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A logic and semantics for imperatives

Ian Williams Goddard

iamgoddard at yahoo.com

Truth is undefined for imperative statements. However, if imperatives implicitly
reference a fact, they can be rephrased as truth-valuable declaratives explicitly
referencing that fact. But are there such facts? Kenny held that any imperative
references a set of wishes held by its imperator. I extend his thesis by proposing
that imperator wishes are facts implicitly referenced by imperatives and explicitly
referencing them yields semantically isomorphic declaratives. I implement this
thesis with modal operators for wants and cause with which declarative schemata
are formed to automate translation of imperatives into semantically isomorphic
declaratives called proxy-imperatives. The proxy-imperatives match imperative
behavior and provide semantic validation of imperative arguments thereby
integrating imperative reasoning into classic truth-valuable logic.

1. Introduction

1.1 The problem

Formal semantics defines criteria for evaluating the truth of declarative statements with
respect to domains of discourse. However, imperative statements like “Shut the door!”
are not obviously true or false in any domain and therefore fall outside the realm of truth-
valuable statements. Without truth values imperative arguments cannot be shown to be
truth preserving, or semantically valid, even if they are intuitively valid. As such, it is
held that imperative arguments, which form a large body of everyday arguments, fall
outside the scope of formal logical reasoning. This paper proposes to bring them in scope.

1.2 The path followed

Given their lack of truth values, proposed imperative logics often define alternatives to
truth. An important example is Anthony Kenny’s substitution of being satisfactory in
place of being frue. An imperative is satisfactory just in case obeying it will satisfy the
wishes an imperator intends to express. So for example, if I want someone to close the
door, the statement “Shut the door!” is satisfactory because its fulfillment by a listener
will make my wish come true. Given this alternative to truth, Kenny proposed that just as
the goal of classical declarative logic is to preserve truth, the goal of an imperative logic
should be to preserve wishes from assumptions to conclusions in imperative
argumentation.
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Kenny’s wish-preserving criterion is intuitive. For example, from “Shut the
door!” one should not expect it to be possible to infer any imperative that upon obeying
keeps the door open. This gives us important insight into both what we want an
imperative logic to do and what imperatives are. Even Kenny’s critics didn’t dispute his
wish-preserving criterion but faulted his logic instead for its failure to actually preserve
wishes.®® But for us here, what matters is Kenny’s insight that an imperative denotes a
set of wishes -- an insight we’ll implement explicitly. We’ll avoid the problems raised
against his logic by relying on classic truth values acquired by translating imperatives
into truth-valuable declaratives that directly reference the contents of an imperator’s set
of wishes.

Translating imperatives into declaratives to express their meaning is not new. For
example, H. G. Bohnert proposed: “There exists a set of grammatically declarative
sentences which can be put in one-to-one correspondence with commands.” He posited
such a mapping wherein any command A can be translated into a declarative of the form
Either obey A or else M will happen, where M is a motivating factor intended to compel
compliance. ¥ R. M. Hare also explored this approach, noting that for any declarative
describing an event, “we can frame a corresponding imperative sentence commanding
that event to happen.” ©"® In contrast, I simply propose that declaratives denoting what
an imperator wants are the most suitable declarative translations for imperatives.

2 The wants premise

Kenny’s premise that an imperative expresses an imperator’s wish for a goal state is my
premise too. By this premise, what an imperator means is what the imperator (or anyone
compelling them to speak) wants. This is the natural interpretation of imperatives. If you
are told “Do it!” you assume someone wants you to ‘do it’, otherwise the statement is not
a true command. So we shall define declaratives that express the meaning of imperatives
such that the declaratives are frue just in case an imperator actually wants done what his
or her imperative instructs listeners to do. Such imperatives are said to be sincere.

It should be noted that Hare has observed that imperatives can be translated into
declaratives denoting what an imperator wants such that “Shut the door” means the same
as “I want you to shut the door.” "’ But he built no analysis from that. Figure 1 below
illustrates the concept underlying my thesis that shall be rigorously implemented.



semantically isomorphic domain of discourse

4 N
Statemeﬁts / . \ / possible \
& Wishesoa Changes..B
A~ “Close the door!” B 1. door closed '
“A wants B to close >l @ » 1. close door
the door.” : .
Y, “ : g\ : 7
o J

Figure 1. Thesis: for any imperative there’s a semantically isomorphic declarative that
explicitly references an imperator’s wish for a listener-caused change (2) that makes a
primary wish (1) true.

