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It is tempting to think that a process of choosing a point at random from the sur-
face of a sphere can be probabilistically symmetric, in the sense that any two regions
of the sphere which differ by a rotation are equally likely to include the chosen
point. Isaacs, Hájek and Hawthorne (2022) argue from such symmetry principles
and the mathematical paradoxes of measure to the existence of imprecise chances
and the rationality of imprecise credences. Williamson (2007) has argued from a re-
lated symmetry principle to the failure of probabilistic regularity. We contend that
these arguments fail, because they rely on auxiliary assumptions about probability
which are inconsistent with symmetry to begin with. We argue, moreover, that sym-
metry should be rejected in light of this inconsistency, and because it has implausible
decision-theoretic implications.Theweaker principle of probabilistic invariance says
that the probabilistic comparison of any two regions is unchanged by rotations of the
sphere. This principle supports a more compelling argument for imprecise probabil-
ity. We show, however, that invariance is incompatible with mundane judgements
about what is probable. Ultimately, we find reason to be suspicious of the application
of principles like symmetry and invariance to non-measurable regions.

1. Introduction
At the centre of a perfectly symmetrical hollow sphere lies a perfectly
symmetrical particle emitter, which will soon emit a lone particle in a
random direction. The particle will travel outwards and hit exactly one
point on the surface of the sphere. By the symmetry of the case, it is
tempting to think that the particle emitter is probabilistically perfectly
fair in the following sense:

Symmetry If two sets of points on the surface of the sphere differ
by a rotation, then they are exactly equally likely landing places for
the particle.

Principles like Symmetry have played an important role in a number of
arguments for controversial conclusions in the philosophy of probability.
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2 Goodsell and Nebel

For example, Williamson (2007) argues from an analogous symmetry
principle about coin flips to the view that no infinite sequence of heads
and tails is more likely than a contradiction.

Most recently, Isaacs, Hájek and Hawthorne (2022)—henceforth,
‘IHH’—have argued from Symmetry to the existence of imprecise
chances and the rationality of imprecise credences. Their arguments ap-
peal to the mathematical phenomenon of non-measurable sets. Their
most powerful arguments, in our opinion, appeal to paradoxical de-
compositions of objects like our sphere, based on Hausdorff (1914) and
Banach andTarski (1924).Here is one result of this form (seeTomkowicz
and Wagon 2016 for exposition):

Theorem 1 (Robinson 1947). The surface of a sphere in three-
dimensional Euclidean space can be partitioned into four sets
A,B,C,D, such that B is a rotation of B∪C∪D and C is a rotation
of A ∪ B ∪ C.

The ‘paradox’ is that A and a rotation of B together cover the entire sur-
face of the sphere, and the same is true for D and a rotation of C. So the
sphere can be decomposed into sets that can then be rearranged so as to
cover the entire surface of the sphere twice over. This shows that there is
no finitely additive probability function defined on all sets of points on
the surface of the sphere that, in accordance with Symmetry, assigns the
same probability to sets which differ by a rotation.1 IHH conclude that
some sets of points do not have real-valued probabilities.

In orthodox probabilistic theorizing, paradoxes such as these are
avoided by restricting attention to the Lebesgue-measurable sets of points
on the sphere. As a first gloss, a Lebesgue-measurable set is one that can
be approximated by repeatedly taking complements, countable unions,
and countable intersections of rectangular patches of the surface of
the sphere (see Heil 2019, ch. 2). A hardline but popular orthodox
stance denies that there are any probability comparisons to be had be-
yond the Lebesgue-measurable sets. For example, van Fraassen (1989,
p. 329) claims that ‘the requirement to have probability defined every-
where would be unacceptable’. On this view, the sets of points in The-
orem 1 are not more or less likely than each other (or any other set
of points) to be the landing place of the particle, because they are not

1 For a finitely additive probability function, the probabilities of A throughD as inTheorem 1
must sum to one. But by symmetry, so must the probabilities of A and B and of C and D—a
contradiction.
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Symmetry, Invariance, and Imprecise Probability 3

Lebesgue-measurable; they are simply beyond the realm of probabilistic
comparison.

