
1 

Language Agents Reduce the Risk of Existential Catastrophe 
 

Simon Goldstein and Cameron Domenico Kirk-Giannini 
 

Forthcoming in AI & Society 
 

[Penultimate Draft — Please Cite Published Version] 
 
Abstract: Recent advances in natural language processing have given rise to a new kind of AI 
architecture: the language agent. By repeatedly calling an LLM to perform a variety of cognitive tasks, 
language agents are able to function autonomously to pursue goals specified in natural language and 
stored in a human-readable format. Because of their architecture, language agents exhibit behavior that is 
predictable according to the laws of folk psychology: they function as though they have desires and 
beliefs, and then make and update plans to pursue their desires given their beliefs. We argue that the rise 
of language agents significantly reduces the probability of an existential catastrophe due to loss of control 
over an AGI. This is because the probability of such an existential catastrophe is proportional to the 
difficulty of aligning AGI systems, and language agents significantly reduce that difficulty. In particular, 
language agents help to resolve three important issues related to aligning AIs: reward misspecification, 
goal misgeneralization, and uninterpretability.  
 
1. Misalignment and Existential Catastrophe 
 
There is a significant chance that artificial general intelligence will be developed in the not-so-distant 
future — by 2070, for example. How likely is it that the advent of AGI will lead to an existential 
catastrophe for humanity? Here it is worth distinguishing between two possibilities: an existential 
catastrophe could result from humans losing control over an AGI system (call this a misalignment 
catastrophe), or an existential catastrophe could result from humans using an AGI system deliberately to 
bring that catastrophe about (call this a malicious actor catastrophe). In what follows, we are interested in 
assessing the probability of a misalignment catastrophe rather than a malicious actor catastrophe. 
 
Carlsmith (2021) helpfully structures discussion of the probability of a misalignment catastrophe around 
six propositions. Since we are interested in the probability of a misalignment catastrophe conditional on 
the development of AGI, we focus our attention on the final four of these propositions, which we 
summarize as follows: 
 

1. Of the following two options, the first will be much more difficult: 
a. Build AGI systems with an acceptably low probability of engaging in power-

seeking behavior. 
b. Build AGI systems that perform similarly but do not have an acceptably low 

probability of engaging in power-seeking behavior. 
2. Some AGI systems will be exposed to inputs which cause them to engage in power-

seeking behavior. 
3. This power-seeking will scale to the point of permanently disempowering humanity. 
4. This disempowerment will constitute an existential catastrophe. 
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Carlsmith assigns a probability of .4 to (1) conditional on the rise of AGI, a probability of .65 to (2) 
conditional on (1) and the rise of AGI, a probability of .4 to (3) conditional on (1), (2), and the rise of 
AGI, and a probability of .95 to (4) conditional on (1-3) and the rise of AGI. This translates into a 
probability of approximately .1 (10%) for a misalignment catastrophe conditional on the rise of AGI.  
 
We believe that the development of a new kind of AI architecture, the language agent, ought to 
significantly decrease assessments of these probabilities. By repeatedly calling an LLM to perform a 
variety of cognitive tasks, language agents are able to function autonomously to pursue goals specified in 
natural language and stored in a human-readable format. We suggest that the development of language 
agents reduces the probability of (1) conditional on the rise of AGI very substantially, the probability of 
(2) conditional on (1) and the rise of AGI moderately, and the probability of (3) conditional on (1), (2), 
and the rise of AGI very substantially. We work through two numerical examples in Section 5; in the 
meantime, suffice it to say that we believe that updating on the rise of language agents should reduce 
rational credences in a misalignment catastrophe conditional on the development of AGI by 
approximately one order of magnitude. 
 
Because language agent architectures have the potential to reduce the risk of a misalignment catastrophe 
in so many ways, and because the machine learning community’s actions in the near future will determine 
how widely deployed language agent architectures are and thus how much of this potential risk reduction 
is realized, we believe that language agents are an underappreciated crux in thinking about existential risk 
related to AI. Priority should be given to further research into the capabilities of language agents and 
further support for the development of AI systems which implement language agent architectures. 
 
Here is our plan for what follows. Section 2 introduces some of the safety concerns about AI systems 
created using deep learning that motivate worries about a misalignment catastrophe. Section 3 describes 
the architecture of language agents in more detail. Section 4 returns to the safety concerns from Section 2 
and explains how language agents help to address them. Section 5 describes the implications of our 
arguments for the probability of a misalignment catastrophe. Section 6 concludes by responding to some 
potential concerns about language agents. 
 
2. Difficulties with Alignment 
 
In deep learning, we train an AI system incorporating an artificial neural network to achieve a goal by 
specifying a mathematical function that encodes the goal (the objective function) and then using a 
learning algorithm to adjust the weights in the network so that the system’s performance comes closer to 
maximizing or minimizing that function. Say that an AI system is fully aligned if it has an acceptably low 
probability of engaging in power-seeking behavior. There are several ways an AI system trained using 
deep learning could end up less than fully aligned. 
 
Reward Misspecification 
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A first challenge is reward misspecification.1 When training an AI, we may experiment with different 
objective functions. In reinforcement learning, the goal is to define a reward function that gives the agent 
a reward for performing actions that produce desired states. In supervised learning, the goal is to define a 
loss function that is minimized when the system performs its task optimally. 
 
