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Abstract

It is tempting to think that a process of choosing a point at random from
the surface of a sphere can be probabilistically symmetric, in the sense that
any two regions of the sphere which differ by a rotation are equally likely to
include the chosen point. Isaacs, Hájek, and Hawthorne (2022) argue from
such symmetry principles and the mathematical paradoxes of measure to the
existence of imprecise chances and the rationality of imprecise credences.
Williamson (2007) has argued from a related symmetry principle to the failure
of probabilistic regularity. We contend that these arguments fail, because
they rely on auxiliary assumptions about probability which are inconsistent
with symmetry to begin with. We argue, moreover, that symmetry should be
rejected in light of this inconsistency, and because it has implausible decision-
theoretic implications.

The weaker principle of probabilistic invariance says that the probabilistic
comparison of any two regions is unchanged by rotations of the sphere. This
principle supports a more compelling argument for imprecise probability. We
show, however, that invariance is incompatible with mundane judgments about
what is probable. Ultimately, we find reason to be suspicious of the application
of principles like symmetry and invariance to nonmeasurable regions.

1 Introduction
At the centre of a perfectly symmetrical hollow sphere lies a perfectly symmetrical
particle emitter, which will soon emit a lone particle in a random direction. The
particle will travel outward and hit exactly one point on the surface of the sphere.
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By the symmetry of the case, it is tempting to think that the particle emitter is
probabilistically perfectly fair in the following sense:

Symmetry If two sets of points on the surface of the sphere differ by a rotation,
then they are exactly equally likely landing places for the particle.

Principles like Symmetry have played an important role in a number of arguments for
controversial conclusions in the philosophy of probability. For example, Williamson
(2007) argues from an analogous symmetry principle about coin flips to the view
that no infinite sequence of heads and tails is more likely than a contradiction.

Most recently, Isaacs, Hájek, and Hawthorne (2022, henceforth ‘IHH’) have
argued from Symmetry to the existence of imprecise chances and the rationality
of imprecise credences. Their arguments appeal to the mathematical phenomenon
of nonmeasurable sets. Their most powerful arguments, in our opinion, appeal to
paradoxical decompositions of objects like our sphere, based on Hausdorff (1914)
and Banach and Tarski (1924). Here is one result of this form (see Tomkowicz and
Wagon 2016 for exposition):

Theorem 1 (Robinson 1947). The surface of a sphere in three-dimensional Eu-
clidean space can be partitioned into four sets 𝐴, 𝐵, 𝐶, 𝐷, such that 𝐵 is a rotation
of 𝐵 ∪ 𝐶 ∪ 𝐷 and 𝐶 is a rotation of 𝐴 ∪ 𝐵 ∪ 𝐶.

The ‘paradox’ is that 𝐴 and a rotation of 𝐵 together cover the entire surface of
the sphere, and the same is true for 𝐷 and a rotation of 𝐶. So the sphere can be
decomposed into sets that can then be rearranged so as to cover the entire surface
of the sphere twice over. This shows that there is no finitely additive probability
function defined on all sets of points on the surface of the sphere that, in accordance
with Symmetry, assigns the same probability to sets which differ by a rotation.1
IHH conclude that some sets of points do not have real-valued probabilities.

In orthodox probabilistic theorising, paradoxes such as these are avoided by
restricting attention to the Lebesgue measurable sets of points on the sphere. As a
first gloss, a Lebesgue measurable set is one that can be approximated by repeatedly
taking complements, countable unions, and countable intersections of rectangular
patches of the surface of the sphere (see Heil 2019, ch. 2). A hardline but popular
orthodox stance denies that there are any probability comparisons to be had beyond
the Lebesgue measurable sets. For example, van Fraassen (1989, p. 329) claims that
‘the requirement to have probability defined everywhere, would be unacceptable’.
On this view, the sets of points in Theorem 1 are not more or less likely than each

1For a finitely additive probability function, the probabilities of 𝐴 through 𝐷 as in Theorem 1 must
sum to one. But by symmetry, so must the probabilities of 𝐴 and 𝐵 and of 𝐶 and 𝐷 respectively—a
contradiction.
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other (or any other set of points) to be the landing place of the particle, because they
are not Lebesgue measurable. They are simply beyond the realm of probabilistic
comparison.

