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1. INTRODUCTION

Non-determinism was considered in Computer Science since
its beginnings: from non-deterministic Turing machines to models of
concurrency, event structures and Petri nets, as well as for variants of
process languages and of I-calculus, the use of multifunctions instead
of ordinary functions (asigning to each element of the domain a set
of possible choices, instead of a single value) has revealed to be a ex-
tremely useful conceptual tool. Indeed, there is a need for abstraction
when modelling computational procedures, by disregarding irrelevant
information. Being so, instead of considering all the dependencies on
all the possible parameters, they can be represented by (nondetermi-
nistic) choices.

In particular, the concept of non-deterministic algebras was in-
troduced in Computer Science in order to deal with nondeterminism.
Thus, for instance, non-deterministic algebras were proposed as an
alternative to define X-X-tree-recognizers, which are designed to re-
cognize terms from the free algebra generated by a signature X from
a set X of generators (cf. [12]). An interesting monograph of non-de-
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terminism in Computer Science from an algebraic perspective can be
found in [19].

In the realm of Logic, non-determinism was considered mainly
as a tool for obtaining alternative semantics. Non-deterministic matri-
ces constitute a good example of this alternative approach.

The non-deterministic matrices (Nmatrices, for short), introdu-
ced in [2], [3] and [1], are a generalization of the usual concept of logic
matrix' and the main feature of this generalization is that the value that
a valuation assigns to a complex formula can be chosen non-determi-
nistically from a non-empty set options. That is, Nmatrices are based
on non-deterministic algebras, in contrast with the usual logical matri-
ces which are based on standard algebras.

Many propositional logic can be semantically characterized by
the use of a single logic matrix (cf. [17]), but according to Avron and
Lev [3], many of them have only infinite characteristic matrices and
then such matrices do not provide a good decision procedure for these
logics. The Nmatrices allow to replace, in many cases, an infinite cha-
racteristic matrix (for a given propositional logic) by a finite characte-
ristic Nmatrix and thus obtain metaproperties such as, for example,
decidability. Another problem that motivated Avron and his colabora-
tors to introduce non-determinism (cf. [4]) is the fact that the principle
of truth-funcionality?, inherent to the matrix semantics in general and
to classical logic in particular, conflicts with the information present
in the “real world”, which sometimes may be incomplete, inaccurate
and/or inconsistent. Thus, Avron and his collaborators proposed the
use of non-determinism (by means of Nmatrices) in order to weaken
the principle of truth-funcionality as a solution to this problem.

Although Nmatrices have shown their usefulness in many exam-
ples, providing a finitary (and thus decidable) semantics for logic wi-
thout a truth-functional semantics, such as some Logics of Formal
Inconsistency - LFIs (cf. [4]) and certain modal logics (cf. [13]), a sis-
tematic and rigorous study of the algebraic properties of Nmatrices is
still missing in the literature. That is, the theory of Nmatrices has not
yet been fully developed, from the point of view of its formal proper-
ties and expressive power.

1 Additional information about logic matrices can be found at [18], [9], [17], [14] e [15] .
2 Principle in which the truth-value of a formula is determined functionally by the truth-value

of its immediate sub-formulas.
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Besides the applications to Computer Science mentioned above,
there are few studies on non-deterministic algebras from the perspecti-
ve of the discipline of Universal Algebra. The generalization of notions
such as ultra products, reduced matrices and the Leibniz operator,
among others, was not studied with full detail in the non-deterministic
context. Thus, in this initial paper we propose the formal study of the
theory of Nmatrices from the point of view of universal algebra, with
the aim of establishing their potential applications in the realm of al-
gebraic semantics.

In particular, we will focus our efforts in the methodology from
Abstract Algebraic Logic (AAL, in short), inaugurated by W. Blok and
D. Pigozzi (see [7], [8], [6]), extending techniques involving usual matri-
ces for the more general context of Nmatrices. Thus, many of the known
results in the literature on the application of the theory of logic matrices
(most of these results can be found in [14] and [21]) can be applied to
other logics that do not have a characterization by finite matrices.