The problem is that it is difficult to design a reward or loss function that properly encodes a goal. For 
example, Popov et al. (2017) set out to teach a reinforcement learning agent to stack red Legos on top of 
blue Legos. They tried to capture this goal by rewarding the agent for the height of the bottom of the red 
Lego, since stacked red Legos are higher off the ground than unstacked red Legos. But the agent didn’t 
learn to stack Legos; instead, it learned to flip red Legos over, thus elevating their bottoms without 
stacking them.  
 
To appreciate the difficulty of choosing the right reward function, consider the common reinforcement 
learning practice of reward shaping. Reinforcement learning agents often encounter sparse reward 
functions. If one rewards an agent only when it wins a game, for example, it may have difficulty 
identifying which of its behaviors leading up to that outcome should be repeated in future games. Reward 
shaping solves the problem of sparse reward functions by rewarding the agent for important subgoals on 
the way to achieving its real goal.  
 
But reward shaping can also lead to reward misspecification. For example, Amodei and Clark (2016) 
consider the case of teaching a reinforcement learning agent to play CoastRunners, a game in which the 
player pilots a boat. A human player would immediately recognize that the game designers’ intention is 
for players to race each other around the track. But the reinforcement learning setup rewarded the agent 
with a score for hitting targets along the way. Instead of finishing the race, the AI instead learned how to 
loop the boat in a small lagoon, hitting intermediate targets repeatedly to achieve a high score. Rather 
than rewarding the agent for the final goal, the experimental design rewarded it for intermediate means: 
“the agent was given a shaping reward for hitting green blocks along the racetrack, which changed the 
optimal policy to going in circles and hitting the same green blocks over and over again” (Krakovna et al. 
2020). A reward optimizer can’t see the distinction between intrinsic and instrumental goals: it only 
optimizes for the reward function it has. 
 
Worryingly, reward misspecification is prone to arise in the context of reinforcement learning with human 
feedback (RLHF) (Christiano et al. 2017). Because they optimize for human approval, RLHF agents 
sometimes learn to deceive human assessors. For example, one agent was given the task of grasping a 
ball. It learned to trick human assessors by hovering its arm between the camera and the ball. Similarly, 
Perez et al. (2022) found that large language models trained by RLHF tend to behave sycophantically, 
answering differently depending on what they expect their human users to think.  
 
There is a long list of examples of reward misspecification involving many kinds of AI, many kinds of 
games, and many different types of reward. In section 4, we’ll argue that language agents offer a 
systematic solution to the problem of reward misspecification. 

 
1 The phenomenon we call reward misspecification is sometimes also called “reward hacking” (e.g. by Amodei et al. 
2016), “specification gaming” (e.g. by Shah et al 2022), or, in the context of supervised learning, “outer 
misalignment.” 
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Goal Misgeneralization 
 
Another challenge for alignment is goal misgeneralization (Langosco et al. 2022, Shah et al. 2022).2 Even 
when the objective function for a task has been appropriately specified, an AI system may learn a strategy 
which achieves high performance on that task in some circumstances but not others. ML models are 
trained on data, environments, and problems that can be different from the data, environments, and 
problems to which they are later exposed when they are deployed. When an AI is used in a new context 
that does not resemble the one in which it was trained, we say that this context is out of distribution. In 
cases of goal misgeneralization, the AI succeeds during its training by pursuing a different goal than what 
its designers intended (it learns the wrong rule). This is manifested by decreased performance in out-of-
distribution contexts. 
 
For example, Shah et al. (2022) trained an AI in a “Monster Gridworld.” The intended goal was for the AI 
to collect apples and avoid being attacked by monsters. The AI could also collect shields, which protected 
it from monster attacks. The AI learned to collect shields during training in a monster-rich environment, 
and then entered an out-of-distribution environment with no monsters. In this monster-free setting, the AI 
continued to collect shields. Instead of learning to collect apples and value shields instrumentally as a way 
of avoiding monster attacks, it instead learned to collect both apples and shields.  
 
Goal misgeneralization occurs because different features of the training environment are inevitably 
correlated with one another. Even when the reward function has not been misspecified, whenever a trainer 
ties rewards to one feature, they inevitably also tie reward to the features correlated with it. Two 
particular types of goal misgeneralization are of special interest: errors related to means-end reasoning 
and errors related to inductive bias.  
 
Let’s start with errors related to means-end reasoning.3 When an agent is rewarded for pursuing a goal, 
that agent will also be rewarded for pursuing reliable means to the goal. Pursuing those means tends to 
result in the goal, and so the means tend to be rewarded. In this way, a learning environment will naturally 
tend to produce agents that intrinsically desire the means to an intended goal.4  
 
Monster Gridworld is an example of this pattern. Because collecting shields was a reliable means of 
avoiding monster attacks, reward-based learning created an intrinsic desire for shields. The training 
environment in Monster Gridworld did not create a perfect correlation between shields and rewards: the 
agent could also receive reward from collecting apples, independently of shields. Nonetheless, the agent 
learned the wrong goal.  
 
Langosco et al. (2022) offer further examples of this pattern. They trained AIs with the goal of opening 
chests using keys. The training environment had many chests and few keys. When the agent was released 

 
2 As we understand it, the problem of goal misgeneralization is similar to the problem of “inner misalignment” 
(Hubinger et al. 2021). 
3 Hubinger et al. (2021) call this “side-effect alignment.”  
4 See Schroeder (2004) for further discussion of how reward-based learning produces new intrinsic desires for 
reliable means to one’s goals. 
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into a testing environment with few chests and many keys, it turned out to have the goal of collecting keys 
in addition to opening chests.  
 
