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ABSTRACT

Representing the kinetic state of a patient (posture, motion, and ac-
tivity) during vital sign measurement is an important part of continu-
ous monitoring applications, especially remote monitoring applica-
tions. In contextualized vital sign representation, the measurement
result is presented in conjunction with salient measurement context
metadata. We present an automated annotation system for vital sign
measurements that uses ontologies from the Open Biomedical Ontolo-
gy Foundry (OBO Foundry) to represent the patient’s kinetic state at
the time of measurement. The annotation system is applied to data
generated by a wearable personal status monitoring (PSM) device. We
demonstrate how annotated PSM data can be queried for contextual-
ized vital signs as well as sensor algorithm configuration parameters.

1 INTRODUCTION

Vital sign measurements are often obtained without close
clinical supervision. In hospital settings, ambulatory patient
monitoring devices are used to track vital signs when a pa-
tient is away from the bedside [1]. Telemedicine applications
permit a patient to take readings from a location that is re-
mote to their provider [2]. The availability of consumer-
grade devices coupled with easy-to-use, web-based health
portals has fueled the adoption of vital signs monitoring as
part of the Quantified-Self movement [3]. Users can now
independently collect various sorts of data for fitness, health,
wellness, and disease prevention. What is often lost in these
scenarios, relative to a clinically supervised encounter, is an
interpretation of the user’s context of measurement. As re-
mote continuous vital signs monitoring becomes a reality,
the quality of vital signs data will increasingly rely on accu-
rately inferring and representing measurement context in an
automated way.

We use the term contextualized vital sign for the aggre-
gate of a vital sign and some non-trivial aspect of its meas-
urement context. Paradigmatic contextualized vital signs
include: night-time blood pressure, post-operative blood
pressure, resting respiratory rate, premenopausal body tem-
perature, and reclining heart rate. Such descriptions are often
applied to snapshot (episodic) measurements, and efficiently
recorded and transmitted.

This paper presents a representation of contextualized vi-
tal signs that uses ontologies from the Open Biomedical On-
tology (OBO) Foundry. We then use this representation in an
automated annotation system for a personal status monitor-
ing (PSM) device data stream. We have developed the PSM
system to classify motion, body position, and high-
acceleration events (such as falls) alongside vital sign meas-
urements. The specific example we use throughout is the
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representation of a user’s body position during a pulse rate
measurement. However, the annotation system can scale to
cover the entire suite of classifiers.
The utility of having ontologically annotated PSM data is
manifested in several applications:
e Maintaining sensor configuration for each classification.
e Maintaining classification algorithm configuration.
e Training set construction from annotated PSM data for
data mining and machine learning.
Querying PSM results using annotations as criteria.
Describing semantic alarms for continuous monitoring
applications [11].
These are discussed below along with potential exten-
sions to the system.

2 BACKGROUND

2.1 Personal Status Monitoring System

Accelerometers are the most prevalent sensors used for
body-position classification applications [12]. The PSM
device is a wearable multi-sensor system consisting of four-
teen tri-axial accelerometers and multiple vital sign moni-
tors, each of which is unobtrusive and noninvasive for the
user. The accelerometers are mounted in such a way as to
minimize noise and are positioned at the hips (2), knees (2),
shins (2), shoulders (2), forearms (2), wrists (2), chest (1),
and head (1). Four unsupervised classification algorithms
are applied to PSM data in order to infer user motion, body
position, device orientation, and fall events. Each of these
classifications relies on either acceleration measured at each
sensor or data derived from the combination of such meas-
urements. For example, body position is inferred using a
classifier that takes as input the relative angles between
limbs (Euler angles) or (in simple cases) the tilt of a limb
relative to the anatomical axes. When all of the accelerome-
ters are used in the classification of body position, the result
can be visualized as a rough skeletal wire-frame configura-
tion. Only a subset of the accelerometers is typically re-
quired to accurately classify crude body positions such as
“sitting”, “standing”, and “lying down”. For clinical appli-
cations, one or two active accelerometers will suffice. Vital
sign monitors include a heart rate and respiration rate moni-
tor mounted on the chest. Figure 1 illustrates three different
embodiments of the PSM device.
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Figure 1. Military, athletic, and clinical embodiments of the PSM

PSM data are transmitted wirelessly to a laptop computer
running data capture software. This is the initial input to a
workflow for motion, body position, and anomaly classifica-
tion. PSM data can be stored off as: raw measurement val-
ues, features over windows of raw data in the time or fre-
qguency domain (mean, standard deviation, peak, energy,
etc.), or as a time series of class labels.

This system is intended to be an end-to-end solution for
capturing, storing, visualizing, and computing over contextu-
alized vital signs. The annotation system described in this
paper operates over a log of PSM data.

2.2 Annotation System Requirements

Our annotation system for PSM-generated contextualized
vital signs needs to represent all of the following:

e Sensor configuration (e.g., sampling rate, anatomical
location of sensors)

e Body position prediction algorithm configuration (e.g.,
algorithm parameters)

e Data types, unit labels, time stamps, and ontological
types for body position measurement data and vital sign
measurement data.

e Data provenance: The particular sensor outputs and al-
gorithm inputs responsible for a particular prediction.

e Data redundancy: Awareness that measurements from
different sensors may be related or of the same type.

2.3  Existing Resources

Ontologies implemented in OWL-DL are well suited for our
task because they provide formal descriptions of the relevant
entities and relationships. Data annotated using types from
an OWL-DL ontology can be represented in various ma-
chine-readable formats for storage, transmission, presenta-
tion, and query.

To our knowledge, no single ontology implements a sys-
tematic treatment of contextualized vital signs. The resources
to represent contextualized vital signs exist in available ter-
minologies, controlled vocabularies, and clinical models.
However, most of these are currently inadequate for our ap-
plication because they attempt to enumerate only a few com-
binations of vital signs and postural terms, rather than allow-
ing such terms to be built up via cross-products of a vital
sign term and another term. Our approach will be to utilize
OBO Foundry ontologies, since they are built orthogonally
with little domain overlap and, thus, are better suited to ac-
commodate cross-product terms. Below we first review some

of the resources outside of the OBO Foundry that are rele-
vant to our application domain.

2.3.1 SNOMED-CT

The Systematized Nomenclature of Medicine — Clinical
Terms (SNOMED-CT) clinical terminologly includes a small
hierarchy of terms involving body position™:

-Position of body and posture
-Body position
-Body position for procedure
-Body position for blood pressure measurement
-Body position for height measurement

SNOMED-CT provides no natural-language definitions to
distinguish these body position terms from other terms like
‘posture’. The most specific terms in this hierarchy apply
only to blood pressure and height measurements. If a new
term is required, e.g., ‘body position for heart rate meas-
urement’, it must be requested from the maintainers of the
terminology. In this case, the user would have to temporari-
ly annotate using the parent term ‘Body position for proce-
dure’. A solution to this would be to use two separate termi-
nologies, one that maintains measurement terms, and anoth-
er that maintains body position terms, and to generate terms
as cross-products between these two sources.

2.3.2 NCI-Thesaurus

The National Cancer Institute (NCI) Thesaurus includes the
term “vital signs position’ as a subclass of ‘body position’.
The CDISC Vital Signs Position of Subject Terminology? is
part of the CDASH controlled terminology referenced in the
NCI Thesaurus. The following three terms are included:

Sitting: The state or act of one who sits; the posture of one
who occupies a seat.

Standing: The act of assuming or maintaining an erect up-
right position.

Supine: A posterior recumbent body position whereby the
person lies on its [sic] back and faces upward.

These provide natural language definitions, but assume that
the positions in question are observed directly by a clinician.
No logical relations link these terms to the anatomical enti-
ties involved, or to body position measurement algorithms
used in a wearable device like the PSM.

2.3.3 openEHR

Electronic health records form another healthcare informatics
system where contextualized vital signs may be represented.
The openEHR systern provides an open standard for repre-
senting data in EHR systems, including a representation of
common data elements in a structure called an archetype [4].
Archetypes include free text and a coded type system. Ar-
chetypes for several vital signs already exist in openEHR.

! http://purl bioontology.org/ontology/SNOMEDCT/397155001
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Along with a ‘data’ portion where the measurement is rec-
orded, these archetypes contain a “state’ portion, representing
the context of measurement. For example the ‘heart rate and
rhythm’ archetype includes four body positions: ‘Lying’,
‘Sitting’, ‘Reclining’, and ‘Standing’, along with definitions
and an assumed default value. Other vital sign archetypes
include specialized body positions when they are relevant to
clinical measurement contexts. For example, the blood pres-
sure archetype’s state segment includes the position, “Lying
with tilt to the left: Lying flat with some lateral tilt, usually
angled toward the left side. Commonly required in the last
trimester of pregnancy to relieve aortocaval compression.”
Such free-text contextual descriptions are valuable, but to
fully realize their value, they must be annotated and linked to
machine-readable representations outside of the EHR itself.

3 ONTOLOGY FOR CONTEXTUALIZED
VITAL SIGNS

We use OBO Foundry ontologies for our annotation system
for several reasons: such ontologies are open-source, actively
developed by domain experts, use stable IRIs to denote
types, honor the distinction between individuals and univer-
sals, share the Basic Formal Ontology (BFO) as a common
upper-ontology®, and share the OBO Relation Ontology
(RO) as a common source for relations [7]. OBO Foundry
ontologies are implemented in machine-readable formats
(OWL-DL and OBO Format), and are developed to maxim-
ize reuse of terms and relations. OBO Foundry reference
ontologies are general enough for use across several do-
mains. These are in contrast to application ontologies, which
import terms and relations from reference ontologies and
define new application-specific terms and relations for the
purposes of a given application.

We have developed the Ontology for Contextualized Vi-
tal Signs (OCVS)* as an application ontology for PSM data
annotations. A central feature of OCVS is its use of external
terms and relations from OBO Foundry ontologies when
possible. These external terms are used to form cross-product
definitions and description logic restrictions.

For example standing pulse rate can be defined using a
necessary and sufficient DL-restriction using the Vital Sign
Ontology (VSO) [8], the Ontology for Biomedical Investiga-
tions (OBI) [9], and the Experimental Conditions Ontology
(XCO) [10]:

“The pulse rate of an organism in the standing position”
vso:“‘pulse rate” AND
inheres_in SOME (obi:organism AND
bearer_of SOME xco:“standing position’)

The relations (in bold) are standard relations from the
OBO Relation Ontology. OCVS does not have to redefine
new terms in order to construct the definition of ‘standing
pulse rate’, and the same cross-product template can be used
for different vital signs (from VSO) and body positions

3http:llwww.ifomis.org/bfo/
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(from XCO). OCVS imports terms from the Unit Ontology®
(UO) to represent measurement units. All terms are imported
using the MIREOT mechanism [5]. Throughout the paper,
the source ontology for a term will be indicated via its OBO
prefix (e.g., obi:‘measurement datum’ is the term ‘measure-
ment datum’ from the Ontology for Biomedical Investiga-
tions).

3.1 Representing Measurements

These imported terms are combined with relations from the
Relation Ontology to form the basic representations for PSM
measurements. A PSM measurement datum consists of three
acceleration magnitude measurements, three tilt measure-
ments (relative to each device axis), a signal vector magni-
tude measurement (SVM), a signal magnitude area (SMA)
measurement, and a time stamp representing an interval.

The time stamp represents the total running time in sec-
onds from the beginning of the data acquisition session. Ac-
celeration is given in g-units (1 g = 9.8 m/s?), which OCVS
asserts to be a type of acceleration unit. The angle of tilt,
relative to the acceleration along each axis a, is computed as
follows:

tilt(a) = asin(a) x ? (D

This produces an angular measurement of stationary tilt
in the range [-90, 90] degrees. SVM is computed with each
reading as a function of all three acceleration components at
a particular time (x(t), y(t), z(t)):

SVM(x(0), y(©), 2(t)) = /x()? + y()? + z(1)? )

The SMA is a running total of the absolute sum of com-
ponent-wise accelerations over a window of N readings:

N N N
SMAGx,y,7) = %(le(m + o]+ Z|z(i>|> ®
i=0 i=0 i=0

At any given time, the SMA is a sum over a window con-
taining the last N readings. In OCVS, we assert that each of
these measurement data is a part of the ‘PSM measurement
datum’ with the same timestamp.

There are multiple ways of measuring qualities such as
tilt. OCVS includes term annotations indicating the formulas
used to derive relevant measurement data, thus providing
metadata for consumers of annotated data as to how each
input parameter to the body position classifier was derived.

‘PSM Measurement Datum’ in OCVS s a defined class.
Defined classes, like universals, correspond to OWL classes.
OWL object properties are used to implement OBO Foundry
relations, and OWL data properties are used to link particu-
lars (OWL individuals) to data. The parts of a PSM meas-
urement datum and relevant relations are shown in Figure 2.

A single PSM measurement datum is the input to the
body position classification algorithm which has as output a

5http://code.googIe.com/p/unit-ontolog)(/
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body position measurement datum. This is captured in
OCVS using the representation in Figure 3.
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Figure 2. Parts of a Personal Status Monitor (PSM) measurment datum
for a single accelerometer and single pulse rate sensor.

Currently, the “prone’, ‘sitting’, ‘standing’, and ‘supine’
position terms are imported from XCO. Various other clini-
cally significant body positions have been identified (e.g.,
‘decubitus position’, ‘Sims position’, ‘knee-chest position’).
These are often specific to a medical procedure and beyond
the scope of OCVS. Another application ontology could use
OCVS’ representation scheme to represent these positions.
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Figure 3. The body position classification algorithm is represented as an
obi:‘data transformation’

3.2 Accelerometer Configurations

Of particular interest for our application is a mapping of
body positions to a minimal sensor set required to recognize
those positions. For example, a single accelerometer posi-
tioned at the user’s sternum can tell whether the user is bend-
ing forward or backward along the sagittal plane, but cannot
differentiate sitting from standing. Inversely, an accelerome-
ter positioned at either of the user’s hips can differentiate
sitting from standing, but cannot tell which way the user is
leaning, since this must be measured at the upper body. If
two accelerometers are used, one on a hip and another on the
chest, then both measurement blind spots can be overcome.
In fact, a new set of positions can be described in the two-
accelerometer configuration that is a composition of posi-
tions recognized in either one-accelerometer configuration:

TABLE I

MAPPING BODY POSITIONS TO MINIMAL SENSOR SETS

Body Positions

Minimal Sensor Set Description

‘upright’,
‘bending forward’, ‘bending
backward”

. accelerometer AND
has_anatomic_configuration ONLY chest

‘sitting’, ‘standing’

. accelerometer AND
has_anatomic_configuration
ONLY (‘right hip’ OR “left hip’)

‘seated reclining’, ‘standing
bending backward’,

‘sitting upright’,

‘standing upright’,

. accelerometer AND
has_anatomic_configuration ONLY chest

. accelerometer AND
has_anatomic_configuration

‘sitting bending forward
(tucked/bracing)’, ‘standing
bending forward’

ONLY (‘right hip’ OR “left hip’)

By explicitly encoding these constraints, we can check if the
output class labels for our body position classification algo-
rithm are appropriate given the active accelerometers before
even attempting to invoke the algorithms.

In order to represent this information ontologically, we
need to be precise about what it means for an accelerometer
to have a particular anatomic configuration. We will assert
that a has_anatomic_configuration ¢ when:

1. aisa ‘tri-axial accelerometer’

2. cisan fma;‘anatomical entity’

3. aadjacent_toc

4. Each acceleration measured by a, along the device x,

y, or z axis, is_proxy for the acceleration of
part_of c, along (a transformation of) the corre-
sponding anatomical axis.

To capture the first condition, we assert that ‘Freescale
MMAT7660FC Triaxial Accelerometer’ (our chosen accel-
erometer type) is a “triaxial accelerometer’, and that ‘triaxial
accelerometer’ is a obi:*measurement device’. We use the
Foundational Model of Anatomy (FMA) Ontology to repre-
sent anatomical entities. A small subset of FMA terms is
imported into OCVS for the PSM application. The OBO
adjacent_to relation covers spatially proximal continuants.
The fourth clause ensures that the measured values coming
from PSM accelerometers are representative of the accelera-
tions of the anatomical entities to which they are attached.
OBI’s cl is_proxy_for c2 relation holds between continuant
instances c1, c2 when the measurement of c1 is taken to de-
termine what a measurement of ¢2 would be (if c2 were di-
rectly measurable). Since all the relevant anatomical entities
for the PSM device are larger than the accelerometer, the
measured value is only a proxy for that part of the anatomi-
cal entity that is closest to the sensor. The OCVS also im-
ports FMA terms for each of the anatomical planes (‘coronal
plane’, ‘median sagittal plane’, and ‘transverse plane’) and
axes at their intersections.

However, since the anatomical axes are relative to the
whole organism, the coordinate system must undergo a trans-
formation to match up with the orientation of accelerometers
at other anatomical locations. The relation is labeled
has_anatomic_configuration to differentiate it from other
device configuration parameters such as sampling rate.
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Finally, we express the relationship between measure-
ment data and the measurement devices that produce them.
We assert dt measured_using dev when:

1. dtisaobi:‘measurement data’

2. dev is a obi:*measurement device’

3. dtis the specified output of the realization of dev’s
measure function.

This allows us to make assertions linking PSM device
types to data types. The universal-level relation expresses the
link for all such device and data pairings. This implies that
all particular instances of datum universals are linked to in-
stances of device universals. This is important because the
PSM has fourteen accelerometer instances and an arbitrary
number of (potentially redundant) vital sign sensor instances.
For example, if we want to measure a pulse rate using both a
pulse oximeter and a cardiac monitor, the same data type can
be linked via the universal-level restriction:

vso0:“‘pulse rate measurement datum’ rdfs:subClassOf
measured_using SOME
(‘pulse oximeter’ OR “cardiac monitor’)

The measurement device types are then linked to the
measure functions they were designed to realize:

‘triaxial accelerometer’ rdfs:subClassOf has_function
ONLY ‘acceleration magnitude measure function’

‘pulse oximeter’ rdfs:subClassOf has_function
SOME ‘pulse rate measure function’

Notice that the quantifiers differ here. The only function
of the accelerometer is to measure acceleration magnitude,
however the measure function of the pulse oximeter can be
realized in multiple processes (including blood oxygen
measurement processes and pulse rate measurement process-
es). The ontology captures multi-function devices via differ-
ent measure function types. The corresponding instance-level
relations (denoted in italics: measured_using) calls out the
particular devices used. For example: (1.1g, 0.6g, -0.29)
measured_using Freescale MMA7660FC Triaxial Accel-
erometer #6. Two pulse rate measurement data instances can
differ and still be of the same ontological type. The prove-
nance of each datum is captured by the instance-level rela-
tion that ties it to a particular device, allowing for redundant
readings.

3.3 Vital Sign Monitoring Device Configuration

Pulse rate and heart rate are typically highly correlated and
are often used interchangeably. The PSM uses an on-garment
chest-strap cardiac monitor to compute heart rate. However,
the PSM can also be configured to use a clip-on pulse oxime-
ter for pulse rate measurements. In order to capture the
provenance of vital sign measurement data, OCVS repre-
sents: the device, the vital sign being measured, and the ana-
tomic configuration of the monitoring device. Superclass
terms for ‘vital sign measurement device’ and ‘pulse rate

measurement datum’ are drawn from the Vital Sign Ontolo-
gy. Anatomic configuration for vital sign monitoring devices
is represented in the same way as accelerometer anatomic
configuration, only without the need for the orientation or
proxy measurement of condition 4.

4 AUTOMATED ANNOTATION SYSTEM

OCVS was developed to facilitate automated annotation of
PSM data. Annotation involves associating each PSM con-
figuration parameter, numerical measurement, and classifier
prediction with an OCVS term (i.e., making an assertion
about an owl:NamedIndividual using rdf:type), and asserting
instance-level relations that hold between particular individ-
uals. The resulting output can be expressed using the Re-
source Description Framework (RDF) and serialized using a
suitable RDF syntax. RDF Turtle syntax is preferred for
transmission to minimize file size. We use the SPARQL
query language to query annotated PSM data files (see next
section). An example of a part of an annotated PSM meas-
urement datum is shown in Table II.

TABLE II. PART OF AN ANNOTATED PSM MEASUREMENT DATUM

Reading #13384_2 part_of (BFO_0000051) instance-level assertions

:13384_2 rdf:type psm:PSM_0000010 ,
owl :NamedIndividual ;

obo:BFO_0000051 :13384_2AccelX ,
:13384_2Accely ,
:13384_2AccelZ ;

obo:1A0_0000581 :13384_2ReadingTime ;

0bo:BFO_0000051 :13384_2SMA ,
:13384_2SVM
:13384_2TiltX ,
:13384_2TiltY ,
:13384_2TiltZ .

obo:has_measu

owl:NamedIndividual
rement_value

rdf:type

#13384_2ReadingTime

time measurement datum (IAO_0000416) 47.00 (s)

accelerometer x-axis acceleration magni-

#13384_2AccelX tude measurement datum

(PSM_0000031)

0.19(9)

accelerometer z-axis tilt measurement
#13384_2TiltZ 0.02 (deg)

datum (PSM_0000038)

body position measurement datum

#13384_2BodyPosMDatum Upright

(PSM_0000029)

The annotation system is implemented using a series of PHP
scripts that are invoked offline and after a particular session
has ended. Each session is given a unique identifier and is
assumed to have a stable anatomical and device configura-
tion throughout.

Annotated PSM data files® are only linked to the ontolo-
gy by way of the IRI identifier of the corresponding OCVS
types. This loose coupling allows for further development
and refinement of the ontology without changing the repre-
sentation of the annotated data file. All that is required is that
OCVS types retain their IRI identifiers. The representation is
also flexible enough to permit arbitrarily many new sensors

6 See http://www.awgbi.com/ontologies/psm-instances.owl for a small sample annotated data file.
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to be integrated into the PSM platform without invalidating
previously annotated (legacy) PSM data.

5 QUERYING ANNOTATED PSM DATA

We utilize the SPARQL to query annotated RDF-formatted
PSM data. Annotated PSM data is queried locally using the
ARQ command-line tool from the Apache Jena framework.

The following is part of a SPARQL query that returns all
of the PSM measurement data measured using an accelerom-
eter positioned at the sternum in which the inferred body
position is ‘Bending Backward’:

SELECT DISTINCT ?psmmd
WHERE
?psmdevtype rdfs:label "PSM device"@en .
?cfg rdfs:label "Sternum"@en .
?psmmdt rdfs:label "PSM measurement datum"@en .
2d rdf:type ?psmdevtype .
?d part_of: ?psmdevpart .
?psmdevpart has_anatomic_configuration: ?cfg .
?psmmd measured_using: ?d .
?psmmd rdf:type ?psmmdt .
?alg has_specified_input: ?psmdt .
?alg has_specified_output: ?bpmd .
?bpmd has_body_position_measurement: "Bending Backward"~rdfs:Literal .

The query results are bound to ?psmmd and represent
PSM measurement data that satisfy the criteria in the
WHERE clause. This query exemplifies several different
search criteria we may apply to the annotated PSM data set.
If we are interested in the details of the configuration (e.g.,
the devices used, their sampling rates, and their anatomical
configurations), then we could expand the query on the re-
sults bound to ?psmdevpart. If we are interested in the
contextualized vital sign measurement value, we can expand
the query on the results bound to ?psmmd and examine its
measurement data parts. If we want to obtain details about
the algorithm configuration, we can examine ?alg.

From a user interface perspective, it is easier to provide a
web-based form from which queries can be constructed. We
are implementing scripts to programmaticall¥ generate que-
ries via the Graphite PHP Linked Data library’.

6 CONCLUSION

OCVS provides a representation of vital sign measurement
context using the OBO Foundry ontologies. On the strength
of cross-product definitions from orthogonal, independently
developed ontologies, we are able to create descriptions of
body positions, configurations, and queries in a composition-
al way. OCV'S metadata captures enough domain knowledge
to serve as a meaningful component of a pattern classifica-
tion pipeline.

The semantic web standards used to build our annotation
system enable decentralized development, storage, and query
of resources. Further development on OCVS (or any of the
OBO Foundry ontologies on which it relies) will not disrupt
the data acquisition and classification routines.

OCVS is currently used to annotate continuous raw sen-
sor measurement data. As such, the annotated PSM data is at
the finest granularity. Currently, such data only need to be
transmitted when an episodic reading is taken. In applica-
tions requiring more continuous transmission, OCVS-based

’ http://graphite.ecs.soton.ac.uk/

annotation can be applied to more coarse-grained data such
as feature sets or sets of classifier outputs. A switch in data
granularity will only require extension of the ontology rather
than a switch of ontologies.

We believe that using OBO Foundry ontologies and se-
mantic web standards can serve as the core knowledge repre-
sentation for contextualized vital signs. Such a representation
can be extended to perform further contextualization (e.g.,
disease-based contextualization) depending on the require-
ments of the particular application.
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