This hardline orthodoxy is difficult to maintain. It contradicts the
overwhelmingly plausible idea that every set, measurable or not, is at
least as likely a landing place as any of its subsets. Hardliners also face
the awkward question of how ‘measurable’ is to be understood in real-
world applications of probabilistic theorizing. Meteorologists talk about
the probability that it will rain tomorrow, seemingly assuming that rain
tomorrow is at least as likely as heavy rain tomorrow, without worry-
ing whether the propositions in question are ‘measurable’ in any stan-
dard sense. So we view orthodoxy as avoiding non-measurable sets, not
because there is a fundamental probabilistic difference between measur-
able and non-measurable sets, but because paradoxes of probability such
as those posed by Theorem 1 are best ignored for many purposes (cf.
Hoek 2021).

We therefore agree with IHH that there are probabilistic compar-
isons to bemade between arbitrary sets of points on the sphere.However,
we deny that these comparisons should respect Symmetry.2

More specifically, we do three things. First, we show that there is
no good argument from Symmetry and finite additivity to imprecise
probability, since these premisses are inconsistent, given uncontrover-
sial auxiliary assumptions. Second, we argue that Symmetry should be
rejected in light of this inconsistency, and because it has implausible
decision-theoretic implications. Third, we provide a better argument for
imprecise probability, which does not appeal to Symmetry, and explain
why we nonetheless do not find this argument compelling.

2. Symmetry versus Additivity
Let Ω denote the set of all points on the surface of the sphere, which we
assume to be isometric to the unit sphere in ℝ3. Let ≻ denote the rela-
tion that holds between sets of points X and Y when X is a more likely
landing place for the particle thanY. (Our arguments are not intended to
be sensitive to whether ‘likely’ is interpreted in a subjective or objective
way.)

2 Principles like Symmetry are also rejected by Hoek (2021) and Maudlin (2021); our argu-
ments are quite different from theirs. Dorr (2024) rejects a principle like Symmetry for rational
credences while granting, at least for the sake of argument, that it applies to objective chance.
The existence of imprecise objective chances, however, is arguably inconsistent with the thesis of
Dorr, Nebel, and Zuehl (2023), which is the linchpin of their (2021) argument against imprecise
credence.
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4 Goodsell and Nebel

We define the relation ∼ (equally likely) as follows:

X ∼ Y if and only if for any Z ⊆ Ω, Z ≻ X if and only if Z ≻ Y, and
X ≻ Z if and only if Y ≻ Z.

Note that ∼, so defined, is an equivalence relation.
Symmetry can then be formulated as follows:

Symmetry X ∼ πX, where π is any rotation of the sphere.3

Our argument appeals to two principles which are evenmore central
to our notion of probability than Symmetry:

Non-triviality Ω ≁ ∅.

Additivity If X ∩ Z = Y ∩ Z = ∅, then
(a)X ≻ Y if and only if X ∪ Z ≻ Y ∪ Z, and
(b)X ∼ Y if and only if X ∪ Z ∼ Y ∪ Z.

We take Non-triviality to be obvious, and Additivity to be highly desir-
able.

The principles above imply that Symmetry is false:

Theorem 2. Non-triviality, Additivity, and Symmetry are incon-
sistent.4

Proof . Take A,B,C,D as in Theorem 1. By Symmetry, B ∼ B ∪ C ∪ D,
so by Additivity we have A ∪ B ∼ Ω and hence C ∪D ∼ ∅. By a parallel
argument, C ∪D ∼ Ω. Thus Ω ∼ ∅, contradicting Non-triviality. ◻

We take Theorem 2 to cast considerable doubt on Symmetry, given
the plausibility of Non-triviality and Additivity. IHH, however, appear
to favour a formalization of imprecise probability which violates Ad-
ditivity while satisfying the other principles. They suggest taking the

3 IHH appeal to the idea that ‘any rotation of a given set of points must have the same proba-
bility as that set of points’ (p. 893). We assume that having the same probability is equivalent to
being equally probable—otherwise, there must be more to probability than whatever probabili-
ties IHH assign. Following Keynes (1921), de Finetti (1937), Koopman (1940), Savage (1954), and
others, we prefer to theorize in terms of the relations ≻ and ∼ in order to more easily formulate
principles that are neutral between different numerical representations of probability.