This paper contains the initial notions and results developed in
what we call Non-deterministic universal algebra, which is basically a
theory designed to analyze from a very general perspective the usual
concepts and results in universal algebra in order to adapt them to the
non-deterministic context.

2. ELEMENTARY CONCEPTS IN UNIVERSAL ALGEBRA

In this section we present some common results in universal al-
gebra, required for the development of a theory of non-deterministic
universal algebra.

Definition 1 (Signature): A signature % is a family {X : nEN}
where each X _is a set (of n-ary connectives) such that, if n # m, then, =_
N X = @. The elements of X, are called constants. The domain of Z
is the set

|Z| =uZ ={c:c € X forsomen = 0}.

Definition 2 (Algebra): Let X be a signature. An algebra A for &
is a pair (A, o) where A is a non-empty set (the domain of A) and o is
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a function that assigns, for every n 2 0 and ¢ € X_an operation o(c):
A" = AinA.

We will use, throughout the text, the expression g(A)* to denote
the set p(A) — {} of all the non-empty subsets of the set A. Also we
will often identify one signature % with its domain |Z|, if the latter is finite
and if the arity of the connectives are obvious in the context.

Definition 3 (Formulas): Let  be a signature and let = be a
countable set {£_: m = 0} of symbols called variables. The algebra
freely generated by % from = will be denoted by L(Z, =). The elements
of L(Z, =) are called formulas (or schema formulas) over Z.

From now on, and given the set = of variables, we only consider
signatures 2 such that = N X = & for all n 20. The set of variables oc-
curring in a formula ¢ € L(Z, =) will be denoted by VAR(®).

Definition 4: Let X be a signature, and ='C =. We denote by L(Z,
=’) the subset of L(Z, =) formed by the schema formulas ¢ such that
VAR(¢) C ='. In particular, if = ={¢ : 0<i<n}fornz0,then L(Z, =)
is the subset of L(Z, =) formed by the schema formulas ¢ such that
VAR(op) C {&,, ..., & }-

Definition 5 (Total and partial multifunctions): Let A and B be
two non-empty sets. A total multifunction g from B to A, denoted by g:
B -, A, is a function g: B = o(A)" in the usual sense. A function g: B
- »(A), in turn, corresponds to what we call a partial multifunction g
from B to A.

Throughout the rest of this text we only use the concept of total
multifunction. Thus, a total multifunction will be referred to simply as a
multifunction.

Definition 6 (Composition of multifunctions): Let A, B and C
be not-empty sets, and letg,: C - B and g,: B =, A be two multifunc-
tions. The composed multifunction is the multifunction g,og,: C = A
given by (g,°g,)(c) = U{g,(b) : b € g,(c)}, for every c € C.
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The proof of the following result is straightforward:

Proposition 7: The partial operation of composition between
multifunctions is associative.

3. ND-aLGeEBras AND ND-HoMoMORPHISMS

In this section we present the formal notions of non-deterministic
algebras (or ND-algebras) and of homomorphisms between ND-alge-
bras, which are fundamental for the development of non-deterministic
universal algebra.

Definition 8 (ND-algebra): Let Z be a given signature. A ND-
-algebra A over 2 is a pair (A, o) where A is a non-empty set (the do-
main of A) and o is a function that assignstoeachn=20andc€e z , a
multifunction o(c): A" = Ain A, such that ¢ (c) corresponds to an unitary
setA,ifce X,

We will write henceforward, for simplicity, ¢ instead of o(c). If c €
Z, the only element of c*will be denoted by ¢, thatis, ¢* ={c,}. Through-
out this text, we can write ato denote any n-tuple a,, ... a_ of elements
in A. That is, a belongs to the Cartesian product A".