This hardline orthodoxy is difficult to maintain. It contradicts the overwhelm-
ingly plausible idea that every set, measurable or not, is at least as likely a landing
place as any of its subsets. Hardliners also face the awkward question of how
‘measurable’ is to be understood in real-world applications of probabilistic theoris-
ing. Meteorologists talk about the probability that it will rain tomorrow, seemingly
assuming that rain tomorrow is at least as likely as heavy rain tomorrow, without
worrying whether the propositions in question are ‘measurable’ in any standard
sense. So we view orthodoxy as avoiding nonmeasurable sets not because there is a
fundamental probabilistic difference between measurable and nonmeasurable sets,
but because paradoxes of probability such as those posed by Theorem 1 are best
ignored for many purposes (cf. Hoek 2021).

We therefore agree with IHH that there are probabilistic comparisons to be
made between arbitrary sets of points on the sphere. However, we deny that these
comparisons should respect Symmetry.2

More specifically, we do three things. First, we show that there is no good
argument from Symmetry and finite additivity to imprecise probability, since these
premises are inconsistent, given uncontroversial auxiliary assumptions. Second, we
argue that Symmetry should be rejected in light of this inconsistency, and because it
has implausible decision-theoretic implications. Third, we provide a better argument
for imprecise probability, which does not appeal to Symmetry, and explain why we
nonetheless do not find this argument compelling.

2 Symmetry vs. Additivity
Let Ω denote the set of all points on the surface of the sphere, which we assume to
be isometric to the unit sphere in R3. Let ≻ denote the relation that holds between
sets of points 𝑋 and 𝑌 when 𝑋 is a more likely landing place for the particle than 𝑌 .
(Our arguments are not intended to be sensitive to whether ‘likely’ is interpreted in
a subjective or objective way.)

We define the relation ∼ (equally likely) as follows:

𝑋 ∼ 𝑌 iff, for any 𝑍 ⊆ Ω, 𝑍 ≻ 𝑋 iff 𝑍 ≻ 𝑌 , and 𝑋 ≻ 𝑍 iff 𝑌 ≻ 𝑍 .
2Principles like Symmetry are also rejected by Hoek (2021) and Maudlin (2021); our arguments

are quite different from theirs. Dorr (2024) rejects a principle like Symmetry for rational credences
while granting, at least for the sake of argument, that it applies to objective chance. The existence
of imprecise objective chances, however, is arguably inconsistent with the thesis of Dorr, Nebel, and
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Note that ∼, so defined, is an equivalence relation.
Symmetry can then be formulated as follows:

Symmetry 𝑋 ∼ 𝜋𝑋 , where 𝜋 is any rotation of the sphere.3

Our argument appeals to two principles which are even more central to our
notion of probability than Symmetry:

Nontriviality Ω ≁ ∅.

Additivity If 𝑋 ∩ 𝑍 = 𝑌 ∩ 𝑍 = ∅, then

(a) 𝑋 ≻ 𝑌 iff 𝑋 ∪ 𝑍 ≻ 𝑌 ∪ 𝑍 , and
(b) 𝑋 ∼ 𝑌 iff 𝑋 ∪ 𝑍 ∼ 𝑌 ∪ 𝑍 .

We take Nontriviality to be obvious, and Additivity to be highly desirable.
The principles above imply that Symmetry is false:

Theorem 2. Nontriviality, Additivity, and Symmetry are inconsistent.4

Proof. Take 𝐴, 𝐵, 𝐶, 𝐷 as in Theorem 1. By Symmetry, 𝐵 ∼ 𝐵 ∪ 𝐶 ∪ 𝐷, so by
Additivity we have 𝐴 ∪ 𝐵 ∼ Ω and hence 𝐶 ∪ 𝐷 ∼ ∅. By a parallel argument,
𝐶 ∪ 𝐷 ∼ Ω. Thus Ω ∼ ∅, contradicting Nontriviality. □

We take Theorem 2 to cast considerable doubt on Symmetry, given the plausibil-
ity of Nontriviality and Additivity. IHH, however, appear to favor a formalization of
imprecise probability which violates Additivity while satisfying the other principles.
They suggest taking the probability of an event to be the interval bounded by the
event’s Lebesgue inner and outer measures (see, e.g., Heil 2019, ch. 2 for defini-
tions). Supposing that events are equally likely iff they have the same probability,
Symmetry and Nontriviality will hold on this view, so Additivity must fail. (Where
𝐴, 𝐵, 𝐶, 𝐷 are as in Theorem 1, the inner probability of each such set will be 0 and
the outer probability 1, so they are all equally likely on IHH’s view.)

Zuehl (2023), which is the linchpin of their (2021) argument against imprecise credence.
3IHH appeal to the idea that ‘any rotation of a given set of points must have the same probability

as that set of points’ (p. 893). We assume that having the same probability is equivalent to being
equally probable—otherwise, there must be more to probability than whatever probabilities IHH
assign. Following Keynes (1921), de Finetti (1937), Koopman (1940), Savage (1954), and others,
we prefer to theorize in terms of the relations ≻ and ∼ in order to more easily formulate principles
that are neutral between different numerical representations of probability.