4 A similar result is proved by Thong (2024, Theorem 2), though his involves additional ax-
ioms and is specific to IHH’s view. His result can be regarded as a corollary of ours. Thong draws
the lesson that IHH’s view violates either Additivity or Transitivity. However, Transitivity plays
no role in our result, so IHH cannot preserve Additivity by rejecting Transitivity.
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Symmetry, Invariance, and Imprecise Probability 5

probability of an event to be the interval bounded by the event’s Lebesgue
inner and outer measures (see, for example, Heil 2019, ch. 2 for defini-
tions). Supposing that events are equally likely if and only if they have the
same probability, Symmetry and Non-triviality will hold on this view,
so Additivity must fail. (Where A,B,C,D are as in Theorem 1, the inner
probability of each such set will be 0 and the outer probability 1, so they
are all equally likely on IHH’s view.)

This puts them, however, in an awkward dialectical situation. If Ad-
ditivity is rejected, Theorem 1 is no barrier to assigning real-number
probabilities to every set of points. For example, the ordering that holds
X to be more probable than Y when X has a greater Lebesgue outer mea-
sure satisfies Symmetry and Non-triviality, as would the ordering simi-
larly induced by the Lebesgue inner measure, or by themidpoint (or any
other convex combination) of the Lebesgue inner and outer measures.
IHH provide no argument against a precise probability assignment that
satisfies Symmetry but not Additivity, so the argument for imprecision
is incomplete.

IHH would accept a restriction of Additivity to the Lebesgue mea-
surable sets. Such a restriction is also satisfied by any of the precise views
mentioned above. But we find all of these views inferior to one which sat-
isfies Additivity in full generality. In our view, it is Symmetry that should
be restricted in light of the paradoxes of measure.

Theorem 2 also complicates the argument of Williamson (2007)
mentioned in §1. He argues from a Symmetry-like principle about
sequences of coin flips,5 along with Additivity, to the falsity of

Regularity If X is not empty, then X ≁ ∅.

Williamson’s argument, applied to the sphere, can be put as follows.

Theorem 3. Symmetry, Additivity, and Regularity are inconsis-
tent.

Proof . In the proof of Theorem 2 we derive C ∪D ∼ ∅ from Symmetry
and Additivity, in contradiction with Regularity. ◻

5 A Hausdorff-like result for an infinite sequence of coin flips requires a suitably rich class
of putatively probability-preserving symmetries on the set of possible results of the sequence. A
sufficient condition is if every permutation of the flips induces a symmetry on the set of possible
results, which is to say that for any permutation π of flips, the function that maps the sequence
of results ⟨ri⟩∞i=1 to ⟨rπ(i)⟩∞i=1 is counted as a symmetry. Williamson’s argument relies on one such
permutation being probability-preserving, and his justification for this premiss extends to an
arbitrary permutation if the case is suitably modified.
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6 Goodsell and Nebel

Theorem 3 might seem to provide a powerful argument against Reg-
ularity. But Theorem 2 casts some doubt on this impression, because—
given the obvious auxiliary assumption of Non-triviality—Additivity
and Symmetry are not even consistent.

Though our proof of Theorem 3 appeals to the non-measurable sets
C and D, it is important to emphasize that this is not necessary for
Williamson’s result (his own argument appeals only to sets of measure
zero). It is therefore possible to run Williamson’s argument with Sym-
metry and Additivity restricted to measurable sets. Such an argument
would not be directly impugned by Theorem 2. However, once the prin-
ciples are restricted in this way, and they are no longer the sweeping,
powerful constraints they initially appeared to be, we think there is con-
siderably less pressure on the proponent of Regularity to accept them
(the restriction of Symmetry in particular).

