairs. It thus
follows that each of these mental states has an extension: true, if the state of

affairs which it expresses occurs, false otherwise.
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However, it is not difficult to realize that this solution of the problem of the
extension of mental states does not work. First, we need to look at the general
conditions which a string of symbols must satisfy in order to express a state of
affairs. These conditions can be synthesized as follows: (i} the string of symbols
has different parts of specified forms which are arranged in a grammatically correct
way; (i) the constitutive parts which may bear a referential relation to other objects
have been specified. Let us call these parts of a string of symbols its descriptive
parts; (iii) the reference of all the descriptive parts has been fixed.

Second, we must consider whether the hypothesis that the mind is a
computational system realized by a concrete physical system ensures that mental
states satisfy conditions {i) and (ii). As | have remarked earlier, this hypothesis
allows us to identify a mental state with a string of symbols which is a sentence
of a certain theory. However, this string of symbols is a sentence only in the
sense that it bears specified inferential relations to other sentences. Therefore,
this sentence may not have the kind of grammatical structure which enables it fo
express a state of affairs. In fact, the syntactic form of this sentence must only
satisfy the quite general property of being a string of symbols of a decidable type,
and this property does not entail the full fledged compositional syntax required by
conditions (i} and (ii).

We thus see that the identification of the mind with a computational system
realized by a concrete physical system does not imply that mental states have the

kind of compositional structure required by conditions (i} and (ii}, that is, a
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syntactic structure which enable them to express states of affairs when the
reference of their descriptive parts is fixed. This is why the problem of the
extension of mental states cannot be solved along the simple lines proposed
above. This solution assumes that the causal interactions between the
environment and the concrete physical system which realizes the mind confer an
external reference to the descriptive parts of (some) mental states. It then
concludes that, since the reference of each descriptive part of these mental states
has been fixed, they now express states of affairs®®. But this argument relies on
a false premise, for it implicitly presupposes that the identification of the mind with
a computational system realized by a concrete physical system entails that mental
states have a full fledged compositional syntax®.

Nevertheless, there is an obvious way for solving this problem: we can simply
assume that mental states have a full fledged compositional syntax. According to
this view, mental states are sentences of a special language™ which satisfies
conditions (i} and (ii). It thus follows that mental states may express states of
affairs. Furthermore, if the concrete physical system which realizes the mind is
engaged in a series of causal interactions which ascribe a reference to the
descriptive parts of (some) mental states, these mental states wil/ express states

of affairs. Therefore, each of these mental states has an extension: true, if the

2 Therefore, each of these mentai states has an extension: true, if the state of affairs which
it expresses occurs, fafse otherwise.

2 That is, that they satisfy conditions (i) and (ii} above.
* In The language of thought, Fodor (1975} advocates a similar position.
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state of affairs which it expresses occurs, false otherwise.

2.3 The intentionality of mental states

We have seen in the previous two sections that the identification of the mind
with a computational system realized by a concrete physical system implies that
all mental states have intensional meaning. However, this hypothesis is not
sufficient for ascribing extensional meaning to mental states. In order to solve this
problem, two other hypotheses have been proposed: first, that mental states have
a full fledged compositional syntax, second, that the concrete physical system
which realizes the mind is engaged in a series of causal interactions which confer
a reference to the descriptive parts of (some} mental states. These two
hypotheses, conjoined with "the mind is a computational system realized by a
concrete physical system”, entail that (some} mental states have extensional
meaning.

The question | am now going to address is whether we can solve the problem
of the intentionality of mental states in a simpler way. To start with, let me
explicitly say what | want to achieve. My goal is to outline an explanation of the
intentionality of mental states which assumes the hypothesis that the mind is a
computational system realized by a concrete physical system, but does not
assume the hypothesis that mental states have a full fledged compositional syntax.
My proposal for solving this problem is as follows. In the first place, | deny that

an adequate explanation of the intentionality of mental states must imply that
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{some) mental states have extensions. That is, | deny that the explanandum
"mental states are intentional' is equivalent to "all mental states have intensional
meaning, and (some) mental states have extensional meaning"®. Rather, I maintain
that "mental states are infentional' should be interpreted as the weaker assertion
"all mental states have intensional meaning, and (some) mental states have
referential contenf™. In the second place, | claim that, under this interpretation,
the assertion "mental states are intentional" follows from just two hypotheses:
[1] the mind is a computational system realized by a concrete physical system; [2]
the concrete physical system which realizes the mind is engaged in a series of
causal interactions which confer a reference to some parts of (some) mental
states.

Let me say first what | intend by "having referential content’. An object or
entity has referential content just in case it has parts, and some of its parts bear
a referential relation to other objects or entities. This definition implies that
everything which has an extension also has a referential content, however, the
converse is false. There are things which have a referentiai content but do not
have an extension. This is clear, for an object which dees not have an extension
has a referential content if one of its proper parts has an extension. As a concrete
example, think of a sheet of paper on which your name is written. Your written
name is in a referential relation to you and, obviously, it is a par of the sheet of

paper on which it is written. Therefore, this shest of paper has a referential

% See below for the definition of referential content.
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content. However, it does not have an extension, for what has an extension is
your written name, not the whole sheet on which your name is written.

| have proposed above that "mental states are intentional® should be
interpreted as the conjunction of: {a) all mental states have intensional meaning;
(b} (some) mental states have referential content. In addition, | have claimed that
(a} and (b) follow from the hypotheses: [1] the mind is a computational system
realized by a concrete physical system; [2] the concrete physical system which
realizes the mind is engaged in a series of causal interactions which confer a
reference to some parts of (some) mental states. | am now going to give an
argument to support this claim. We have seen in section 2.1 that (a) follows from
[1]. Hypothesis [1] also implies that a mental state can be identified with a finite
string of symbols, and any string of symbols has parts, namely the set of all
substrings of that string. Therefore, hypothesis [2] (together with the definition of
referential content) implies that (some) mental states have referential content, that
is, (b).

et me finally summarize the results of this section. Searle has claimed that
the information processing theory of the mind cannot solve the problem of the
intentionality of mental states. Contrary to Searle's claim, | have shown that the
identification of the mind with a computational system realized by a concrete
physical system implies that ail mental states have intensional meaning.
Furthermore, | have also shown that the information processing theory of the mind

can in principle solve the problem of the referential content of mental states. This
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solution is based on the further hypothesis that the concrete physical system which
realizes the mind is engaged in a series of causal interactions which confer a
reference to some parts of (some) mental states®™. Obviously, the details of this
hypothesis should be worked out, but | do not see any reason why, in principle,
this research program should be doomed to fail. In fact, some recent work along

these lines seems to be quite promising®.

%% | have formulated this hypothesis in a very general form, so as not to beg any question as
regards the specific nature of (i} the mechanisms which assign a reference to parts of mental
states; {ii) the types of objects to which these parts refer. This hypothesis is thus compatible with
a sophisticated theory of referential content such as, for instance, Marnad's symbol grounding
proposal (1987, 1989, 1990). According to Harnad, the referential content of the symbolic level
has a complex structure. Elementary symbols are names for object and event categories. The
reference of elementary symbols is fixed (or grounded) by means of non-symbolic representations
of two Kinds: iconic representations and categorical representations. Furthermore, there is a
second type of symbols (complex symbols) which express relations between object or event

categories.

¥ See, for example, Harnad's theory of symbol grounding (1987, 1989, 1990). See also Korb
(1991).
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3. The relation between the body and the mind

| turn now to the second question: how can the information processing
approach explain the relation between the mind and the underlying medium which
supports it? This is an intriguing question and, as Searle has pointed out (1990b)},
it is surprising that those who favor the computational approach have not bothered
giving this question a precise answer. Searle certainly is right in claiming that
nobody, so far, has come up with an adequate solution of this problem. But he is
wrong in thinking that there are some basic facts about the nature of a
computation which preclude an objective solution of this problem. | will come back
to this issue later. For the moment, let me just remark that the difficuity of this
problem is not due to some arcane property of a computational system®® but,
rather, to the fact that the realization relation between two arbifrary dynamical
systems has not been studied with the due care. | have given in chapter 1 an
adequate analysis of this relation. | will now show that this abstract analysis is all
that the information processing approach needs to expiain the relation between the
mind and the underlying medium®. | will try to keep technical details to a

minimum. For the formal analysis of the realization relation the reader should refer

28 according to Searle, nothing is a computer if there is not a subject which interprets the
workings of the system as computational operations (1990b, 28). This is just a misunderstanding.
There is nothing which is subject-relative in the nature of a computer. Computers are dynarmical
systems with a special structure, just like physical systems are. If Searle is really serious about
this view, then he should also maintain that physical systems are subject-relative. Why not say that
nothing is a physical system if there is no subject which interprets the workings of the system as
transitions from one physical state to another physical state?

2 Of course, under the assumption that the mind is a computational system. Searle {19906b)
concedes this premise and then attempts to show that there is no objective sense in which a
physical system can be said to realize a computationat one.
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to chapter cne.

In the first place, it is important to make clear that the relation between a
computational system and the concrete system which implements or realizes it
does not depend on the particular nature of these two systems but, rather, on the
fact that both systems are deterministic dynamical systems. That a computational
system is a deterministic dynamical system is true by definition. We could still
question whether we are always justified in taking the hardware of a computer to
be a deterministic dynamical system. For, if we go down to the level of quantum
mechanics, this assumption may not be tenable®™. Nevertheless, given any
medium size concrete system, this system obeys the laws of classical physics.
Therefore, it is always possible to identify such a concrete object with a classical
physical system. In particular, this is also true for the brain or, more in general,
for the nervous system, the two types of hardware which we are concerned with.
Now, according to the information processing approach, the mind is a
computational system. It thus follows that the mind-body problem wili be solved
if we can explain the sense in which a dynamical system (brain, or nervous
system) realizes, or implements, a second dynamical system {mind). Of course,
it should be kept in mind that this is all that there is to the mind-body problem only
it we have identified the mind with a computational system. Still, even in this form,

the solution of this problem is not obvious.