4A similar result is proved by Thong (forthcoming, Theorem 2), though his involves additional
axioms and is specific to IHH’s view. His result can be regarded as a corollary of ours. Thong draws
the lesson that IHH’s view violates either Additivity or Transitivity. However, Transitivity plays no
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This puts them, however, in an awkward dialectical situation. If Additivity is
rejected, Theorem 1 is no barrier to assigning real-number probabilities to every
set of points. For example, the ordering that holds 𝑋 to be more probable than 𝑌

when 𝑋 has a greater Lebesgue outer measure satisfies Symmetry and Nontriviality,
as would the ordering similarly induced by the Lebesgue inner measure, or by
the midpoint (or any other convex combination) of the Lebesgue inner and outer
measures. IHH provide no argument against a precise probability assignment that
satisfies Symmetry but not Additivity, so the argument for imprecision is incomplete.

IHH would accept a restriction of Additivity to the Lebesgue measurable sets.
Such a restriction is also satisfied by any of the precise views mentioned above. But
we find all of these views inferior to one which satisfies Additivity in full generality.
In our view, it is Symmetry that should be restricted in light of the paradoxes of
measure.

Theorem 2 also complicates the argument of Williamson (2007) mentioned in
§1. He argues from a Symmetry-like principle about sequences of coin flips,5 along
with Additivity, to the falsity of

Regularity If 𝑋 is not empty, then 𝑋 ≁ ∅.

Williamson’s argument, applied to the sphere, can be put as follows.

Theorem 3. Symmetry, Additivity, and Regularity are inconsistent.

Proof. In the proof of Theorem 2 we derive 𝐶 ∪ 𝐷 ∼ ∅ from Symmetry and
Additivity, in contradiction with Regularity. □

Theorem 3 might seem to provide a powerful argument against Regularity. But
Theorem 2 casts some doubt on this impression, because—given the obvious auxil-
iary assumption of Nontriviality—Additivity and Symmetry are not even consistent.

Though our proof of Theorem 3 appeals to the nonmeasurable sets 𝐶 and 𝐷,
it is important to emphasize that this is not necessary for Williamson’s result (his
own argument appeals only to sets of measure zero). It is therefore possible to
run Williamson’s argument with Symmetry and Additivity restricted to measurable
sets. Such an argument would not be directly impugned by Theorem 2. However,

role in our result, so IHH cannot preserve Additivity by rejecting Transitivity.
5A Hausdorff-like result for an infinite sequence of coin flips requires a suitably rich class of

putatively probability-preserving symmetries on the set of possible results of the sequence. A
sufficient condition is if every permutation of the flips induces a symmetry on the set of possible
results, which is to say that for any permutation 𝜋 of flips, the function that maps the sequence of
results ⟨𝑟𝑖⟩∞𝑖=1 to ⟨𝑟𝜋 (𝑖)⟩∞𝑖=1 is counted as a symmetry. Williamson’s argument relies on one such
permutation being probability-preserving, and his justification for this premise extends to an arbitrary
permutation if the case is suitably modified.
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once the principles are restricted in this way, and they are no longer the sweeping,
powerful constraints they initially appeared to be, we think there is considerably less
pressure on the proponent of Regularity to accept them (the restriction of Symmetry
in particular).

3 In defense of Additivity
The conflict between Symmetry and Additivity poses an important choice point for
probabilistic theorizing.6 We are strongly inclined to retain Additivity and reject
Symmetry. As we will see in this section, this choice can be supported on decision-
theoretic grounds. Moreover, we will find in §4 that there is a natural weakening of
Symmetry—Invariance—which is compatible with Additivity and provides a more
compelling argument for imprecise probability, so we recommend this choice to
IHH as well.

Let a prospect be a function which assigns an outcome to each point on the
sphere—intuitively, the prize you would receive if that prospect were chosen and
the emitted particle lands at that point. We assume

Nontrivial Outcomes Some outcome is better than another.

For any prospect 𝑓 and rotation 𝜋 of the sphere, 𝑓 ◦ 𝜋 is the composition of 𝑓

with 𝜋—i.e., ( 𝑓 ◦𝜋) (𝑥) = 𝑓 (𝜋(𝑥)) for every point 𝑥 ∈ Ω. A proponent of Symmetry
should accept

Symmetric Value 𝑓 is not better than 𝑓 ◦ 𝜋, for any rotation 𝜋.