3. In defence of Additivity
The conflict between Symmetry and Additivity poses an important
choice point for probabilistic theorizing.6 We are strongly inclined to
retain Additivity and reject Symmetry. As we will see in this section,
this choice can be supported on decision-theoretic grounds. Moreover,
we will find in §4 that there is a natural weakening of Symmetry—In-
variance—which is compatible with Additivity and provides a more
compelling argument for imprecise probability, so we recommend this
choice to IHH as well.

Let a prospect be a function which assigns an outcome to each point
on the sphere—intuitively, the prize you would receive if that prospect
were chosen and the emitted particle lands at that point. We assume

Non-trivial Outcomes Some outcome is better than another.
6 There are other arguments against Additivity of a quite different nature. Consider the case

famously described by Ellsberg (1988): a ball is chosen at random from an urn containing 30
red balls and 60 blue or green balls of unknown proportion. Many people prefer a gamble which
pays out some prize if the ball is red to one which pays out if it’s blue, while also preferring a
gamble which pays out that same prize if the ball is blue or green to one which pays out if it’s
red or green. Now suppose that someone has these preferences, while always and only preferring
gambles with a higher probability of a pay-off (other things being equal). It follows that red ≻
blue and blue-or-green ≻ red-or-green, in violation of Additivity (Fishburn 1986).

Even if the described pattern of preferences were rational, it seems bizarre to try to explain it
in purely probabilistic terms. In particular, we see no reason to accept that an agent with these
preferences always prefers a higher probability of receiving the prize. Ambiguity aversion seems
better explained by the agent’s not knowing, or even judging, whether red is more likely than blue,
but preferring to bet on events with known rather than unknown probability.
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Symmetry, Invariance, and Imprecise Probability 7

For any prospect f and rotation π of the sphere, f ○ π is the composi-
tion of f with π—that is, (f ○ π)(x) = f(π(x)) for every point x ∈ Ω. A
proponent of Symmetry should accept

Symmetric Value f is not better than f ○ π, for any rotation π.

It would be bizarre to insist that devices like our particle emitter can
be perfectly fair in the sense of satisfying Symmetry while thinking it
wouldn’t be fair to get a prize on some set of points rather than on some
rotation of that set. Symmetric Value also follows, given Symmetry, from
the more general principle of ‘stochastic equivalence’, which asserts that
equally distributed prospects are equally good (see Joyce 1999; Bader
2018; Russell and Isaacs 2021; Goodsell 2024; Russell forthcoming).

Say that f statewise dominates g if f(x) is better than g(x) for all x in
some set E ≁ ∅, and f(x) = g(x) for all x ∈ E∁ (E’s complement in Ω).

Statewise Dominance If f statewise dominates g, then f is better
than g.

That is, if f guarantees an outcome at least as good as the outcome of g,
and has a non-zero chance (that is, E ≁ ∅) of a strictly better outcome,
then f is a better option than g.

We appeal also to a significant weakening of Additivity (given Non-
trivality) that is entailed by IHH’s inner/outer view (assuming, again,
that having equal probability is the same as being equally probable):

Weak Complementation If X ∼ ∅, then X∁ /∼ ∅.

Theorem 4. Non-trivial Outcomes, Symmetric Value, Statewise
Dominance, and Weak Complementation are inconsistent.

Proof . Take A,B,C,D as in Theorem 1, and for some better outcome
and some worse one, let 1X yield the better outcome on X ⊆ Ω and the
worse one elsewhere.

By Symmetric Value, 1B∪C∪D is not better than 1B. It follows that
1B∪C∪D does not statewise dominate 1B, hence that C ∪ D ∼ ∅. By an
analogous argument, A ∪ B ∼ ∅, contradicting Weak Complementa-
tion. ◻

If IHH insist on retaining Symmetry, we surmise that, among the other
principles, they would be best advised to reject Statewise Dominance.
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8 Goodsell and Nebel

They might take issue with it on the grounds that f can statewise domi-
nate g, on our definition, even if the set E of points on which f is better
is not more likely than ∅. It’s open to them to say that E ⊁ ∅ even while
E ≁ ∅ (that is, a non-zero chance may not be a greater than zero chance).
But Symmetric Value is also inconsistent with a principle which weak-
ens Statewise Dominance, supposing the space of values of outcomes to
be sufficiently rich. This is established by an argument of Pruss (2023).