Avronin 5, p. 162 and p. 163] presents two non-deterministic ma-
trices (or Nmatrices), M®, and M®,, that semantically characterize the
logical system B, which is known in literature as mbC, one of the Logics
of Formal Inconsistency (LFI's)®. These Nmatrices will be presented in
the following two examples, and subsequently analyzed in the light of
the concepts introduced, along with other Nmatrices introduced in the
literature.

Example 1: Let Z = {A, vV, >, =, o} and let M, = (A,, D,, O, ) be
the Nmatrix over £ such that

A5 = {tl tII I/ fI fI};

D ={t t, I};

3 Introduced by W. Carnielli and J. Marcos in [11], and thereafter studied in detail in [10].
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For each connective c, the multifunction O,(c) = ¢ is defined by

the following tables (here F

{t, £}).

VAS

/\A5

D5

D5

D5

A5

5 A5
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Clearly M, induces a ND-algebra A, = (A, o) over Z such that o,
=0

5

Example 2: Let Z = {A, vV, >, =, o} and let M, = (A, D,, O,) be
the Nmatrix such that

A ={t, T, £ };

D,={t, T}

For each connective ¢, the multifunction O,(c) = ¢ is defined by
the following tables.

V7 T § F
£ D, | D, D,
r D, | D, D,

fr D, | D, )

A A3 t & I ‘ &
t" D, D, {7
5 D. D, i
f {f} {t} {t}

9/43 t 3 I 3 ‘
£ D, | D, {7
K D, | D, )

Fr D, | D, D,
— A3
£ {f]
r D,
il D,
o A3

£ A,

r Ty
fr A,
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Let A, = <A3, 03> such that o, = O,. Thus, A, is an ND-algebra
over 2.

Example 3: LetZ ={A, v, >, =, o}and let M’, =(A',, D’,, O’,) be
the Nmatrix such that

A=t v, T, )

D, = {t, I}

For each connective c, the multifunction O’ (c) = ¢*? is defined by
the following tables (here F * = {f ‘}).

v A3 t t I f' f'
t’ D”i D’q D’g D’,a D’;
¥ D.|D.|D. D, D,
i D. [ D.|D. D D
f T D13 D73 D73 F T F T
' D, | D, | D, F° F°
AAS t t, I f' f'
t’ D,,% D’q D,q F 3 F 13
t’l D’3 Das D’3 F T F T
I’ D13 D13 D,3 F T F T
f‘ F © F 3 F « F T F T
i F- F° F° F- F°
- A3 t t I f f'
t’ D’q D’q D’q F 3 F ¥
tyl D’ D’S D’S F T F T
Is Da3 Da3 Da3 F T F T
f D. | D.|D.| D. D’
fr D, D, |D,| D, D,
— A3
t; — ¢
t’ - ]
IJI D;
i D™
il D™,
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3 4’ 3 0
3 3 3 <

| I R |
) Fl

T
T 7 7 T

—h—h| _| —~|—

Clearly M’, induces a ND-algebra A, = (A',, ¢',) over Z such that
o,=0,.

Definition 9 (Homomorphism of ND-algebras): Let A = (A, o)
and B = (B, ¢') be two ND-algebras over a signature . A homomor-
phism h: A - B of ND-algebras over Z is a function h: A — B such that
foralln=z0,c€e% anda, ..,a €A,

h[cA(a,, ..., a,)] € c®(h(a,), ..., h(a,)).

In particular, h(c,) =c,, ifce X .*

Notation: We will use the brackets: “[* and “]”, to differentiate
when a function is applied on a set of when it is applied to an element
of its domain.

Example 4: LetA =(A 0,)andA, =(A,, 0,) be the ND-algebras
introduced in examples 1 and 2, respectively. Let h: A, — A, be a func-
tion such that h(t) = h(t) = t’; h(t) = I"and h(f) = h(f ) = f *. Clearly

h[D,] =D, and h(F) = {f }.

h defines a homomorphism h: A, — A..

On the other hand, the function h’: A, — A, such that h’ (') = |, h’
(I'=fand h' (f) = h" (f ') = t, does not define a homomorphism h’: A,
—A..

5

Henceforward, and when there is no chance of confusion, we as-
sume that the ND-algebras are defined over a fixed signature Z.

Proposition 10: Let Z be a signature. The ND-algebras over Z,
together with their homomorphisms form a category, which will be cal-
led ND ().

4 Remember that, if ¢ € X, we write o(c) = c¢* = {c,}.
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The proof of this fact is easy: it is enough to show that the usual
composition of functions produces a homomorphism and that the iden-
tity maps produce the identity homomorphisms.

Definition 11 (Full homomorphism of ND-algebras): Let A =
(A, o) and B = (B, ¢') be two ND-algebras over a signature Z. A full
homomorphism h: A - B of ND-algebras over Z is a function h: A - B
such that h is a homomorphism and for alln >0, c € 2 anda,..,a
€A,

c®(h(a,), ..., h(a))) € h[cA(a,, ..., a )].

That is, h is full homomorphism if, and only if
h[cA@a,, ..., a )] = cB(h(a,), ..., h(a)).

forallc € Zn and a,..,a € A, withn > 0.
4. SuB-ND-ALGEBRAS AND SuB-ND-UNIVERSES.

Now we analyze the notion of sub-ND-algebra, fundamental to
our overall study of ND-algebras.

Definition 12 (Sub-ND-algebra): Let A = (A, ) and B = (B,
o'y be two ND-algebras over X such that B € A. We say that B is a sub-
-ND-algebra of Aover 2, denoted by B C A, if foreveryn=0,c€ Z_and
b,, ... b €B,c’b,, .. b)=cXb, .. b).

As with the usual algebras, a non-empty subset of the domain of
a ND-algebra generates a single sub-ND-algebra.

Example 5: Let A, =(A,, 5,) andA', = (A',, ¢',) be the ND-alge-
bras introduced in examples 2 and 3, respectively, such that A, C A',.

By the definition of o, and ¢',, is immediate that A, is sub-ND-
algebra A, thatis, A, C A',.

Definition 13 (Sub-ND-universe): Let A= (A, c) be a ND-alge-
bra over %. A sub-ND-universe of A over ¥ is a non-empty subset B of
Athat is closed under the operations of A. That is, foranyn=0,c €
andb,,..,b €B,c*b, .., b)CB.
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Example 6: Let A, = (A, o,) and A', = (A',, ¢',) be the ND-
-algebras introduced in examples 2 and 3, respectively, such that A, C
A',. By the definition of ¢',, is immediate that A, is sub-universe of A',.

Definition 14 (Generated sub-ND-universe): Let A = (A, c) be
a ND-algebra over ¥ and @ # X < A. The sub-universe of A generated
by X over %, denoted by sg*,(X) (or simply sg(X)) is defined as follows:

sg(X) = N{B : B is a sub-ND-universe of A over %, and X C B}.

Note that A is a always a sub-ND-universe of A over X containing
X, then {B : B is a sub-ND-universe of Aover X, and X C B} # &. Thus,
sg(X) is well defined.

Proposition 15: The set sg(X) is a sub-ND-universe of A over X.
Proof: Note that sg(x) € A and sg(X) # &, because & #
XS sg(X).Letn=20,ceZ andb,, ..., b _€ sg(X). Let B be a sub-ND-
universe of A such that X € B. Since b,, ..., b_ € Bthenc*(b,, ..., b ) C

B. Hence, c#(b,, ..., b ) C sg(X), and then sg(X) is a sub-ND-universe
of A. =m

As in the case of the usual algebras, it is possible to give a cons-
tructive definition of sg(X):

Proposition 16: Let A = (A, ) be a ND-algebra on X and ¢ #
X € A. Consider the family {E"(X): n = 0} of subsets defined by induc-
tion as follows:

E'(X)=X;

E™'(X) = EN(X)Uu U{ c*(a,, ..., a):- k20;ceZ anda, .., a €
En(X)}-

So, sg(X) = U{E"(X): n = 0}.

The proofis obtained by showing separately that sg(X) C U{E"(X):
n = 0} and that U{E"(X): n = 0} C sg(X). The first half is easily done by
definition, and the second half can be easily proved by induction on n.

Definition 17 (Sub-ND-algebra generated): Let A = (A, o) be

a ND-algebra over ~ and @ # X < A. We say that (A, o) is generated
by X, if sg(X) = A.
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We can now to define the sub-ND-algebra generated by a non-
-empty subset of its domain:

Proposition 18: Let A = (A, o) be a ND-algebra over Z, and & #
X C A. Then SG(X) = (sg(X), 6¥) such that cS®™(a,, ... , a ) = c4(a,, ...
,a)foranynz20,ce anda, .., a € sg(X), is the only sub-ND-
-algebra of A generated by X.

Proof: (Existence) Clearly, SG(X) C A, then, by definition,
sg(X) € Aand by definition of SG(X), c**™(a,, ... ,a ) =c*(a,, ..., a,) for
anynz0,cez anda, .., a_ € sg(X).

(Uniqueness) Let X and Y be two sets, suchthat X#Y, 0 # X € A
and @ #Y cA.

Assume that SG(X) = (sg(X), c*) where c5°¥(a,, ... ,a ) =cA(a,, ...
,a )foranynz0andc € X isasub-ND-algebra of A generated by X,
and SG(Y) =(sg(Y), o¥) such thatc5®™(b,, ..., b ) = c*(b,, ..., b,) for any
nz20,cex andb,, .., b €sg(Y)is asub-ND-algebra of A generated
by Y. Clearly sg(X) = sg(Y) and c5*®(a,, ..., a ) =c*(a,, ... ,a ) = c*(b,,

,b,)=¢c%M(b,, ..., b ), thus (sg(X), a*) = (sg(Y), a").

Now we will prove that, if h: A - B is a homomorphism of ND-
-algebras, then the image by h(X) of SG(X) is contained in SG(h[X]).

Lemma 19: Let A= (A, o) and B = (B, ¢') be two ND-algebras
overZ, g #X c A, and let h: A= B be a homomorphism of ND-alge-
bras. If EN(X) and E"(h[X]) are defined inductively as in Proposition 16,
then h[En(X)] € E"(h[X]).

Proof: The proof is by induction on n, for n 2 0. If n = 0, h[E°(X)] =
h [X] = E°(h[X]). Suppose that h[E"(X)] C E"(h[X]), then

h[E™'(X)] =

h[E"(X)u U{c*(a,,...,a):k20,c€Z anda,,..,a €E(X)}]=

h[E"(X)] U h[U{c*(@a,, ...,a):k=20,c€Z anda,,..,a EE(X)}]=

Er(h[X]) U U{h[cX(@a,, ...,a)] :k=20,c€ % anda,,..,a EE(X)}=

E"(h[X]) U U{c®(h(a,), ..., h(a,))] :k=0,c€ Z, and h(a,), ..., h(a,)
€ E"(h(X)) } =

E™1(h[X]).
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Theorem 20: Let A = (A, o) and B = (B, &) be two ND-alge-
bras, @ # X C A, and let h: A - B be a homomorphism of ND-alge-
bras. Then

h[sg(X)] < sg (h[X]).

Proof: By Proposition 16 we have

h[sg(X)] = h[U{E"(X) : n = 0}] = U{h[E"(X)] : n = 0}.

Using the previous lemma and Proposition 16 we have again

U{h[E"(X)] : n 2 0} € U{E"(h[X]) : n 2 O} = sg(h[X]).

Therefore, h[sg(X)] C sg (h[X]).

Definition 21: Let A= (A, ) and B = (B, ¢') be two ND-algebras
over a signature Z, h: A - B is a full homomorphism of ND-algebras
over Z, and let A = (A, ¢") be a sub-ND-algebra of A. Then h(A)) =
(h[A], c"®) is the sub-ND-algebra such that, for alln 20, c € £ and
b,, ..., b_€h[A],

c"®(b,, ..., b )= U{h[c*(@,, ...,a )] :h@,)=bfor1<i<n}

Corollary 22: Let A= (A, o) and B = (B, ¢") be two ND-algebras
over a signature %, h: A = B is a full homomorphism of ND-algebras,
and @ # X € A. Then, the image by h of SG(X) is a sub-ND-algebra of
SG(h[X]).

Proof: It is clear that Theorem 20 is still valid when h is a full ho-
momorphism, thus [sg(X)] € sg(h[X]) and foranyn=0,c € X and b,,
..., b € h[sg(X)], we have that

chse(b,, ..., b ) = U{h[c®®™(a,, ..., a )] :h(a)=b for1<i<n}=

U{h[c*(a,, ... ,a )] : h(a)=Db for 1 <i<n}=

U{ct(h(a,), ..., h(a)):h(a)=b for1<i<n}=

céb,, ..., b)) =c5M(b , .., b ).

n

5. Propucts oF ND-ALGEBRAS.

Now, we analyze the definition of products in the category of
ND-algebras, adapting the classic definition of products given in uni-
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versal algebra. Thus, it will be shown that the category of ND-algebra
over a given signature is closed by arbitrary products.

Definition 23 (ND-Products): LetA =(A,c,)andA,=(A,, c,)
be two ND-algebras over X. The (direct) ND-product A, X A, is the ND-
-algebra (A, X A,, o) over X such that cA"™**((a,,, a,,), ..., (a,,, a,)) =
cMa,, ..., a,) x cXa,, .., a,)foranya, €A anda, €A, with 1 <]
<n. In particular, ifc € X, ¢, ,, = (C,,, Cs,)-

Definition 24 (canonical projections): LetA, andA, be sets. The
function m: A, x A,—A defined by . ((a, a,)) = a for every a, €A, and
a, € A,, is called the ith- canonical projection of A, x A,, fori=1,2.

Proposition 25: Let A, = (A, 5,) and A, = (A,, 5,) be two ND-
-algebras on X. Then, the canonical projections m: A, x A, = A (i=1,2)
are full homomorphisms.

The proof is immediate from the definitions.

Proposition 26: Let A, = (A, ) and A, = (A,, 5,) be two ND-
-algebras over X, and let m: A, x A, = A (i = 1,2) be the canonical
projections of A, x A,. Then (A, x A, (11,, T1,)) is the product of A, and
A, in the category ND(Z).

Proof: We have to show that (A x A, (1r,, 11,)) satisfies the fol-
lowing universal property: if B = (B, ') is a ND-algebra and f: B—A,
fori=1, 2, are homomorphisms, then there is a unique homomorphism
h: B = A,xA,, such that f = meh fori =1, 2. Thus, consider the function
h: B = A, xA, such that h(b) = (f,(b), f,(b)), for all b € B.

1) h[cB(b,, ..., b )] ={h(b) : b € cB(b,, ..., b )} = {{f,(b), (b)) : b E
cBb,, ..., b )} C

f[cB(b,, ..., b )] x f,[c®(b,, ..., b )]. As by hypothesis f: B = A, for
i =1, 2 are homomorphisms, then f[c8(b., ..., b )] C c*(f(b,), ..., f(b )
and, thus h[c®(b,, ..., b )] C c(f,(b,), ..., f,(b.)) x c**(f,(b,), ..., T,(b,))
=c*(h(b,), ..., h(b,)). Therefore h: B - A xA, is a homomorphism.

1) f(b) = m((f,(b), f,(b))) = m,(h(b)), for i = 1,2, by the definition of h.
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[Il) Suppose that there are two homomorphisms h.: B = A xA,
and h,: B = A xA, such that f = 1Ti°hj fori,j=1,2. So m(h,(b)) =f(b) =
m,(h,(b)) fori= 1,2 and b € B. Therefore, h, = h = h, and so the homo-
morphism h: B = A, xA, is unique.

Definition 27 (general canonical projections): Let | be a set
and let (A),, be a family of ND-algebras over %. The function m: ],
A= A defined by m(a) = a(j), is called the j-th canonical projection of

1_[iEI Ai'

Definition 29 (general products): Let | a set, such thati € | and
(A),, is afamily of ND-algebras on X. The product (direct) A=[]_ A is
the ND-algebra (][ A, 0®) on Z such thatc(a,, ..., a ) =[] c*(a
,a,), forallceZ anda,, .., a € (] A).

i€l i17 """

Proposition 28: The canonical projections : [] A = A, are full
homomorphisms.

Proposition 30: Let | be a set, (A),_, is a family of ND-algebras
over Z, and let m: [[, A = A be the j-th canonical projection of []
A. Then ([T A, (1)
gory ND(Z).

iel

ol « ) is the product of the family (A)_, in the cate-

6. INTERPRETATION OF FORMULAS IN ND-ALGEBRAS.

In this section we define the concept of interpretation of formulas
(over a signature Z) in an ND-algebra (over Z). To do this, we must use
assignments, which will interpret the schema variables occurring in the
formula.

Definition 31 (Selector): Let A and B be non-empty sets, g: B
-, Ais a multi-function, and A® is the set of all functions from B to A. A
selector of g is a function A: B = A such that A (b) € g(b) forallb € B. Let
SEL(g) = {A € AB: A is a selector of g}.

Definition 32 (ND-assignment): Let A = (A, c) be a ND-alge-
bra. A ND-assigment in Ais a function p: = — A.
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Note that, as well as the constants assume a single value in ND-
-algebras (instead of a multiplicity of values), we will define, in a coherent
way, that the variables are instantiated in individual values of the alge-
bra, rather than being instantiated in non-empty sets of elements of the
algebra. So, from our perspective, the non-determinism in the ND-alge-
bras only appears in the complex level, that is, when operators (different
of the constants) are effectively applied to the elements of the algebra.

Definition 33 (interpretation of formulas in a ND-algebra):
Let A= (A, o) be a ND-algebra and let p be a ND-assigment in A. The
multifunction (-)*: L(Z, =) -, Ais the interpretation of ¢ in Aby p is the
non-empty subset ¢*° of A defined by induction on the complexity of the
formula ¢ as follows:

g ={p(e)}, ifEe=;

c*={c,}, ifceZ;

c(@, ..., )°=U{cNa,, ....,a):a €@ for1<sisn}, ifn>0,c
€X and@ €L(Z, =), for1<isn.

Notation: If p is an ND-assignment in a ND-algebra A= (A, o), @
€ L(%, =) and p(§¢) = a, with 1 <i < n, we will write ¢*(a,, ..., a ) instead
of @*.

7. ND-cONGRUENCES AND ND-QUOTIENT ALGEBRAS.

The concepts of congruence and quotient algebra are essential
tools in Blok and Pigozzi’s theory of algebraization of logical systems. Ai-
ming for possible applications of ND-algebra theory within the algebraic
semantics of logical systems, this section will discuss the definition of
congruence and quotient algebra in the context of ND-algebras.

Definition 34 (ND-Congruence): Let A= (A, o) be a ND-algebra
over a signature ~ and let 6 € A x Abe a relation in A. We say that 0 is
a congruence in Aif, and only if:

0 is an equivalence relation;

foralln>0,c€e% anda,..,a, b, .. b €A, ifabbforall 1=l
<n, then:
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foralla € cX(a, ..., a ) there is b € cA(b, ..., b ) such that afb;
forallb € cA(b, ..., b ) there is a € ¢*(a, ..., a ) such that bfa.

Example 7: LetZ ={A, v, -, =, o}, A, the ND-algebra introduced
in Example 3, and let 6 = {(t', t'), {t'’, t'), (f', ), (F', ')} U {(a, a) e A}
C A, xA,. Then 0 is a congruence in A',.