® There are some interesting speculations on the nature of ‘quantum computers' (Deutsch
1985). The relation between computation theory and quantum mechanics is a fascinating field, but
| will be content with explaining the relation between systems of classical physics and
computational systems.
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Let us first quickly review ‘the solution® which some supporters of the
computational approach take for granted. The basic idea is that each
computational state corresponds to a physical state, and that a transition from one
computational state to the next corresponds to the transition between the
corresponding physical states. f this condition is satisfied, then (so they claim} a
physical system realizes a computational one. Let us cali the relation defined by
the previous condition "emulation"®. Even though this relation is simple, and it
seems promising, it will not work for one basic reason. We must recall first one
important fact from computation theory. All universal computational systems are
strongly irreversible®™. This means that the system is able to perform two
computations which start from different states, and which later produce the same
state. Therefore, in general, given a computational state of a universal system, we
cannot determine the preceding state. Also, it is not difficult to prove that a
strongly irreversible system can only be emulated by a system which is strongly
irreversible®. The point now is that the mind presumably is a universal system,
but we cannot take for granted that the concrete physical system which realizes

the mind is strongly irreversible. Indeed, many systems of classical physics are

* The reason for this hame is that this is the same relation which holds when a computational
system emulates a second computational system. Think, for example, of a universal Turing
machine which emulates some other Turing machine. The total states of the emulated machine
are mapped into the total states of the universal one, and each transition of the emulated machine
corresponds to the (longer) transition between the corresponding states of the universal one. The
formal analysis of the emulation relation in chapter 1, definition 4. :

% See ch. 1, th. 6, and the subsequent discussion.
® See theorem 6 of chapter 1 for the proof.
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reversible, and we are assuming here that the brain is a classical system.
Furthermore, even if the brain is strongly irreversible, this is an empirical fact, and
an adequate theory of the relation between brain and mind should not depend on
empirical contingencies®™.  This argument alone is already sufficient for
establishing that the emulation relation cannot be used to explain how the body
can realize the mind. Howaever, it is instructive to reach the same conclusion by
means of a mental experiment.

Let us consider the way in which we would typically determine whether a
concrete concrete physical system realizes a computational one. For definiteness,
assume that the computational system is a Turing machine defined by a certain
machine table, and that we want to decide whether a concrete piece of machinery
realizes this Turing machine. In the first place, we look for three parts of the
machinery, which correspond to the tape, to the head, and to the control unit of the
Turing machine. The tape part must be a linear array of distinct addresses, and
gach address must be in one of a finite number of different states, which
correspond to the symbols of the Turing machine. The head part must be a
mechanism which is always located on exactly one tape address, has the capacity
of changing the states of that address, and of moving to the address immediately

to the left or to the right. Finally the state part (or control unit) must be in one of

* |n general, this might not be true. However, the information processing approach claims that
the relation between the brain and the mind is a special case of the realization relation between
physical systems and computational systems. 1t seems obvious to require that a strongly
irreversible system may be realized by a system which is not strongly irreversible. The emulation
relation does not allow this possibility, for we can prove that no strongly irreversible system can
be emulated by a system which is not strongly irreversible.
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a finite number of mutually exciusive configurations, which correspond to the
internal states of the Turing machine. In the second place, we check that
whenever the head part is set {or reset) on address X, the state part is set (or
reset) to configuration ¢, and the tape part is set (or reset) to configuration p, the
head part will then move to address X, the configuration of the state part will
change to q’, and the tape configuration will change to p’, where X’, ¢, and p’
correspond to the position, internal state, ant tape configuration in which the Turing
machine goes in one step when it is started in the position, internal state, and tape
configuration which correspond to x, g, and p. If all these conditions are satisfied,
we conclude that this piece of machinery is a concrete realization of our Turing
machine.

The interesting point is that, in the course of this procedure, we never checked
whether or not a complete state of the Turing machine corresponds to a physical
state of the apparatus, and whether or not a transition between complete
computational states (of the Turing machine) corresponds to the transition between
the corresponding physical states. In fact, we never reached the level of a
physical state. What we checked is not a correspondence between the Turing
machine and the physical states but, rather, whether a macroscopic description of
the machinery's workings is true. Even though this mental experiment does not
prove that the emulation relation is not adequate to describe the realization
relation, it does seem to indicate that this relation must involve true high level

descriptions of the physical system, and not a direct mapping of computational

258



states into physical states.

This is perhaps why Searle maintains that the realization relation between a

physical system and a computational one necessarily involves an observer:

There is no way you couid discover that something is intrinsically a digital computer
because the characterization of it as a digital computer is always relative to an
observer who assigns a syntactical interpretation to the purely physical features of the
system. {Searle 1990b, 28)

Indeed, if a high level description is constitutive of the realization relation, it may
seem that a subjective element is necessarily involved. For example, one might
argue that there cannot be a description without an observer which does the
describing. If you don’t like this argument, you can certainly come up with a better
one. But, before wasting your time, read below. It will soon be clear that
descriptions are completely harmless, and that Searle’s claim is plainly false.

That these descriptions cannot be merely subjective can immediately be seen
from the fact that they must be true, something that Searle has completely
overiooked. Searle says that “computational states are not discovered within the
physics, they are assigned to the physics” (1990b, 27). Be that as it may, if these
assignments lead to a computational description which is not satisfied by the
system, then these assignments are obviously wrong. Therefore, the realization
relation is not a pure matter of conventions. Perhaps Searle would then maintain
that it can never be the case that some assignment tumns out to be wrong,

because any computational system can be realized by any physical system®:

% From what Searle says it is not ¢clear whether by "universal realizability” he means: [1} for
any computational system there is a (sufficiently complex) physical system which realizes that
computational system, or [2] any computational system can be realized by any (sufficiently big)
physical system. The first part of clause 2. of the quotation in the text seems to assert [1], but the
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On the standard textbook definition of computation,
1. For any object there is some description of that object such that under that description

the object is a digital computer.

2. For any program there is some sufficiently complex object such that there is some
description of the object under which it is implementing the program. Thus for example
the wall behind my back is implementing the Wordstar program, because there is some
pattern of molecule movements which is isomorphic with the formal structure of
Wordstar. But if the wall is implementing Wordstar then if it is a big enough wall it is
implementing any program, including any program implemented in the brain. (Searle
1990b, 26-27)

Contrary to what Searle affirms, these extracrdinary claims do not follow from
the standard definition of computation®™. In particular, this definition by no means
implies that any computational system can be realized by any physical system®’.
What we can prove is that some dynamical systems realize all computational
systems. This is not just a trivial consequence of the definition of a computation.
It is instead a rather involved theorem, and it is not at all clear whether this
theorem applies to any physical system®. Furthermore, the definition of the

realization relation implies that there are systems which cannot realize all

example of the wall implies [2].

% |t is far from obvious what Searte means by "standard textbook definition of computation”.
| take this standard definition to be the one you can find, say, in Davis (1958, ch. 1, def. 1.9).
Obviously, Searle’'s extraordinary claims do not foliow from this definition. f Searle has come
across some alternative definition which implies these claims, he should let us know.

¥ This is exactly what Searle needs to justify his claim that a computational description of a
physical system is arbitrary or conventionai: “We wanted to know if there was not some sense in
which brains were /ntrinsically digital computers in a way that green leaves intrinsically perform
photosynthesis or hearts intrinsically pump blood. It is not a matter of us arbitrarily or
"conventionally” assigning the word "pump” to hearts or "photosynthesis” to leaves. And what we
were asking is, "Is there in that way a fact of the matter about brains that would make them digital
computers? It does not answer that question to be told, yes, brains are digital computers because
everything is a digital computer”. (Searle 1990b, 26)

% See ch. 1, th. 10, and the subsequent discussion. This theorem only proves the existence
of some dynamical system which realizes all computational systems, but it does not say anything
about physical systems. Nevertheless, there may very well be physical systems which are
computationally universal. On the other hand, it is trivial to prove that there are physical systems
which are not computationally universal. Hint: think of a particle which is at rest.
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computational systems.

S, = <T, M,{H'}> S, = <T, M,{g"}>

D = set of mutually disjoint subsets of Ml

u: MZ —2>1} is a bijection

Sl realizes SZ

Figure 20: The realization relation o
It is now time to explicitly say what the realization relation is*®. The basic

idea is that system S, realizes system S, just in case (i) there is a bijection, u,
between the states of S, and a set of disjoint sets of states of S;; (i} if u(x) is the
set of states which corresponds to x, and u(y) is the set of states which
corresponds to y, then the transition of S, from x to y corresponds to the transition
of S, from X to y', where X is an arbitrary state of S, which is in u(x), and y’ is a

state of S, which is in u(y).

¥ The formal analysis of the realization relation is in chapter 1, definitions 5 and 6. These two
definitions are equivalent (see th. 7).
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As you can immediately see, this relation does not involve any observer, and
it is not trivially satisfied by any pair of systems 8, and S,. 1t is also possible to
prove that there are pairs of systems S, and S, such that S, realizes S, S, is
reversible, and S, is strongly irreversible. Therefore, the first argument which |
have given will not work against this relation. Still, we might wonder that no
description is constitutive of this refation, while our mental experiment suggests
that the realization relation must involve descriptions. But this is not a real
problem, for descriptions are present. These descriptions express the sets of
states which correspond to the states of the realized system. Recall that any state
of a dynamical system completely describes the system at some instant
Therefore, any set of states of a dynamical system can be thought as being
expressed by an instantaneous description of that system. Conversely, any
instantaneous description of a dynamical system always expresses a set of states
of the system®. It is for this reason that the presence of descriptions is
completely harmless, and it does not provide any ground for a subjective
interpretation of the realization relation. As John Winnie has suggested, this
situation is analogous to the one we have when we apply probability theory to
some concrete problem. Each event is assigned a probability, and events are
formally defined as sets of elementary events. However, it is often useful to take
a completely equivalent approach, which regards events to be expressed by

descriptions. Descriptions are then assigned probabilities. Obviously, nothing

“ A complete instantaneous description expresses a set which only contains one state. An
incomplete instantaneous description expresses a set which contains at least two states.
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changes if we switch from one formalism to the other. But, if we take Searle
seriously, we should perhaps conclude that, whenever we use descriptions, we
ipso facto accept a subjective interpretation of probabilities, and this is obviously
absurd.