Say that f almost strictly statewise dominates g if f(x) is a strictly
better outcome than g(x) for all x in Ω besides at most two points x1
and x2, where f(x1) = g(x1) and f(x2) = g(x2). A prospect that al-
most strictly statewise dominates another is all-but-guaranteed to yield
a strictly better outcome, so we feel safe in assuming

Almost Strict Statewise Dominance If f almost strictly state-
wise dominates g, then f is better than g.

Pruss’s argument also relies, plausibly, on a bidirectionally infinite se-
quence of ever-better outcomes.

Infinite Outcomes There is a non-empty set of outcomes that,
for each of its elements, contains at least one that is better and one
that is worse.

Theorem 5 (Pruss 2023). Symmetric Value is inconsistent with
Almost Strict Statewise Dominance and Infinite Outcomes.

Proof . Let ϕ be a rotation of the sphere by an irrational angle (in de-
grees), so that for every x ∈ Ω not on the axis of rotation, ϕi(x) ≠ ϕj(x)
for any distinct (possibly negative) integers i, j (where ϕi is the i-fold self-
composition of ϕ if i is positive, of ϕ−1 if i is negative, and the identity
function if i is zero).

Using Infinite Outcomes (and the Axiom of Choice), we construct a
prospect as follows. First, assign any outcomes to the two points on the
axis of ϕ. Then, when x is not on the axis of the rotation of ϕ and has not
yet been assigned an outcome, assign outcomes to {ϕi(x) ∶ i ∈ ℤ} that
are strictly increasing in value, so that ϕi(x) is assigned a better outcome
than ϕj(x) if and only if i > j.

Repeating this process transfinitely, we are left with a prospect f
such that f(ϕ(x)) is better than f(x) unless x is on the axis of ϕ, hence
f ○ ϕ almost strictly statewise dominates f, so is better, by Almost Strict
Statewise Dominance. But f ○ ϕ cannot be better than f by Symmetric
Value. ◻
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Symmetry, Invariance, and Imprecise Probability 9

Pruss himself does not conclude that Symmetric Value should be re-
jected, in part because he seems to like Williamson’s argument against
Regularity. But, when considered alongside the violation of Additivity
in Theorem 2, it seems clear to us that Symmetry and Symmetric Value
have to go. We recommend this choice to IHH as well, because they do
not need Symmetry to argue for imprecise probability.

4. Invariance versus Totality
A better argument for imprecise probability appeals to the following
weakening of Symmetry:

Invariance For any rotation π, X ≻ Y if and only if πX ≻ πY.

A consequence of this principle (given our definition of∼) is that X ∼ Y
if and only if πX ∼ πY, for any rotation π.7

Unlike Symmetry, Invariance is compatible with Additivity because
any rotation of the sphere preserves strict subsethood, in the sense that
X ⊂ Y if and only if πX ⊂ πY. And it is enough for IHH’s central purpose
because, given other plausible principles, it is inconsistent with

Totality Either X ≻ Y, X ∼ Y, or Y ≻ X.

Totality is a principle that characteristically divides those who believe
probability to be ‘precise’ from those who do not. We also assume

Minimality ∅ ⊁ X.
Transitivity If X ≻ Y and Y ≻ Z then X ≻ Z.

Theorem 6. Invariance and Totality are inconsistent, given Non-
triviality, Additivity, Minimality, and Transitivity.

The proof appeals repeatedly to the following simple lemma (where≿ is
the disjunction of ≻ with ∼):

Lemma 1. Totality, Minimality, and Additivity entail that X ≿ Y
whenever Y ⊆ X.