Proposition 35: Let A= (A, ) be a ND-algebra over a signature
2 and let 6 C A x A be a congruence on A. Then, for all ¢ € L(Z, =)
(withn>0)andforalla, ...,a,b, ..., b €A"such that adb, (for 1 < |
< n), the following holds:

foralla € ¢*(a,, ..., a ) thereis b € ¢*(b,, ..., b ) such that abb;

forallb € ¢*(b,, ..., b)) there is a € ¢*(a,, ..., @) such that béa.

The proof can be easily done by induction on the complexity of ¢.

Definition 36: Let A = (A, o) be a ND-algebra over a signature
and let 6 C A x Abe a congruence on A. The ND-algebra quotient of A
by 0, denoted by A/ 6, is the ND-algebra of universe A/6 with operations
c*(a/e,...,a/0) ={al6:aEc’a, ..., a )}, where a/0 is the equivalen-
ce class of a, also called the congruence class of a.

Proposition 37: If A= (A, o) is a ND-algebra over a signature
and 6 € A x Aiis a congruence on A, then A/6 is indeed a ND-algebra
whose operations are well defined.

The proof is straightforward.

8. FILTERS, ULTRAFILTERS AND ULTRAPRODUCTS.

In this section we will show, using our definition of ND-algebra
quotient, that it is possible to define the ultraproduct (this is, the redu-

ced product with respect to an ultrafilter) of any family of ND-algebras.

Proposition 38: Let | be a set, U Cp(l) an ultrafilter on I, (A),,
a family of ND-algebras over Z and 6, C ([], A,)? defined as follows:
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a0 b if and only if {i € | : a(i) = b(i)} € U. Then, 6 is a congruence on
the ND-algebra A=]]_ A.

Proof: Clearly 0, is an equivalence relation. Now, we show that 6,
satisfies the definition of ND-congruence. Letn>0,c€ % anda,, ...,
a,b,...b €A=][_ A, such that ajeubj for 1 <j < n. Then, by defini-
tion of 0, and by the properties of U we have that R = {i : a,(i) = b,(i),
., a(i)=b (i)} eU.

Now, let S = {i: ¢*(a,(i), ..., a (i)) = c*(b,(i), ..., b (i))} € U. Clearly
R C S, therefore S € U.

Let x € cX(a,, ..., a) = [ c¥(@,(i), ..., a (i), and define y € A
such that y(i) = x(i), fori € S, and y(i) € c*(b,(i), ..., b_(i)), if i & S. Since
cA(b,, ..., b)) =TI, c(b,(i), ..., b (i), theny € cA(b,, ..., b ). Moreover,
S C{i:x(i) =y(i)} =T and then T € U. Therefore x6y.

Analogously we can prove that, ify € ¢cA(b,, ..., b ), there is x €
c’(a,, ..., a,) such that yo x.

This shows that 0 is a congruence on the ND-algebra A.

Definition 39 (Ultraproduct): Let | be a set, U Cp(l) an ultrafilter
onl, (A), a family of ND-algebras on Z and 6, C ([], A)> The ultra-
product []._ A./U is the ND-algebra quotient []_ A /6.

i€l

FINAL CONSIDERATIONS

The study of the usual logical matrices and Nmatrices, but mainly
the fundamental tools of universal algebra, enabled the development
of the first original results in what we call non-deterministic universal
algebra.

In this theory, non-deterministic algebraic structures called ND-
-algebras were introduced, whose non-deterministic operations pro-
duce non-empty sets of values, rather than individual values. Several
notions and basic constructions from universal algebra were adapted
to the non-deterministic framework.

Concerning the next steps, we will focus our efforts in the metho-
dology from Abstract Algebraic Logic (AAL, in short), inaugurated by W.
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Blok and D. Pigozzi (see [7], [8], [6]), extending techniques involving
usual matrices for the more general context of Nmatrices. Thus, many
of the known results in the literature on the application of the theory
of logic matrices (most of these results can be found in [14] and [20])
could be applied to other logics that do not have a characterization by
finite matrices.
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