To flash forward briefly, the semantic structure in Figure 1 shall be explicitly
implemented with modal operators that denote Wishes and possible Changes above.
Given a set of conceivable states of affairs S = {r, s, ¢, ... }, Wishes maps members of a
set of agents A = {ay, ..., a,} to members of the power set of the cross-product of S,

9 (SxS), whose members are sets of state pairs. So for example, suppose for simplicity
that Wishes(a;) = {(s, u)}, then the set of wishes of agent a; contains one wish (s, ) that
means: in state s agent a; wants state u. Changes shares the same structure except that if
Changes(ai) = {(s, u)}, then (s, #) means: in state s agent a;, can cause state u. This
semantic structure is illustrated below in Figure 2 showing a subset tree of #(SxS).

P(SxS)

Wishes Changes

Wishes(a,), ... , Wishes(a,) Changes(a,), ... ,Changes(a,)

Figure 2. A subset tree of P(SxS) forms a modal frame used to formally implement the

conceptual semantics seen in Figure 1. Wishes and Changes form subsets of 9 (SxS) that

contain sets of state pairs where each set represents an agent’s wants or state-transitions

agents can cause. The arrow in Figure 2 replicates the arrow in Figure 1 (except agents

A and B there are here a, and a, respectively). The arrow also represents the mapping of
the proxy imperatives we’ll define with Wishes and Changes.



The objection might be raised that wanting is a mental state, and mental states are
not properly objects of formal logic. However, epistemic modal logic defines operators
for knowledge, and knowing is also a mental state. So it’s not the case that mental states
are not objects of formal logic. Now, let’s define a language to implement the wants
thesis.

2.1 A proxy-imperative language L

The language L defines agent-specific modal operators for wants and cause. L is similar
in construction to epistemic logics. For example, Fagin et al.® define knowledge
operators indexed to intelligent agents such that for n agents there are K, ... , K,
operators where each K; means “Agent i knows” and so K;p means “Agent i knows ¢”
where @ is a proposition variable. We’ll also define modal wants and cause operators that
are specific to agents. Let us then begin with a generative grammar for L.

DEFINITION 1 (language L). Given a vocabulary = (P, N, U, B, M, A) composed of six
sets of atomic propositions P = {p, p', ...}, names N = {ny, ... , n,}, unary connectives
U = {—}, binary connectives B = {—, A, v}, modalities M = {[{o], {(®), [c], {c)}, and
auxiliary symbols { (,) } the formulae of L form the smallest set F such that:

1.Ifp € P, thenp € F.

2.If ¢ € F, then —¢ € F.

3.Ifo e B,and ¢, y € F, then (p o y) € F.

4. If [¢],(s) € M, n € N, and ¢ € F, then [«¢]n(), (s)n(p) € F.
The syntactic structure for the proxy-imperatives we’ll define appears in 1.4 above. The
o modality means wants and the ¢ modality means cause, which in Greek would be the
leipeic and aitic modalities respectively. Each type « has two modes, one mode [e]
expresses necessity and the other (o) possibility. Accordingly, these modes shall have
these preferred English interpretations (where ¢ is an arbitrary formula in F):

1. [o]n(p) reads: n must have @.

2. {oyn(e) reads: n accepts .

3. [c]n(@) reads: n must cause .

4. (c)n() reads: n can cause .

Other translations are possible. Instead of ‘must have’ in mode 1 above we could say
‘requires’. As for mode 2 above, ‘accepts’ may in some cases be replaced with ‘likes’,
and so ‘loves’ might replace ‘must have’ in mode 1 since /ikes and loves reflect weaker
and stronger modes of wanting. A number of English terms point in similar directions
and could be chosen to describe specific situations in various domains of discourse.



Both wants and cause modalities have classic modal negation transformations
with intuitive translations (left as an exercise for curious readers).

[s]n(9) <& —()n(=0) (On(@) < =[s]n(—=9)
[e]n(=0) = —()n(p) (On(=p) < —[e]n()

So for example, (s)n(—) is the negation-normal form of —[«]n(¢), and each can replace
the other due to their equivalence. Now we introduce the proxy-imperative schemata.

2.2 Proxy-imperative schemata
From the modes of wants and cause the proxy-imperative schemata are formed:

1. [o]n[c]n'(¢) reads: n must have it that n' must cause @.
2. [o]n{c)n'(p) reads: n must have it that n' can cause @.
3. {wyn[c]n'(@) reads: n accepts that n' must cause .

4. (oyn{c)n'(p) reads: n accepts that n' can cause @.