It would be bizarre to insist that devices like our particle emitter can be perfectly
fair in the sense of satisfying Symmetry while thinking it wouldn’t be fair to get
a prize on some set of points rather than on some rotation of that set. Symmetric

6There are other arguments against Additivity of a quite different nature. Consider the case
famously described by Ellsberg (1988): a ball is chosen at random from an urn containing 30 red
balls and 60 blue or green balls of unknown proportion. Many people prefer a gamble which pays
out some prize if the ball is red than if it is blue, while also preferring a gamble which pays out
that same prize if the ball is blue or green than if it is red or green. Now suppose that someone has
these preferences, while always and only preferring gambles with a higher probability of a payoff
(other things being equal). It follows that red ≻ blue and blue-or-green ≻ red-or-green, in violation
of Additivity (Fishburn 1986).

Even if the described pattern of preferences were rational, it seems bizarre to try to explain it
in purely probabilistic terms. In particular, we see no reason to accept that an agent with these
preferences always prefers a higher probability of receiving the prize. Ambiguity aversion seems
better explained by the agent’s not knowing, or even judging, whether red is more likely than blue,
but preferring to bet on events with known rather than unknown probability.
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Value also follows, given Symmetry, from the more general principle of ‘stochastic
equivalence’, which asserts that equally distributed prospects are equally good (see
Joyce 1999; Bader 2018; Russell and Isaacs 2021; Russell forthcoming; Goodsell
forthcoming).

Say that 𝑓 statewise dominates 𝑔 if 𝑓 (𝑥) is better than 𝑔(𝑥) for all 𝑥 in some set
𝐸 ≁ ∅, and 𝑓 (𝑥) = 𝑔(𝑥) for all 𝑥 ∈ 𝐸c (𝐸’s complement in Ω).

Statewise Dominance If 𝑓 statewise dominates 𝑔, then 𝑓 is better than 𝑔.

That is, if 𝑓 guarantees an outcome at least as good as the outcome of 𝑔, and has a
nonzero chance (i.e., 𝐸 ≁ ∅) of a strictly better outcome, then 𝑓 is a better option
than 𝑔.

We appeal also to a significant weakening of Additivity (given Nontrivality) that
is entailed by IHH’s inner/outer view (assuming, again, that having equal probability
is the same as being equally probable):

Weak Complementation If 𝑋 ∼ ∅, then 𝑋c ≁ ∅.

Theorem 4. Nontrivial Outcomes, Symmetric Value, Statewise Dominance, and
Weak Complementation are inconsistent.

Proof. Take 𝐴, 𝐵, 𝐶, 𝐷 as in Theorem 1, and for some better outcome and some
worse one, let 1𝑋 yield the better outcome on 𝑋 ⊆ Ω and the worse one elsewhere.

By Symmetric Value, 1𝐵∪𝐶∪𝐷 is not better than 1𝐵. It follows that 1𝐵∪𝐶∪𝐷 does
not statewise dominate 1𝐵, hence that 𝐶 ∪ 𝐷 ∼ ∅. By an analogous argument,
𝐴 ∪ 𝐵 ∼ ∅, contradicting Weak Complementation. □

If IHH insist on retaining Symmetry, we surmise that, among the other principles,
they would be best advised to reject Statewise Dominance. They might take issue
with it on the grounds that 𝑓 can statewise dominate 𝑔, on our definition, even if the
set 𝐸 of points on which 𝑓 is better is not more likely than ∅. It’s open to them to say
that 𝐸 ⊁ ∅ even while 𝐸 ≁ ∅ (i.e., a nonzero chance may not be a greater than zero
chance). But Symmetric Value is also inconsistent with a principle which weakens
Statewise Dominance, supposing the space of values of outcomes to be sufficiently
rich. This is established by an argument of Pruss (2023).

Say that 𝑓 almost strictly statewise dominates 𝑔 if 𝑓 (𝑥) is a strictly better outcome
than 𝑔(𝑥) for all 𝑥 in Ω besides at most two points 𝑥1 and 𝑥2, where 𝑓 (𝑥1) = 𝑔(𝑥1)
and 𝑓 (𝑥2) = 𝑔(𝑥2). A prospect that almost strictly statewise dominates another is
all-but-guaranteed to yield a strictly better outcome, so we feel safe in assuming

Almost Strict Statewise Dominance If 𝑓 almost strictly statewise dominates 𝑔,
then 𝑓 is better than 𝑔.
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Pruss’s argument also relies, plausibly, on a bidirectionally infinite sequence of
ever-better outcomes.

