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1 Introduction
This paper presents1 a new system of logic, LF, that is intended to be used as the
foundation of the formalization of science. That is, deductive validity according
to LF2 is to be used as the criterion for assessing what follows from the verdicts,
hypotheses, or conjectures of any science. In work currently in progress, we argue
for the unique suitability of LF for the formalization of logic, mathematics, syntax,
and semantics. The present document specifies the language and rules of LF, lays
out some key notational conventions, and states some basic technical facts about the
system.

LF is a system of higher-order logic based on that of Church (1940), and is closely
related to the now-standard system of Henkin (1950). LF improves on these systems
by being intensional, like Henkin’s system, but not extensional, unlike Henkin’s. An
intensional system is one in which provably equivalent formulae may be substituted
in any context. Intensionality suffices for the provability of all the equalities we need
to be able to prove in mathematics, which we therefore also need to be able to prove
throughout the rest of science, such as 1 = 0+1. In Church’s system, 1 = 0+1 cannot
be proved, provided that the numerals are defined, following Principia Mathematica
(Whitehead and Russell 1910–1913), so as to be suitable for counting.

Henkin’s system is an intensional extension of Church’s system and is in that
respect an improvement on it, but it incorporates the problematic assumption of
extensionality, which says that the material equivalence of propositions (type 𝑡 3) is
sufficient for their identity. Extensionality is problematic for a variety of reasons,

1The system has already been discussed in the literature: see Williamson 2023: 220, which cites
unpublished work by the authors. However, no explicit formulation of the system, qua formal system,
has been published to date.

2And thus according to any useful conservative extensions thereof, of which we highlight LF 𝜄

and LF𝜀 in this paper (§4).
3Or type 𝑜 in Church’s and Henkin’s terms.
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most obviously in applications of the theory of probability. Suppose that a fair coin
is to be tossed, and let 𝐻 and 𝑇 be sentences that respectively formalize ‘the coin
lands heads’ and ‘the coin lands tails’. It would be normal to assume each of

Pr(𝐻 ∧ 𝑇) = 0 Pr(𝐻) = 0.5 Pr(𝐻 ∨ 𝑇) = 1,

but this trio is simply inconsistent in an extensional system. The derivation of
a contradiction from the trio in an extensional system requires no extralogical
assumptions about probability function Pr or about anything else;4 the point is
that in an extensional system we can prove that there are only two propositions, so
no function can give them more than two values.

LF also differs from the systems of Henkin and Church in its assumptions about
infinity. LF includes only a rule of potential infinity, which says that for each finite
number 𝑛, the proposition that there are at least 𝑛 things is not contradictory. A
rule of actual infinity would by contrast assert that for each finite number 𝑛, there
are in fact at least 𝑛 things. Potential Infinity suffiuces for the provability of the
inequalities we need to be able to prove in mathematics, which we therefore also
need to be able to prove throughout the rest of science, such as 2 + 2 ≠ 5.

Church and Henkin include axioms of (actual) infinity in their systems, but only
for individuals (type 𝑒5). For this reason, they cannot prove either the potential or
actual infinity of propositions, and hence cannot prove 2 + 2 ≠ 5 on the interpre-
tation of the numerals suitable for counting propositions, which is required, as we
saw above, for elementary reasoning about probability. (Even worse, in Henkin’s
extensional system can prove 2 + 2 = 5 when the numerals are so interpreted, but
that system, as we saw, is also unsuitable for elementary reasoning about probability
for an even more basic reason.)

LF is closely related to earlier intensional systems, most notably the system
GM = MLP +C+EC+AC+PE, which is the strongest system that can be assembled
out of the components studied by Gallin (1975) and which is gestured at but not
axiomatized by Montague (a similar idea in a more baroque form is presented by
Church (1951) as “Alternative (2)”); a weakening of LF (with the rule of Potential
Infinity restricted to type 𝑒) is a conservative extension of GM. Like GM, LF
significantly improves on the work by Montague (e.g., 1970) that inspired Gallin’s
work in its conceptual clarity and economy of notation by eliminating the additional
base type of ‘indices’. LF is also considerably simpler than GM, in implementing
intensionality with the simple rule of Intensionality (attributed, in essence, to Carnap
1942: 92 in Church 1943: 300), which permits one to extend a proof of the material

4We assume that, like the numerals, the real number terms are treated as abbreviations of some
suitable purely logical terms, so that 0 ≠ 0.5, 0 ≠ 1, and 0.5 ≠ 1 all abbreviate theorems.

5Or type 𝜄 in Church’s and Henkin’s terms.
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equivalence of propositions to a proof of their identity. Other intensional systems
that avoid overcomplication by index types, such as Bacon and Dorr’s (forthcoming)
Classicism, are too weak in important respects that will be described in future work.