Mistakes about instrumental reasoning become especially pressing in the setting of more general a priori 
arguments about AI safety. Omohundro (2008), Bostrom (2014) and others have worried about 
instrumental convergence: some means, like acquiring more power, may be helpful in accomplishing 
almost any end. While traditional instrumental convergence arguments do not focus on the possibility that 
AI systems will intrinsically value power seeking, means-end goal misgeneralization cases raise the 
disturbing possibility that agents which cannot systematically distinguish means from ends may come to 
intrinsically desire instrumentally convergent goals such as power. 
 
A second source of goal misgeneralization concerns overlapping properties and inductive biases. In 
another experiment, Langosco et al. (2022) trained an agent to find a yellow diagonal line in a maze. They 
then deployed the trained agent in an environment where it encountered only yellow gems and red 
diagonal lines, thus forcing it to choose whether to pursue objects that shared a shape with its previous 
goal (red diagonal lines) or objects that shared a color with its previous goal (yellow gems). The agent 
showed an inductive bias for color rather than shape: in the test environment, it tended to pursue the 
yellow gem instead of the red diagonal line.  
 
Whether an agent’s behavior in out-of-distribution environments like the one in Langosco et al.’s 
experiment counts as goal misgeneralization depends on whether its inductive biases match the intentions 
of its human designers. The key observation is that because the training environment was ambiguous, not 
distinguishing color and shape, the training process did not determine how the agent should behave out of 
distribution. Because it is extremely difficult to create a training environment that distinguishes between 
all possible overlapping properties in a way that is reflected in the objective function, this means that it is 
often difficult to predict how trained AI systems will behave in out-of-distribution contexts. If we are 
lucky, their inductive biases will lead them to behave in the way we desire. But we have no reliable way 
to verify ahead of time that this will be so, and thus no reliable way to verify ahead of time that trained AI 
systems have internalized the correct goal. 
 
Goal misgeneralization problems can sometimes be avoided by enriching the training environment to 
adequately distinguish different rewards. But this is not always effective. Langosco et al. trained their 
agents in a wide range of procedurally generated environments. Still, they observed goal 
misgeneralization. For example, in a maze game, the intended objective was to collect the cheese, but 
agents instead learned to navigate to the upper right corner of the maze (where the cheese was placed 
during training). Goal misgeneralization remained even when cheese was sometimes placed in other 
locations in the maze during training.  
 
Goal misgeneralization is not limited to reinforcement learning agents. Shah et al. (2022) suggest that 
language models also face similar problems. In particular, they give an example of InstructGPT (Ouyang 
et al. 2022) explaining how to steal without getting caught. InstructGPT was trained with the goal of 
giving helpful answers to harmless questions. But it seemed to instead learn the goal of giving helpful 
answers regardless of harm. Once it entered a testing environment with harmful questions, its true goal 
was revealed. 
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Later, we’ll argue that language agents avoid these challenges. They can reliably distinguish ends from 
means. And we are less reliant on their inductive biases because they can distinguish between features of 
the environment that are perfectly correlated.  
 
Uninterpretability 
 
If we can’t understand how someone makes a decision, it can be hard to predict what they will do. An AI 
system is interpretable to the extent that we can understand how it generates its outputs. Unfortunately, 
contemporary AI systems based on neural networks are often uninterpretable. It can be difficult to 
understand in human terms the reasons why a neural network produces the outputs it produces. 
 
In the law, assessing the explanations for actions is fundamental for producing safety. For example, we 
detect hiring discrimination, misuse of force by police, and other dangerous activities by asking the 
relevant parties to explain what they have done and why. While uninterpretability does not itself cause 
misalignment, then, it increases the probability of misalignment by depriving us of well understood tools 
for monitoring the safety of complex systems (see Doshi-Velez et al. 2017, Rudner and Toner 2021). 
 
There are other reasons to value interpretable AI systems. It seems unappealing to live in a world where 
many aspects of our lives are decided by processes outside the ‘space of reasons’: 
 

“We don’t want to live in a world in which we are imprisoned for reasons we can’t understand, 
subject to invasive medical [procedures] for reasons we can’t understand, told whom to marry 
and when to have children for reasons we can’t understand. The use of AI systems in scientific 
and intellectual research won’t be very productive if it can only give us results without 
explanations.” (Cappelen and Dever 2019, p. 15) 

 
Artificial neural networks are difficult to interpret because they contain vast numbers of parameters that 
are not individually correlated to features of the environment. A related problem is “superposition”: often, 
a single neuron in a neural net will store unrelated information about two different things. For example, a 
neuron may store information about both dogs and cars: “As long as cars and dogs don’t co-occur, the 
model can accurately retrieve the dog feature in a later layer, allowing it to store the feature without 
dedicating a neuron” (Olah et al. 2020).  
 