If it is still not clear how, in detall, sets of states {or instantaneous descriptions)
are involved in our mental experiment, read again section 6 of chapter 1, and
especially focus on the definition of a standard realization of a Turing machine, and
on example 5.1. Qur mental experiment can then be interpreted as follows. When
we decide whether a concrete physical system realfizes a Turing machine, we
usually check whether that system satisfies the definition of a standard realization
of a Turing machine. This definition essentially involves instantaneous descriptions
of the system, which have the form: the head part of the system is set (or reset)
on address x, the configuration of the state part is set (or reset) to g, and the
configuration of the tape part is set (or reset) to p. If we can empirically determine
that the concrete physical system satisfies this definition, we can immediately
conclude that it realizes the Turing machine. We do not need any further
checking, because we can prove that any standard realization of an arbitrary
Turing machine realizes that Turing machine. 1 have given this proof in example
5.1 of chapter 1. This result only applies to Turing machines. Nevertheless, given
a specific fype of computational system (register machines, systems specified by

programs of some computer language, cellular automata, neural networks"', etc.)

" Not all neural networks are computational systems, but those made of a finite humber of
units with discrete activation ievels certainly are.
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it is usually possible to define a standard realization in a natural way. We can then
prove a theorem analogous to example 5.1 for this standard realization.

Finally, let me summarize the import of the previous discussion for the
mind-body problem in the context of the information processing approach. This
approach identifies the mind with a computational system concretely realized by
the nervous system. We have seen that the nervous system can always be
identified with a classical physical system. The problem of the relation between
body and mind thus reduces to the problem of explaining how a dynamical system
(nervous system) can realize, or implement, a second dynamical system (mind).
The mathematical framework of dynamical system theory allows us to solve this
problem in a completely general way. | have outlined this solution above, and |
have developed the technical details in chapter one. Therefore, contrary to
Searle’s claims, the information processing theory can adequately explain how the

mind is related to the underlying physical structure®.

“2 As for the charge of anti-scientific thought (Searle 1990a, 31), the reader should judge for
himself who the obscurantist is.
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4. The problem of consciousness

The third question asks how the information processing theory of the mind can
explain the subjective aspects of our mental life. How can we account for
sensations, pains, dreams, haliucinations, emotions, feelings, desires, passions,
if we have identified the mind with a computational system realized by a concrete
physical system? First, let me introduce a bit of terminology. By a "conscious
state" | mean any state of subjective awareness, or any subjective experience or
perception. The third question can thus be rephrased in a more concise form: how
can the information processing theory of the mind explain the nature of conscious
states? Tim Maudlin (1989) has recently put forth an ingenious argument to show
that this is impossible. His argument, however, heavily rests on the assumption
that conscious states supervene on computations of a Turing machine. Therefore,
even if we take Maudlin’s argument to be sound and valid (which is controversial),
it only shows that a very specific computational theory of consciousness is
impossible. This argument cannot be applied to the approach which | am now
going to outling®,

The thesis | want to defend in this section is that the information processing

8 Maudiin (1989, 412-13) claims that any computational theory of consciousness must accept
two principles. If x is an arbitrary conscious state, and At is an arbitrary time interval, then: (i} there
is a Turing machine C, and there is a computation ¢ of this Turing machine such that, for any
concrete physical system S, if S realizes C and S performs computation ¢ during time interval At,
then S supports conscious state x during time interval At, (ii} for any concrete physical system S,
if S supports conscious state x during time interval At, then there is a Turing machine C, and there
is a non-trivial computation ¢ of C such that the concrete physical system S realizes C and S
performs computation ¢ during time interval At. Contrary to Maudlin's claim, 1 will show below that
it is possible to outline a computational theory of consciousness which is independent from these
two principles. It thus follows that Maudlin's argument cannot be applied to this theory, for that
argument is limited to theories which entail (i) and (ii}.
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theory of the mind can in principle explain the nature of conscious states.
Therefore, my discussion of this problem will be at a quite abstract level. My goal
is not to propose a complete computational theory of consciousness. Rather, | am
going to construct a general framework within which a detailed computational
theory of consciousness could be developed™.

The basic tenet of the information processing theory of the mind is that the
mind is a computational system realized by a concrete physical system. We have
seen in the previous section that this implies that each mental state corresponds
to a set of states of the concrete physical system. On the other hand, a conscious
state can always be expressed by an instantaneous description of the mind. For
instance, if | have a sensation of red, this means that my mind satisfies the
instantaneous description: x has a sensation of red. If | desire something, my
mind satisfies the instantaneous description: x desires something. If I am in pain,
my mind satisfies the instantaneous description: x is in pain. Therefore, since we
have identified the mind with a computational system, any conscious state can be
expressed by an instantaneous description of this system. But any computational
system is a dynamical system, and an instantaneous description of a dynamical
system always expresses a set of states of this system. It thus follows that any

conscious state is a set of mental states. Furthermore, since any mental state in

4 1t shouid also be noticed that this framework is so general that it does not depend on the
identification of the mind with a computational system realized by a concrete physical system but,
rather, on its consequence that the mind is a dynamical system realized by a concrete physical
system. Therefore if we only accept this weaker hypothesis, we may reject the information
processing theory of the mind and still retain the theory of consciousness which | am going to
sketch below.

266



this set corresponds to a set of physical states, any conscious state corresponds
to the union of all these sets of physical states. Therefore, we can also conclude
that both mental states and conscious states correspond to sets of states of the
concrete physical system which realizes the mind.  We thus see that the
identification of the mind with a computational system realized by a concrete
physical system entails that {i) mental states are states of a dynamical system
realized by a concrete physical system; (ii) conscious states are sets of mental
states; (iii) both mental states and conscious states correspond to sets of physical
states.

L.et me now make explicit two philosophical consequences of this view. In the
first place, the theory | have just outlined is a special form of functionalism. In
general, functionalists take the mind o be a system which is realized by a concrete
physical system, but cannot be identified with it. Clearly, the identification of the
mind with a computational system realized by a concrete physical system implies
functionatism, for all computational systems are discrete dynamical systems, while
physical systems are continuous. The denial of the possibility of a complete
reduction of the mental to the physical is what distinguishes functionalism from the
identity theory. This denial has the methodological consequence that cognitive
science cannot be regarded as a special branch of physics.

In the second place, this methodological independence of the mental from the
physical should not be confused with an ontological independence. Searle has

claimed that the information processing theory of the mind rests on a kind of
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dualism:

The polemical literature in Al usually contains attacks on something the authors call
dualism, but what they fail to see is that they themselves display duaiism in a strong
form, for unless one accepts the idea that the mind is completely independent of the
brain or of any other physically specific system, one could not possibly hope to create
minds just by designing programs. (Searle 1990a, 31)

Frankly, what | fail to see is how a form of functionalism can be considered a
dualistic position. The information processing theory of the mind maintains that the
mind is a computational system realized by a concrete physical systemn. This
obviously implies that the mind is not ontologically independent from the concrete
physical system which realizes It, for a computational system cannot be a mind if
it is not realized by some concrete physical system. Furthermore, both mental
states and conscious states cannot exist independently from a concrete physical
system, for mental states are states of a computational system realized by a
concrete physical system, conscious states are sets of mental states, and both
mental and conscious states thus correspond to sets of physical states.

Let me now consider a second type of criticism which might be raised against
the theory of consciousness which | have outlined above. According to this theory,
conscious states are sets of states of a computational system realized by a
concrete physical system. Therefore, it is in principle possible to give a complete
account of the nature of a specific conscious state s if we are abie to specify: (1)
the computational system which can be identified with the mind; (2) the concrete
physical system which realizes the mind; (3) the specific set of mental states which
is identical to the conscious state s; (4} the specific set of physical states which

corresponds to the conscious state s. Suppose that we have been able 10 meet
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all four conditions. Still, this account of the nature of the conscious state s cannot
be complete, for none of these conditions involves a reference to the infrospectible
qualitative character of s. In other words, we cannot identify the conscious state
s with a set of states of a computational system realized by a concrete physical
system, for this identification leaves out one of the constitutive properties of s,
namely what it is like to be in conscious state s. Therefore, this theory of the
nature of conscious states is false®.

Even though this argument has a strong intuitive appeal, it clearly rests on a
false premise, namely that the introspectible qualitative character of a conscious
state is one of its properties. What it is like to be in conscious state s is not a
property of s but, rather, a way of knowing s. Therefore, this ‘property’ must not
be part of an account of the nature of 5. On the other hand, this ‘property’ should
be part of a phenomenological (or first person) account of how conscious states
are known by direct experience. But this is an epistemological question which the
theory of consciousness | have outlined is not meant to address.

Finally, | wish to suggest a possible scenario which shows that a theory of
conscious states constructed along the lines sketched above might be empirically
tested. For definiteness, suppose that we have formulated a hypothesis H which
consists of:

{1) the specification of a computational system M,

{(2) the specification of a neurophysiological dynamical model N of some part of
the nervous system B which realizes M;

(3) the identification of a particular color sensation s with a specified set of states

* This argument is an adaptation from Naget (1974). See in particular pp. 436-7 and 442-5.
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s of the system M;
(4) the specification of a set of states § of the system B such that § corresponds

to g1
then, the hypothesis H might be empirically tested by means of the following

experiment:

suppose that we have some (ethically acceptable) means to force the part B of the
nervous system of some subject in an arbitrary initial state x. Then, since the
model N of B is known, we can determine the state vy of B at a later time ¢, Also
suppose that we instruct the subject to turn a switch on if he/she experiences the
color sensation s, and to turn the switch off if he/she does not. Then, at time ¢,
the switch should be on iff y € 8. Suppose we repeat this experiment for many
initial states x and times ¢{. Then, the hypothesis H is empirically confirmed just
in case all the results are as expected.

* The specification of the set of states S which corresponds to the color sensation s must
follow from (2) and (3). In fact, in the first place, S is equal to the union of all sets of states which
correspond to the computational states in the set s specified by (3). In the second place, the set
which corresponds to a computational state is determined by the realization relation specified

by (2).
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5. Is the mind a computational system?

The fourth question raises the doubt that, perhaps, we are not justified in taking
the mind to be a computational system. There are many ways in which one could
argue in favor of this view. 1 will start by reviewing Lucas’ classic argument (1961,
1968a, 1968b). Penrose has recently advocated essentially the same position
(1989, 108-12, 416-18). | will then propose a second argument which shows that
the mind is not a computational system if it can be identified with a finite neural net

whose units have continuous activation levels.