These are the statement schemata we’ll use for proxy-imperatives. It’s essential to note
that they do not denote imperative statements but rather facts that hold true about any
imperator. The proxy-imperatives denote preconditions for the utterance of imperatives
that also hold true concurrently with imperative utterance. Proxy-imperatives can be true
even if no imperative is uttered. To denote in our translations that the utterance of an
imperative has occurred, ‘must have it’ in 1 above may be replaced with ‘demands’ or
‘commands’. And ‘asks’ or ‘requests’ may replace ‘accepts’ in 3 and 4. Not expressly
denoting an utterance, ‘allows’ or ‘permits’ may also replace ‘accepts’. Many English
terms point in similar directions.

Schema 1 denotes conditions underlying the strongest imperatives, commands,
which denote the highest degree of wanting and of necessity of compliance. On the
opposite end, schema 4 models requests, the least urgent and most polite imperatives
like: “If possible, please pick up some milk after work,” or “Could you please pass the
salt?” The four proxy-imperative schemata can cover a wide range of imperative
statements.

L AXIOMS: for all [¢], (s) € M, all n, n’ € N, and any ¢ € F we accept as true:
L. [e]n(p) = ()n(¢)
2. [o]n[c]n'(9) = ()n(p)

In the case of wants (®), Axiom 1 says: if n must have @, then n accepts ¢. Obviously, if |
must win, I’ll accept winning. For cause, Axiom 1 says: if n must cause ¢, then n may



cause @. These are both not only intuitive but Axiom 1 also prevents vacuous truth for
the necessary modes in our semantics, as we shall see shortly. Axiom 2 says: if n must

have it that ' must cause @, then n accepts ¢. Axiom 2 says all imperatives are sincere.

2.3 Proxy-imperative behavior

Now we’ll compare proxy-imperatives with real imperatives. First, observe that because
the minimal mode of wanting (®) denotes what is acceptable, a negated proxy-imperative
command is not a model for a contrary command but instead for contrary permission.

—lolnfc]n'(9) = (@)n{c)n'(=¢)

It’s not the case that n demands n' must cause ¢ = n accepts that n' may cause not-¢

That equivalence implies that the negation of “Shut the door!” is not the contrary
command “Don’t shut the door!” but the contrary permit: “You may leave the door
open.” So according to the proxy-imperatives of L, a negated command repeals the
command and permits contrary behavior. This in fact matches natural commands of
which public laws are canonical. Take for example the military draft. What happens
when we repeal a command by a leader that any man, let’s say Jon, must enlist? Let’s see
(the proposition p that’s commanded to be made true is ‘Jon is enlisted.”)

(a) [w]leader|[cljon(‘Jon is enlisted.”)

Reads: The leader commands that Jon must enlist.

So the negation of command a above is by negation normalization b, c, and d:

(b) —[w]leader|[c]jon(‘Jon is enlisted.”)

Reads: It’s not the case that the leader commands that Jon must enlist.

(c) (wyleader—[cljon(‘Jon is enlisted.”)

Reads: The leader accepts that Jon need not enlist.

(d) (w)leader{c)jon(‘Jon is not enlisted.”)

Reads: The leader accepts that Jon may not enlist.

So according to both our proxy-imperatives and natural intuition, repealing a draft’s
command “Enlist!” does not mean “Don’t enlist!” but rather: “You may not enlist.” (This
intuitive result suggests that there’s an inherent modal structure in imperatives.)
Obviously no person who understands the repeal of a draft would fear arrest for enlisting
as he or she would not interpret its negation as a command against enlisting. The example
above shows that natural language and intuition behave like the proxy-imperatives such
that in both systems a negated command is not a contrary command but contrary
permission.



2.4 A proxy-imperative semantics

And now let’s explore the meaning, or semantics, of L and its proxy-imperatives. We do
that with a model for L that defines a frame of objects and relations between them from
which domains of discourse can be built and in which, by way of an interpretation, the
statements of L have their meaning. Here then is such a model for L.

DEFINITION 2 (model). A model for language L is M = (S, A, Wishes, Changes, a, V)
where (S, A, Wishes, Changes) is a domain frame and (o, V) is an interpretation for L:

1. S is a non-empty set of conceivable states of affairs: S = {s, s',s", ... }.
2. A is a non-empty set of intelligent agents: A = {a,, ..., a,}.

3. Wishes : A — P(SxS) assigns to each agent a set of wishes in P(SxS)
containing state pairs such that if (s, s") € Wishes(a), then in state s agent a wants
state s'.