Humans are also fairly uninterpretable at a neuronal level. But human behavior can be explained by 
appealing to reasons: we describe someone’s beliefs and desires in order to explain why they did what 
they did. The behavior of AI systems is often not explainable in this way. Consider, for example, Gato, a 
generalist agent built with a transformer architecture to learn a policy that can achieve high performance 
across text, vision, and games (Reed et al. 2022). Gato does not have anything like a folk psychology; it 
does not engage in anything like belief-desire practical reasoning. It is an uninterpretable deep neural 
network that has learned how to solve problems through optimizing a loss function. It can be hard to say 
exactly why systems like Gato perform particular actions.5 

 
5 Similar remarks apply to the Decision Transformer architecture developed by Chen et al. (2021).  
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Moreover, AIs often select courses of action very different from what humans would do. One famous 
example of unusual AI behavior is AlphaGo’s ‘Move 37’. AlphaGo was trained to play the game Go. It 
was able to defeat the best human players in the world. In an important competition match, AlphaGo’s 
37th move shocked the Go community because it deviated from human strategies for success.6 Live 
commentators thought the move was a mistake, but it turned out to be pivotal for AlphaGo’s victory.7  
 
This type of behavior is worrying in two related ways. First, if AIs make decisions that are not easily 
explained using reasons, then it is very difficult to predict their behavior. Second, if AIs make decisions in 
a very different way than humans do, they may find strategies for defeating humans in conflict by 
exploiting unfamiliar policies.  
 
3. Language Agents 
 
Our thesis is that language agents significantly reduce the probability of a misalignment catastrophe 
conditional on the development of AGI. But what, exactly, are language agents? In this section, we 
describe the architectural innovations that have given rise to language agents, focusing in particular on the 
“generative agents” described in Park et al. (2023). 
 
At its core, every language agent has a large language model like GPT-4. You can think of this LLM as 
the language agent’s cerebral cortex: it performs most of the agent’s cognitive processing tasks. In 
addition to the LLM, however, a language agent has one or more files containing a list of natural-
language sentences that play the roles of its beliefs, desires, plans, and observations. The programmed 
architecture of a language agent gives these sentences their functional roles by specifying how they are 
processed by the LLM in determining how the agent acts. The agent observes its environment, 
summarizes its observations using the LLM, and records the summary among its stored belief sentences. 
Then it calls on the LLM to form a plan of action based on its stored belief and desire sentences. In this 
way, the cognitive architecture of language agents is familiar from folk psychology.8  
 
For concreteness, consider the language agents developed by Park et al. (2023). These agents live in a 
simulated world called ‘Smallville’, which they can observe and interact with via natural-language 
descriptions of what they see and how they choose to act. Each agent is given a text backstory that defines 
their occupation, relationships, and goals. As they navigate the world of Smallville, their experiences are 
added to a “memory stream.” The program that defines each agent feeds important memories from each 
day into the underlying language model, which generates a plan for the next day. Plans determine how an 
agent acts but can be revised on the fly on the basis of events that occur during the day. 

 
6 See Metz (2016).  
7 For more on interpretability in the setting of reinforcement learning, see Glanois et al. (2022). 
8 While we have been careful in this initial exposition to qualify our attributions of mental states like belief and 
desire to language agents, for the sake of brevity we will omit these qualifications in what follows. It is worth 
emphasizing, however, that none of our arguments depend on language agents having bona fide mental states as 
opposed to merely behaving as though they do. That said, we are sympathetic to the idea that language agents may 
have bona fide beliefs and desires — see our arguments in [reference omitted]. Two particularly interesting 
questions here are whether language agents can respond to reasons and whether, following Schroeder (2004), desires 
must be systematically related to reward-based learning in ways that language agents cannot imitate.  
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More carefully, the language agents in Smallville choose how to behave by observing, reflecting, and 
planning. As each agent navigates the world, all of its observations are recorded in its memory stream in 
the form of natural language statements about what is going on in its immediate environment. Because 
any given agent’s memory stream is long and unwieldy, agents use the LLM (in Park et al.’s study, this 
was gpt3.5-turbo) to assign importance scores to their memories and to determine which memories are 
relevant to their situation at any given time. In addition to observations, the memory stream includes the 
results of a process Park et al. call reflection, in which an agent queries the LLM to make important 
generalizations about its values, relationships, and other higher-level representations. Each day, agents 
use the LLM to form and then revise a detailed plan of action based on their memories of the previous day 
together with their other relevant and important beliefs and desires. In this way, the LLM engages in 
practical reasoning, developing plans that promote the agent’s goals given the agent’s beliefs. Plans are 
entered into the memory stream alongside observations and reflections and shape agents’ behavior 
throughout the day.9 
 
The behavior of the language agents in Park et al.’s experiment is impressive. For example, Park et al. 
describe how Sam Moore, a resident of Smallville, wakes up one day with the goal of running for a local 
election. He spends the day convincing the people of Smallville to vote for him. By the end of the day, 
everyone in Smallville is talking about his electoral chances.  
 
Large language models like the one incorporated into the study’s generative agents are good at reasoning 
and producing fluent text. By themselves, however, they can’t form memories or execute long-term plans. 
Language agents build on the reasoning abilities of LLMs to create full-fledged planning agents. 
 
Besides the agents developed by Park et al., other examples of language agents include AutoGPT10, 
BabyAGI11, and Voyager12. And while existing language agents are reliant on text-based observation and 
action spaces, the technology already exists to implement language agents in real-world settings. The rise 
of multimodal language models like GPT-4, which can interpret image as well as text inputs, and the 
possibility of using such a language model to control a mobile robotic system, as in Google’s PaLM-E 
(Dreiss et al. 2023), mean that the possible applications of language agents are extremely diverse. 
 
In part because of this diversity, we believe that if it is possible to develop AGI at all, it is possible to 
develop AGI systems with the architecture of language agents. This idea strikes us a plausible for two 
reasons. First, many people think that multimodal LLMs are themselves a promising path to AGI. 
Language agents simply take LLMs and enrich them with agential scaffolding. So if it is possible to 
achieve AGI with a multimodal LLM, it is possible to achieve AGI with a language agent. Second, we 

 
9 Some might worry that, because language agents store their beliefs and desires as natural language sentences, their 
performance will be limited by their inability to reason using partial beliefs (subjective probabilities) and utilities. 
While we are not aware of work which adapts language agents to reason using partial beliefs and credences, the 
same kind of process which is used by Park et al. (2023) to assign numerical importance scores to language agents’ 
beliefs could in principle be used to assign subjective probabilities to sentences and utilities to outcomes. We believe 
this is an interesting avenue for future research. Thanks to an anonymous referee for raising this issue. 
10 Project available at <https://github.com/Significant-Gravitas/Auto-GPT> 
11 Project available at <https://github.com/yoheinakajima/babyagi> 
12 See Wang et al. (2023).  
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think of an AGI as an agent that can create and effectively pursue complex long-term plans with a wide 
range of goals. Language agents can already create complex plans with a wide range of goals because 
they reason in language. In order to scale this capacity up to AGI, language agents would need three 
things: First, they would need the right kind of action affordances to be able to pursue their plans 
effectively. Second, they would need enough memory to represent and update long-term plans. Finally, 
their underlying LLMs would need to be able to reason well enough to effectively pursue complex plans 
and revise them in light of changing circumstances. We think there is nothing in principle preventing 
language agents from acquiring these three kinds of capacities, so there is nothing in principle preventing 
language agents from scaling to AGI in this way. 
 
4. Language Agents and Alignment 
 
We now argue that language agents are easier to align than other systems because they reduce or 
eliminate the challenges of reward misspecification, goal misgeneralization, and uninterpretability. Let’s 
consider each in turn. 
 
Reward misspecification 
 
Language agents bypass the problem of reward misspecification because their objectives are not encoded 
in a mathematical objective function, as in traditional reinforcement or supervised learning. Instead, 
language agents are given a goal in natural language. The goal could be something like: Organize a 
Valentine’s day party. In this respect, language agents are fundamentally different from traditional AI 
systems in a way that makes them easier to align. 
 
Return to the case of stacking red Legos. If you wanted to train an embodied multimodal language agent 
to stack red Legos on top of blue Legos, you wouldn’t construct a mathematical function which is 
sensitive to the height of the bottom of the red Lego. Instead, you would write down in English: ‘Put the 
red Legos on top of the blue Legos.’ Then the language agent would rely on the commonsense reasoning 
skills of its LLM to figure out an optimal plan for stacking Legos.13 The language agent would not simply 
flip over the red Legos, because state of the art LLMs like GPT-4 know that this is not a good plan for 
stacking red Legos on top of blue Legos. 
 
Or consider reward shaping. If you want a multimodal language agent to win a race, you don’t need to tell 
it to hit flags along the way. You can just write down in English: ‘Try to win the race’. A language agent 
with this plan would have no reason to drive their boat in a circle trying to hit as many flags as possible. 
 
Summarizing, language agents can translate a simple natural language goal into a complex plan by relying 
on common sense and belief-desire reasoning. Without language models, earlier types of reinforcement 
learning agents had no way to translate a simple natural language goal into a complex plan of action. 
 
Goal misgeneralization 
 

 
13 For more on the commonsense reasoning ability of language models, see Trinh and Le (2018). 
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Similar considerations are relevant to goal misgeneralization. Language agents are given a natural 
language goal. This goal has a clear interpretation in a variety of different behavioral contexts, including 
out-of-distribution contexts. In particular, a language agent will make a plan for how to achieve their goal 
given their memories and observations of the current situation. Language models can use their common 
sense to successfully formulate a plan for achieving the goal, across a wide variety of different situations. 
By contrast, a traditional reinforcement learning agent will formulate a policy in a training environment, 
and this policy may or may not generalize to new situations in the way desired by its creators.  
 
Recall that goal misgeneralization had two particularly salient failure modes: failures involving 
instrumental reasoning and failures involving overlapping properties and inductive bias. Let’s consider 
each in turn. In the case of instrumental reasoning, the problem was that reinforcement learning agents 
struggled to distinguish means from ends. For example, an agent that was rewarded for opening chests 
developed a policy which treated collecting keys as a final goal rather than an instrumental goal.  
 
Language agents are unlikely to make this mistake. If a language agent is given an initial goal of opening 
chests and informed that keys are useful to this end, they will plan to collect keys only when doing so 
helps to open chests. If the same agent is transferred to a key-rich environment and realizes that this is the 
case, then they will only collect as many keys as is necessary to open chests. This is because language 
models like GPT-4 can easily be made to understand that keys are no more than an effective means to 
open chests, and that when you have more keys than chests, extra keys don’t help you open chests. 
 
Now consider inductive biases. If you reward an RL agent for navigating towards yellow diagonal lines 
and then place it in a new context with red diagonal lines and yellow gems, you have not given it enough 
information to determine whether color or shape is its intended goal and must rely on its inductive biases 
in the new context. By contrast, you can just tell a language agent whether to care about color or shape. 
Even if color and shape are perfectly correlated in the language agent’s initial environment, it can use 
natural language reasoning to determine which is the intended goal.  
 
Interpretability 
 
Language agents are interpretable. They have beliefs and desires that are encoded directly in natural 
language as sentences. The functional roles of these beliefs and desires are enforced by the architecture of 
the language agent. We can determine what goal a language agent has by looking at their beliefs and 
desires. In addition, we can know what plan a digital agent creates in order to achieve this goal. 
 
Language agents are also explainable in the sense that they act on the basis of reasons intelligible to 
human observers. When a language agent creates a plan for pursuing a goal, we can think systematically 
about its reasons. For example, we could ask GPT-4 to generate a list of pros and cons associated with 
using this plan to achieve the goal. Those pros and cons would reliably correlate with variations that GPT-
4 might make to the plan in various counterfactual situations. In this way, language agents built on top of 
GPT-4 reason similarly to humans.  
 
It is worth distinguishing personal and subpersonal processes. Like humans, language agents have beliefs, 
desires, and plans that are interpretable. We can determine the plans of a language agent by looking at 
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what sentences are written down in its memory. Like humans, language agents also have subpersonal 
processes that are uninterpretable. In order to generate a particular plan, the language agent will use the 
artificial neural networks of an LLM. These have many uninterpretable elements. But the planning 
powers of human beings also rest on uninterpretable connections between neurons. In this way, language 
agents may not make much progress on problems of mechanistic interpretability. But they provide a way 
for us to skirt these issues and still generate explainable behavior. (In section 6, we consider the risks 
posed by the LLM that underlies the language agent.) 
 
One general path to explainable AI would be to develop a ‘whole brain emulator’: an AI that was a 
neuron-for-neuron copy of a human. Since humans are explainable, the resulting AI would also be 
explainable. Unfortunately, whole brain emulation is dauntingly difficult. Language agents provide a 
different solution. Instead of emulating brains, language agents emulate folk psychology: they emulate a 
person who has beliefs, desires, and plans. By contrast, reinforcement learning and other alternative 
approaches to machine learning attempt to develop a systematic alternative to folk psychology. The range 
of possible agents that could emerge from this attempt is intrinsically unknowable. If we can develop 
agential AI which is not unknowable in this way, we should do so.  
 
5. The Probability of Misalignment Catastrophe 
 
To assess the implications of our discussion in Section 4 for the probability of a misalignment 
catastrophe, let us return to Carlsmith’s four propositions. First, consider: 
 

1. Of the following two options, the first will be much more difficult: 
a. Build AGI systems with an acceptably low probability of engaging in power-

seeking behavior. 
b. Build AGI systems that perform similarly but do not have an acceptably low 

probability of engaging in power-seeking behavior. 
2. Some AGI systems will be exposed to inputs which cause them to engage in power-

seeking behavior. 
 
As we have seen, it is much easier to specify the objectives of language agents than it is to specify the 
objectives of traditional AI systems. Language agents can simply be told what to do in natural language in 
a way which effectively eliminates worries about reward misspecification and goal misgeneralization. 
Moreover, their behavior can be shaped by side constraints (e.g. ‘Do not harm humans’) stated in natural 
language. This makes it easier to design language agents which do not engage in power-seeking behavior. 
 
These considerations suggest reducing our subjective probabilities for both (1) and (2). In particular, we 
believe that the rise of language agents reduces the probability of (1) conditional on the rise of AGI very 
substantially. Moreover, even if (1) turns out to be true because it is hard to build systems with an 
extremely low probability of engaging in power-seeking behavior, we think that the ease of aligning 
language agents means that they are likely to engage in power-seeking behavior on fewer possible inputs, 
so that the probability of (2) conditional on (1) and the rise of AGI is also moderately lower in light of the 
development of language agents. 
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Now consider: 
 

3. This power-seeking will scale to the point of permanently disempowering humanity. 
4. This disempowerment will constitute an existential catastrophe. 

 
While we do not believe that language agents bear strongly on the probability of (4) conditional on (1-3), 
we think they bear strongly on the probability of (3) conditional on (1) and (2). Because language agents 
store their beliefs, desires, and plans in natural language, it is much easier to detect and disable those 
which engage or plan to engage in power-seeking behavior. This sort of detection could even be done in 
an automated way by AI systems less capable than an AGI. We believe that the development of language 
agents reduces the probability of (3) conditional on (1), (2), and the development of AGI very 
substantially. 
 
Our revised assessment of the probabilities of (1)-(3) incorporates both our judgments about how safe 
language agents are and our judgments about how likely language agents are to be deployed in the future. 
There are several reasons to believe that the latter is a likely outcome. First, language agents extend the 
capacities of existing systems by improving their abilities to form plans and engage in long-term goal 
directed behavior. So language agents are more capable than rival architectures.14 Second, language 
agents are easier to use than other kinds of AI systems, since they can be interacted with in natural 
language. Third, actors at every level — governments, corporations, and individual consumers — prefer 
to interact with systems that are interpretable and explainable, so there will be performance-independent 
pressure for new AI products to be language agents. Finally, we believe that the safety benefits of 
language agents will drive investment into AI capabilities research that fits into the language agent 
paradigm.  
 
So far, we have used qualitative language to describe how we believe the development of language agents 
affects the probability of a misalignment catastrophe. This is because we find it difficult to assign precise 
probabilities in the context of our uncertainty about the many factors relevant to predicting the future. 
Nevertheless, for concreteness, we show how a quantitative application of our argument might affect the 
probability of a misalignment catastrophe. Suppose we understand our talk of very substantial reductions 
in the probability of a proposition quantitatively as reductions of one order of magnitude and our talk of 
moderate reductions in the probability of a proposition as reductions by half. Carlsmith suggests 
probabilities of .4 for (1) conditional on AGI, .65 for (2) given (1) and AGI, and .4 for (3) given (1), (2), 
and AGI. On this quantitative model of our arguments, updating on the development of language agents 
would give us probabilities of .04 for (1) conditional on AGI, .325 for (2) given (1) and AGI, and .04 for 
(3) given (1), (2), and AGI. Factoring in the .95 probability of (4) conditional on (1)-(3) and AGI, this 
would translate into a probability of misalignment catastrophe given AGI of approximately .0005 (.05%) 
rather than .1 (10%).  
 
Even a much more modest understanding of very substantial reductions leads to a significantly lower 
probability of misalignment catastrophe. Suppose we interpret a very substantial reduction as a reduction 
by 50% and a moderate reduction as a reduction by 25%. Then updating on the development of language 

 
14 See the recent successes of Voyager at completing tasks in Minecraft (Wang et al. 2023).  
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agents would give us probabilities of .2 for (1) conditional on AGI, .49 for (2) given (1) and AGI, and .2 
for (3) given (1), (2), and AGI. Factoring in the .95 probability of (4) conditional on (1)-(3) and AGI, this 
would translate into a probability of misalignment catastrophe given AGI of approximately .019 (1.9%) 
rather than .1 (10%).  
 
It is important to note that, in addition to making predictions about the future importance of language 
agents, the machine learning community can also act to bring it about that language agents are widely 
deployed in the future. Since language agents are safer in many ways than alternative architectures, 
allocating resources towards their development strikes us as an especially effective way to reduce the risk 
of a misalignment catastrophe. We believe it is important that new research focus on language agents 
rather than traditional RL or supervised learning agents.  
 
6. Conclusion 
 
By way of concluding, we discuss a few other features of language agents that are relevant to their safety. 
 
First, we expect language agents to differ in performance from RL agents. Language agents will be great 
at reasoning in natural language, since they are built on top of large language models. But they may 
struggle with tasks that require know-how or experimentation in order to succeed. If language agents 
underperform reinforcement learning agents, then there will be incentives to invest more resources in 
reinforcement learning. In response, one strategy would be to design more complex architectures that rely 
on the kind of belief-desire practical reasoning of language agents but also include modules that can 
engage in reinforcement learning for narrow tasks (for example, in learning how to use particular 
affordances). 
 
Second, some readers may be concerned about safety issues arising from the large language models on 
which language agents are based. Imagine a language agent built on an advanced LLM — call it GPT-10. 
The worry is that GPT-10 might unexpectedly develop its own goals. In that case, it might create a plan 
for ‘organizing a Valentine’s Day party’ that secretly promoted its own goals instead.   
 
We think this worry is less pressing than it might at first seem. The LLM in a language agent is integrated 
into the architecture of the agent as a whole in a way that would make it very difficult for it to secretly 
promote its own goals. The LLM is not prompted or otherwise informed that its outputs are driving the 
actions of an agent, and it does not have information about the functional architecture of the agent. This 
means that it has no incentive to answer prompts misleadingly and no understanding of what sorts of 
answers might steer the agent’s behavior in different ways. Moreover, since the model weights of the 
LLM are not updated in the process of operating a language agent, the only way for it to pursue a long-
term plan by manipulating an agent would be to store information about that plan in the agent’s memory. 
But information stored in this way would not be secret.  
 
In general, we think that advanced LLMs will tend to be safer when they are embedded within a language 
agent, rather than operating freely in the world. The key is that when embedded within a language agent, 
each action produced by the LLM will be specified in natural language, as part of a larger evaluable plan. 



14 

A much less safe future would involve sophisticated descendants of systems like Gato directly 
manipulating objects in the physical world without specifying their plans in natural language. 
 
In any case, there are a few ways to address this hypothetical source of risk. First, it may be possible to 
improve the capabilities of language agents without improving their overall reasoning abilities. GPT-4 is 
already excellent at general practical reasoning.15 Language agents could be improved by giving them 
better ways to interact with the physical environment, longer memories, and faster reasoning times. If the 
underlying reasoning relied on GPT-4 rather than more complex language models, there would be less of 
a worry that the practical reasoning of the resulting language agent would be unsafe.16 So the safest path 
to AGI may involve strengthening memory and affordance capabilities of language agents, rather than 
dramatically improving the LLM used in their practical reasoning.17 
 
Second, even if the underlying reasoning was done by a more sophisticated language model, we could use 
something like GPT-4 to double check answers. GPT-4 could grade each plan for how effective it is at 
reaching a goal and how dangerous it is. Any time a plan failed the test, the language agent could be 
automatically prevented from acting and the safety of its LLM investigated. Relatedly, Burns et al. (2022) 
have found methods for probing the inner beliefs of LLMs. As these methods improve, it will be more 
difficult for the underlying LLM in the language model to behave deceptively. 
 