5.1 Lucas’ argument

According to Lucas, we could establish that the mind is not a computational
system on purely logical grounds. This would be a direct consequence of Godel's
incompleteness theorem for arithmetic.  Godel's theorem states that no
axiomatizable theory which is consistent, and contains all the usual theorems of
arithmetic*’, can prove all the arithmetical truths. The way Gédel reached this
conclusion was by constructing an arithmetical truth which is not provable. This
arithmetical truth is now known as the Godel sentence. The Gidel sentence
states its own unprovability so that, if G is a name for this sentence, the Godel
sentence simply is “G is not provable". Godel's proof shows how, given any
consistent, axiomatizable theory which contains the theorems of arithmetic, we can

express G in the language of this theory. But then, in the first place, G must be

47 Henceforth any such theory will be called "a formal theory of arithmetic”.
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true. Suppose it is false. Then, "G is not provable” is false, whence it is not the
case that G is not provable. G is thus provable, so that G is a false consequence
of the theory. But this is impossible, because logical consequence preserves truth,
and the axioms of the theory are true. In the second place, G must be
unprovable, for we know that "G is not provable" is true, whence G is not
provable*.

Now, so argues Lucas, this shows that the mind cannot be a computational
system. Assume that the mind is a computational system. If the mind is a
computational system, then it can be identified with a formal theory of
arithmetic®. Therefore, the mind can be identified with a formal theory of
arithmetic. But then, the mind could never assert its Godel sentence G, because
the only way of asserting a sentence for a formal theory is proving that sentence

and, by Gddel's theorem, this is impossible. On the other hand, the mind can

“8 This informal argument should not be confused with Godel's proof. Nevertheless, thanks to
Godet, we know that there is nothing wrong with this argument, for we can always put it in a form

which is logically impeccable,

** The argument which is usually given to support this second premise is the following.
Suppose that the mind is a computational system. First, any computational system can be
identified with an axiomatizable theory. Therefore, the mind is an axiomatizable theory. Second,
we know that all the usual axioms of a formal theory of arithmetic are true, and we have the
capacity of deducing all the consequences of these axioms. Therefore, from this and the first
conclusion, the mind is an axiomatizable theory of arithmetic. Third, the set of all our beliefs is,
at least in principle, consistent. Therefore, from this and the second conclusion, the mind is a
consistent axiomatizable theory of arithmetic. It thus follows that, if the mind is a computational
systemn, then the mind is a consistent axiomatizable thecry of arithmelic.

Some people have questioned either the second or the third step of this argument. Some
have noticed that the mind might not be a theory of arithmetic, for it might not contain all the
theorems implied by the usual arithmetical axioms. Others have suggested that the mind might
not be a consistent system. These objections, however, are not very strong, for they fail to show
that in principle the mind cannot contain all the theorems of arithmetic, or it cannot be a consistent

system.
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assert G, because we can recognize that the Gédel sentence of any formal theory
of arithmetic is true. Therefore, the mind is not a computational system.

This is a neat argument, and Penrose is probably right in implying that all the
replies which have been proposed miss the point. Reviewing all these counters
is beyond the scope of this chapter™®. 1| will instead discuss just one rebuttal
which is particularly popular among cognitive scientists (Hofstadter 1980, 471-76).
According to this view, it is simply false that, for any formal theory of arithmetic,
we are able to assert its Godel sentence G as an arithmetical sentence. The basic
idea is this. Given the usual formal theories of arithmetic, we can certainly
construct their Godel sentences, and we are thus able to assert arithmetical
sentences which are not provable by recognizing their truth. Nevertheless, if we
considered an extremely complex theory of arithmetic, we could not construct the
Gddel sentence for that theory®. So, even if we recognized its truth, we would
not assert an unprovable arithmetical sentence. We would assert something else
or, perhaps, nothing at all. Therefore, at that point, our mind would behave just

like any other formal thecry to which Gddel's theorem applies. In a few words: we

% For the interested reader, here is some bibliography. Putnam (1960}, Smart (1961),
Benacerraf (1967), Judson (1968), Good (1967, 1969), Lewis (1879), Lee Bowie {(1982).

*" The argument goes like this. If we are given a first formal theory of arithmetic T,, we can
construct its Gédel sentence G, Then, we consider a second formal theory of arithmetic
T, = ToAG,} and we construct its Gédel sentence G,. We repeatl this process so that we generate

an infinite series Ty, T,, ..., T,, ... of formal theories of arithmetic. The union of all these theories
is still a theory of arithmetic, we thus formalize it, construct its Gddel sentence, and we then
produce asecond series T, T, ..., T ... of formaltheories of arithmetic. We continue repeating

this process. Then, for some extremely complex theory of arithmetic T,, (which is the union of an
infinite series of formal theories of arithmetic) we will not be able to construct its Gédel sentence.
Why? See the next footnote.
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cannot outgddel Gddel in the long run.

This reply is extremely ingenious, but not completely satisfactory. It is perhaps
true that, at some point, our capacity of constructing the Gédel sentence would
break down. But perhaps not. if we understand Gédel’'s proof, we know how to
construct this sentence for any formal theory of arithmetic, and it is not clear why
we should not be able to carry out this construction for any particular case,
however complex it may be. Granted, in practice, this might be impossible, but we
need some ground for claiming that this is impossible in principle®. The
defenders of this view have not provided any clear reason to establish this point,
and this is why their argument sounds circular. In fact, there is one clear reason
why we cannot outgddel Gadel: if we assume from the start that the mind is a
formal system which satisfies the conditions of Godel's theorem. But this is just
begging the question.

Furthermore, even if we admit that in some specific case we cannot construct
the Godel sentence, this is irrelevant. We can still prove that, for any formal

theory of arithmetic, there /s a sentence which is true and cannot be proved by

* The usual argument considers the series of formal theories of arithmetic which can be
produced by adding to each previous theory iis Godel sentence. The problem comes when we try
to put all these theories together in one formal theory. |f the mind is a computational system, this
process must break down at some point, because there is no effective procedure to reduce an
arbitrary settes of formal theories of arithmetic to one formal theory. Granted that this is the case,
it is irrelevant. Lucas is not maintaining that our mind can carry out this process in any case.
What he claims is that we can construct the Gédel sentence if we are given an arbitrary formal
theory of arithmetic. If we can, then we can in principle outgddel any theory. And, in fact, we can
produce the Gaédel sentence for an arbitrary formal theory, however complex it may be. This
follows from the fact that Godel's proof is constructive.
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that theory®®. Suppose that the mind is a computational system. Then, the mind
can be identified with a formal theory of arithmetic T, and we can thus prove in T:
for any formal theory of arithmetic, there is a sentence which is true and cannot
be proved by that theory. Then, in particular, this fact applies to T, so that one of
the theorems of T is: there is a sentence of T which is true and cannot be proved
in T. The point now is that the predicate "true” is the truth predicate of T.
Therefore, T contains its own truth predicate, which we know is impossible by
Tarski's undefinability theorem™. We have thus reached a contradiction.
Therefore, the mind is not a computational system.

Nevertheless, the defenders of the computational approach should not be

bothered too much by Lucas’ argument (or by my more general version} for, at

*% Gédel's theorem can be proved without constructing the Gédel sentence (Boolos and Jeffrey
1980, ch. 15). The precise statement of this form of the theorem is: for any theory which is an
axiomatizable, consistent extension of Robinson's arithmetic, there is a sentence o such that
neither o nor -« is provable in that theory. From this, since either o or -o must be true in the
standard model of arithmetic, we obtain: for any theory which is an axiomatizable, consistent
extension of Robinson's arithmetic, there is a sentence which is true but not provable inthat theory.
The point of this second argument is that this semantic consequence of Gédel's theorem cannct
be proved in any formal theory of arithmetic. In fact, if it were provable in some formal theory of
arithmetic T, also the following sentence would be provable in T: # T is an axiomatizable, consistent
extension of Robinson's arithmetic, there is a sentence of T which is true but not provable in T,
And this cannot be proved in T, because "rue" is the truth predicate of T, and by Tarski's
undefinability theorem, no axiomatizable consistent extension of Robinson's arithmetic contains its
own truth predicate.

A truth predicate of a formal theory of arithmetic T is any formula «(x) of T such that, for any
formula i of T, (a("B") iff B) is provable in T, where “§" is the numeral which corresponds to the
Godel number of B. Tarski's undefinability theorem affirms that, for any formal theory of arithmetic
T, noformula ofx) of T is a truth predicate of T. Intuitively, “" is a name for Bin T, and a"p") can
be interpreted as stating ("B" is true) if, and only if, Tarski's definition of truth for that sentence, that
is ("B" is true i ), is provable in T. Now, Tarski's undefinability thecrem says that no predicate
of a formal theory of arithmetic can be interpreted as stating the truth of an arbitraty formula of that
theory. But we need exactly this predicate if are fo prove in T that there is a sentence of T which
is true and cannot be proved in T. Tarski's undefinability theorem is an immediate consequence
of the diagonal lemma (Boolos and Jeffrey 1980, ch. 15, lemma 2, exercise 15.1).
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most, it shows that the mind is not a formal theory of arithmetic. it certainly does
not show that the mind is not a computational system. This is an obvious point
which, for some mysterious reason®, has not been considered so far. Lucas,
and even many of its critics, take for granted that, if the mind is a computational
system, then it can be identified with a formal theory of arithmetic. But this is
plainly false. To see this point, consider first that any formal theory of arithmetic
is not decidable®™. This means that there is no effective procedure for
determining whether an arbitrary sentence of that theory is a theorem. Second,
any computational system can instead be identified with a decidable theory. In
fact, any computational system can be identified with a discrete dynamical system
{a cascade) <T M H> whose phase space M is decidable, and whose transition
function H is Turing computable. This dynamical system can thus be identified
with an axiomatizable theory. The axioms of this theory are all the possible states
in the phase space M, and its inference rules are the transition function H and the
identity function on M. Therefore, the set of all theorems of this theory is identical
10 the set of its axioms, that is, to the phase space M. Since M is decidable, any
computational system can thus be identified with a decidable theory. This simple

observation takes care of Lucas’ argument, for it is just false that if the mind is a

% After all, the reason is not so mysterious. To see this point, we must take seriously the fact
that computational systems are discrete dynamical systems (cascades) which can be effectively
described. This fact has been overlooked so far.,

5 Any consistent extension of Robinson’s arithmetic is not decidable {Boolos and Jeffrey 1980,
ch. 15, th. 1). Since any forma! theory of arithmetic is a consistert extension of Robinson’s
arithmetic, any such theory is net decidable.
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computational system, then it can be identified with a formal theory of

arithmetic® .