Infinite Outcomes There is a nonempty set of outcomes that, for each of its
elements, contains at least one that is better and one that is worse.

Theorem 5 (Pruss 2023). Symmetric Value is inconsistent with Almost Strict State-
wise Dominance and Infinite Outcomes.

Proof. Let 𝜙 be a rotation of the sphere by an irrational angle (in degrees), so that
for every 𝑥 ∈ Ω not on the axis of rotation, 𝜙𝑖 (𝑥) ≠ 𝜙 𝑗 (𝑥) for any distinct (possibly
negative) integers 𝑖, 𝑗 (where 𝜙𝑖 is the 𝑖-fold self-composition of 𝜙 if 𝑖 is positive, of
𝜙−1 if 𝑖 is negative, and is the identity function if 𝑖 is zero).

Using Infinite Outcomes (and the Axiom of Choice), we construct a prospect as
follows. First, assign any outcomes to the two points on the axis of 𝜙. Then, when
𝑥 is not on the axis of the rotation of 𝜙 and has not yet been assigned an outcome,
then assign outcomes to {𝜙𝑖 (𝑥) : 𝑖 ∈ Z} that are strictly increasing in value, i.e., so
that 𝜙𝑖 (𝑥) is assigned a better outcome than 𝜙 𝑗 (𝑥) iff 𝑖 > 𝑗 .

Repeating this process transfinitely we are left with a prospect 𝑓 such that
𝑓 (𝜙(𝑥)) is better than 𝑓 (𝑥) unless 𝑥 is on the axis of 𝜙, hence 𝑓 ◦ 𝜙 almost strictly
statewise dominates 𝑓 , so is better by Almost Strict Statewise Dominance. But 𝑓 ◦𝜙
cannot be better than 𝑓 by Symmetric Value. □

Pruss himself does not conclude that Symmetric Value should be rejected, in part
because he seems to like Williamson’s argument against Regularity. But, when
considered alongside the violation of Additivity in Theorem 2, it seems clear to us
that Symmetry and Symmetric Value have to go. We recommend this choice to IHH
as well, because they do not need Symmetry to argue for imprecise probability.

4 Invariance vs. Totality
A better argument for imprecise probability appeals to the following weakening of
Symmetry:

Invariance For any rotation 𝜋, 𝑋 ≻ 𝑌 iff 𝜋𝑋 ≻ 𝜋𝑌 .

A consequence of this principle (given our definition of∼) is that 𝑋 ∼ 𝑌 iff 𝜋𝑋 ∼ 𝜋𝑌 ,
for any rotation 𝜋.7

Unlike Symmetry, Invariance is compatible with Additivity because any rotation
7Proof. Suppose first that 𝜋𝑋 ∼ 𝜋𝑌 . Given Invariance, this implies that for any 𝑍 ⊆ Ω, 𝑍 ≻ 𝑋

iff 𝜋𝑍 ≻ 𝜋𝑋 iff 𝜋𝑋 ≻ 𝜋𝑌 iff 𝑍 ≻ 𝑌 . By exactly similar reasoning 𝑋 ≻ 𝑍 iff 𝑌 ≻ 𝑍 . Thus 𝑋 ∼ 𝑌 .
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of the sphere preserves strict subsethood, in the sense that 𝑋 ⊂ 𝑌 iff 𝜋𝑋 ⊂ 𝜋𝑌 . And
it is enough for IHH’s central purpose because, given other plausible principles, it
is inconsistent with

Totality Either 𝑋 ≻ 𝑌 , 𝑋 ∼ 𝑌 , or 𝑌 ≻ 𝑋 .

Totality is a principle that characteristically divides those who believe probability
to be ‘precise’ from those who do not. We also assume

Minimality ∅ ⊁ 𝑋 .

Transitivity If 𝑋 ≻ 𝑌 and 𝑌 ≻ 𝑍 then 𝑋 ≻ 𝑍 .

Theorem 6. Invariance and Totality are inconsistent, given Nontriviality, Additivity,
Minimality, and Transitivity.

The proof appeals repeatedly to the following simple lemma (where ¥ is the dis-
junction of ≻ with ∼):

Lemma 7. Totality, Minimality, and Additivity entail that 𝑋 ¥ 𝑌 whenever 𝑌 ⊆ 𝑋 .

Proof. Suppose 𝑌 ⊆ 𝑋 but 𝑋 � 𝑌 . By Totality, 𝑌 ≻ 𝑋 , so ∅ ≻ 𝑋 \𝑌 by Additivity,
in violation of Minimality. □

Proof of Theorem 6. Take 𝐴, 𝐵, 𝐶, 𝐷 as in Theorem 1. By Totality, we have 𝐵 ¥ 𝐶

or 𝐶 ¥ 𝐵. Suppose 𝐵 ¥ 𝐶 without loss of generality, and let 𝜋 be a rotation with
𝜋𝐶 = 𝐴 ∪ 𝐵 ∪ 𝐶. By Invariance,

𝜋𝐵 ¥ 𝐴 ∪ 𝐵 ∪ 𝐶. (1)

Since 𝐵 is disjoint from 𝐶 and disjointness is preserved under rotations, 𝜋𝐵 is
disjoint from 𝐴∪𝐵∪𝐶, and is therefore a subset of 𝐷. Thus, 𝐷 ¥ 𝜋𝐵 by Lemma 7.
So from (1) and Transitivity we have

𝐷 ¥ 𝐴 ∪ 𝐵 ∪ 𝐶. (2)

Now let 𝜎 be a rotation with 𝜎𝐵 = 𝐵∪𝐶∪𝐷, hence 𝜎𝐷 ⊆ 𝐴. By similar reasoning,

𝐴 ¥ 𝐵 ∪ 𝐶 ∪ 𝐷. (3)

Putting (2) and (3) together with Lemma 7, we have

𝐷 ¥ 𝐴 ∪ 𝐵 ∪ 𝐶 ¥ 𝐴 ¥ 𝐵 ∪ 𝐶 ∪ 𝐷 ¥ 𝐷. (4)
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If any of these inequalities were strict, then by Transitivity (and the definition of
∼) we’d have 𝐷 ≻ 𝐷, which by Additivity would imply ∅ ≻ ∅, contradicting
Minimality. Hence 𝐵 ∪ 𝐶 ∪ 𝐷 ∼ 𝐷, so 𝐵 ∪ 𝐶 ∼ ∅ by Additivity, which implies
𝐵 ∼ 𝐶 ∼ ∅ by Lemma 7 and Minimality.

Since ∅ is invariant under any rotation, Invariance then implies both

𝐵 ∪ 𝐶 ∪ 𝐷 ∼ ∅ (5)

𝐴 ∪ 𝐵 ∪ 𝐶 ∼ ∅ (6)

hence Ω ∼ ∅ by Additivity, contradicting Nontriviality. □

Theorem 6, in our view, provides a more compelling argument for imprecise
(i.e., not totally ordered) probability than IHH’s argument from Symmetry. Still,
we are inclined to hold onto Totality. Mere Invariance does not seem to capture
the intuition that motivates IHH and others. (Here we are in agreement with Pruss
2023.) The intuition repeatedly expressed by IHH (pp. 893, 895, 897, 901, 903, 911)
is that devices like our particle emitter can be fair in the sense that congruent sets
of points have equal probability. The package that retains Additivity by replacing
Symmetry with Invariance does not capture this judgment; it straightforwardly
violates it. Notably, Invariance does not support a Williamson-style argument
against Regularity.

We also worry that Invariance makes a mess of qualitative probabilistic rea-
soning. The following principles seem overwhelmingly plausible, for some 𝑛 and
some uniform reading of ‘likely’ (the argument would also work with ‘very likely’,
‘extremely likely’, and so on):

𝑛-Likeliness There is some set of points 𝑋 such that

(a) 𝑋 is likely,
(b) 𝑋 can be partitioned into 𝑛 equally probable subsets that are equally

probable as 𝑋c (intuitively, 𝑋 has probability 𝑛/(𝑛 + 1)), and
(c) 𝑋 is equally likely as any of its rotations.

Likeliness Delineation If 𝑋 is likely and 𝑌 is not, then 𝑋 is more likely than 𝑌 .

Likeliness Exclusion No set and its complement are both likely.

To illustrate these principles, it seems possible to divide the sphere into a thousand
equally-sized segments, all but one of which are painted red, in such a way that the

Suppose next that 𝑋 ∼ 𝑌 . Given Invariance, this implies that for any 𝑍 ⊆ Ω, 𝑍 ≻ 𝜋𝑋 iff 𝜋−1𝑍 ≻ 𝑋
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particle is likely to land on a red point (999-Likeliness part (a)); each of the thousand
segments is equally likely to be hit (part (b)); and the particle is equally likely to
land in any rotation of the red region (part (c)). If the particle is no less likely to
land in some set 𝑋 than it is to land on a red point, then it must be likely to land
in 𝑋 too (Likeliness Delineation; see Dorr, Nebel, and Zuehl 2023 for extensive
discussion and defense of this sort of principle). So it can’t be likely to land outside
𝑋 (Likeliness Exclusion). Of course, there may be very weak readings of ‘likely’
on which intuitively low-probability events can count as likely (making their high-
probability complements likely too, by Likeliness Delineation). But we only need
there to be some reading of ‘likely’ (or ‘extremely likely’, . . . ) on which all of the
above principles are true. We find this hard to deny.

These principles, however, are untenable, given the failures of Totality required
by Invariance. The argument appeals to some further premises which seem very
plausible on the assumption of Additivity and which, we expect, would be acceptable
even to opponents of Totality.8

Superset If 𝑋 ≻ 𝑌 ⊇ 𝑍 or 𝑋 ⊇ 𝑌 ≻ 𝑍 , then 𝑋 ≻ 𝑍 .

Complementation 𝑋 ≻ 𝑌 if and only if 𝑌c ≻ 𝑋c.9

Theorem 8. 𝑛-Likeliness, Likeliness Delineation, and Likeliness Exclusion are
inconsistent with Invariance, given Superset, Complementation, Additivity, Mini-
mality, and Transitivity.

The proof relies on the following lemmata.

Lemma 9. Suppose Additivity and Transitivity hold and 𝑋𝑖 ≻ 𝑌𝑖 and 𝑋𝑖 ∩ 𝑋 𝑗 =

𝑌𝑖 ∩ 𝑌 𝑗 = ∅ for all 𝑖, 𝑗 from 1 to 𝑛. Then 𝑋1 ∪ · · · ∪ 𝑋𝑛 ≻ 𝑌1 ∪ · · · ∪ 𝑌𝑛.

Proof. For 𝑛 = 2, following Krantz et al. (1971, pp. 211–12, Lemma 2): suppose
𝑋1 ≻ 𝑌1, 𝑋2 ≻ 𝑌2, and 𝑋1 ∩ 𝑋2 = 𝑌1 ∩ 𝑌2 = ∅. Then by Additivity,

(𝑋1 \ 𝑌2) ∪ 𝑋2 ≻ (𝑋1 \ 𝑌2) ∪ 𝑌2 = 𝑋1 ∪ (𝑌2 \ 𝑋1) ≻ 𝑌1 ∪ (𝑌2 \ 𝑋1). (7)

iff 𝜋−1𝑍 ≻ 𝑌 iff 𝑍 ≻ 𝜋𝑌 . By exactly similar reasoning 𝜋𝑋 ≻ 𝑍 iff 𝜋𝑌 ≻ 𝑍 . Thus 𝜋𝑋 ∼ 𝜋𝑌 . □
8These axioms all follow from the theory of Insua (1992, p. 89), which is developed to accom-

modate imprecise probability. If we could help ourselves to Totality, then Superset and Complemen-
tation could both be derived from Minimality, Transitivity, and Additivity—see Krantz et al. (1971,
pp. 211-12).

9The same follows for ∼. Proof. 𝑋 ∼ 𝑌 implies, by Complementation, that for any 𝑍 , 𝑍 ≻ 𝑌c iff
𝑌 ≻ 𝑍c iff 𝑋 ≻ 𝑍c iff 𝑍 ≻ 𝑋c; and, similarly, 𝑌c ≻ 𝑍 iff 𝑋c ≻ 𝑍 . Thus 𝑋 ∼ 𝑌 implies 𝑋c ∼ 𝑌c,
which in turn implies 𝑋 ∼ 𝑌 . □
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𝐷𝐴

𝐵 𝐶

𝜋 𝜋 𝜋

Figure 1: Illustration of Lemma 10, with segments of the circle representing 𝐴, 𝐵,
𝐶, and 𝐷, and their images under successive applications of 𝜋. Notice how the light
gray segment is always disjoint from its position in all previous circles.

Then by Transitivity,

(𝑋1 \ 𝑌2) ∪ 𝑋2 ≻ 𝑌1 ∪ (𝑌2 \ 𝑋1). (8)

Notice that 𝑋1 ∩ 𝑌2 is disjoint from both sides of (8), so by another application of
Additivity we have the required

𝑋1 ∪ 𝑋2 = (𝑋1 ∩ 𝑌2) ∪ (𝑋1 \ 𝑌2) ∪ 𝑋2 ≻ 𝑌1 ∪ (𝑌2 \ 𝑋1) ∪ (𝑋1 ∩ 𝑌2) = 𝑌1 ∪ 𝑌2.
(9)

For the case where 𝑛 > 2 the result follows from repeated application of Transitivity
and the result for the 𝑛 = 2 case. □

Lemma 10. Where 𝐴, 𝐵, 𝐶, 𝐷 are as in Theorem 1, there are infinitely many disjoint
rotations of 𝐵.