4. Changes : A — P(SxS) assigns to each agent a set of causable state transitions
in $(SxS) such that if (s, s") € Changes(a), then in state s agent a can cause s'.

5. a: N — A assigns names to agents such that o(n) is the agent named 7.

6.V : P — @(S) is a valuation function that assigns to each L proposition a set of
states such that if V(p) = {s, "}, then proposition p holds true in states s and s'.

The L frame requires a wider set of states to draw from than an alethic frame because
wanting casts a wider net over states than alethic possibility given that one can want the
impossible. For example, you could want to be as big as a mountain or to travel in time,
but such conceivable states are not possible states. So in the L frame the set of states S
contains conceivable states that may be impossible but still wantable. On the other hand,
Changes does assign access relations to agents. For alla € A and all s, s" € S, if (s, §') €
Changes(a), then state s’ is possible from state s, and perhaps because agent a can cause
s'. Conceivable states are plausibly infinite and possible states are a proper subset of S.

2.5 defines a name-assignment function a such that for any name n € N, ou(n) is
the intelligent agent named 7 in the domain of discourse.”’ If for any agent « € A we
have it that a = a(n), then Wishes(a) = Wishes(a(#)). So we may represent the arbitrary
agent by either a or a(n), and we use a(#n) in Definition 3 below. Definitions 2.3 and 2.4
above are foundational to my imperative thesis and follow standard modal definitional
structure with the exception that they serve to model modes of wanting and causability
respectively rather than alethic possibility, deontic obligation, or epistemic knowing.

DEFINITION 3 (semantics). Given L model M, the truth conditions in any state s € S are
(where (s) = ¢ is read: in state s, @ is true):



1. (s)=piffs € V(p).

2. (s) = -0 iff (s) = .

3.9)E=0 > vyiff (s)=@or(s)=y.

4. ()= Ay iff (s)= @ and (s) = .

5.80)=0vvyiff(s)=oor(s)=y.

6. (s) = [w]n(o) iff for all s" € S, if (s, s") € Wishes(an)), then (s") = ¢.

7. (s)={wyn(o) iff foras’ € S, (s, s") € Wishes(a(n)) and (s") = ¢.

8. (s) = [c]n(o) iff for all 5" € S, if (s, s") € Changes(au(n)), then (s') = .

9. (s)={cyn(p) iff foras’' € S, (s, s") € Changes(a(n)) and (s") = o.
By Axiom 1, in any L-model M, if (s) = [®]n(@), then (s) = (@)n(e). So by Definitions
3.6 and 3.7, every agent wants at least one conceivable state. Otherwise, [®]n(¢) can be
vacuously true by Definition 3.6 when agent a(n) wants no state. This serial condition
also blocks vacuous truth in alethic modal logic and applies to the cause modality such

that every agent can cause at lest one state. Axiom 1 is intuitively valid as well. !'*
Definitions 3.6 through 3.9 are unique and implement my thesis.

Definitions for the proxy-imperatives follow directly from Definitions 3.6 through
3.9. However, it’s worth presenting them explicitly. They are for brevity presented in
meta-logic rather than the meta-language of English used for Definitions 3.6 - 3.9.

DEFINITION 3 (amendment - proxy-imperative definitions)

10. (s) = [o]n[c]n'(9) if:
Vs'Vs"[ ((s,s") € Wishes(au(n)) A (s', s") € Changes(a(n')) ) = (") = o |

11. () = [0]n{c)n'(¢) iff:
Vs'[ (s, s") € Wishes(ou(n)) = 35" ( (s", s'") € Changes(ou(n')) A (s") =) ]

12. (s) = (o)n[c]n'(¢) iff:
3s'[ (s, s") € Wishes(a(n)) A Vs"'((s', s'") € Changes(a(n')) = (s")=¢ ) ]

13. (s) = (@yn{c)n'(9) iff:
ds'3s"[ (s, s") € Wishes(a(n)) A (s, s') € Changes(aun')) A (") =) ]

Figure 3 below extends Figure 2 by articulating the mapping on $(SxS) that builds the
proxy-imperatives. Each proxy-imperative for some imperator agent a(n) explicitly
denotes the set Wishes(au(r)) which is that agent’s set of wishes. This is an explicit
implementation of Kenny’s thesis that an imperative denotes its imperator’s set of



wishes, but we extend from his thesis by adding the cause modes that conjoin with the
wants modes to form the proxy-imperatives as part of what is wanted is a change or null-

change.