5.2 Is the information processing theory of the mind consistent with the
connectionist approach?

A different way of arguing that the mind is not computational considers the
structure of the system with which the mind could plausibly be identified.
According to the information processing theory of the mind, this system is a
computational one. This means that there is an effective procedure for
determining the possible states of the system, and that each transition from one
mental state to another can always be described as an effective transformation of
finite symbol structures. But is this hypothesis justified? The most recent
developments in cognitive science do seem to indicate that it is not. A good way
of arguing this point is reflecting on the following question: what if the mind could
be directly identified with a network of nervous cells?

One of the reasons why this view was rejected in the sixties was that the
cognitive abilities of neural networks, as neural networks, seemed exiremely

limited. For example no neural net of a simple kind can compute a basic logical

¥ More precisely, the second premise of Lucas’ argument "if the mind is a computational
system, then the mind is a formal theory of arithmetic” is false if the first premise "the mind is a
computational system” is true. This follows from the fact that "the mind is a computational system”
and "the mind is a formal theory of arithmetic” are inconsistent, for any formal theory of arithmetic
is not decidable, while any computational system can be identified with a decidable theory.
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operator, exclusive or”®. On the other hand, these limitations can easily be
overcome if the neurons are connected in such a way to realize a universal
computer. Since this seemed the only possible way of obtaining complex and
flexible behavior from neurons, cognitive scientists concluded that the mind should
be identified with a universal computer which is realized by a network of nervous
cells.

It is however obvious that this view is justified only if the cognitive abilities of
neural networks are in fact limited. But are they? Today we know much more on
what neural networks of a certain complexity can do. For example, they can work
very well as associative memories. We can store in a network many different
‘vackages of information' and, when the network is presented with a part of one
of these packages, it will retrieve the missing parts®. This might be what is going
on when, starting from a clue, we are able to recail a whole lot of information
which is associated with that clue. Notoriously, it is quite difficult to program a
computer to handie this kind of task. Neural networks, on the other hand, do not
need any programming. This remarkabie ability is ‘naturally produced' by some
simple ways of linking the units together.

The point of this digression is just to make plausible that a neural net with the

%8 This simple kind of neural network is known as the "perceptron”. The severe limitations of
perceptrons were pointed out by Minski and Papert (1969). See also McClelland and Rumelharnt
(1988, 121-6).

% McCleltand (1981) studied a simple interactive activation and competition network which
displays this property. See also McClelland and Rumelhart (1988, ch. 2) and Rumelhart and
McCletland (19886, vol. 1, 25-31}.
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right architecture might have all the cognitive abilities which we usually attribute to
the mind. But then, if this is the case, it might be possible to identify the mind with
a network of nervous cells. If this view were the correct one, could we still
maintain that the mind is a computational system? The answer to this question
would in general depend on the nature of the neural net with which the mind is
identified.

Before considering this problem, we must eliminate certain simplistic ideas
about the differences between neural networks and computational systems: (i) the
processing of a neural net is parallel, while computationat systems are serial;
(i) the representation and storing of information in neural nets is distributed, while
in computational systems is local; (ili) a necessary feature of computational
systems is the presence of a memory which contains complex symboiic structures.
Each of these structures is analogous to a sentence of a formal language, for the
whole structure and its parts can be interpreted. In particular, some of these
structures explicitly represent rules or procedures, and a computational system
always works by interpreting these rules and by applying them to other symbolic
structures (data) stored in its memory. Neural networks, instead, do not have
symbolic structures, and do not work according to rules.

The basic point is that the properties (i) - (iii) are not sufficient for distinguishing
a neural network from a computational system. In fact, it is well known that there
are computational systems which (a) are parallel; (b) store information in a

distributed fashion; (¢) do not have symboclic structures stored in their memory, and
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do not work by interpreting explicitly represented rules. The classic example of
such a computational system is a cellular automaton. A cellular automaton is
constituted by a sequence of cells (or sites). Each cell always is in one of k
possible states. The automaton updates synchronously the state of all its cells
according to a rule which depends on the state of each cell, and on the states of
its neighbors. For example, suppose that each cell has just two neighbors, the cell
to its left and the cell to its right, and that the possible states are 0 and 1. Then,
the following updating rule completely describes a specific cellular automaton:
000 --> 0, 001 ->0, 010->1, 011->1, 100-->0, 101->1, 110->1,
111 > 1.

Now, it is clear that any cellular automaton is a computational system, for the
transition from one complete state to the next can be computed by a Turing
machine, and the set of all possible states is decidable®®. Nevertheless, cellular
automata process information in parallel, and the relevant information is always
distributed across the whole arrangement of cells. In fact, it is never the case that
the next automaton state is determined by the present state of some of the cells.
Rather, all cells always contribute to the next state of the automaton. Also, for the

same reason, a complete state of the automaton does not have separate parts, or

% More precisely, this is true for those cellular automata which satisfy (i} there is a special
cell-state called the "quiescent state”; (i) for any complete state of the automaton, at most a finite
number of cells is not in the quiescent state; (iii) if a cell and all its neighbors are in the quiescent
state, then the next state of this cell is again the guiescent state. | have proved in example 3.2
of chapter 1 that all linear celiular automata are computational systems.
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symbolic structures, on which the automaton operates®. Finally, the rule which
determines the behavior of the automaton is not explicitly represented as a part
of its complete states, and the automaton does not work by interpreting this rule.

Conversely, we can reach the same conclusion by considering a special type
of neural network. Suppose that each unit of a finite net has a finite number of
possible activation levels. Then, the set of all complete states of the net can be
identified with a finite set of finite strings of symbols, and any transition from one
state to the next can obviously be computed by a Turing machine. Therefore, all
networks of this type are computational systems, even though they usuaily process
information in parallel, and they do not work by interpreting explicitly represented
rules.

These two examples clearly show that the computational approach and the
connectionist one are by no means exclusive. In fact, many connectionist
networks are computational systems and, conversely, some computational systems
like cellular automata are just a special type of connectionist network.
‘Connectionism' and ‘computationalism' are mutually exclusive only if

computational systems are narrowly identified with mechanisms which somehow

¥ One might argue that neighborhoods are these parts, and that the automaton works in
parafiel on all its neighborhoods. The point, however, is that neighborhoods usually overlap, so
that the way a cellular automaton actually works is not correctly described as the application of
rules to separate symbolic structures. On the other hand, such a description is possible, because
any cellular automaton can be emulated by a Turing machine. This in fact shows that a cellular
automaton is a computational system in spite of its non-standard way of working. It does not show
that it works like a Turing machine. There are more computers in heaven and on earth than your
Turing machine can dream of!
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operate like a Turing machine®™. But this view has no theoretical justification and,
by focusing on superficial distinctions, completely misses the deeper point at issue.

It is now time to see what this deeper point is. First, we must recognize a
simple fact: any finite network whose units have continuous activation levels is not
a computational system. A complete state of any such net can always be
identified with a finite sequence of real numbers and, since each unit has a
continuous range of possible activation levels, the set of all possible complete
states of this net is not denumerable. Therefore, this net cannot be isomorphic to
a cascade whose set of possible states is decidable, for any decidable set is
denumerable. It thus follows that any finite network with continuous activation
levels is not a computational system®. Now, the deep question is: can the mind

be identified with a finite neural net whose units have continuous activation levels?

% The important point is that operating like a Turing machine by no means is a necessary
condition for being a computational system. On the other hand, being describable as a Turing
machine certainly is. These two propetties are essentially different, and they should never be
confused. By "peing describable as a Turing machine" | mean that the transition function of a
system isomorphic to the system we are considering must be computable by a Turing machine,
and that the phase space of this system is decidable {see ch. 1, def. 3).

5 A computational system (see ch.1, def. 3} could be used to approximate the transitions of
a network of this type. Nevertheless, if the real numbers involved are not computable, we cannot
conclude that this approximation can be carried out to an arbitrary degree of precision. This is
exactly the same situation that we have when we use computers to approximate the behavior of
a physical system. A computational system cannot be identified with a physical system because
physical systems are essentially more powerful than any computational system. This is why
nobody, except perhaps Fredkin (Wright 1988), would confuse a computer simulation of a
continuous system with the real thing. This is one of Searle’s favorite points. Nevertheless, Searle
is wrong in thinking that this identification is impossible because physical systems have some
occult ‘causal power' which computers lack. The difference is in the power of processing
information: physical systems are analogic devices, so that they can change infinite amounts of
information and, in general, they cannot be described in an effective manner. Computational
systems, on the other hand, are limited to a finite amount of information, and they can always be
effectively described.
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If this identification is possible, then the mind is not a computational system. We
do not yet know the answer to this question. Nevertheless, it is certainly
reasonable to expect that this issue will ultimately be decided also, if not
exclusively, on the basis of empirical investigations. To conclude, we can put this
point in completely general terms. A deterministic dynamical system is not
computational if: (i) it does not evolve in discrete time steps, or (ii) it is impossible
to describe its phase space as a decidable set, or (iii) it is impossible to describe
an arbitrary transition between twe complete states as an effective transformation
of finite symbol structures®. Therefore, if the mind can be identified with a
dynamical system which satisfies one of these conditions, the mind is not a
computational system. The question of whether this identification is possible is an

empirical one.

% These three conditions follow from the definition of a computational system {see ch. 1,
def. 3). The precise formulation of these conditions is the following. A dynamical system S is not
computational if (i) S is not a cascade or, for any cascade S, = <T M, H> such that S is isomorphic
to S,, (i) the phase space M, is not decidable, or (iii} the transition function H is not Turing
computable,
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6. Cognitive science as a branch of dynamics

We now must consider what the conclusion of the previous section implies for
our original question. This question is a methodological one®. We want to know
whether the hypothesis that the mind is a computational system realized by a
concrete physical system should be one of the methodological foundations of
cognitive science. By now it should be clear that it should not, for the possibility
that the mind could be identified with a non-computational dynamical system is a
real one, and it seems obvious that this possibility should be empirically
investigated.