Proof. Let 𝜋 be a rotation such that 𝜋𝐶 = 𝐴 ∪ 𝐵 ∪ 𝐶, so that 𝜋(𝐴 ∪ 𝐵 ∪ 𝐷) = 𝐷.
𝜋𝑚𝐵 and 𝜋𝑛𝐵 are disjoint for 𝑚 ≠ 𝑛 ∈ N, because, if 𝑚 > 𝑛, 𝜋𝑚𝐵 is a subset of 𝜋𝑛𝐷
which is disjoint from 𝜋𝑛𝐵. See Figure 1 on page 12. □

Proof of Theorem 8. Suppose for reductio that 𝐵 is likely. Then 𝐴 ∪ 𝐶 ∪ 𝐷 is not
likely by Likeliness Exclusion, so by Likeliness Delineation we have

𝐵 ≻ 𝐴 ∪ 𝐶 ∪ 𝐷. (10)

By Invariance it follows, where 𝜋 is a rotation with 𝜋𝐶 = 𝐴 ∪ 𝐵 ∪ 𝐶, that

𝜋𝐵 ≻ 𝐴 ∪ 𝐵 ∪ 𝐶 ∪ 𝜋𝐴 ∪ 𝜋𝐷, (11)

so by Superset, 𝜋𝐵 ≻ 𝐵. Recall from the proof of Theorem 6 that 𝜋𝐵 ⊆ 𝐷, so
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𝜋𝐵 ⊆ 𝐴 ∪ 𝐶 ∪ 𝐷. Thus, by Superset again, we also have

𝐴 ∪ 𝐶 ∪ 𝐷 ≻ 𝐵. (12)

By (10), (12), and Transitivity we have 𝐵 ≻ 𝐵. By Additivity we then have ∅ ≻ ∅,
which is impossible given Minimality. So 𝐵 is not likely.

Let 𝑆 witness 𝑛-Likeliness (where 𝑛 > 1). By Likeliness Delineation 𝑆 ≻ 𝐵, so
by Invariance and part (c) of 𝑛-Likeliness, 𝑆 ≻ 𝐵 ∪𝐶 ∪ 𝐷. We then have 𝑆 ≻ 𝐶 by
Superset, and so 𝑆 ≻ 𝐴∪ 𝐵∪𝐶 by Invariance and part (c) of 𝑛-Likeliness. We then
have 𝐷 ≻ 𝑆c by Complementation, so 𝐵 ∪ 𝐶 ∪ 𝐷 ≻ 𝑆c by Superset, so 𝐵 ≻ 𝑆c by
Invariance, part (c) of 𝑛-Likeliness, and Complementation for ∼ (see note 9).

Now, by Lemma 10, there are 𝑛 + 1 disjoint rotations of 𝐵, which by a familiar
argument are each more likely than 𝑆c. But by the choice of 𝑆, Ω can be partitioned
into 𝑛+1 sets which are each equally likely as 𝑆c. Hence the union of those rotations
of 𝐵 is more likely than Ω given Additivity and Transitivity, by Lemma 9—a
contradiction given Minimality and Complementation. □

Those who wish to reject Totality on the basis of Invariance therefore face two
tasks. The first is to motivate Invariance in a way that does not extend to Symmetry.
The second is to explain why we should reject one or more of the above principles for
reasoning about what’s likely. We do not insist that these tasks are insurmountable,
but we are inclined to place our bets against Invariance and in favor of Totality.

5 Conclusion
We have argued that Symmetry is not nearly as obvious as it has seemed. We
therefore do not find IHH’s argument for imprecise probability compelling. A better
argument for imprecise probability appeals to Invariance. But we have seen reason
to question Invariance, on the basis of principles which support Totality.

We acknowledge that failures of Symmetry and especially of Invariance may
seem highly counterintuitive. IHH point out that real-valued probability functions
defined on all sets of points are committed to arbitrarily severe violations of these
principles (p. 911). We agree that this situation is extremely surprising and strange.
But the measure-theoretic paradoxes which give rise to these results are themselves
extremely surprising and strange. And our results suggest that any view about the
comparative likelihood of propositions related to nonmeasurable regions will have
highly counterintuitive implications.10

10For helpful comments and discussion, we are grateful to Chris Bottomley, David Builes, Will
Combs, Cian Dorr, Adam Elga, John Hawthorne, Brian Hedden, Yoaav Isaacs, Gideon Rosen, two
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