2 The formal system

2.1 Terms
We begin by introducing the language of LF. It is made up of terms that are classified
by their types. Both the terms and the types by which they are classified are strings
(of typographic characters), but for each type 𝜎 there is also the class of terms of
that type, to which the string 𝜎 will also be used to refer—a tolerable ambiguity that
would be eliminated in a fully formalized presentation of the system.

2.1.1 Types

There are two base types: 𝑒 (the type of individual terms) and 𝑡 (the type of sentences
and other formulae). The remaining types are functional types: for any types 𝜎, 𝜏,
⟨𝜎𝜏⟩ is a functional type (which may casually be referred to as ‘the type of functions
from 𝜎 to 𝜏’).

𝑒 ∈ Type 𝑡 ∈ Type
𝜎 ∈ Type 𝜏 ∈ Type

⟨𝜎𝜏⟩ ∈ Type
(1)

2.1.2 Variables

The terms of the language include, for each type 𝜎, an infinite stock of variables of
that type, each of which is a string consisting of an (italic Roman) letter with the
type 𝜎 as a subscript followed by zero or more primes:

𝜎 ∈ Type a ∈ Letter
a𝜎 ∈ Var

𝜎 ∈ Type a ∈ Letter
a𝜎 : 𝜎

a ∈ Var
a′ ∈ Var

a ∈ Var a : 𝜎
a′ : 𝜎

(2)

2.1.3 Constants

The constants of the language are the strings consisting of the standard inclusion
symbol ⊆ followed by a type 𝜎 as a subscript, which indicates the type of the
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constant according to the rule that the type of ⊆𝜎 is ⟨𝜎𝑡⟩⟨𝜎𝑡⟩𝑡:

𝜎 ∈ Type
⊆𝜎: ⟨𝜎𝑡⟩⟨𝜎𝑡⟩𝑡

(3)

⊆𝜎 is pronounced “every”, or, when written in infix notation (Section 2.2.2), “im-
plies” or “is included in” (and variants).

2.1.4 Complex terms

All complex terms of the language are constructed in accordance with one of two
formation rules: (function) application and (function) abstraction:

f : 𝜎𝜏 a : 𝜎
App

(fa) : 𝜏
x ∈ Var x : 𝜎 A : 𝜏

Abs
(𝜆x � A) : 𝜎𝜏 (4)

2.1.5 𝛽-equivalence

Terms of the forms (𝜆x � A)B and [B/x]A are said to be immediately 𝛽-equivalent,
and terms are said to be 𝛽-equivalent when one can be obtained from the other by
any number of substitutions of immediately 𝛽-equivalent parts (each term counts as
part of itself). We write A ∼𝛽 B when A and B are 𝛽-equivalent.

2.1.6 Expressions

An expression of the language is a term with no free variables.

2.1.7 Formulae and sentences

A formula is a term of type 𝑡. A sentence is an expression of type 𝑡.

2.2 Abbreviations and notational conventions
2.2.1 Omission of parentheses and type decorations

Parentheses and angle brackets (⟨, ⟩) may be omitted in accordance with the following
conventions.

1. Variable binders (i.e., 𝜆 and other introduced variable binders; which are
indicated by a � following the bound variable) take widest possible scope.
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2. Boolean connectives (∧,∨,→,↔) are written in infix notation and take next
widest scope.

3. Other function terms written in infix notation take next greatest scope.

4. Functions written in prefix notation take smallest possible scope.

5. Functions written in infix notation associate to the right, when the conventions
above do not say otherwise (we apply this convention only when it is clear that
the functions in question provably associate). So, given all of the foregoing,

𝜆𝑝 � 𝑓 𝑝 → 𝑞 (5)

omits parentheses which should be filled in as

(𝜆𝑝 � (( 𝑓 𝑝) → 𝑞)). (6)

6. Angle brackets (⟨, ⟩) are omitted in accordance with the convention that com-
plex types associate to the right. So, e.g., 𝑡𝑡𝑡 abbreviates ⟨𝑡⟨𝑡𝑡⟩⟩.

Type decorations may be omitted when writing terms when they can be inferred
from context, i.e., when there is a unique term that could result in the written string
by deleting type decorations from any variables or constants, subject to the following
conventions.

1. Letters that could be bound by the same variable binder must have the same
type. E.g., 𝜆𝑥𝑒 � 𝑥 and 𝜆𝑥 � 𝑥𝑒 must be 𝜆𝑥𝑒 � 𝑥𝑒.

2. 𝑝 and 𝑞 always have type 𝑡 unless otherwise decorated.

For example,

𝜆𝑥𝑒 � 𝑓 𝑓 𝑥 (7)

abbreviates

𝜆𝑥𝑒 � 𝑓 𝑒𝑒 𝑓 𝑒𝑒𝑥𝑒 . (8)

2.2.2 Infix Notation

Introduced constants f of types that take at least two arguments, i.e., types of the
form 𝜎𝜏𝜌, may be written in the form

(a f b) := ((fa)b) (9)

5



2.2.3 Metanotation

Bold symbols are used as metavariables. P and Q always range over formulae. The
Greek letters 𝜎, 𝜏, and 𝜌 are also metavariables, but always range over types.