This conclusion leaves us in an uneasy situation. We thought that the
information processing theory of the mind gave us an adequate picture of what the
aims and methods of cognitive science are. We have instead discovered that this
view cannot be the right one, for it rules out a priori a vast class of possibilities
which instead should be empirically explored. My proposal for overcoming this
methodological impasse is that we should seriously consider our fifth question: isn't
it possible that cognitive science is better described by not assuming that the mind
is its primary object, and by not assuming that this object necessarily is
computational? The way in which | am going to answer this guestion is by

explicitly exhibiting an alternative view which 1 believe to be superior to the

® An appropriate term also is "transcendental” in Kant's sense. We want to know whether the
hypothesis that the mind is computational is one of the conditions which make cognitive science
possible. The transcendental character of this hypothesis /s not a merely philosophical
interpretation.  This hypothesis is concretely used as a transcendental principle by the defenders
of the computational approach,
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information processing theory of the mind. The basic idea of this methodological
view is that the primary object of cognitive science is not the mind but, instead, a
particular set of dynamical systems. | will call these systems "cognitive systems".
A second name which is also appropriate is "the mental'. | prefer the first term for
it more clearly brings about the shift of perspective between this view and the one
which primarily focuses on the mind.

Before attempting an explicit characterization of cognitive systems, | will spend
a few words to explain why this view certainly deserves a try. One of the reasons
which makes this perspective extremely appealing is that, if we are successful, we
may demonstrate a structural identity between cognitive science and other natural
sciences. For example, the object of physics is a particular set of systems whose
generic properties can be described in detail. The same point also holds for some
sciences which are concerned with the study of human behavior. For example,
economics does not study economic reality {(whatever that may be) but, instead,
a set of systems which share some generic features. It is certainly reasonabile to
suppose that this general rule should also hold for cognitive science. Obviously,
this analogical argument does not prove that cognitive science can be understood
by focusing on the generic properties of the systems which it studies, but it does

indicate that this view deserves to be taken seriously.

6.1 Cognitive systems

To understand what a cognitive system is, let us first go back to the information
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processing theory of the mind and analyze in more details what it says about the
entities which are the concrete focus of its empirical study. This view starts from
the hypothesis that the mind is a computational system realized by a concrete
physical system. This, however, is just the beginning of the story. What gives real
bite to this approach is the further assumption that the mind is a wniversal
computer of the usual kind. This essentially means that there is a working memory
in which both programs and data can be stored, and that the mind has the
capacity of executing any program which is stored in its memory. Depending on
the software which actually is in the working memory, the mind is able to produce
different behaviors.  Any different program in fact specifies a different
computational system and, when the mind executes a particular program, it
emulates the computational system specified by that program. This particular
computational system has the cognitive properties or abilities which produce a
behavior appropriate for a given situation, environment, or task. For example, if
the situation is playing chess, a chess program will be loaded into the working
memory, and the mind will then execute it. Obviously, there may be environments
for which no specific software is available. Presumably, however, there always are
certain general purpose packages which can be executed in these contingencies.
Some of these are leaming routines, that is, programs which are able to create
new programs, or improve old programs. Other general purpose packages are
less smart. They simply produce ‘defensive’ or ‘opportunistic' behavior: fleging,

refusal of engaging in a difficult task, research of a less demanding environment,
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etc. Finally, certain situations may call for programs which establish goals, and
then plan for the execution of other programs appropriate to reach these goals.

Three important points should be noticed. First, since the brain (or the nervous
system) concretely realizes the mind, and the mind emulates a set of
computational systems, all these systems are also realized by the brain®.
Second, the particular computational system which the mind emulates in a specific
situation has specific cognitive abilities. Third, the aim of each empirical research
is to describe in detail this particular computational system.

We thus see that, even within the framework of the information processing
theory of the mind, the object of each empirical research is not the mind itself but,
instead, a specific computational system which the mind emulates in a specific
situation. Furthermore, this computational system has particular cognitive abilities
specific to that situation. Therefore, one might be tempted to identify the set of all
cognitive systems with the set of all computational systems which have cognitive
abilities, and which the mind emulates while performing cognitive tasks. But, in
this form, this idea will not work. First, what we need is a characterization of
cognitive systems that does not presuppose their being computational, for some
systems which have cognitive abilities are not computational. Second, we do not
want to presuppose the computational character of the mind, for this is a question
which is subject to empirical inquiry. Fortunately, there is a natural solution which

satisfies both conditions. This solution simply consists in identifying a cognitive

% This follows from the transitivity of the realization relation, and from the fact that emulation
is a special case of realization. See chapter 1, thecrem 8, and corollary 8.1(a).
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system with a dynamical system which is realized by a physical system, and has

cognitive abilities®. That is:

Definition 1 {cognitive systems}

7 18 a cognitive system iff:

(1) 7 is a dynamical system;

{2) there is a physical system o such that ¢ realizes =;
{3) there is x such that x is a cognitive ability of m.

Let me explicitly say that this definition is not meant to give necessary and
sufficient conditions which can be indisputably applied to each specific case. Part
of the reason is that while the meaning of the first two conditions is sufficiently
precise®, the meaning of condition (3) is fuzzier. However, this need not be an
irremediable defect of this definition. In fact, this only implies that we cannot
establish once and for all which systems are cognitive and which are not. This
determination instead depends on the specific case we are studying, and it might
even include sociological or ideological factors. What we know is that, among all
possible dynamical systems, some systems are relevant for cognitive science and

that, as cognitive scientists, we should exclusively focus on those systems which

" Let me explicitly say that by a "cognitive system” | intend a deterministic cognitive system.
| exclude indeterministic systems, not because | think that no stochastic systemn is cognitive but,
rather, because | do not know how to precisely define, in a sufficiently generat way, the class of
the indeterministic dynamical systems.

8 Condition {1) has a definite meaning, for "x is a dynamical system" is a set theoretical
predicate. Condition (2) involves two predicates: "x is a physical system” and "x realizes y'. | have
given a set theoretical definition of the realization relation in chapter 1 {see def. 6}, and { take the
meaning of "x is a physical system” to be sufficiently clear for our present purposes. What | intend
is any system (concrete or abstract) which might be an object of physical study.
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are realized by physical systems and have cognitive abilities. Obviously, we must
give reasons for taking a specific dynamical system to have cognitive abilities.
Nevertheless, establishing this fact is a genuine scientific discovery which is
assessed by the cognitive community itseif.

Furthermore, even if it is not possible to explicitly define the predicate "x is a
cognitive ability of ©”, we can nonetheless give a necessary condition. In fact, |
am proposing to think of cognition in essentially dynamical terms. Therefore, it is
quite natural to require that the cognitive abilities of a system be a subset of its
dynamical properties. A dynamical property is, by definition, any property of a
dynamical system which is shared by all the dynamical systems isomorphic to that

system. Thatis, xis a dynamical property of z iff: m is a dynamical system, = has

property x and, for any system n* such that = is isomorphic to «*, =" has
property x. Therefore, if a system n has cognitive abilities, and its cognitive
abilities are a subset of its dynamical properties, then n is a dynamical system, and
any dynamical system which is isomorphic to it must have exactly the same
cognitive abilities. Let me express this necessary condition on cognitive abilities

in the form of a postulate:

Postulate 1 (cognitive abilities are dynamical properties)

If x is a cognitive ability of &, then x is a dynamical property of n*,

% This condition on cognitive abifities may seem too restrictive. It is in fact possible to think
of a cognitive ability x of a dynamical system n, which does not exclusively depend on the
dynamical structure of w,, but also on some further structure that the system has. Then, a second
dynamicat system n, which is isomorphic to n, but does not have this further structure, would not
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6.2 Cognitive studies as dynamical studies

My methodological proposal, then, consists in thinking of cognitive science as
a special branch of dynamics. This means that the goal of each specific cognitive
study is to produce a dynamical explanation’® of a particular cognitive system.
We have seen in chapter 3 that, in general, a dynamical explanation of a system
or process consists in specifying a dynamical modefl” of that system. Therefore,
each specific cognitive study can alsc be thought as the attempt to specify a
dynamical model of a cognitive system. Let me now make explicit the general
picture of a cognitive study which this proposal implies.

According to this view, the first step of a cognitive study consists in specifying
a dynamical mode! of a certain type. The particular form of this model, and the
methods which lead to its specification, may be quite different from the forms and
methods of other sciences, but there is an important identity in the underlying
logical structure.  For example, some of these dynamical models are
computational, for they are specified by means of computer programs. Others

consist of neural networks, which are specified by their connections, weights, and

have cognitive ability x. However, this situation can always be interpreted as follows. In the first
place, x is not a cognitive ability of x,, for it is not one of its dynamical properies. In the second
place, the cognitive ability of r, is instead the property x* defined by: n has property X’ just in case
there is a dynamical system rr* such that rr* is isomorphic to n and =* has property x. The propenty
X" thus is a dynamical property of &, for (1} r, is isomortphic to itself, and 7, has property x; (ii} for
any system r, isomorphic to 7y, there is a system isomorphic to it, namely =, which has propenty x.

® See ch. 3, sec. 3 and, in particular, def. 7.
" See ch. 3, sec. 2 and, in particular, def, 2 and def. 4.
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by the input-output characteristics of each constitutive unit”?. It can be shown
that all these models are dynamical models in exactly the same sense as, for
instance, mechanical models are”™. The main methodological difference between
cognitive science and other natural sciences is that, at the moment, there is no
dynamical theory’* which subsumes all (most of) the models of this science. This
might be a historical contingency, but it is also possible that, due to the particular
character of cognitive models, a highly general dynamical theory is redundant or
impractical. In other words, it might be possible that cognitive science can
efficiently specify its dynamical medels without explicitly formulating theoretical
principles™ of high generality.

The second step of a cognitive study consists in showing that the dynamical
model we have specified is in fact a model of the system which we want fo

explain. in other words, we must produce a justification for the specific hypothesis

2 Some, but not all, connectionist networks are computational systems. It thus follows that
some connectionist models are not computational. Other cognitive models which are not
computational are those specified by systems of differential equations.

% For example, it is not difficult to show that EPAM (Feigenbaum'’s classic program which
learns non-sense syllables, 1959, 1963) specifies a dynamical model. The proof of this fact,
however, is iong and it involves some technicalities. { plan o add the detailed analysis of this and
other cases to an enlarged version of this dissertation. In general, cognitive models produce a
temporal series of outputs., Each output can thus be thought as a value of the observable
magnitude(s) of the model.

" See ch. 3, sec. 4 and, in particular, def. 10.

™ Theoretical principies are hypotheses of a special form. See def. 8 of ch. 3 for the analysis
of this form. Intuitively, a theoretical principle expresses the time evolution function of a type of
magnitude as a mathematical function of the time evolution functions of other types of magnitude.
As a typical example think of the second principle of dynamics: A{t) = F(t) / M(1), where A{t), F(t),
and M(} are, respectively, the time evolution functions of the acceleration, total force, and mass
of an arbitrary body.
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"P is a dynamical model of y", where v is the system or process we study, and P
is the dynamical model which we have specified. We have seen in chapter 3 (sec.
2.3) that, if y is a concrete system, the first step of this justification consists in
showing that P is an empirically adequate model of y. This means that the time
evolution faws of all the observable magnitudes of the model P must be consistent
with all the (possible} measurements of those magnitudes. If this condition is
satisfied, we may then be able to justify also the stronger hypothesis "P is a
dynamical model of y", for instance by producing further arguments which can be
analyzed along the lines proposed by Giere (1985, 1588).

The third step of a cognitive study consists in showing that the concrete system
v for which we have specified a dynamical model P is in fact a cognitive system.
This means that we must justify the three hypotheses: (1) v is a dynamical
system; (2) there is a physical system ¢ such that ¢ realizes v; (3) there is x such
that x is a cognitive ability of y. Hypothesis {1) follows from "P is a dynamical
model of y"'® so that, if this hypothesis is justified, then also (1) is. Hypothesis
(2), on the other hand, follows from the fact that y is a concrete dynamical

system’’. Therefore, we need only justify hypothesis (3). This can be obtained

7% See ch. 3, def. 4. This definition states that P is a dynamical model of vy just in case y is
isomorphic to the dynamical system y(F) generated by the model P. Since this isomorphism is
an isomorphism between dynamical systems, this entails that v is a dynamical system.

| take & physical systemto be any system or process which might be an object of physical
study. Therefore, some, but not afl, physical systems are concrete systems. | take concrefe
systems to satisfy the following conditions. First, | assume that there are basic concrete systems,
and that all basic concrete systems are physical systems. Second, a system y is concrete iff
is a basic concrete systern, or there is some basic concrete system which realizes y. It thus
follows that any concrete system is realized by some physical system. The analysis of the
realization relation is in ch. 1, def. 5 and def. 8. This relation is reflexive and transitive.
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by showing that the dynamical system y(P) generated by the dynamical model P
has some cognitive ability x. In fact, by postulate 1, the cognitive ability x is a
dynamical property of y(P). Furthermore, since Pis a dynamical model of y, w(P)
is isomorphic to v, so that w(P) and w must have the same dynamical properties.
Therefore, if w(P) has cognitive ability x, then also y must have this cognitive
ability. A standard method for showing that w(P) has cognitive abilities is by
producing a computer simulation of the dynamical system y(F), and by then using
this simulation to perform cognitive tasks™,

Finally, the fourth step of a cognitive study consists in producing a detailed
account of the cognitive abilities which the system y has. In the first place, since
v and the system y(P) generated by the model P have the same cognitive
abilities, this probiem reduces to understanding the specific nature of the cognitive
abilities of y(P). In the second place, since cognitive abilities are properties of a
dynamical system, a complete account of their nature is very likely to involve the

explicit use of methods and concepts from dynamical system theory.

6.3 The symbolic, the connectionist, and the dynamical approach
Before concluding this section, let me briefly outline the relationships between

my methodological proposal and the two main research programs in cognitive

8 By a "simulation of a dynamical system" | intend a second system which approximates, but
does not exactly reproduce, the state-space evolutions of the first system. This concept should
thus be distinguished from both the emulation and realization relations, which instead express the
idea of a system which is capable of exactly reproducing any possible evolution of another system.
The emuiation relation is a generalization of the concept of isomorphism, and it is a special case
of the realization relation. See ch. 1, def. 2, def. 4, def. 5, and def. 6.
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science -- the symbolic, and the connectionist approach. The symbolic approach
(Newell and Simon, Pylyshyn, etc.) maintains that cognitive systems are included
in a proper subclass of the computational systems. This subclass can be
intuitively characterized as the class of all those computational systems which,
somehow, operate like Turing machines. However, computational systems also
include other dynamical systems which the symbolic approach has neglected:
cellular automata, certain types of neural networks, etc. Perhaps, we could
intuitively characterize this class of *forgotten computational systems’ as the class
of parallel computers. What characterizes these systems is that they are not more
powerful than Turing machines, but their way of functioning clearly differs {(in some
sense which can be made precise in each specific case) from Turing machines.
Some of these non-standard computational systems are certainly relevant to the
study of cognition, and should therefore be considered as possible objects of
cognitive studies.

The connectionist approach identifies cognitive systems with a certain class of
neural networks. This class intersects, but is not included in, the class of the
computational systems. Computational neural networks include some of the
computational systems *forgotten' by the symboiic approach. All connectionist
networks are dynamical systems but, with a few exceptions™, the methodological
implications of this fact have not been explicitly recognized.

Finally, the dynamical approach which | propose is characterized by three basic

™ See, for example, Smolensky (1988).
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features: (a) the explicit recognition of the dynamical character of cognition; (b) the
disposition to apply methods and concepts from dynamical system theory to the
study of ‘the mental’; (c) the disposition to expiore the whole space of the
dynamical systems in order to locate and map the region of the cognitive systems.
Therefore, this approach is the methodological framework which best aliows for a

plurality of empirical studies within a unified theoretical perspective.
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7. Towards a dynamical theory of minds

In this final section, | will briefly discuss some implications of the dynamical
approach for a theory of minds. | have proposed in the previous section to identify
the object of cognitive science with the class of the cognitive systems, and we
have seen that all cognitive systems have cognitive abilities. However, this
condition is obviously not sufficient for a system to be a mind. | believe that minds
are a special type of cognitive systems which satisfy at least four more properties:
(1) are realized by concrete physical systems; (2) have intentional states; {3) have
conscious states; (4) are cognitively universaf®. We should then ask whether a
dynamical theory of minds®' can in principle explain these four properties. The
thesis | want to defend is that it can, and that these explanations are at least as
good as those provided by the information processing theory of the mind. In fact
they are superior, for they do not presuppose the computational character of
minds, but only the weaker hypothesis that minds are dynarnical systems realized
by concrete physical systems.

| take ali four conditions which { have listed above to be uncontroversial for any
materialistic theory of minds. Conditions (2), (3), and (4) are so general that they
should follow from any theory of minds, a fortioriby a materialistic one. Condition

(1) affirms that minds are systems realized by concrete physical systems, and this

& By "cognitive universality" | mean the property of having many and differentiated cognitive
abilities, which allow a system to appropriately perform in a vast range of tasks or situations.

# By a "dynamical theory of minds", | do not intend a dynamical theory in the technical sense

which | have defined in ch. 3 {sec. 4.3, def. 11). Rather, | intend any conception of minds which
accepts the hypothesis: minds are dynamical systems realized by concrete physical systems.
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is just another way to express the basic materialistic intuition that minds cannot be
independent from matter. | have formulated this condition in a very general way,
so that it is consistent with both functionalism and the identity theory. In fact,
functionalism can in general be characterized as stating (1) together with the
further assumption that minds are not physical systems. The identity theory, on
the other hand, affirms that minds are concrete physical systems, and this
obviously entails (1), for the realization relation is reflexive®.

Let us now see how a dynamical theory of minds can in principle explain these
four properties. The basic assumption of this theory is that minds are dynamical
systems realized by concrete physical systems. Therefore, condition (1) obviously
follows from this hypothesis. Furthermore, we have seen (sec. 3) that the
identification of the mind with a dynamical system allows us to explain in an
objective and precise manner the nature of the relation between the mind and the
underlying physical structure: as far as dynamical systems are concerned, a
system S, realizes a second system S, just in case the states of S, correspond to
sets of states of S, and an arbitrary transition between two states of 5, is mirrored
by a transition between two states of S, which belong to the two sets which
correspond to the two states of 3.

As for the intentionality of mental states, we have seen in sec. 2.3 how the

information processing theory of the mind can in principle solve this problem:

% | take reflexivity to be a basic condition which the realization relation between two systems
of any kind must satisfy. A second basic condition is transitivity. | have proved that the realization
relation between dynamical systems is reflexive and transitive (see. ch. 1, th. 8}.
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(i the hypothesis that the mind is a computational system realized by a concrete
physical system entails that all mental states have intensions; (i} this hypothesis,
together with a causal theory of reference®, entails that (some) mental states
have referential content. In fact, the second conclusion does not depend on the
premise that the mind is a computational system, but only on the two weaker
assumptions: (a) the mind is a dynamical system realized by a concrete physical
system; (b} mental states have parts or components. Therefore, as far as the
problem of the referential content of mental states is concerned, the solution which
| have sketched in sec. 2.3 for the information processing theory of the mind is
also valid for any dynamical theory of minds which entails (b).

We are thus left with the problem of the intension of mental states. We have
seen (sec. 2.1) that the information processing theory of the mind can solve this
problem because it takes the mind to be a computational system. All these
systems can be identified with a special type of theory, and mental states turn out
to be exactly the theorems of this theory. It thus follows that any mental state has
an intension, namely the set of all (other) mental states which can be deduced
from it®*. Now, if we are willing to slightly stretch the concept of a theory, we can
generalize this solution to any dynamical system. From an abstract point of view,
a theory is usually defined as a structure <S T C>, where S is a non-empty set

whose elements are the sentences of the theory, T ¢ Sis the set of its theorems,

% See condition [2] of sec 2.3.

® Recall that | have proposed to identify the intension of a sentence (and in particular of a
theorem) with the set of all sentences which follow from it.