P(SXS)

Wishes Changes

Wishes(a)), ... , Wishes(a,) Changes(a,), ... ,Changes(a,)

EP(SXS‘XS xS)

proxy-imperatives

proxy-imperatives(a,) , ... , proxy-imperatives(a,)

(s,r,r, 1)

Figure 3 the subset tree of SxS branches into subsets Wishes and Changes, each divided
into subsets, one for each agent o(n). Implementing the concept shown previously in
Figure 1, here we have an example of agent a(n,) in state s wanting agent on,) in state r
to cause state t. The resulting mapping to and from SxS forms a subset of (SxS)x(SxS)
called proxy-imperatives which is divided above into subsets each of which contains
state-quintuples that are preconditions for specific imperatives an agent may utter.

3 By proxy semantic validation of imperative argument

Now we put our proxy-imperatives to work to provide semantic proofs by proxy for
imperative arguments. We assume that any meaningful imperative has an imperator and
thus that there is at least one agent who wants it obeyed and whose name is i. Below, a



natural-language imperative argument appears on the left (steps 1a, 2a, and 3a) and its
translation into L appears on the right (steps 1b, 2b, and 3b). Assume for this argument
that proposition p = ‘You see Jesse’ and g = ‘The police are notified’.

la. If you see Jesse, call the police! 1b. p > [w]i[c]n(q)
2a. You see Jesse. 2b. p
3a. Call the police! 3b. [w]i[c]n(q)

PROOF: By 1b we assume that in model M, (s) = p — [o]i[c]n(g). By Definitions 3.1
and 3.10 this means that we accept as true that if state s € V(p), then for all 5", 5" € S, if
(s, s") € Wishes(au(7)) and (s', s"") € Changes(au(n)), then (s’") = g. Now, by 2b we have it
as a fact that state s € V(p); therefore, by assumption 1b and Definition 3.10 we also
have it as a fact that for all conceivable states s" and s”', if agent o(7) wants state s’ and in
state s" agent ou(n) must cause state s”, then in state s'' proposition q is true, which is to
say by Definition 3.10 again that we have it as a truth that: (s) = [w]i[c]n(q).

Since perhaps most imperative arguments can be expressed in modus-ponens form
as above, and because the proxy-imperatives are declaratives, it’s trivial that we can
provide semantic validation for any number of proxy-imperative translations of
imperative arguments in the way shown above. So there’s no need to belabor the point
that here we have a mechanism of providing by proxy semantic validation of imperative
arguments.

4 Conclusion

The goal of this project has been to understand the semantic structure of natural
imperatives and from such insight build a formal model of imperative semantics that can
integrate imperatives into classical logic. So matching the behavior of natural imperatives
has been both a goal and guide. Following the frequented path of defining alternatives to
truth values in a new kind of logical system used only for imperatives was not an
attractive option. My goal has been to facilitate semantic evaluation of imperatives within
the same semantic machinery used to evaluate declaratives. Such a model of imperatives
would be the simplest model as it only requires preexisting modal-logic infrastructure. |
believe and hope that the proxy-imperatives defined herein, which are declaratives that I
posit as semantically isomorphic to imperatives, may be either a sufficient model of
imperatives that brings them into the scope of classical logic or at least a useful start on
that path.
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(9) Definition 2.5 might seem to add excessive semantic machinery, however, it better
segregates L syntax and semantics. For example, in Fagin et al. the number of modal
operators Kj, ..., K, in the language reflects the number of agents 7 in the domain.” But
the number of modal operators in L syntax is independent of the number of agents in the
domain. This abstracts the L modalities from domains. In natural thought, wanting and
causing, as well as knowing, are concepts we’ve abstracted from our domains of
experience such that we can conceive of them independent of specific instances. And so
in natural language, wants, cause, and knows are atomic operators rather than Adam
wants, Amy wants, ... and so on, per person. For these and other reasons, I feel that the
extra semantic machinery better models natural semantics.

(10) If you must have p, then you’ll certainly accept p. So too, if you must cause p, you
can cause p. The intuitive nature of Axiom 1 holds even in the extreme cases: (1) Even
the most aesthetic Buddhist monk probably, for example, wants at least one thing, such as
to not want anything else. And true non-wanting is classically (where it is held as a goal)
and intuitively associated with the absence of selthood and thus with not being an agent.
(2) Even someone tied up can cause mental states in self or others. But anything that
can’t cause a mental, or cognitive, state, at least in itself, is not intuitively an agent. So it
seems that wanting and being able to cause are intimately associated with being an
intelligent agent, and thus every agent must want at least one state and be able to cause at
least one state as Axiom 1 requires.