7 Proof. Suppose first that πX ∼ πY. Given Invariance, this implies that for any Z ⊆ Ω, Z ≻ X
if and only if πZ ≻ πX if and only if πZ ≻ πY if and only if Z ≻ Y. By exactly similar reasoning
X ≻ Z if and only if Y ≻ Z. Thus X ∼ Y.

Suppose next that X ∼ Y. Given Invariance, this implies that for any Z ⊆ Ω, Z ≻ πX if and
only if π−1Z ≻ X if and only if π−1Z ≻ Y if and only if Z ≻ πY. By exactly similar reasoning,
πX ≻ Z if and only if πY ≻ Z. Thus πX ∼ πY. ◻
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10 Goodsell and Nebel

Proof . Suppose Y ⊆ X but X ≿̸ Y. By Totality, Y ≻ X, so ∅ ≻ X ⧵ Y by
Additivity, in violation of Minimality. ◻

Proof of Theorem 6. TakeA,B,C,D as inTheorem 1. By Totality, we have
B ≿ C or C ≿ B. Suppose B ≿ C without loss of generality, and let π be
a rotation with πC = A ∪ B ∪ C. By Invariance,

πB ≿ A ∪ B ∪ C. (1)

Since B is disjoint from C and disjointness is preserved under rotations,
πB is disjoint fromA∪B∪C, and is therefore a subset ofD.ThusD ≿ πB
by Lemma 1. So from (1) and Transitivity we have

D ≿ A ∪ B ∪ C. (2)

Now let σ be a rotation with σB = B ∪ C ∪D, hence σD ⊆ A. By similar
reasoning,

A ≿ B ∪ C ∪D. (3)

Putting (2) and (3) together with Lemma 1, we have

D ≿ A ∪ B ∪ C ≿ A ≿ B ∪ C ∪D ≿ D. (4)

If any of these inequalities were strict, then by Transitivity (and the def-
inition of ∼) we’d have D ≻ D, which by Additivity would imply ∅ ≻ ∅,
contradicting Minimality. Hence B ∪ C ∪ D ∼ D, so B ∪ C ∼ ∅ by
Additivity, which implies B ∼ C ∼ ∅ by Lemma 1 and Minimality.

Since∅ is invariant under any rotation, Invariance then implies both

B ∪ C ∪D ∼ ∅, and (5)

A ∪ B ∪ C ∼ ∅ (6)

Hence Ω ∼ ∅ by Additivity, contradicting Non-triviality. ◻

Theorem 6, in our view, provides a more compelling argument for
imprecise (that is, not totally ordered) probability than IHH’s argument
from Symmetry. Still, we are inclined to hold onto Totality. Mere In-
variance does not seem to capture the intuition that motivates IHH and
others. (Here we are in agreement with Pruss 2023.)The intuition repeat-
edly expressed by IHH (pp. 893, 895, 897, 901, 903, 911) is that devices
like our particle emitter can be fair in the sense that congruent sets of
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Symmetry, Invariance, and Imprecise Probability 11

points have equal probability. The package that retains Additivity by
replacing Symmetry with Invariance does not capture this judgement;
it straightforwardly violates it. Notably, Invariance does not support a
Williamson-style argument against Regularity.

We also worry that Invariance makes a mess of qualitative prob-
abilistic reasoning. The following principles seem overwhelmingly
plausible, for some n and some uniform reading of ‘likely’ (the ar-
gument would also work with ‘very likely’, ‘extremely likely’, and
so on):

n-Likeliness There is some set of points X such that
(a) X is likely,
(b) X can be partitioned into n equally probable subsets that are

equally probable asX∁ (intuitively,X has probability n/(n+1)),
and

(c) X is equally likely as any of its rotations.

Likeliness Delineation IfX is likely andY is not, thenX is more
likely than Y.

Likeliness Exclusion No set and its complement are both likely.

To illustrate these principles, it seems possible to divide the sphere into
a thousand equal-sized segments, all but one of which are painted red,
in such a way that the particle is likely to land on a red point (999-
Likeliness part (a)); each of the thousand segments is equally likely to
be hit (part (b)); and the particle is equally likely to land in any ro-
tation of the red region (part (c)). If the particle is no less likely to
land in some set X than it is to land on a red point, then it must be
likely to land in X too (Likeliness Delineation; see Dorr, Nebel, and
Zuehl 2023 for extensive discussion and defence of this sort of prin-
ciple). So it can’t be likely to land outside X (Likeliness Exclusion).
Of course, there may be very weak readings of ‘likely’ on which intu-
itively low-probability events can count as likely (making their high-
probability complements likely too, by Likeliness Delineation). But we
only need there to be some reading of ‘likely’ (or ‘extremely likely’, …)
on which all of the above principles are true. We find this hard to
deny.

These principles, however, are untenable, given the failures of
Totality required by Invariance. The argument appeals to some further
premisses which seem very plausible on the assumption of Additivity
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12 Goodsell and Nebel

and which, we expect, would be acceptable even to opponents of
Totality.8

Superset If X ≻ Y ⊇ Z or X ⊇ Y ≻ Z, then X ≻ Z.
Complementation X ≻ Y if and only if Y∁ ≻ X∁.9

Theorem 7. n-Likeliness, Likeliness Delineation, and Likeliness
Exclusion are inconsistent with Invariance, given Superset, Com-
plementation, Additivity, Minimality, and Transitivity.

The proof relies on the following lemmata.

Lemma 2. Suppose Additivity and Transitivity hold and Xi ≻ Yi
andXi∩Xj = Yi∩Yj = ∅ for all i, j from 1 to n.ThenX1∪⋯∪Xn ≻
Y1 ∪⋯ ∪ Yn.

Proof . For n = 2, following Krantz et al. (1971, pp. 211–12, Lemma
2), suppose X1 ≻ Y1, X2 ≻ Y2, and X1 ∩ X2 = Y1 ∩ Y2 = ∅. Then by
Additivity,

(X1 ⧵ Y2) ∪ X2 ≻ (X1 ⧵ Y2) ∪ Y2 = X1 ∪ (Y2 ⧵ X1) ≻ Y1 ∪ (Y2 ⧵ X1).
(7)

Then by Transitivity,

(X1 ⧵ Y2) ∪ X2 ≻ Y1 ∪ (Y2 ⧵ X1). (8)

Notice that X1 ∩ Y2 is disjoint from both sides of (8), so by another
application of Additivity we have the required

X1 ∪ X2 = (X1 ∩ Y2) ∪ (X1 ⧵ Y2) ∪ X2 ≻ Y1 ∪ (Y2 ⧵ X1) ∪ (X1 ∩ Y2)
= Y1 ∪ Y2. (9)

For the case where n > 2, the result follows from repeated application of
Transitivity and the result for the n = 2 case. ◻

Lemma 3. Where A,B,C,D are as in Theorem 1, there are in-
finitely many disjoint rotations of B.

8 These axioms all follow from the theory of Insua (1992, p. 89), which is developed to ac-
commodate imprecise probability. If we could help ourselves to Totality, then Superset and Com-
plementation could both be derived from Minimality, Transitivity, and Additivity—see Krantz
et al. (1971, pp. 211–12).

9 The same follows for ∼. Proof. X ∼ Y implies, by Complementation, that for any Z, Z ≻ Y∁

if and only if Y ≻ Z∁ if and only if X ≻ Z∁ if and only if Z ≻ X∁; and, similarly, Y∁ ≻ Z if and only
if X∁ ≻ Z. Thus X ∼ Y implies X∁ ∼ Y∁, which in turn implies X ∼ Y. ◻
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Symmetry, Invariance, and Imprecise Probability 13

Fig. 1. Illustration of Lemma 3, with segments of the circle representing A, B,
C and D, and their images under successive applications of π. Notice how the
light grey segment is always disjoint from its position in all previous circles.

Proof . Let π be a rotation such that πC = A∪B∪C, so that π(A∪B∪D) =
D. πmB and πnB are disjoint for m ≠ n ∈ ