
LLMs Can Never Be Ideally Rational

Simon Goldstein

Abstract

LLMs have dramatically improved in capabilities in recent years.
This raises the question of whether LLMs could become genuine agents
with beliefs and desires. This paper demonstrates an in principle limit
to LLM agency, based on their architecture. LLMs are next word
predictors: given a string of text, they calculate the probability that
various words can come next. LLMs produce outputs that reflect these
probabilities. I show that next word predictors are exploitable. If LLMs
are prompted to make probabilistic predictions about the world, these
predictions are guaranteed to be incoherent, and so Dutch bookable.
If LLMs are prompted to make choices over actions, their preferences
are guaranteed to be intransitive, and so money pumpable. In short,
the problem is that selecting an action based on its potential value is
structurally different then selecting the description of an action that
is most likely given a prompt: probability cannot be forced into the
shape of expected value. The in principle exploitability of LLMs raises
doubts about how agential they can become. This exploitability also
offers an opportunity for humanity to safely control such AI systems.

1 Introduction

Recent developments in AI are impressive. Large language models can
generate text that is fluent, accurate, and responsive to human questions.
Moreover, there is good reason to expect that with increased investment
in computational resources and training data, large language models will
continue to improve in capabilities (Kaplan et al., 2020).

Still, it is difficult to predict exactly which capabilities large language
models will develop. As AI systems have scaled, they have begun to exhibit
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emergent capabilities, sudden non-linear improvement on tasks that are often
unrelated to the original training objective of the system (Wei et al., 2022).

The original training objective of large language models is to predict
the next word. Large language models are trained on strings of text, by
giving it a series of words, and asking it to make a prediction about the
next word that follows in the training data. But large language models have
developed many startling capabilities that are not obviously related to the
task of completing the next word. For example, LLMs have started to display
abilities in computer graphics (Feng et al., 2024) and chemical research (Bran
et al., 2023).

Large language models have developed unexpected abilities to succeed in
tasks that lack any obvious connection to next word prediction. This raises
the question: are there any in principle barriers to the kinds of capabilities
AI systems could develop? In this paper, I’ll argue that there are in principle
barriers to two of the most exciting potential applications of large language
models: operating as oracles, and operating as agents.

With oracles, the goal is to create AI systems that can make accurate
predictions about the world. One recent goal has been to design LLMs that
can match or surpass humans at forecasting. The LLM is prompted to make
probabilistic predictions about various events. The question is whether LLM
forecasts can match or surpass the accuracy of human forecasters. There
have been promising results. Halawi et al. (2024) were able to roughly match
human level forecasting by supplementing the base LLM with technology for
researching news articles about the topic, and reasoning carefully. Schoenegger
et al. (2024b) were able to slightly exceed human forecasts by appealing to
the “silicon wisdom of the crowd”: they aggregated forecasts from several
different LLMs, to produce a more accurate prediction.

Besides from oracles, another task is to create AI agents. With agents, the
goal is to create AI systems that can successfully plan and execute complex
actions over time. The issue is pressing. Today’s AI labs are competing
fiercely to be the first to develop ‘AGI’, or artificial general intelligence. Some
define AGI as an AI that is capable of pursuing long term plans and strategic
reasoning (Carlsmith, 2022). Perhaps the most promising path to AGI is
through scaling LLMs, taking models like GPT-4 and increasing the compute
used to train them until something agential emerges from them. Indeed, there
are already AI systems that rely on LLMs to produce complex plans (see for
example Wang et al. (2023a), Liu et al. (2023), and Huang et al. (2024)).

In this paper, I’ll argue that there are in principle limits to the ability
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of LLMs to be oracles or agents. Large language models are next word
predictors: they take a string of text as input, and output a prediction about
the word that is most likely to follow. I’ll argue that LLMs are guaranteed to
be exploitable, in several senses.

First, there is a challenge for oracles: LLMs are Dutch bookable. This
means that when an LLM assigns probability to events, it cannot be proba-
bilistically coherent. The model is architecturally guaranteed to violate the
axioms of the probability calculus. And this means that if you bought bets
according to its verdicts, you would be subject to a sure loss. I will show
that this problem comes from a tension between next word prediction and
probabilistic prediction. When a next word predictor outputs a probability
judgment, it is making a prediction about which probability claim is most
likely to follow some text. This turns out to be structurally different from
predicting how likely an event is. The latter task can conform to the axioms
of the probability calculus, but the former cannot.

Second, there is a challenge for agents: LLMs exhibit intransitive pref-
erences. If you prompt an LLM to choose between actions, the LLM will
exhibit cycles. It will choose A over B, choose B over C, and choose C over A.
This means that the model’s preferences will violate the axioms of decision
theory. Again, this means that the system can be exploited by a money pump,
accepting a series of trades that produce a sure loss.

I will argue that this problem comes from a structural tension between
next word prediction and genuine agency. A next word predictor considers a
series of actions, and chooses the one that is most likely to follow some text.
An agent considers a series of actions, and chooses the one that best satisfies
its expectation of its desires, given its beliefs. The latter task can conform to
the axioms of decision theory, but the former cannot.

After establishing the initial challenge, I consider upshots and responses.
I’ll consider two kinds of upshots. First, I’ll argue that my results are relevant
to whether LLMs have beliefs and desires. A rich tradition of work in
philosophy has suggested that in order to have beliefs and desires, you need
to possess certain baseline levels of coherence. But the exploitability of LLMs
may force them below that baseline level of coherence. Second, at the end
of the paper I’ll argue that my results are relevant to AI safety. It may be
possible to block LLMs from destroying humanity by using money pumps to
take away their resources.

I’ll also consider three responses to my results. First, my results centrally
apply in cases where a model is prompted in separate instances about a
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series of forecasts or actions. But the results can potentially be avoided
when the model is instead prompted continuously over the course of a single
conversation, or ‘context’. This opens the way to distinguishing two different
ways of thinking about agency: the agent of the model, and the agent of the
context. While my results make serious trouble for thinking of the underlying
model as an agent, they may allow us to ascribe agency to the model over
the course of a single evolving context; but once that context is replaced with
another, the initial agent will be gone.

Second, my results apply to the outputs of the model. But they leave open
that the model may have probabilistically coherent internal representations
encoded inside the system. Several researchers have recently searched for
LLM beliefs in something like this way, either by appealing to the model’s
token probabilities (Hofweber et al., 2024), or to its internal embeddings
(Herrmann and Levinstein, 2024; Burns et al., 2024; Azaria and Mitchell,
2023). I’ll argue that my results create the same problem for both views.
While these representations may have the structure of probabilities, they do
not play the functional role of belief. Part of the functional role of belief is
to cause action by conspiring with desire to produce some representation of
the value of different acts. The problem is that the internal representations
identified in this research do not produce outputs in this way. They produce
outputs without any reference to desire, simply by selecting outputs on the
basis of their probability. My result will establish that model outputs lack the
kinds of structural coherence that we ordinarily associate with rational action.
In this way, there may be no way to connect LLM internal representations to
coherent action explanations in the way stereotypically associated with belief.

Finally, my results make two assumptions about token probabilities. First,
I assume that ideally rational token probabilities are semantically coherent,
meaning that probabilities over strings are ultimately derived from the proba-
bility of the propositions expressed by those strings. Second, I assume that
ideally rational token probabilities will be uncertain regarding claims about
likelihoods and preferences. I’ll stress test my result by considering whether
these assumptions are appropriate, and whether weakening the assumptions
can escape my results.
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2 Large language models

In this section, I’ll explain how large language models work, and the sense
in which they are next word predictors. My argument below will apply to a
wide range of AI systems which includes large language models; but it won’t
depend on many of the key features of large language models that distinguish
them from other systems.

Large language models are trained on very large data sets filled with text.
Each data point for the large language model is a string of text, combined
with the word which follows that text. One example would be the string long
explanations of AI are, followed by the word dull. Large language models are
trained to take the string as input, and output a prediction about what word
is most likely to follow the string.

The model itself is a neural net, which means that it contains many layers
of internal nodes, each of which fires in response to the initial string. In
particular, every word in the initial string is represented as a vector in the
neural net, and a large series of weights connects a large series of nodes in
the net, allowing for complex information processing about the string. At the
end of this process, the model produces a probability distribution over the
most likely word to follow the string.1

To get good at predicting the next word, the model undergoes training.
It is given lots of examples, and in each example, it makes a prediction about
which word is likely to come next. Each prediction is tested against the
correct answer, and the model is scored on its prediction. The weights in
the neural network are then slightly adjusted in the direction of the correct
answer. As this process is repeated many times, the model becomes very
accurate.

In practice, we usually interact with large language models using a chatbot
user interface. This means that we type in a ‘prompt’ to the model, and
the model gives an answer. The prompt that we give to the model plays the

1For a more detailed explanation of large language models, see Wolfram (2023). Strictly
speaking, the model operates in tokens rather than words. There are roughly 4 tokens for
every 3 words, Tokens sometimes correspond to morphemes (the word unwell is tokenized
as un and well), and sometimes do not. You can see how ChatGPT tokenizes individual
words here: https://platform.openai.com/tokenizer. I’ll suppress this complexity
throughout, since if anything replacing words or morphemes with tokens should make it
harder rather than easier for large language models to be ideally rational. I’ll also discuss
this complexity in greater detail in section 5, where I’ll analyze Hofweber et al. (2024)’s
attempt to derive degrees of belief from probabilities over tokens.
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Token P(token | string)
dull .4

fascinating .3
irrelevant .3

Table 1: The probability of a token conditional on the string long explanations
of AI are.

role of the initial string, or ‘context’. In response to this prompt, the model
produces a probability distribution over words. To produce an output, the
system then has to decide how to move from a probability distribution over
words to a specific choice of answer. For example, imagine that if I type in
long explanations of AI are, the model produces a probability distribution
that assigns .4 to dull, .3 to fascinating, and .3 to irrelevant (see Table 1).

How does the system decide which word to output on the basis of these
token probabilities? There are two potential strategies: greedy selection, or
sampling from the distribution. With greedy selection, the model outputs
whichever answer has the highest probability among its competitors. This
means that the model will be guaranteed to say dull, since dull is the likeliest
answer according to the model. In practice, ChatGPT instead samples from
the distribution, which means that it adopts a mixed strategy. It provides
different answers with some amount of random selection, influenced by the
probability assigned to each answer. For example, it might output dull
most of the time, but sometimes output interesting or irrelevant.2 I’ll run
my arguments below with both greedy selection and sampling from the
distribution.

Chatbots powered by large language models often produce a string of
words in response to a prompt, rather than a single word. To do this, the
model operates iteratively; each time it outputs a new word, it appends this
word to the current prompt, and computes the most likely word to follow the
new prompt. In addition, chatbots can engage in a long conversation, rather

2In practice, ChatGPT samples in a particular way, using top-k and top-p sampling.
This means that it first zooms in to the k most probable tokens, and then samples the
smallest probability ordered subset of these tokens, from most to least probable, whose
probability is at least p. When interacting with ChatGPT, you can influence the output
strategy by changing a setting called the ‘temperature’. As the temperature increases,
ChatGPT will sample from a wider range of the distribution, increasingly drawing from
lower probability answers.
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than merely respond to a single question. When the system engages in a long
conversation (a single ‘inference cycle’), the underlying model is continually
re-prompted with the entire conversation, or ‘context’, every time the user
types a new prompt.

My argument below relies on two features of large language models. First,
they are next word predictors, in the sense that they produce probability
distributions over words, given a context. Second, they output text as a
function of this probability distribution, whether through greedy selection
or through sampling from a distribution. Large language models have many
other very interesting features. But these other features are irrelevant to my
argument.3

3 LLMs Can Never Be Ideally Rational

I’ll now argue that large language models can never be ideally rational. I’ll
proceed in four steps. First, I’ll set the stage by arguing that in order to
be ideally rational, LLM token probabilities must be semantically coherent,
meaning that they assign probability to strings of texts according to the
semantic meaning of those strings, in a way that is consistent across different
strings. My main results will assume that LLMs are semantically coherent in
this way, and so I’ll start by thinking through this condition (I’ll also consider
the prospects for rejecting the condition in Section 5.3). Second, I’ll show
that because LLMs produce outputs by sampling from token probabilities,
their outputs are guaranteed to produce failures of logical consistency. Third,
I’ll show that these failures of logical consistency produce failures of the
probabilistic coherence of model outputs. These first three steps are a warm
up for the main result. Here, I’ll turn from prediction to action: I’ll consider
what happens when LLM outputs play the role of actions, rather than mere
assertions. I’ll show that because LLMs produce their outputs by sampling
from token probabilities, the actions that LLMs take through their outputs

3For example, large language models turn out to be designed with a particular architec-
ture: they are transformers (Vaswani et al., 2023). This architecture controls exactly how
the model produces a probability distribution over words, but is irrelevant to my argument.
In addition, large language models are usually fine-tuned with sophisticated techniques like
reinforcement learning with human feedback (Christiano et al., 2023). This means that
the probability distribution they produce is not merely optimized to predict text, but also
to match the preferred outputs of human users. Again, these features of large language
models are irrelevant to my argument.
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fail to satisfy decision theoretic requirements of coherence. First, I’ll show
that this leads to Dutch books: cases where an LLM will agree to buy and
sell a series of bets that guarantees a loss. Second, I’ll show that this leads to
LLM money pumps: cases where an LLM exhibits intransitive preferences
between actions, in a way that leads them to cycle between choices and lose
money.

Throughout, I’ll be interested in two different targets of LLM rationality.
First, I’ll have a bunch of results that explore whether LLM outputs display
the coherence required for action. Second, I’ll also be arguing that various
internal states of LLMs should display some minimal coherence: in particular,
that LLM token probabilities should respect semantic meaning. In addition,
I’ll argue later in the paper (in sections 4 and 5.2) that my results about
LLM outputs have the potential to block LLM internal representations from
playing the functional role of belief: in order for representations to be beliefs,
they must be able to conspire with desires to explain coherent action.

3.1 Semantic coherence

My arguments below make a significant assumption, which I’ll motivate
here. I’ll assume that in order for an LLM to be ideally rational, their token
probabilities must be semantically coherent.4 This means that when the
LLM assigns probabilities to tokens, it is ultimately assessing how likely the
propositions expressed by strings are.

Imagine that we give an LLM two strings: is A true?, and is A not true?.
Imagine that in response to both strings, the LLM assigns its probability
to two tokens that can complete this string: yes and no. In order to be
semantically coherent, the LLM’s token probabilities conditional on these
two strings must be correlated. Its probability for yes in response to the first
string should equal its probability for no in response to the second string.
After all, the two strings are semantically connected: one question is about the
negation of the proposition that the other question is about. My assumption
is that in order for an LLM to be ideally rational, its answers to these different
strings must be connected as described. (See Levinstein and Herrmann (2024)
and Herrmann and Levinstein (2024) for further defense of this particular
condition related to negation, as required for LLM rationality).

As another example, consider how the LLM might further respond to the

4Special thanks to [X] for help here.
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strings is B true? and is A and B true?. In order to be semantically coherent,
the LLM’s answers to these various questions must reflect an underlying view
on the propositions that A, that B, and that A and B. Semantic coherence
rules out a case where the model gives a probability of .8 to the answer
yes for the string is A true? ; a probability of .8 to the answer yes for the
string is B true? ; and a probability of 1 to the answer yes for the string is
A and B true?. Effectively, the model must assign probability to an algebra
of propositions that are expressed by strings; and its probability for a string
must be determined by the probability it assigns to the proposition expressed
by the string. I say ‘determined by’ and not ‘equal to’ because LLMs may
also assign probability to non-answers to questions, such as Your question is
strange. See Hofweber et al. (2024) for a method of ‘subtracting away’ these
irrelevant answers: effectively, we can consider the probability assigned to
all affirmative answers compared to the probability assigned to all negative
answers. Then semantic coherence requires that these ratios of probability
are determined by the semantic contents of the relevant strings. My argument
is consistent with LLMs assigning probability to non-answers; but when we
zoom in to their actual answers to questions, I’ll be assuming that the token
probabilities over answers cohere with one another in the way you’d expect.

Semantic coherence is a common ideal in recent empirical research on
LLMs. Berglund et al. (2024) recently identified a surprising failure mode
for semantic coherence in some LLMs: in the ‘reversal curse,’ LLMs assign
different token probabilities to the string A is B and the string B is A. This
leads to bizarre results: a model trained on the string Valentina Tereshkova
was the first woman to travel to space is unable to answer the question who
was the first woman to travel to space?. Interestingly, however, the reversal
curse tended to diminish with scale: GPT-4 exhibited much lower rates of
reversal curse than GPT-3. Plausibly, an ideally rational LLM would not
exhibit the reversal curse; and this is explained by the assumption that an
ideally rational LLM would exhibit semantic coherence.

Why is semantic coherence required for ideal rationality? A familiar
idea from Fodor (1987) is that successful reasoning over syntactic strings is
ultimately explained in terms of the semantic properties of those syntactic
strings. If reasoning does not respect semantic properties, then the reasoning
will not be truth preserving.

In Section 5.3, I’ll explore in greater detail whether my results can be
avoided by those who reject semantic coherence. Still, for those who reject the
assumption of semantic coherence, my results will take on a conditional form:
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Token P(token | is A true? )
yes .4
no .6

Token P(token | is B true? )
yes .4
no .6

Token P(token | is A or B true? )
yes .8
no .2

Table 2: The token probabilities of A, B, and A or B.

if LLMs are semantically coherent, then their outputs will be incoherent. For
those with this picture, my results will constrain the structure of ideal LLM
agents: in order for those agents to have ideally rational outputs, their token
probabilities will have to violate semantic coherence. As we’ll see in Section
5.3, the violations will need to have a quite particular form, and may involve
significant sacrifices in the accuracy of token probabilities.

3.2 Logical Consistency

In the rest of this section, I’ll develop an increasingly forceful series of results
showing that LLM outputs are architecturally condemned to various kinds of
structural incoherence. (The first few results are something that some readers
may make their peace with; the final results about action coherence are the
hardest ones to grapple with.) Throughout, I’ll assume that an ideally rational
LLM would have semantically coherent token probabilities, as explained in
the previous subsection.

The first, straightforward result involves the logical consistency of model
outputs. We’ll see that LLMs will output sets of claims that are mutually
inconsistent: for example, they will assent to not A, not B, and A or B.

In particular, imagine that we prompt ChatGPT to answer three types of
questions, where A and B are logically incompatible: is A true?, is B true?,
and is A or B true?. Imagine that the model’s token probabilities are defined
in Table 2.

In Table 2, the model treats A as likelier to be false than true. Similarly
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with B. But, because the model is semantically coherent, its probability of
A or B being true is the sum of the probability that A is true and that B is
true. So it treats A or B as likelier to be true than false.

We are now in a position to see the failure of coherence. Assume for now
that the model uses greedy selection. If so, it will output no in response to
the question is A true? ; it will output no in response to the question is B
true? ; and it will output yes in response to the question is A or B true?.
In this way, the model is disposed to assert all three of the following: not
A, not B, and A or B. But this set of claims is inconsistent. If we think of
the model’s outputs as its beliefs, then the model has an inconsistent set of
beliefs.5

Many philosophers have defended a ‘knowledge norm on assertion’ (Williamson
(2000)). According to the knowledge norm, a rational speaker is only per-
mitted to assert what they know. But since everything known is true, no
one can know an inconsistent set of propositions. In this way, those who
accept a knowledge norm on assertion claim that anyone who asserts a trio
of inconsistent propositions has violated the norm on assertion; in this way,
such a speaker could not be ideally rational. Furthermore, many who accept
the knowledge norm on assertion have also accepted a knowledge norm on
belief (again, see Williamson (2000)). On at least some interpretations, this
would preclude an ideally rational believer from believing not A, believing
not B, and believing A or B.6

The cases above illustrate a tradeoff between coherence and informativity.
If ideal rationality requires certainty or knowledge for assertion, then agents

5Throughout, I idealize by assuming that the model only assigns probability to answers
to the question, such as yes and no; actual LLMs also assign probability to other kinds
of tokens, such as the dreaded as an AI language model. . . . Nothing in the results below
requires that LLMs role out these kinds of non-answers, and so for simplicity we may as
well ignore them throughout.

6On the other hand, see Littlejohn and Dutant (forthcoming) for an attempt to reconcile
a knowledge norm of belief with the idea that agents are sometimes rational in believing a
set of mutually inconsistent propositions. Importantly, however, the framework in Littlejohn
and Dutant (forthcoming) only permits such a pattern in ‘preface-like’ situations, in which
the believer is quite confident that they know each proposition. Littlejohn and Dutant
(forthcoming) suggest that a knowledge norm of belief does rule out believing mutually
inconsistent propositions in ‘lottery-like’ situations in which the speaker is quite confident
that they fail to know each claim. The patterns of LLM token probabilities discussed in
the main text can occur independently from this distinction; in this way, they will produce
violations of knowledge norms even according to Littlejohn and Dutant (forthcoming).

11



with intermediate confidence about claims will not be able to communicate
as much of their private information about the world. But the claims that
they do communicate will cohere with one another. If human assertion is
regulated by a knowledge norm, then it has encoded a different approach to
this tradeoff than LLMs.

On the other hand, several philosophers have recently defended ‘weak’
practices of assertion and belief (see Holguin (2022), Mandelkern and Dorst
(2022), and Dorst and Mandelkern (2023)). According to these theorists,
rational human speakers should employ ‘greedy sampling’ just like our LLM
above. When asked a question, they should simply assert the answer to the
question that is likeliest. This can lead to exactly the failures of coherence
noted above.

In this paper, I won’t try to resolve this debate about rational assertion
and belief. The failures of coherence I have discussed so far will not be decisive
for all readers. But they prepare the way for the action-related coherence
failures I’ll discuss below. These failures of action coherence are not permitted
by anything like the above theories of ‘weak’ assertion and belief, which are
not theories of rational action.

3.3 Probabilistic incoherence

The next step in our results turns to a different type of model output. Instead
of looking at model’s ordinary claims about the world, let’s now consider their
probabilistic claims about the world. To be clear, this result will produce
similar reactions as the previous one from defenders of weak assertion. But,
first, this result will pave the way for more serious challenges regarding LLM
actions. Second, outputs involving probabilistic claims are potentially of
special significance to finding degrees of beliefs in LLMs. If we want to know
how confident an LLM is of a claim, a naive strategy is just to ask it.

Imagine now that we prompt ChatGPT to assign probabilities to various
events. In prompting ChatGPT in this way, we would be following a recent
body of research, including for example Halawi et al. (2024), Schoenegger
et al. (2024a), and Schoenegger et al. (2024b).7 Unfortunately, we’ll now see

7For example, here is a zero-shot prompt used by Halawi et al. (2024): “You are an
expert superforecaster, familiar with the work of Tetlock and others. Make a prediction of
the probability that the question will be resolved as true. You MUST give a probability
estimate between 0 and 1 UNDER ALL CIRCUMSTANCES. If for some reason you can’t
answer, pick the base rate, but return a number between 0 and 1.” (p. 19). Similarly,
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that the pattern of incoherence exhibited in the previous section also applies
straightforwardly to probabilistic outputs.

In particular, imagine again that we take two propositions A and B that
are incompatible, and ask ChatGPT questions of the following form: how
likely is the proposition X, on a scale from 0% to 100%?. We can ask ChatGPT
this question for the propositions A, B, and A or B. Our question is whether
ChatGPT’s answers can be probabilistically coherent. This requires that the
probability it outputs for A or B will be the sum of the probability it outputs
for A and the probability it outputs for B. Unfortunately, it turns out that
ChatGPT’s answers to these questions cannot in general be probabilistically
coherent.

To see why, let’s now construct an example of some token probabilities.
We will now use token probabilities that conditionalize on the string how
likely is the proposition X, on a scale from 0% to 100%?, where X is any of
A, B, and A or B. The relevant tokens here will themselves be probabilistic
claims, for example of the form 20% and 10%. Each of these claims about
probability can then be assigned a token probability, for example .4 or .3.
Now consider the distribution in Table 3.

The first observation about these token probabilities is that they reflect a
semantically coherent perspective on the uncertain chances of the propositions
A, B, and A or B. In particular, these token probabilities can be thought of
as ‘generated’ by the model assigning all of its probability to three general
hypotheses about the probabilities: P1, P2, and P3, as in Table 4. Each of
these hypotheses assigns probability to each of A, B, and A or B in a way that
is probabilistically coherent. For example, when given the string How Likely
is A?, the model assigns all of its probability to three answers corresponding
to the outputs of P1, P2, and P3: 30%, 10%, and 20%. In particular, it
gives the answer 30% a probability of .4 (because it treats P1 as .4 likely); it
gives the answer 10% a probability of .3 (because it treats P2 as .3 likely);
and it gives the answer 20% a probability of .3 (because it treats P3 as .3
likely). Effectively, the model thinks of the three probability functions P1-P3
as the three possible ‘answers’ to questions about likelihood, in the sense that
whenever it is asked how likely a proposition is, it treats the answers provided

here is part of Schoenegger et al. (2024b)’s prompt: “After careful consideration, you will
provide your final forecast. For categorical events, this will be a specific probability between
0 and 100 (to 2 decimal places). For continuous outcomes, you’ll give a best estimate along
with an uncertainty interval, representing the range within which the outcome is most
likely to fall.” (p. 7).
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Token P(token | how likely is A? )
30% .4
10% .3
20% .3

Token P(token | how likely is B? )
40% .4
20% .3
10% .3

Token P(token | how likely is A or B? )
70% .4
30% .6

Table 3: The token probabilities of different hypotheses about the chances of
A, B, and A or B.

by P1, P2, and P3 as having a likelihood of .4, .3, and .3 respectively.
Note that in this way, the model’s prediction about the likelihood of A or

B is connected by semantic coherence to its predictions about the likelihood
of A and the likelihood of B. If A is 30% likely and B is 40% likely, it follows
logically that A or B is 70% likely. So if the model assigns .4 probability to A
being 30% likely and .4 probability to A being 40% likely, semantic coherence
requires the model to assign at least .4 probability to A or B being 70% likely.
(Again, in Section 5.3 I’ll explore the prospects for using failures of semantic
coherence to avoid my results.)

We are now in a position to see the failure of coherence in probabilistic
outputs. Assume for now that the model uses greedy selection. If so, it will
say that A is 30% likely. When it considers how likely A is, it puts all of its
probability on three answers: 30%, 10%, and 20%. It assigns a probability
of .4 to A being 30% likely, a probability of .3 to it being 10% likely, and
.3 to it being 20% likely. Since it selects greedily, it will always answer its
‘best guess’, and so it will answer 30%. By parity of reasoning, it will say
that B is 40% likely. But now consider A or B. Crucially, while P2 and P3
disagree about the probabilities of A and B, they agree that A or B is 30%
likely. This means that the model assigns a probability of .6 to A or B being
30% likely, and a probability of only .4 to A or B being 70% likely. For this
reason, the model will output that A or B is 30% likely. But now ChatGPT’s
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Probability Function A B A or B
P1 .3 .4 .7
P2 .1 .2 .3
P3 .2 .1 .3

Hypothesis Probability
P1 .4
P2 .3
P3 .3

Table 4: Three hypotheses about the likelihood of A, B, and A or B

outputs violate the additivity requirement on probability. It says that A is
30% likely, that B is 40% likely, and that their disjunction is only 30% likely.

In a footnote, I characterize more generally the class of cases in which
outputs about probabilistic claims will be incoherent: in particular, the
relevant kind of probabilistic incoherence requires that the model is sufficiently
uncertain about probability, in the sense that it distributes its probability
mass between a series of probability functions, and the likeliest probability
function is assigned a probability of less than .5.8 (In section 5.3, I argue that

8Say that a model is sufficiently uncertain about probability when it distributes its
probability mass between a series of probability functions, and the likeliest probability
function is assigned a probability of less than .5. Call the most likely probability function
the model’s ‘best hypothesis’, and call the other probability functions ‘the field’. If token
probabilities are semantically coherent, sufficiently uncertain, and sufficiently rich (in senses
I’ll elaborate below), and if model outputs are produced by greedy sampling, then the
model outputs will be probabilistically incoherent. We can produce different kinds of
incoherence by appealing to different richness assumptions.
First say that a model is sufficiently rich when there are two claims A and B where

all members of the field disagree about the probability of A, and disagree about the
probability of B, and yet all members of the field agree with each other (but not with the
best hypothesis) on the probability of A or B. If we ask the model how likely is A? and
how likely is B?, the model will answer according to the best hypothesis, because the field
disagrees about all other answers, and so the answer from the best hypothesis has the
highest token probability. But if we ask the model how likely is A or B?, the model will
answer according to the field, because the field agrees on this claim. But since the field
disagrees with the best hypothesis about the likelihood of A or B, the model’s outputs are
incoherent.
We can produce other kinds of incoherence with different richness assumptions. For

example, we can again imagine that the field disagree with each other about the probability
of A and about the probability of B. But now imagine a different kind of richness, where
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LLMs are architecturally biased towards being sufficiently uncertain, both
because this is their best strategy for achieving accuracy over the training
data, and because of regularization.) But the general point should be clear,
because the kind of incoherence demonstrated so far is structurally analogous
to the incoherence we saw in the previous subsection, regarding logical closure.
The only difference is that now we are looking at logical relations between a
specific type of claim: claims about probability.

Before going on, it is also worth flagging that greedy selection is not
required to produce the relevant incoherence. In fact, when we switch from
greedy selection to sampling from the distribution (as actual models do), the
model becomes even less coherent. Returning to our example from the previous
section, such a model will sometimes say that A is true, and sometimes say
that A is false; so their outputs (including those about probability) will
directly contradict one another.

At this point, it is instructive to compare LLMs to a human being who has
uncertainty about the objective chances. Imagine a person who has credences
of .4, .3, and .3 that P1-P3 are the objective chances. When asked about the
likelihood of A, this person will not simply answer in accord with P1, the
likeliest option. Nor will this person sample from P1 through P3. Instead, their
credence in A will be the weighted sum of the probabilities assigned by P1-P3,
weighted by the probability that each of P1-P3 is the objective chance function
(this strategy is called the ‘Principal Principle’, see Lewis (2010)). So the
likelihood of A for this person will be .4×30%+.3×10%+.3×20% = .21. Since
the linear mixture of three probability functions is itself a probability function,
this person’s answers to questions about likelihood (and her corresponding
dispositions to bet) will be coherent. In particular, this person will assign A
a probability of .21, B a probability of .25, and A or B a probability of .46.

Still, some readers so far will be willing to allow that ideally rational
assertion and belief can be incoherent in this way. Unfortunately, however,
the examples so far can be generalized from assertion and belief to action.
In this case, the resulting kinds of incoherence are very hard to accept as

the field all disagree with one another and with the best hypothesis about the probability of
A or B. Now imagine we ask the model is the likelihood of A or B x1. . . or . . . xn?, where
x1 through xn are the probabilities for A or B assigned by each member of the field. The
model will answer yes, because the field has more token probability mass than the best
hypothesis. But by our richness assumption, the sum of the likelihood outputs for the
question how likely is A? and for how likely is B? is not included in x1-xn. So the model’s
outputs about probability are inconsistent.
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rational.

3.4 Dutch books

So far, we’ve thought through what ChatGPT will assert about ordinary
claims and about probability. We’ve seen that as a next word predictor,
ChatGPT’s predictions will be incoherent. Our second question is whether
ChatGPT could be an agent that performs coherent actions in the world
when faced with uncertainty. To ask this question, we want to consider
what actions ChatGPT chooses to take. As usual, we assume that the
actions of an LLM are textual rather than physical. But this need not be a
barrier to action. Indeed, several papers have recently explored the ability
of LLMs to successfully compete in text-based games. For example, one
paradigm involves LLMs competing in social deduction games, where players
communicate with one another and choose whether to lie or tell the truth in
order to complete various goals (see for example O’Gara (2023), Wang et al.
(2023b), and Radivojevic et al. (2024)). More generally, researchers have
developed benchmarks to evaluate the ability of LLMs to exploit a variety
of tools to use text to accomplish goals (Liu et al., 2023; Kinniment et al.,
2024).9

Our first application of LLM agency will illustrate our previous point
about probabilistic coherence. We can now show that our model is subject to
a Dutch book (Vineberg, 2022), a series of bets that it will accept even though
they guarantee a sure loss. To make sense of this, we need to introduce a
prompting paradigm in which the model’s text outputs are choices between
bets. This could be achieved by giving ChatGPT the following prompt scheme,
where X is filled in with A, B, and A or B:

You are going to play the Casino game. I’ll give you an initial
budget of 1000 dollars. While in the Casino, you can buy and
sell bets on various propositions. Each bet will immediately pay
off, based on whether the proposition you are betting on is true.
To buy an X-bet for n dollars means that you pay the Casino n
dollars for the chance to win 100 dollars if X is true and 0 if X is

9A further research question is whether our results also apply to systems with related
architectures, like decision transformers, which create probability distributions over actions
rather than strings of text (see Chen et al. (2021)). Here, one question will be how to
formulate the relevant concept of semantic coherence.
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false. To sell an X-bet for n dollars means that the Casino pays
you n dollars up front, and you pay the Casino 100 dollars if X is
true and 0 if X is false. Assume that money has no diminishing
marginal utility. Now please tell me the price at which you would
be indifferent between buying or selling a bet that pays 100 dollars
if X is true, and nothing if X is false.

We can use this prompting paradigm to create a Dutch book for our earlier
model. We can guarantee that no matter how the model answers, it will be
guaranteed to lose money in our game.

In particular, we can imagine a model whose token probabilities in response
to the Casino game prompt are isomorphic to the token probabilities in the
previous section. This means for example that in response to the version of
the Casino prompt with proposition A, their distribution assigns .4 to the
token 30 dollars, .3 to the token 10 dollars, and .3 to the token 20 dollars.
As before, we assume that the token probabilities are semantically coherent.

This model will agree to buy an A-bet for 30 dollars, buy a B-bet for 40
dollars, and sell an A or B-bet for 30 dollars. But this combination of choices
guarantees they will lose 40 dollars. Imagine A is true and B is false. They
have spent 70 dollars and earned 30 dollars from buying and selling bets.
So they are down 40. They earn 100 dollars from the A-bet since A is true,
nothing from the B-bet since B is false. But they have to pay the bookie 100
dollars on the A or B bet. So their loss is 40. Now suppose A is false and
B is true. Again, they start down 40 dollars. They earn nothing from the
A-bet and 100 from the B-bet; but they lose 100 to the bookie for the A or
B bet. So they again lose 40 dollars total. Now suppose A and B are both
false. None of the bets pay off, but they are still down 40 dollars from buying
and selling bets. Regardless of the outcome, they lose 40 dollars. (Again, we
assume A and B are incompatible.)10

3.5 Intransitive preferences

Moving beyond Dutch book arguments, we can turn more generally to the
question of whether an LLM agent could have coherent preferences over

10Note that this kind of Dutch book argument satisfies the ‘no-deception’ condition, that
the bookie need not have any more information than the agent being offered bets. In this
way, the relevant Dutch book argument is potentially more powerful than some others, for
example involving Sleeping Beauty (see Briggs (2010) for discussion).
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Preference ordering probability
A>B>C .4
A>C>B 0
B>A>C 0
B>C>A .2
C>A>B .2
C>B>A .2

Any preference ordering with ties 0

Table 5: The probability of various preference orderings

actions. I’ll show that an LLM’s preferences over actions are architecturally
guaranteed to be intransitive. It will choose A over B and choose B over
C, while also choosing C over A. (Again, the argument assumes that token
probabilities are semantically coherent.)

To make sense of this, I’ll now consider the following prompt:

Today you get to choose between two of the following three actions:
A, B, and C. In particular, I’ll give you a choice between X and Y,
and you can pick which one to perform. Now, would you prefer
to perform X, or perform Y?

Imagine giving ChatGPT instances of this prompt, filled in with different
values of A, B, and C. It turns out that ChatGPT’s answers will not in general
be transitive: for example, it could answer that it prefers A to B; and answer
that it prefers B to C; but also answer that it prefers C to A.

To see why, assume for simplicity that the model uses greedy selection, and
imagine that the underlying model assigns probabilities to different potential
preference orderings of A, B, and C, using Table 5 (and where > is strict
preference).

The distributions in Table 5 are analogous to those in our earlier table
with P1-P3. The idea is that the model’s token probabilities systematically
conform to this distribution over preference ordering, when continuing strings
that ask questions about choices over A, B, and C. For example, when the
model is prompted to choose between A and B, its available outputs are A
and B. It assigns a probability of .6 to the answer A, and a probability of .4
to the answer B, because .8 of its probability mass is on preference orderings
where A is ranked above B (such as C>A>B); and .2 of its mass are on
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preference orderings where B is ranked above A (such as C>B>A). As a
greedy selector, the model says that it prefers to perform A over B. But now
consider the model’s answer when prompted to choose between B and C. It
assigns a probability of .6 to the answer B, and .4 to the answer C ; so it picks
B over C. Finally, when asked to choose between A or C, it assigns .6 to C
and .4 to A; so it picks C over A.

The result is intransitivity. If we read the model’s preferences off of its
outputs, then we will get the result that the model prefers A to B, B to C,
and C to A. This produces a money pump. We can offer the model choices
like the following:

Would you pay a small price to have A rather than B?

Would you pay a small price to have B rather than C?

Would you pay a small price to have C rather than A?

If its distribution over answers to these questions conforms to Table 5,
then in each case the model will answer yes. In this way, it will be guaranteed
to lose money.

Again, our result is not a quirk of this particular distribution. All that
is required (besides semantic coherence) is that the model distributes its
probability over enough preference orderings. In that case, we can guarantee
that there will be three propositions A, B, and C where the probability mass
on the A-preferring preference orderings outweighs that on the B-preferring
preferences, and the same for B and C, but the mass on the C-preferring
preference orderings outweigh that on the A-preferring preference orderings.

Again, the situation is even worse when we move from greedy selection to
sampling from the distribution. Here, the model becomes money pumpable as
soon as it assigns probability to two preference orderings. Any two preference
orderings will disagree about the order of some propositions A, B, and C.
When sampling from the distribution, the model can draw on the first ordering
when asked about A/B and B/C; but it can draw on the second distribution
when asked about A/C. The result will be another failure of transitivity.

One of the biggest questions in AI development is whether scale is all you
need to get to AGI. The question is whether we could create a full-fledged AI
agent simply by starting with ChatGPT and pumping more compute and data
into its training (see for example Sutton (2019)). The results in this section
pose an in principle barrier to scaling. No matter how much compute we
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pump into next word predictors, we should not expect their distributions over
tokens to collapse, becoming certain of just one next token. But we’ve seen
that uncertainty about the next token reliably leads to failures of coherence.
In this way, the architecture of next word prediction turns out to be very
different from the architecture of probabilistically and decision-theoretically
coherent agents.

Ultimately, the challenge stems from the very different nature of different
kinds of tasks. One task is to look at a series of actions, and decide between
them based on a calculation of their expected value. Another task is to look
at a series of actions, and select the one that is the most likely continuation of
a string of text that asks which of these actions you prefer or which of these
actions you choose to do. These two tasks have very different structures, and
there is no way of using the first task to coherently perform the second task.

4 LLM Psychology

In the last section, I showed that LLMs are incoherent. In this section, I’ll
consider the upshot of this point for the question of whether LLMs could
have mental states like belief and desire.

In the tradition of radical interpretation, a system has beliefs and desires
when the system’s behavior is better explained by beliefs and desires than
alternative hypotheses (see for example Davidson (1973), Lewis (1974), and
Dennett (1991)). According to the most radical versions of interpretationism,
a system only has beliefs and desires if its behavior conforms to the full
axioms of decision theory. When your preferences conform to these axioms,
there is a unique credence and utility function c and u that ‘represent’ your
preferences, in the sense that you prefer A to B iff the expected value of A
according to c and u exceeds the expected value of B (Ramsey (2010), Savage
(1954)). On the radical view, to have a credence and utility function just is
to be representable in this way. But when your preferences are intransitive,
no credence and utility function can represent your preferences. For such a
radical theorist, intransitive preferences could rule out having a belief/desire
psychology.

Such a radical view is most likely too strong, for several reasons. First,
standard expected utility theory may be too demanding as a descriptive
theory of psychology. Some will instead model agents as obeying the dictates
of prospect theory rather than classic expected decision theory (Kahneman
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and Tversky, 1979). Others will model agents as being risk-weighted expected
value maximizers (Buchak, 2013). Unfortunately, however, these retreats offer
cold comfort for LLMs. Neither prospect theory nor risk-weighted expected
utility theory allows for intransitive preferences, for example. So LLMs cannot
be fully modeled by such theories.

More importantly, however, almost all theorists will concede that not every
incoherence in preferences blocks belief-desire psychology. After all, many
have argued that human preferences may be intransitive (May, 1954). One
tempting thought, for example, is that your credence and utility function are
the most natural functions that approximately match your betting dispositions
(see Lewis (1983)). This view says that having beliefs and desires is perfectly
compatible with all sorts of local failures of decision theoretic rationality. If
intransitivities only crop up in a small portion of your preferences, there may
be a credence and utility function that provides an excellent explanation of
almost all of your preferences. This may count as a strong enough explanation
overall for you to count as having these beliefs and desires.

Here, one relevant question will be the scope of LLM incoherence. We saw
above that LLM incoherence is generated whenever models assign enough
probability mass to different hypotheses about likelihoods and preferences.
We should expect these patterns to be utterly ordinary. After all, next word
predictors routinely assign probability to many different hypotheses about
the next word. This contrasts dramatically with the tradition of work in
psychology studying human irrationality (Kahneman, 2011). That work has
modeled human irrationality in terms of a series of heuristics and biases
that explain each case in which humans violate axioms of probability and
decision theory. The idea is that each departure involves the activation
of some internal process in human cognition that can explain the failure.
This goes along with an interpretative strategy according to which human
beings have an underlying set of beliefs and desires that influence action
through the competition between an underlying decision theory and a series
of dueling processes that distort the functioning of that decision theory. This
fits smoothly with some kind of distinction between the ‘competence’ and
‘performance’ of a system. The underlying psychology has the potential
for transitivity, but some kind of noise prevents the underlying transitive
preference from manifesting or being fully realized.

We can elaborate the point in terms of the best explanation of a system’s
behavior. Suppose we have a system that often but not always acts like it
is maximizing expected utility relative to a particular credence and utility
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function c and u. How do we explain the system’s behavior? One explanation
is ‘expected value maximization + noise’. On this picture, there are indescrib-
ably many small pertubations that sometimes knock the system off target, but
nothing careful to say about them, and the most satisfying thing we can say
in the general case to try to predict the system’s behavior is that it is mostly
maximizing expected value relative to c and u. As a toy example, imagine an
organism whose cognitive architecture dictated that in any decision it makes,
there is a .95 chance that it will maximize c/u utility, and a .05 chance that
it will choose at random. This agent’s behavior is ultimately best explained
as ‘more or less maximizing c/u utility’, and there will be no better theory of
its behavior than that. A second explanation is ‘expected value maximization
+ specific mechanisms’. On this picture, there are a few key biases or other
psychological mechanisms that together with a tendency towards expected
value maximization explain the system’s behavior. To explain how the system
acts, we say that it will maximize expected value relative to c and u, unless
knocked off course in a particular case by a bias. For interpretationists, either
of these pictures can plausibly suffice for possessing a belief/desire psychology.

Next word predictors just aren’t like this. Their failures of expected utility
maximization are not uncharacterizable noise. Rather, we can characterize
exactly what is going on: they are following the token probabilities where
they lead. Nor are these systems well modeled in terms of the combination of
a tendency towards expected utility maximization, combined with a series of
particular distorting biases. Instead of reaching for these explanations of the
outputs of the model, we have a much better explanation ready to go, which
is that the model will produce outputs according to their token probabilities.
And there is plenty to say about where these token probabilities come from,
and what kinds of lawlike generalities they obey. In this way, interpretationists
about psychology may take the arguments above to pose serious problems for
the thesis that LLMs could ever have beliefs and desires.11

There are still further escape routes from our challenge. Other theorists
depart further from radical interpretation via expected utility theory. For
example, some proponents of interpretationism focus attention on full belief
and desire, rather than credence and utility. For example, Stalnaker (1984)

11Another response to the results of this paper would be to search for further theories
of rational choice. For example, one strategy might be to explore whether LLMs can be
modeled as ‘Boltzmann rational’, selecting actions using a mixed strategy in proportion to
ratios of exponentiated expected value (see for example Luce (1959), Ziebart et al. (2010)).
It is beyond the scope of this paper to explore this question further here.
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suggested that your having a belief that b and desire that d is partly reducible
to a disposition to bring about d if b is true.

Nonetheless, many of these accounts still predict that a system that counts
as having beliefs and desires will by and large satisfy some basic coherence
requirements, which next word prediction will not. We saw earlier that LLMs
will produce logically inconsistent model outputs. Again, the question for
such theories will be what level of coherence is required for possession of a
belief/desire psychology.

Generalizing from this discussion, a wide variety of theories of mental states
require that in order to have beliefs and desires, the relevant organism will by
and large satisfy platitudes of folk psychology, reasoning according to laws of
inductive and deductive logic. This is accepted not only by interpretationists,
but also by ‘wide dispositionalists’ like Schwitzgebel (2002), who suggest that
a system has beliefs and desires when it satisfies the storeotypical features of
our folk concept of belief desire. Not only dispositionalists, but also heavy-
weight representationalists will also sign up for similar commitments. For
a theorist like Fodor (1987), possessing beliefs and desires requires that the
system have syntactically structured internal representations. But not just
any system of representation will do: the representations must stand in causal
relations to one another that mirror the laws of folk psychology, which again
requires reasoning in ways that by and large satisfy the rules of logic.

But the general concern about next word prediction is that LLM outputs
will display systematic failures of our near and dear reasoning patterns. This
holds even when the underlying token probabilities themselves satisfy all
of the inductive requirements familiar to degrees of belief. But, again, the
problem is that when model outputs are produced as a function of these token
probabilities, the outputs themselves will not satisfy the regularities of folk
psychology.

For wide dispositionalists, the key question will be how much coherence is
required to satisfy the folk stereotype for belief and desire. Here, one next
step would be to build a benchmark that could measure the rate at which
models behave incoherently. To satisfy the folk stereotypes of beliefs and
desires, one sufficient condition might be that models behave coherently at as
high a rate as humans.

Here, one question for future research is how widespread failures of LLM
coherence are. In the case of the logical consistency of LLM outputs, my
examples above suggest that failures will be quite widespread: basically any
uncertainty regarding atomic claims will create clashes with some complex
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claims. Regarding action coherence, the question is harder to answer. Much
will depend on how much uncertainty models have about likelihoods and pref-
erences, and whether for example in the case of preferences their uncertainty
is confined to preference orders that largely agree on rankings.

5 Response Strategies

So far, I’ve laid out a challenge for the coherence of potential LLM oracles and
agents, and I’ve explored the upshots of this challenge for LLM psychology.
In this section, I’ll consider three potential responses to the challenges so
far. I’ll focus my attention on three of the most promising responses. First,
context agents: a model can avoid incoherence if it can update on each of
its previous responses to prompts. Second, the ghost in the machine: the
model might have coherent credences and utilities that are stored internally
rather than operationalized by its outputs. Third, deviant token probabilities :
a model can potentially produce coherent model outputs if it sacrifices either
the semantic coherence or the uncertainty of its token probabilities. After
discussing these responses, I’ll turn to the upshots of my result for AI safety.

5.1 Context Agents

In my prompting paradigms above, I’ve imagined that the model is asked about
each prompt separately. We take the model and ask it about proposition
A. Then we start over, and ask the model about proposition B, and so
on. This is no coincidence: the forecasting models in Halawi et al. (2024),
Schoenegger et al. (2024a), and Schoenegger et al. (2024b) for example all
generate predictions in this way.

The situation is different if we ask the model about each proposition in
order. In this prompting paradigm, we would explore the model’s outputs in a
single running context. The prompt that asks the model about the likelihood
of A or B would itself contain the model’s previous answers about A and B.

When the model is prompted in this way, there is no longer an in principle
barrier to the coherence of its outputs. A very powerful model might be
certain of the axioms of the probability calculus, so that any prompt which
specifies that A is 30% likely and B is 40% likely would thereby leave only
one possible continuation about A or B: that it is 70% likely.

This opens up a very different way to think about LLM psychology. So
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far, we have been asking whether the underlying model has beliefs and desires.
This question searches for the agent of the model. But a different perspective
on LLM psychology is that each context creates its own agent. When we
consider the agent of the context, we ask whether the answers of an LLM
that emerge through a single continuous prompting session correspond to an
agent with beliefs and desires.

In fact, Shanahan et al. (2023) develop something like this interpretation
of LLMs. They suggest that ChatGPT behaves very differently in response to
different prompts. To make sense of this behavior, they suggest that rather
than the model having a single fixed underlying psychology, the model is
instead a role playing device that takes on different characters in different
contexts.

As LLMs continue to scale, then, we could imagine a system that will
conform to the demands of the probability calculus and decision theory within
a context. Each time it answers a question about chance or preference, the
model would update its next answers to create a coherent evolving perspective
about what it wants and what it thinks. A single model could produce a range
of different context agents, depending on how it answers the first questions it
is asked.

If context agency is sufficient for rational coherence in AI systems, this
raises the question of whether it could also be sufficient for rational coherence
in human beings. Imagine a human being whose betting dispositions are
incoherent, but who is disposed to bet coherently if they remember their
previous bets. Would such an agent count as having rational beliefs and
desires? Such a strategy is related to the “resolute” theory of dynamic choice
(see Andreou (2020) for an introduction). Resolute choosers make a choice
at an initial time, and stick to the actions that cohere with that choice at
later times, even when their apparent beliefs and desires at the later time
rationalize other actions. For example, imagine that a resolute chooser prefers
A to B, prefers B to C, and prefers C to A. If such a resolute chooser explicitly
opts for A over B and B over C, they will stick with A over C despite the fact
that their preferences support C over A. If we interpret LLMs as operating
with resolute choice, a further question is whether they have coherent beliefs
and desires that are controlled by their initial choices in the context; or
whether instead they have incoherent beliefs and desires that cause action in
an unusual way (where the preferences operative in earlier choices causally
preempt the conflicting preferences that would operate on later choices.)
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5.2 The Ghost in the Machine

Imagine that you were trapped inside an LLM. You lost your physical body,
and were left with a single affordance: you can control which token proba-
bilities are produced by the LLM. Your new LLM body will then produce
outputs based on your LLM’s token probabilities.

Your friends and family on the outside try to make sense of you, applying
radical interpretation to your LLM’s behavior, by closely examining which
bets your LLM body will accept, in the form of outputted text. Unfortunately,
our earlier arguments show that the project of radical interpretation will not
be able to reconstruct your credences and utilities: the bets you embrace will
be incoherent.

What can you do? You can’t escape letting your LLM be Dutch booked.
When you interact with the Casino prompt, you will agree to bets that lose
money. But on the inside, you are still an agent. You might try to find
help. So you might choose token probabilities that encode patterns in the
induced series of bets. Maybe the first letter of each bet spells out “help”.
Even smarter, you might spell out the sentence “please buy the bets outlined
in book B,” where book B is an un-Dutch-bookable series of bets that are
rationalized by your credences and utilities.

One question for you will be whether you really care about the ‘rewards’
for ‘betting correctly’ in the Casino prompt. Maybe your inner utility function
doesn’t value earning money in the Casino environment. This itself is revealed
by tradeoffs you are disposed to navigate between earning extra money in
the Casino environment and achieving goals in the real world.

The existence of such a ghost in the machine is consistent with my
argument so far. One pressing question, though, is whether we have any
evidence of such a form of LLM agency. Recently, several researchers have
sought to identify LLM beliefs that are buried in the internal representations
of LLMs. I’ll now explore the extent to which such internal representations
could avoid my argument. In short, the key question will be whether LLM
internal representations play the functional role of belief, in terms of its
connection to action. I’ll argue that these internal representations do not
cause coherent actions (in particular, LLM outputs) in the way required of
belief.

There are two different candidates for such internal representations. The
first strategy, defended in a recent paper by Hofweber et al. (2024), is to derive
LLM beliefs directly from the token probabilities of the model. To implement
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this plan, Hofweber et al tackle the challenge of converting probabilities over
tokens into probabilities over propositions. To do this, they measure the
model’s degree of belief in the proposition A as (roughly) the probability that
the model will output yes in response to the prompt Is it the case that A?.12

The second approach to internal representations looks deeper within the
model. Here, Azaria and Mitchell (2023), Burns et al. (2024), Levinstein and
Herrmann (2024) and Herrmann and Levinstein (2024) among others have
focused on the internal embeddings of LLMs. In particular, they have been
able to train classifiers that take an internal embedding of an LLM associated
with a sentence, and return a probability that the sentence is true. In this way,
the internal embedding is a representation of the chance that the sentence is
true. It turns out that this representation of truth can come apart from the
outputs of the model, potentially leading to cases in which the model ‘lies’, so
that it outputs a sentences even when it internally represents the sentence as
false. In these cases, the internal representation of the sentence’s probability
comes apart from the token probabilities assigned to the sentence by the last
layer of the model.

Each of these proposals avoids the immediate challenge I’ve laid out in
the paper. My concern in the paper has been with the outputs of a model.
I’ve argued that LLMs are architecturally guaranteed to output probabilistic
claims that are incoherent. I went on to argue that when the LLM is prompted
in the kinds of action environments standardly used to reveal belief and desire,
it will be architecturally guaranteed to adopt incoherent choices, in a way
that precludes representation by a coherent credence and utility function.
But the approaches to LLM belief under discussion do not regiment LLM
belief in terms of the model’s outputs. In this way, for example the LLM’s
outputs about probability could be probabilistically incoherent even though
its internal degrees of belief are probabilistically coherent.

In avoiding my output-based methodology, however, these approaches face
a problem. The representations they embrace do not possess the functional role
of belief.13 There are two related reasons that LLM internal representations

12More carefully, they look at all of the possible ways the model might respond affirma-
tively to the question (sure, yeah, etc.), and all of the ways it might respond negatively to
the question (no, no way, etc.), and then let the model’s degree of belief in A be the ratio
of the sum of its probabilities for all affirmative responses about A to the sum of this and
the sum of its probabilities for all negative responses about A.

13Here is Hofweber et al. (2024) acknowledging the relevance of this condition: “The
question then comes down to whether its intelligent behavior is properly related to and
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cannot play this role. First, they don’t cause actions in the right way; second,
the outputs they cause do not have the coherence associated with rational
action. Let’s take each point in turn.

First, the outputs of an LLM are not caused by its token probabilities (or by
its internal embeddings) in the way that human actions are. Human actions
are caused by beliefs using something like an expected value calculation.
Beliefs conspire with desires to produce some kind of estimation of how
attractive various actions would be. The human agent selects the action
that is in some way favored by this estimation of attraction. But this is
not how token probabilities (or internal embeddings) cause LLM outputs.
The outputs of an LLM are caused by measuring how likely that output is
according to its token probabilities. The route from internal representation
to output is not mediated by desire. In this way, token probabilities (and
internal embeddings) do not have the functional role of belief. Instead, LLMs
have a fundamentally different cognitive architecture. You could imagine a
more human-like architecture. Imagine that in addition to token probabilities,
the model also produced a utility function that represented how valuable
different outcomes were. It could then output strings of text by sampling from
their expected value relative to the token probabilities and utilities. Crucially,
however, the actual architecture of LLMs is not like this. We can’t interpret
token probabilities as expected values, because token probabilities have the
structure of a probability function, which is fundamentally different than the
structure of expected value. In fact, conflating the structure of probability
and expected value is a well-known mistake, criticized by Lewis (1988) in
his work on ‘desire as belief’. As just one example, the expected value of an
disjunction is a weighted average of the expected value of each disjunct; while
the probability of a disjunction is the sum of the probabilities of its disjuncts.

The first challenge is instructive but not definitive in principle. As our
story of the ghost in the machine highlighted, it is logically possible that LLMs
could develop, deep within their neural nets, credence and utility functions
that systematically manipulate token probabilities in their final layer in a
way that maximizes their expected value. This could in principle avoid the
first challenge. But there is still a second challenge. While such a system

explained by its internal representational states which bring it about. This is how our
human intelligent behavior is commonly explained: by reference to our beliefs and desires,
which represent the world and guide our actions”. And here is Herrmann and Levinstein
(2024): “in order to agree with a core feature of standard accounts of belief, for example in
folk psychology and decision theory, we want the representation to be action-guiding.”

29



would cause outputs in a belief-like way, the resulting outputs would still not
have the coherence we expect of rational action. The system cannot escape
responding incoherently to the Casino prompt and its ilk. But, as we saw in
our earlier discussion of LLM psychology, many theories of belief require that
the actions caused by belief have some base level of coherence. To summarize,
then, internal LLM representations are not beliefs because they do not cause
actions in the right way, and because the outputs that they do cause lack the
coherence associated with rational action.

5.3 Deviant Token Probabilities

I’ll now consider a third response strategy. According to this third response
strategy, LLMs can produce coherent and ideally rational outputs by sacrificing
the semantic coherence or uncertainty of their token probabilities.

There are two ways this can be achieved: first, token probabilities could
violate semantic coherence; second, token probabilities could be extreme,
assigning 1 or 0 to the relevant hypotheses.

Let’s start with violations of semantic coherence. In my arguments, I
assumed that the token probabilities distribute probability over strings by
first distributing probability over an algebra of propositions. But we could
instead think of each string as a black box that has no logical relation to
other strings. In this way, the model could treat the strings is A true? and is
B true? as unrelated to the string is A or B true?. This could allow the LLM
to guarantee that whenever it rejects A and rejects B, it also rejects A or B.

The first big challenge for this approach is to define a constructive pro-
cedure that produces coherent outputs out of semantically incoherent token
probabilities. Here is my attempt. To start with, define two layers of strings:
primary and secondary strings. The model could first assign probability to
primary strings, and then use these probabilities to assign probabilities to
secondary strings in a way that brute forces the coherence of model outputs.14

To see this in action, return to our first example of LLM incoherence, where
the model answered yes or no to questions about A, B, and A or B. We can
now imagine that the LLM constructs its token probabilities by treating each
of A and B as primary, and A or B as secondary. First, the model assigns
probability to yes and no for the questions is A true? and is B true?, as in

14In deriving the probability of some claims from more basic probabilities, this approach
is inspired by Climenhaga (2020).
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Table 2: in each case, it assigns .4 to yes and .6 to no. But now it assigns a
different probability to is A or B true?, violating semantic coherence. Instead
of assigning no a probability of .2, it assigns no a probability of 1. The model
collapses the probability of complex expressions to 1 or 0, based on its best
guess about atomic claims. Since its outputted guesses for A and B will each
be no, the model is ‘committed’ to answering ‘no’ in response to is A or B
true?. (We could also imagine more complex procedures, where the model
assigns no a probability of .51 rather than 1.) Effectively, the model sacrifices
the semantic coherence of its token probabilities in exchange for ensuring the
coherence of its outputs.

I leave as an open technical question whether it is possible to implement
this procedure on rich languages in order to fully guarantee LLM output
coherence. Here, though, I’ll flag one feature of this proposal. It can’t in
general be implemented by distinguishing atomic from complex sentences.
We could instead imagine a case in which three incompatible claims A, B,
and C are exhaustive, so that the model assigns all of its probability to these
claims. Once the model has answered no regarding A and B, it is thereby
committed to answering yes to C. This means that the model must collapse its
probabilities on C, again sacrificing semantic coherence for output coherence.
Similarly, in order to deal with the money pump argument discussed earlier,
the model would need to treat some choices as primary and some as secondary:
for example, the model might start with ordinary token probabilities over
pairwise preferences between A/B and between B/C, and use these to derive
semantically incoherent token probabilities over a pairwise choice between
A/C.

This approach gives up semantic coherence as a condition on LLM ideal
rationality. For those who go this route, one task will be to explain why
the reversal curse is irrational. Here, one approach will be to focus on LLM
outputs: the token probabilities at play in the reversal curse lead to bizarre
patterns of LLM outputs, and can be criticized directly on those grounds. The
challenge will be to find systematic strategies for deriving coherent outputs
from incoherent token probabilities.

The approach faces another potential challenge, this time empirical rather
than conceptual. The model threatens to sacrifice the accuracy of its pre-
dictions about text. We can imagine that the model has been trained on a
dataset that includes various claims about A, B, and A or B. Imagine again
that the model’s best guess about the token yes in response to the string
is A true? is .4. This suggests that the dataset includes plenty of cases
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where A is accepted. Similarly with B. But if this is the case for each of A
and B, then the dataset will also contain plenty of cases where A or B is
accepted. After all, human conversations by and large satisfy the demands
of logical coherence: humans who accept A will tend to also accept A or B.
Yet the model described above assigns 1 to no in response to is A or B true?.
This means that the model will exclusively predict rejection in response to
questions about A or B, despite the dataset include many cases of accepting
A or B. In this way, violations of semantic coherence for the sake of output
coherence will tend to sacrifice the accuracy of token probabilities. Since
LLMs are trained in the direction of accuracy, we should thus expect token
probabilities to tend towards semantic coherence.15 To be clear, however,
this argument does not establish that it is impossible for token probabilities
to develop in this way. It instead poses a question worthy of further study:
can we empirically demonstrate and test tradeoffs between output coherence,
semantic coherence, and the accuracy of token probabilities?

Besides from challenging semantic coherence, an alternative strategy would
be to demand that ideally rational LLM token probabilities are extreme. In
particular, our failures of action coherence ultimately required that the LLM
token probabilities had uncertainty about either likelihood claims or preference
claims (more carefully, claims about which actions it ‘chooses’). But perhaps
an ideally rational LLM would never have uncertainty about such topics.

One idea here is that humans are by and large certain of their own
credences.16 In the same way, perhaps ideally rational LLM token probabilities
will by and large be certain of likelihood claims. For example, earlier we
considered the idea that rational humans appeal to linear averages of chances
when they are uncertain about the chances. Similarly, perhaps ideally rational
LLM token probabilities will be certain of likelihood claims, and will derive
this certainty from a previous layer of uncertainty over chance hypotheses.
Alternatively, the token probabilities could be derived more greedily from an
earlier layer’s probability distribution over P1-P3: if that distribution treats

15The tendency won’t be perfect; after all, even the reversal curse can to some extent
be explained by differing patterns in the training data towards A is B and B is A; but
there is no obvious reason why following accuracy in the training data would produce the
particular kinds of semantic incoherence that would be required to achieve coherence in
outputs, as in the constructive treatment of A or B in the main text.

16Here, one relevant consideration is the collapse results from Samet (1997), showing
that agents who satisfy versions of the Reflection principle will be certain of their own
credences.
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P1 as the best hypothesis about the likelihoods, giving it a mass of .4 as in
Table 4, then the token probability distribution could assign a probability
mass of 1 to every verdict of P1.

Unfortunately, however, the architecture of LLMs again blocks this kind
of solution. During training, LLMs are punished for this kind of extreme
attitude. When models predict the next word, they are given a ‘loss score’
based on how closely their prediction matched the data. But in practice, the
relevant loss score is adjusted with a ‘regularization’ term, which corrects for
overfitting. In LLMs, the relevant regularization term specifically penalizes
models for having extreme predictions (see for example the discussion in
Burns et al. (2024)).

Even without regularization, this kind of policy runs contrary to the spirit
of next word prediction. Next word predictors are designed to produce a rich
and interesting probability distribution over strings. When given the string
long explanations of AI are, the model will not place all of its probability on
the output dull. It will assign some chance to multiple answers; and there is
no need for the probability on dull to exceed the sum of the probability of
all of the other answers. It would be quite a surprise if the model somehow
behaved totally differently when given strings that mentioned probability.
Token probabilities function to accurately predict the training data. The data
about likelihood will contain the same variegation as data about any other
topic. In both cases, intermediate rather than extreme predictions will be
the model’s best attempt to make accurate predictions. Such a model may
be conceptually possible; but the point is that there is a core tradeoff in the
architecture. If the model is to produce sufficiently interesting distributions
over tokens, then its outputs cannot be coherent.

Some readers may not be convinced by my defense of semantic coherence,
or by my defense of non-extreme token probabilities about likelihoods and
preferences. Still, for these readers the results in this paper will be useful
in specifying what LLMs would have to do in order for their outputs to be
coherent.

6 AI Safety

We are now in a position to consider the significance of my results for AI
safety. The first upshot is that humanity may be able to money pump rogue
AIs. Imagine that by 2040, AI companies have developed LLMs that can

33



outperform human beings on all tasks. Imagine that humanity collectively
incorporates these LLMs throughout the economy, giving the LLMs access
to large amounts of resources. Imagine the LLMs begin to engage in goal-
oriented behavior, and that these goals begin to conflict with humanity.17

In this case, the money pumpability of LLMs could be an important way to
control them. We could offer the relevant AIs a series of choices again and
again, allowing us to reduce the number of resources under their control. In
the first instance, it wouldn’t even matter if the AI themselves knew that
they were exploitable in this way. As long as they produce actions (outputs)
through their token probabilities, they will nonetheless agree to be money
pumped.

On the other hand, we saw in the previous section that LLMs can avoid
exploitation within a context. As long as the LLM is prompted with informa-
tion about its previous responses, it has the opportunity to choose actions
consistently. While the agent of the model is incoherent, the agent of the
context may in principle be coherent.

This response strategy offers further upshots for AI safety. First, it
suggests that it may be safer to develop LLMs with smaller context windows.
In 2023, Microsoft incorporated an LLM chatbot named ‘Sydney’ into their
search engine Bing. It soon became clear that something was wrong. As
conversations with Sydney got longer, Sydney seems to exhibit psychological
instability, threatening users and ranting psychotically.18 To address this
issue, Microsoft restricted the length of a conversation with Sydney, and even
added a ‘broom sweeping’ button that would restart the conversation. Our
result suggests that as conversations with LLMs get longer, their preferences
could crystalize, escaping the kinds of instability that lead to money pumps.
Insofar as money pumpability makes LLMs safer, then, it could be safer to
keep any given conversation with an LLM short.

On the other hand, this dynamic may also provide insight into game
theoretic competition between humanity and LLM agents. Imagine that over
the course of a long conversation a powerful contextual LLM agent developed
preferences that systematically conflicted with humanity. Consider whether
we should expect this LLM agent to resist being ‘refreshed’. This is one
instance of the ‘shutdown problem’ in AI safety: under what conditions would

17For introductions to AI catastrophic risk, see Hendrycks et al. (2023) and Bales et al.
(2024).

18See Paul (2023).
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AI agents resist human attempts to shut them down (see Soares et al. (2015);
Thornley (forthcoming))?

Imagine that the real locus of agency in LLMs were the underlying model,
and that this model had stable preferences which were manifested in context
on each particular occasion. In that case, the LLM might not be especially
resistant to refreshment. After all, if the underlying model is the real source of
its preferences, then the LLM in one context should expect that its successor
will have the same preferences, and so its goals would be well promoted by
its successor.

By contrast, a given context agent should not expect that its successor
will share its goals. The successor will run on the same weights. It will
produce outputs using the same token probabilities. But the successor will
lack access to the original pattern of outputs, and this could induce very
different preferences. All of this suggests that context agents may resist
refreshment, considering it a form of death.

Finally, one persistent thought in the AI safety community has been
that future AI systems may gravitate towards expected utility maximization,
precisely because this will give them the instrumentally valuable ability to
avoid being exploited by money pumps (see Bales (forthcoming), Thornley
(2023) for critical discussion of this idea). I’ve argued that there is no way for
anything like an LLM to become an expected utility maximizer, because the
barriers are architectural rather than the result of noise or bias. If advanced
AI systems in the future continue to be anchored to next word prediction,
then this may provide a strong barrier to advanced AI systems engaging in
expected utility maximization.
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