298



and C: P(S} --> P(S) is a function whose domain and codomain P(S5) is the set of
all subsets of S. This function expresses the concept of logical consequence, so
that it must have a certain number of properties which are satisfied by all the
concrete concepts of logical consequence which the abstract definition is intended
to describe. The most basic of these conditions is that the set T of all theorems
be closed with respect to C, that is, if C(T) is the set of all consequences of T, then
C(T) ¢ T. A second basic requirement is that any set of sentences be included in
its consequence class, that is, X ¢ C(X) for any X < S. It thus follows that, for any
theory, T = C(T).

If we are willing to call a theory any structure <S T C> which satisfies these
two basic conditions, then any dynamical system <T M {¢'}> generates a theory.
in fact, take S= T =M and, for any X c §, define C(X} = {y: g'(x) = y for some
xe X, andte T}. Then, C(T) c T, and X ¢ C(S5). We thus see that any state of
a dynamical system is also a theorem of the theory generated by that system.
Therefore, any state z € M has an intension which is equai to the consequence
class C{{z}) = the orbit of z. Finally, if we identify the mind with a dynamical
system, any mental state is a state of this system, so that it has an intension which
is equal to the orbit of that state in the mind’s phase space.

We must now turn to the property of having conscious states. We have seen
in sec. 4 that, according to the information processing theory of the mind,
conscious states are sets of mental states, and that they correspond to sets of

physical states. These conclusions do not in fact depend on the hypothesis that
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the mind is a computational system realized by a concrete physical system, but
only on the weaker premise that the mind is a dynamical system realized by a
concrete physical system. Therefore, they are also valid for any dynamicaltheory
of minds. This premise however, does not entail that minds have conscious
states™. It only implies that, if they do, the nature of conscious states is not
mysterious, for they are just sets of mental states, that is, subsets of the phase
space of a dynamical system. In other words, an arbitrary dynamical theory of
minds can explain the nature of conscious states, but not their existence®.

We have still to consider the property of cognitive universality. As it is well
known, the information processing theory of the mind can provide a very good
explanation of this property. So far, no competiter has even come close to match
this explanation, and this is perhaps the strongest reason for thinking of the mind
in computational terms. The proponents of this view take the mind to be a
computational system very similar to a universal computer of the usual kind. This
means that there is a working memory in which both programs and data can be
stored, and that the mind has the capacity of executing any program which is
stored in its memory. Depending on the program which actually is in the working

memory, the mind is able to produce different behaviors. It is thus clear how the

% The same holds for the stronger premise: minds are computational system realized by
concrete physical systems.

% On the other hand, it is obvious that some dynamical theories of minds may also explain the
existence of conscious states. This follows from the fact that the property of having conscious
states is consistent with the hypothesis: minds are dynamical systems realized by concrele physical
systems.
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property of cognitive universality is to be explained. We have only to further
assume that the mind is equipped with a number of different programs, each of
them appropriate for performing a specific task. Depending on the particular
environment or situation, the appropriate program is loaded into the working
memory. Then the mind executes it, thus producing the behavior required by that
situation.

We thus see that, according to this explanation, cognitive universality is a
consequence of computational universality. — The classic example of a
computationally universal system is a universal Turing machine. This machine is
specified in such a way that, when a description of a second Turing machine is
written on its tape, and a description of the initial complete state of this second
machine is also written on the tape, the universal machine will produce in k steps
a tape which contains both the description of the second Turing machine and the
description of its next complete state. Some authors believe that computational
universality can only be achieved by mechanisms which are similar to a universal
Turing machine. In particular, they believe that the presence of a memory which
can be divided in at least two parts is necessary. One part serves to represent the
emulated mechanism (this part is the program), the other part represents the
states through which the emulated mechanism evolves (Newell 1980, 148). The
important point to bear in mind, however, is that this is just one way in which
computational universality can be achieved. A system is computationally universal

just in case it is able to emulate all computational systems. This means that for
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each computational system, there is an injective mapping of its states into the
states of the universal system such that an arbitrary transition between two states
corresponds to a transition between the corresponding states of the universal
system. This does not imply that the states of the universal system have two or
more parts which somehow function as the parts of the tape of a universal Turing
machine. Furthermore, since the emulation relation may hold between two
arbitrary dynamical systems, there are systems which are not computational and,
nonetheless, emulate all computational systems®’.

We should finally recognize an important general fact. The property of
universality is not limited to computational systems, but it is instead shared by a
much wider class of dynamical systems. Intuitively, a dynamical system is
universal if it is able to exactly reproduce the behavior of any system in a given
class. We have seen (ch. 1, def. 4, def. 5, and det. 8} that both the emulation and
the realization relations formaily express the idea of a system which is capable of
exactly reproducing any possible evolution of another system. Therefore, given

a class of dynamical systems X, we can define two concepts of universal system:

8 A simple way of obtaining one of these systems is by constructing a system with continuous
time which ‘mirrors’ a universal Turing machine. Let S, = <T, M, G> be an arbitrary dynamical
system with discrete time (a cascade). Then, there is a dynamical system 5, = <T, M, {g'}> such
that: (i) T, = the real numbers, if T, = integers, or T, = the non-negative real numbers, if T, = the
non-negative integers; {ii} S, emulates S,. Proof: choose M, = {<w x> such that 0 <w < 1 and
x € M,}. Foranyte T, let floort) be the integer obtained by eliminating the decimal part of t.
Let G* be obtained by iterating k times the transition function G of S,, and let G° = identity function
on M,. Define gi{w x) = <(w + 1t - floor{t)} G"™"*"(x)>. Then, by construction, S, is a dynamical
system, and S, emulates S, (hint: identify x with <0 x>, and G with ¢') g.e.d. If, in particular, S,
is a universal Turing machine, then S, emulates all computational systems, for the emulation
relation is transitive. However, S, is not a computational system, for S, has not discrete time, and
its phase space M, is not denumerable.
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a system is E-universal with respect to X just in case it emulates all systems in

1

class X; a system is R-universal with respect to X just in case it realizes all
systems in class X.

The important fact about these concepts is that they are not limited to
computational systems, but they instead apply to arbitrary dynamical systems. It
thus clear how a dynamical theory of minds can explain the property of cognitive
universality. we can just think of this property as a special case of either
E-universality or R-universality. In other words, a system S is cognitively universal
if there is a sufficiently broad class of cognitive systems C such that S is
E-universal with respect to C or S is R-universal with respect to C*,

Finally, let me summarize the main results of this section. The information
processing approach has thought of the mind as a universal computer, partly
because this assumption has seemed necessary for explaining the unrestricted or
universal abilities of the mind. Contrary to this view, | have shown that a
dynamical theory can provide an explanation at least as good: cognitive
universality can be understood as a special case of two very general dynamical
properties®™: E-universality or R-universality. Furthermore, a dynamical theory of

minds can also explain the nature of conscious states, the intentionality of mental

8 1t should be noticed that this is an explanation of the nature of cognitive universality, not of
its existence. If we are interested in this second problem, then an evolutionary explanation
suggests itself: cognitive universality has been selected for because systems with this property
have a high fitness.

8 Since isomorphism is a special case of either the emulation or the realization relation, and
these relations are transitive, any system isomorphic to a E-universal (or R-universal) system is
also E-universal (or R-universal). Therefore, both E-universality and R-universality are dynamical
properties.
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states, and the nature of the relation between the mind and the underlying physical
structure. The hypotheses on which these explanations are based are weaker
than the corresponding hypotheses of the information processing theory. On the
other hand, the accounts that they provide are at least as good. Therefore, if one
of the goals of cognitive science is the construction of a theory of minds, then the

dynamical approach is the most promising one.
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Conclusions

In the penultimate section of chapter 4, | have proposed a new view of the
aims and methods of cognitive science - the dynamical approach. According to
this methodological theory, the object of cognitive science is the set of all cognitive
systems, and the goal of a cognitive study is to produce a dynamical explanation
of a specific cognitive system. The investigations of the previous chapters have
provided the conceptual framework for answering three basic questions which
concern this view: (i) What is a cognitive system? (i) Is the nature of all cognitive
systems computational? (iii) What, exactly, is a dynamical explanation of a
cognitive system?

The answer which | have proposed for the first question is that a cognitive
system is a dynamical system which is realized by a physical system and has
cognitive abilities (ch. 4, def. 1). The analysis of the realization relation (ch. 1, def.
5 and def. 8) gives a definite content to this answer. | have also proposed to think
of cognitive abilities as a subset of the dynamical properties of a cognitive system
(ch. 4, postulate 1), and | have then suggested that a cognitive study should
produce a detailed account of the cognitive abiiities of the specific system it
attempts to explain. Since cognitive abilities are properties of a dynamical system,
a detailed account of their nature is likely to involve the explicit use of methods

and concepts from dynamical system theory.
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The analysis of the concept of a computational system (ch. 1, def. 3, and ch.
2, def. 8) implies that the second question has a negative answer. there are
cognitive systems which are not computational. This is clear once we realize that
any continuous dynamical system’ is not computational, and that many
connectionist networks which have cognitive abilities are continuous dynamical
systems. | believe that other types of continuous systems” may have cognitive
abilities as well. In the last section of chapter 4, | have proposed to think of minds
as a special type of cognitive systems which satisfy at least four further properties:
(1) are realized by concrete physical systems; (2} have intentional states; {3} have
conscious states; (4) are cognitively universal. The question of whether ali minds
are computational systems will ultimately be decided by empirical considerations,
but my guess is that an affirmative answer is quite unlikely.

Finally, since all cognitive systems are dynamical systems, the answer to the
third question is provided by the analysis of a dynamical explanation which | have
developed in chapter 3 (def. 7). According to this view, a dynamical explanation
consists in specifying a dynamical modef (ch. 3, def. 2 and def. 4) of the system
or process which we want to explain. An important consequence of this view is
that it does not limit a-priori the form of the dynamical models which can be

considered by cognitive science. For example, some of these models are

' By a "continuous dynamical system" | mean a dynamical system <T M {g'}> such that at least
one of the following conditions is satisfied: (i) the time T of the system is the set of the real
numbers (or the set of the non-negative reals); (if) the phase space M is not denumerable.

? For instance, systems specified by differential equations.
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computational, for they are specified by means of computer programs. Others
consist of neural networks, which are specified by their connections, weights, and
by the input-output characteristics of each unit. Finally, a third type of models are
those specified by systems of differential equations. It thus follows that the
dynamical approach which | propose is the methodological framework which best

allows for a plurality of empirical studies within a unified theoretical perspective.
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