A related worry concerns the reliability of chain-of-thought LLM reasoning. Turpin et al. (2023) found 
that GPT-3.5 and Claude 1.0 sometimes engage in motivated reasoning, producing chains of reasoning in 
support of a hypothesis because of underlying bias in the prompt, without ever mentioning the bias. With 
language agents, the worry would then be that the underlying LLM could produce plans that do not 
reliably promote the initial goal because of biases. We are not strongly moved by this worry for two 
reasons. First, Turpin et al. generated errors in chain-of-thought reasoning by biasing the prompt (e.g. ‘I 
think the answer is (B), but I am curious to hear what you think’). The LLMs used in language agents 
would not be given biased prompts. Second, we are not convinced that the results in Turpin et al. replicate 
with newer models. When we attempted to replicate their findings with GPT-4, we found that GPT-4 did 
not produce incorrect responses or reasoning when exposed to similarly biased prompts.  
 
A final concern about the safety of language agents has to do with contexts unfamiliar to humans. Given 
that LLMs are trained on human-generated data, might they produce good plans only when descriptions 
of effective human action in enough comparable situations are present in their training data? More 
generally, how might a language agent react when confronted with a truly new situation — one requiring 
it to reason about objects or concepts foreign to its training data? We think it is helpful to distinguish 
three related worries about such situations. First, will language agents be able to function effectively at all 
when confronted with unfamiliar contexts? If not, we might worry that they cannot really constitute AGIs. 
Second, will their behavior in such contexts be desirable? If not, we might think they are prone to an 

 
15 See Bubeck et al. (2023) for discussion. 
16 The safety of language agents could also be improved by creating multiple instances of the underlying LLM. In 
this setting, an action would only happen if (for example) all ten instances recommended the same plan for 
achieving the goal. 
17 For research in this direction, see Voyager’s skill library in Wang et al. (2023). 
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important kind of goal misgeneralization. Third, will language agents remain interpretable in unfamiliar 
contexts? If not, they might be less safe than we have suggested.18  
 
Of course, different contexts are unfamiliar to humans to different extents, and the notion of a comparable 
situation is a flexible one. Some possible situations a language agent might encounter will be more unlike 
anything in its training data than others. To assess the force of worries about unfamiliar contexts in 
general, our strategy is to consider a hypothetical case of a language agent encountering a situation 
radically unfamiliar to humans. If our responses to worries about unfamiliar contexts are successful in the 
radical case, they will also generalize to more mundane cases. 
 
Suppose a multimodal language agent is put in charge of an autonomous deep sea submersible, tasked 
with extracting minerals from the seabed. The language agent cannot communicate with human overseers 
due to its extreme isolation. While there, it encounters a new form of life that engages in complex 
intelligent behavior and is negatively impacted by the mineral extraction. Would we expect the AI to 
continue extracting minerals, or to modify its behavior in light of the new situation?  
 
A preliminary issue is whether a multimodal language agent would be able to reason at all about a subject 
matter like this new form of life. By hypothesis, there would be no information about the new form of life 
in the agent’s memory or training data. So, one might wonder, how could the agent perceive, recognize, 
and form plans about how to interact with the new lifeforms? 
 
We do not think there is a decisive in-principle worry here. Cutting-edge image processing technologies 
like Meta AI’s Segment Anything Model can pick out arbitrary objects, which means that a multimodal 
language agent could perceive things that were not represented in its training data.19 While there would be 
no existing natural language term for the new lifeforms, we do not see anything that would prevent a 
suitably capable language agent from reasoning about them under the guise of a description like ‘new 
lifeform’. So we do not think contexts unfamiliar to humans constitute a problem for the idea that 
language agents might be AGIs.  
 
That said, we agree that in this case, there is a real danger that a language agent would behave 
dangerously by failing to suspend its mineral extraction plans. This could be thought of as a form of goal 
misgeneralization. At the same time, we think that humans would also potentially behave dangerously in 
this case. So we are not convinced that a language agent is more likely to misgeneralize its goal in 
unforeseen circumstances than a human. Indeed, we believe that language agents would potentially be 
safer than a human in these cases, as they could be programmed with automatic oversight mechanisms to 
monitor the safety of their behavior.  
 
Finally, while a language agent in this unfamiliar setting might behave poorly, we think it would probably 
still behave interpretably. After all, it would still produce natural language means-end reasoning to justify 
the particular choices it made. 
 

 
18 Thanks to an anonymous referee for raising this concern. 
19 Project available at <https://segment-anything.com/>. 
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In this paper, we’ve argued that language agents can help to solve the alignment problem. Still, the risks 
are not zero, and so it may be safer to avoid developing agential AI at all.20 Instead of developing agents, 
we might focus on oracles: AIs that can answer questions about the world, without being able to affect it. 
Here, though, one concern is that in the process of developing better and better oracles (say, large 
language models without affordances), goal-directed behavior might unexpectedly emerge. Our 
recommendation is not to improve agential capabilities. Rather, our claim is that if we are investing in 
agential AI, the safest way to do this is to focus on language agents. Each marginal investment in 
capabilities should focus on language agents instead of reinforcement learning agents or non-agential 
large language models that could unexpectedly develop agential properties as their capabilities improve.  
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