The overset arrow ®· is used atop a metavariable to construct a metavariable
ranging over strings of variables or types, of arbitrary length. When this device is
used to range over both a string of variables and a string of types, as in

𝜆𝑋 ®𝜎𝑡®𝑧 � ¬𝑋®𝑧, (10)

the intended instances are those in which the variables ®𝑧 have the respective types
®𝜎.

2.2.4 Basic definitions

⊤ := (𝜆𝑝 � 𝑝) ⊆ (𝜆𝑝 � 𝑝) (11)
∀𝜎 := 𝜆𝑋𝜎𝑡 � ((𝜆𝑦𝜎 � ⊤) ⊆ 𝑋) (12)

∀x𝜎 � P := ∀𝜎𝜆x𝜎 � P (13)
⊥ := (𝜆𝑝 � ⊤) ⊆ (𝜆𝑝 � 𝑝) (14)
¬ := 𝜆𝑝 � ((𝜆𝑟 𝑡 � 𝑝) ⊆ (𝜆𝑟 𝑡 � ⊥)) (15)

∃𝜎 := 𝜆𝑋𝜎𝑡 � ¬∀𝑦𝜎 � ¬𝑋𝑦 (16)
∃x𝜎 � P := ∃𝜎𝜆x𝜎 � P (17)
𝜆x®y � A := 𝜆x � 𝜆®y � A (18)
∀x®y � P := ∀x � ∀®y � P (19)
∃x®y � P := ∃x � ∀®y � P (20)

→ := 𝜆𝑝𝑞 � ((𝜆𝑟 𝑡 � 𝑝) ⊆ (𝜆𝑟 𝑡 � 𝑞)) (21)
∨ := 𝜆𝑝𝑞 � (¬𝑝 → 𝑞) (22)
∧ := 𝜆𝑝𝑞 � ¬(¬𝑝 ∨ ¬𝑞) (23)
↔ := 𝜆𝑝𝑞 � ((𝑝 → 𝑞) ∧ (𝑞 → 𝑝)) (24)

≡®𝜎𝑡 := 𝜆𝑋𝑌 ®𝜎𝑡®𝑧 � (𝑋®𝑧 ↔ 𝑌 ®𝑧) (25)
=𝜎 := 𝜆𝑥𝑦𝜎 � ((𝜆𝑍 � 𝑍𝑥) ⊆ (𝜆𝑍 � 𝑍𝑦)) (26)
0𝜎 := 𝜆𝑋𝜎𝑡 � ¬∃𝑋 (27)
1𝜎 := 𝜆𝑋𝜎𝑡 � ∃𝑦 � (𝑋𝑦 ∧ ∀𝑧 � (𝑋𝑧 → 𝑦 = 𝑧)) (28)

\®𝜎𝑡 := 𝜆𝑋𝑌 ®𝜎𝑡®𝑧 � (𝑋®𝑧 ∧ ¬𝑌 ®𝑧) (29)
+𝜎 := 𝜆𝑚𝑛⟨𝜎𝑡⟩𝑡𝑋𝜎𝑡 � ∃𝑌 � (𝑌 ⊆ 𝑋 ∧ 𝑚𝑌 ∧ 𝑛(𝑋 \ 𝑌 )) (30)
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N𝜎 := 𝜆𝑛⟨𝜎𝑡⟩𝑡∀𝑋 � (𝑋0 → (𝑋 ⊆ 𝜆𝑦 � 𝑋 (𝑦 + 1)) → 𝑋𝑛) (31)

2.3 LF
LF is presented as a natural deduction system in sequent calculus notation. A sequent
is a string consisting of a possibly empty list of formulae (separated by commas),
followed by the symbol ⊢, and then a formula. The sequent

Γ ⊢ P (32)

may be read “P has been derived from the assumptions Γ”.
A rule is written in the following form, where capital Greek letters range over

lists of formulae (i.e., formulae separated by commas),

Γ1 ⊢ P1 . . . Γ𝑛 ⊢ Pn

Δ ⊢ Q
(33)

and it indicates that, when Pi is provable from Γ𝑖 for each 𝑖 ∈ {1, . . . , 𝑛}, Q is
provable from Δ.

LF is defined as a class of rules, namely the rules R.1 to R.4 and R.6 to R.9. A
formula P is provable in LF from the assumptions Γ if and only if the sequent

Γ ⊢ P (34)

is derivable by some application of these rules. A theorem of LF is a sentence that
is provable from no assumptions (i.e., from the empty list of assumptions, in which
case we write: ⊢ P).

R.1 Structural Rules

Γ,P ⊢ P
Γ,P,P ⊢ Q
Γ,P ⊢ Q

Γ ⊢ Q
Γ,P ⊢ Q

Γ,P,Q,Δ ⊢ R
Γ,Q,P,Δ ⊢ R

Γ ⊢ P Δ,P ⊢ Q
Γ,Δ ⊢ Q

(35)

R.2 𝛽-Equivalence

Γ ⊢ P
Γ ⊢ Q (36)

where P ∼𝛽 Q (see §2.1.5).
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R.3 Universal Instantiation

Γ ⊢ F ⊆𝜎 G Γ ⊢ Fa
Γ ⊢ Fb

(37)

R.4 Universal Generalization

Γ,Fx ⊢ Gx
Γ ⊢ F ⊆𝜎 G

(38)

where x is a variable of type 𝜎 not free in F, G, or any formula in Γ.

R.5 Negation Elimination

Γ,¬P ⊢ P
Γ ⊢ P

(39)

R.6 Intensionality

⊢ P → Q ⊢ Q → P
⊢ P = Q

(40)

R.7 Function Extensionality

Γ ⊢ fx =𝜏 gx
Γ ⊢ f =𝜎𝜏 g

(41)

where x is a variable of type 𝜎 not free in f, g, or any formula in Γ.

R.8 Choice

Γ ⊢ ∀𝑥𝜎 � ∃𝑦𝜏 � R𝑥𝑦

Γ ⊢ ∃ 𝑓 𝜎𝜏 � ∀𝑥 � R𝑥( 𝑓 𝑥)
(42)

R.9 Potential Infinity

Γ ⊢ N𝜎 n
Γ ⊢ ⊥ ≠ ∃𝜎𝑡n

(43)
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where 𝜎 is either 𝑒 or 𝑡.

3 Adding and subtracting assumptions (+𝑋; −R.n)
By “LF − R.n” we mean the system that has the rules of LF excluding R.n (where n
is among 1 through 9).

Where 𝑋 is a class of formulae, LF + 𝑋 , is the system whose proofs are proofs
in LF from assumptions in 𝑋 . That is, a formula P is a theorem of LF + 𝑋 if and
only if there is a proof in LF that concludes with the sequent

Γ ⊢ P, (44)

where Γ is a list of formulae in 𝑋 . Note that LF + 𝑋 is not necessarily closed under
the rule of Intensionality, i.e., LF+ 𝑋 may prove the extensional equivalence P ↔ Q
but not the identity P = Q.

4 LF𝜄; LF𝜀

We introduce two new families of constants indexed by simple types 𝜎:

𝜄𝜎 : ⟨𝜎𝑡⟩𝜎 (45)
𝜀𝜎 : ⟨𝜎𝑡⟩𝜎 (46)

LF𝜄 and LF𝜀 are used for reasoning with these constants.

4.1 LF𝜄

𝜄 is to be Church’s description function: a function which maps every uniquely
instantiated property to an instance thereof. D𝜄 is a set of axioms to this effect,
which also choose a “default” value for 𝜄 to take, †, when applied to properties
which are not uniquely instantiated:

∀𝑋𝜎𝑡 � ∃!𝑋 → 𝑋 (𝜄𝑋) (47)
∀𝑋𝜎𝑡 � ¬∃!𝑋 → 𝜄𝑋 = † (48)

† is defined by the following recursive rewrite rules (although the particular choice
of † is immaterial):

†𝑒 := 𝜄𝜆𝑥𝑒 � ⊥ (49)
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†𝑡 := ⊥ (50)
†𝜎𝜏 := 𝜆𝑥𝜎 � †𝜏 (51)

LF𝜄 is LF + D𝜄, i.e., LF plus every sentence of the form (47) or (48).
The utility of LF𝜄 should be obvious: the language of mathematics is replete with

notations (especially, but not only, variable-binding operators6) that are definable in
LF𝜄 but not in LF. Perhaps the most common example is class abstraction, which is
definable by

{𝑥𝜎 : P} := 𝜄𝜆𝑋𝜎𝑡 � ((∀𝑦 � (𝑋𝑦 = ⊤) ∨ (𝑋𝑦 = ⊥)) ∧ 𝑋 ≡ 𝜆𝑥 � P). (52)

4.2 LF𝜀

𝜀 is to be Hilbert’s Choice function. It maps every instantiated property (whether
or not uniquely instantiated) to an instance thereof, and everything else to †. This is
captured by the class C𝜀, which consists of the following sentences, where 𝜎 is any
type.

∀𝑋𝜎𝑡 � ∃𝑋 → 𝑋 (𝜀𝑋) (53)
∀𝑋𝜎𝑡 � ¬∃𝑋 → 𝜀𝑋 = † (54)

LF𝜀 is LF + D𝜄 + C𝜀.7
The utilty of LF𝜀 is less obvious than the utility of LF𝜄, and, in fact, it is hard

to deny that the deductive power LF𝜀 adds to that of LF𝜄 is less often useful than
the deductive power that LF𝜄 adds to that of LF. However, the former deductive
power is sometimes useful, and that is enough to justify the adoption of LF𝜀. As
Carnap (1962) points out, 𝜀s can be used to extract definitions from non-categorical
theories, 𝜀F being a term that defines a unique satisfier of F provided that there is
at least one satisfier of F. As a concrete example of where this might be useful, in
future work on the foundations of semantics, we show that various useful semantic
(or proto-semantic) notions are definable in LF𝜀 + syntax but not in LF𝜄 + syntax.

6See Kalish and Montague 1964: Ch. IX for a representative collection of examples.
7It is redundant to have the primitive description functions 𝜄, since LF𝜀 categorically reduces to

LF + C𝜀 by the definition schema

†𝑒 := 𝜀𝜆𝑥𝑒 � ⊥ (55)

𝜄𝜎 := 𝜀𝜆 𝑓 ⟨𝜎𝑡 ⟩𝜎 � ∀𝑋𝜎𝑡 � (∃!𝑋 → 𝑋 ( 𝑓 𝑋)) ∧ (¬∃!𝑋 → 𝑓 𝑋 = †𝜎) (56)

However, the use of 𝜄 is convenient to conceptually distinguish between full-blown applications of
Choice and mere applications of descriptions.
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4.3 The slingshot argument
We stress that LF𝜄 and LF𝜀 are not closed under the rule of Intensionality (if LF is
consistent), and consequently there are formulae P and Q that are provably equivalent
in LF𝜄 (hence also LF𝜀), but for which

P = Q (57)

is not provable, and indeed is refutable,8 in the same system.
For example, in LF𝜄, consider the function @, defined as

@ := 𝜆𝑝 � 𝜄𝑞 � ((𝑝 → 𝑞 = ⊤) ∧ (¬𝑝 → 𝑞 = ⊥)). (59)

@ is the function that maps every truth to⊤ and every falsehood to⊥, so the material
equivalence of @𝑝 with 𝑝 is intuitively clear (it is also easily provable). However,
the provability of the identity

𝑝 = @𝑝 (60)

would have a collapsing effect: since @ only ever takes the values ⊤ or ⊥, the prov-
ability of (60) would result in the provability of ⊤ and ⊥ being the only propositions.
This is in contradiction with Potential Infinity (R.9; see Metatheorem 11).

Inferring the identity of 𝑝 = @𝑝 (or some close variant9) from the proof of
the material equivalence 𝑝 ↔ @𝑝 is known as the slingshot argument. It is
deployed, among others, by Church (1943: 299–301) in his review of Carnap’s
(1942) Introduction to Semantics, where Church attributes it to Frege (1892); by
Gödel (1944: 450, esp. n. 5) in his “Russell’s Mathematical Logic”; again by
Church (1956: 24–25) in his Introduction to Mathematical Logic, where it is again
attributed to Frege (1892); by Quine (1953) in his criticism of quantified modal
logic; and by Myhill (1958: 77–78) in relation to Church’s (1951) version of the
rule of Intensionality (called Alternative (2)). The slingshot is not valid in LF𝜄 or
LF𝜀, so these systems avoid the collapse.

8Let

𝛼 := ∀𝑝 � (𝑝 ↔ @𝑝), (58)

with @ defined as in (59). Then 𝛼 ↔ ⊤ is provable but 𝛼 = ⊤ is refutable in these systems.
9Specifically, variants constructed using directly by means of 𝜄-terms (such as 𝜄𝜆𝑞 � ((𝑝 → 𝑞 =

⊤) ∧ (𝑝 → 𝑞 = ⊤))) or by means of class abstracts (such as {𝑞 : (𝑝 → 𝑞 = ⊤) ∧ (𝑝 → 𝑞 = ⊥)}),
which are definable by means of 𝜄 (e.g., by (52) or, equivalently, with {𝑥 : P} taken to abbreviate
𝜆𝑥 �@P). In the literature, these tend to be preferred to @𝑝.

11



5 Basic facts
Metatheorem 1 (Modus Ponens and Conditional Proof). LF is closed under the
rules of Modus Ponens and Conditional Proof.

Γ ⊢ P Γ ⊢ P → Q
Γ ⊢ Q

Γ,P ⊢ Q
Γ ⊢ P → Q

(61)

Proof. Assume without loss of generality that 𝑝, 𝑞, 𝑟 do not occur in Γ,P,Q (oth-
erwise use different variables). For Modus Ponens we have

Γ ⊢ P
𝛽

Γ ⊢ (𝜆𝑟 � P)𝑝
Γ ⊢ P → Q

Def. (21)
Γ ⊢ (𝜆𝑟 � P) ⊆ 𝜆𝑟 �Q

Universal Instantiation
Γ ⊢ (𝜆𝑟 �Q)𝑝

𝛽

Γ ⊢ Q

(62)

for Conditional Proof we have

Γ,P ⊢ Q
Γ, (𝜆𝑟 � P)𝑝 ⊢ (𝜆𝑟 � P)𝑝

𝛽

Γ, (𝜆𝑟 � P)𝑝 ⊢ P
Γ, (𝜆𝑟 � P)𝑝 ⊢ Q

𝛽

Γ, (𝜆𝑟 � P)𝑝 ⊢ (𝜆𝑟 �Q)𝑝
Universal Generalization

Γ ⊢ (𝜆𝑟 � P) ⊆ 𝜆𝑟 �Q
Def. (21)

Γ ⊢ P → Q

(63)

□

Metatheorem 2 (Intuitionistic Propositional Logic). Every theorem of intuitionistic
propositional logic is provable from rules R.1 to R.4.

Metatheorem 3 (Classical Quantification Theory). Classical introduction and elim-
ination rules for ∀𝜎 are derivable from R.1 to R.4.

Metatheorem 4 (The Logic of Identity). The reflexivity of identity and Leibniz’ law
are provable from R.1 to R.4.

∀𝑥𝜎 � 𝑥 = 𝑥 (64)
∀𝑥𝑦𝜎 � (𝑥 = 𝑦 → P → [𝑦/𝑥]P) (65)

Proof. For Leibniz’ law, we first unpack the definition of = in the antecedent as
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antecedent to get (with R.2)

(𝜆𝑍 � 𝑍𝑥) ⊆ (𝜆𝑍 � 𝑍𝑦) (66)

which, by universal instantiation (R.3) in conjunction with

(𝜆𝑥 � P)𝑥, (67)

yields

(𝜆𝑥 � P)𝑦, (68)

from which Leibniz’ law follows by conditional proof and Universal Generalization.
□

Metatheorem 5 (Intensionality). LF is intensional, i.e., when the biconditional
P ↔ Q is provable from no assumptions, P and Q can be substituted in any context,
including cases with variable capture.

Proof. Let ®x be the variables that occur free in P or Q. From Intensionality and
Function Extensionality we have

𝜆®x � P = 𝜆®x �Q (69)

which are closed terms, so can be substituted in any context by Leibniz’ law
(Metatheorem 4). And by 𝛽-Equivalence (R.2), 𝜆®x � P can be substituted in any
context with (𝜆®x � P)®x, and similarly for Q. □

Metatheorem 6 (Classical Propositional Logic). Every theorem of classical propo-
sitional logic is provable from rules R.1 to R.5.

Proof. R.5 is sufficient to derive classical propositional logic from intuitionistic
propositional logic, which is in turn supplied by Metatheorem 2. □

Metatheorem 7 (The Modal Logic S4). Every theorem of the propositional modal
logic S4 is provable from the rules R.1 to R.7. Moreover, the rule of necessitation,

⊢ P
⊢ □P

(70)

is derivable from those rules.

Metatheorem 8 (The Modal Logic S5 ). The “5” axiom of modal logic,

∀𝑝 � (¬□𝑝 → □¬□𝑝), (71)

13



is provable from rules R.1 to R.8. Thus, LF includes the modal logic S5.

Proof of Metatheorems 7 and 8. □𝑝 is by definition 𝑝 = ⊤, so we must show

𝑝 ≠ ⊤ → □(𝑝 ≠ ⊤). (72)

We have for any function 𝑓 ,

□( 𝑓 𝑝 ≠ 𝑓⊤ → 𝑝 ≠ ⊤). (73)

Hence (by basic modal logic; see Metatheorem 7)

□( 𝑓 𝑝 ≠ 𝑓⊤) → □(𝑝 ≠ ⊤). (74)

So it suffices to find some function 𝑓 for which

𝑝 ≠ ⊤ → □( 𝑓 𝑝 ≠ 𝑓⊤), (75)

i.e., a function that, for all 𝑝 distinct from ⊤, maps 𝑝 and ⊤ to any two necessarily
distinct things, such as, 0 and 1 or ⊥ and ⊤. This is supplied by Choice applied to
the relation

𝜆𝑝𝑞 � ((𝑝 ≠ ⊤ → 𝑞 = ⊥) ∧ (𝑝 = ⊤ → 𝑞 = ⊤)). (76)

□

Metatheorem 9 (The Barcan Formula and its Converse; Bacon 2018). Every in-
stance of the Barcan formula and its converse is provable from rules R.1 to R.7.

∀𝑋 ®𝜎𝑡 � (∀®𝑧 � □𝑋®𝑧) → □∀®𝑧 � 𝑋®𝑧 (77)

∀𝑋 ®𝜎𝑡 � (□∀®𝑧 � 𝑋®𝑧) → ∀®𝑧 � □𝑋®𝑧 (78)

Proof. For (77) (the Barcan formula) in the case where ®𝜎 has length one, we observe

(∀𝑧 � □𝑋𝑧) → ∀𝑧 � (𝑋𝑧 = (𝜆𝑦 � ⊤)𝑧) (79)

hence, by R.7,

𝑋 = 𝜆𝑦 � ⊤. (80)

Moreover, by R.6 we have

□∀𝑧 � (𝜆𝑦 � ⊤)𝑧 (81)
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hence □∀𝑧 �𝑋𝑧 as required. This proof extends to ®𝜎 of arbitrary length by induction.
For (78) (the converse Barcan formula), we have by R.6 the identity

(∀®𝑧 � 𝑋®𝑧) = (𝑋 ®𝑦 ∧ ∀®𝑧 � 𝑋®𝑧). (82)

we also have 𝑝 = (𝑝 ∧ ⊤), hence

(□∀®𝑧 � 𝑋®𝑧) → □(𝑋 ®𝑦) (83)

which yields (78) by basic quantificational reasoning. □

Metatheorem 10 (Modal Intensionality; Bacon 2018). All axioms of modal intensionality—
asserting that necessarily equivalent propositions and necessarily equivalent prop-
erties are identical—are provable from rules R.1 to R.7.

∀𝑝𝑞 � (□(𝑝 ↔ 𝑞) → 𝑝 = 𝑞) (84)

∀𝐹𝐺 ®𝜎𝑡 � (□(𝐹 ≡ 𝐺) → 𝐹 = 𝐺) (85)

Proof. By some basic applications of R.6 we have the equations

𝑝 = (𝑝 ∧ ⊤) (86)
(𝑝 ∧ 𝑞) = (𝑝 ∧ (𝑝 → 𝑞)). (87)

By (86) we have

□(𝑝 ↔ 𝑞) → (𝑝 = (𝑝 ∧ (𝑝 → 𝑞)) ∧ 𝑞 = (𝑞 ∧ (𝑞 → 𝑝))), (88)

hence, by (87)

□(𝑝 ↔ 𝑞) → (𝑝 = (𝑝 ∧ 𝑞) ∧ 𝑞 = (𝑝 ∧ 𝑞)), (89)

which implies (84).
For (85), we prove the case where ®𝜎 has length one, i.e.,

∀𝐹𝐺𝜎𝑡 � (□(𝐹 ≡ 𝐺) → 𝐹 = 𝐺). (90)

The other cases follow straightforwardly. For this, suppose □(𝐹 ≡ 𝐺), i.e.,

□∀𝑥𝜎 � (𝐹𝑥 ↔ 𝐺𝑥). (91)

Then by Metatheorem 9 we have

∀𝑥𝜎 � □(𝐹𝑥 ↔ 𝐺𝑥). (92)
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Hence by (84) we have

∀𝑥𝜎 � (𝐹𝑥 = 𝐺𝑥), (93)

which implies 𝐹 = 𝐺 by R.7. □

Metatheorem 11 (The Refutation of the Axioms of Extensionality). The denial of
the axiom of propositional extensionality, and hence also of the axioms of exten-
sionality for properties and relations, is provable from rules R.1 to R.5 and R.9.

∃𝑝𝑞 � ((𝑝 ↔ 𝑞) ∧ 𝑝 ≠ 𝑞) (94)

Proof. Suppose otherwise, i.e., ∀𝑝𝑞 � ((𝑝 ↔ 𝑞) → 𝑝 = 𝑞). Then by R.1 to R.5 we
have

∀𝑝 � ((𝑝 → 𝑝 = ⊤) ∧ (¬𝑝 → 𝑝 = ⊥)), (95)

and hence

¬∃(1 + 1 + 1𝑡) (96)

by Defs. (27), (28) and (30). Appealing to (95) again, we have

⊥ = ∃(1 + 1 + 1𝑡) (97)

which is contradictory by R.9. □

Metatheorem 12 (Class Comprehension; Church 1940). Where a class is a {⊤,⊥}-
valued function, i.e.,

Class𝜎 := 𝜆𝑋𝜎𝑡 � ∀𝑦 � (□𝑋𝑦 ∨ □¬𝑋𝑦), (98)

LF proves (a) that every property is coextensive with some class:

∀𝑋𝜎𝑡 � ∃𝑌 ∈ Class𝜎 � 𝑋 ≡ 𝑌, (99)

and (b), that classes are individuated extensionally

∀𝑋𝑌 ∈ Class𝜎 � (𝑋 ≡ 𝑌 → 𝑋 = 𝑌 ). (100)

Proof. Existence of classes is immediate from Choice; in LF𝜄 the class coextensive
with 𝑋 is

𝜆𝑦𝜎 � 𝜄𝜆𝑝 � ((𝑋𝑦 → 𝑝 = ⊤) ∧ (¬𝑋𝑦 → 𝑝 = ⊥)). (101)
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(Cf. Church 1940, p. 61.) Extensionality of classes is immediate from Function
Extensionality. □

Metatheorem 13 (The Necessity of Logic). Where P is a sentence (i.e., a closed
formula),

□P ∨ □¬P (102)

is provable from rules R.1 to R.8. Note this no longer holds when P is permitted to
contain non-logical constants (including 𝜄 and 𝜀).

Proof. Omitted. □

Metatheorem 14 (The Complete Atomic Boolean Algebra of Propositions). It is a
theorem of LF that the propositions form a complete atomic Boolean algebra under
∧, ∨, ¬. (Hence, in conjunction with Metatheorem 15, LF proves there are at least
2ℵ0 propositions.)

Proof. Omitted. See Theorem 11.5 of Gallin (1975). □

Metatheorem 15 (The Axioms of Infinity). Every instance of

∀𝑛 ∈ N𝜎 � ∃𝑛, (103)

is provable in LF. (103) asserts that there is an actual infinity of things.

Proof. Using Metatheorem 9. □

Metatheorem 16 (Peano Arithmetic). Every theorem of Peano arithmetic is a theo-
rem of LF−R.8 when the constants of arithmetic are defined as above (at any type),
and where multiplication is defined in a standard way (omitted here).

Proof. Omitted. Goodsell (2022) shows adding the necessitation of second-order
Peano arithmetic for N𝑒 and N𝑡 to the rules R.1 to R.7 is equivalent to adding
R.9. □

Metatheorem 17 (The Closure of Necessitated Extensions Under the Rule of Inten-
sionality). For any set of formulae 𝑋 , if every formula in 𝑋 begins with a □ taking
widest possible scope, then LF + 𝑋 is closed under the rule of Intensionality (R.6).

Proof. Straightforward from Metatheorem 10. □

Metatheorem 18 (LF𝜄 and LF𝜀 as Conservative Extensions). LF is conservatively
extended by LF𝜄 and LF𝜀.
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Proof. Choice (R.8) can be used to show, for any finite set of axioms from D𝜄 or C𝜀,
that functions 𝜄 or 𝜀 satisfying those axioms exist. □

Metatheorem 19 (Consistency Relative to ZFC; Equiconsistency with Henkin’s
System). LF is equiconsistent with the system of Henkin (1950), and hence is con-
sistent relative to ZFC by Henkin’s soundness theorem.

Proof. Using Benzmüller’s (2010) method of embedding. □

6 Relation to other systems
We now sketch some relations of LF to other systems formulated in simply typed
languages with abstraction and application, notably omitting various importantly
related systems formulated in different languages, such as the aforementioned max-
imal system GM that can be constructed out of the components studied in Gallin’s
(1975) Montague-inspired monograph and Church’s (1951) Logic of Sense and
Denotation, Alternative (2).

The system of Church (1940) is equivalent to LF𝜀 minus Intensionality (R.6),
and with Potential Infinity (R.9) replaced with a rule of actual infinity for N𝑒 (but
not N𝑡), i.e., with:

Γ ⊢ N𝑒 n
Γ ⊢ ∃𝑒𝑡n

(104)

The system of Henkin (1950) is equivalent to Church’s system plus a rule of
extensionality (notice that, in contrast with R.6, below a Γ occurs on the left-hand
side of the turnstile):

Γ ⊢ P → Q Γ ⊢ Q → P
Γ ⊢ P = Q

(105)

The system HFE of Bacon (2018) is equivalent to LF minus Choice and Potential
Infinity (rules R.8 and R.9). In subsequent work, Bacon and Dorr (forthcoming) use
a weaker system, Classicism, which also omits Function Extensionality (R.7), and
strengthens the rule of Intensionality in order to obtain a system that is intensional
in the sense of Metatheorem 5. A sufficient such strengthening is the following rule,
where R and S differ by the substitution of an occurrence of P for Q in any context
(including substitutions with variable capture):

Γ ⊢ P → Q Γ ⊢ Q → P
Γ ⊢ R → S

(106)
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Another axiomatization Bacon and Dorr consider, which is equivalent in a lan-
guage restricted to relational types (i.e., types that, when angle brackets are omitted
in accordance with the convention, end with “𝑡”) leaves the rule of Intensionality as
it is, but replaces Function Extensionality with the rule

Γ ⊢ □∀x � fx = gx
Γ ⊢ f = g

(107)

where, as in Function Extensionality, x must not be among the free variables of f
or g. They show, moreover, that replacing Function Extensionality with this rule in
the background of LF’s other rules is equivalent with LF.
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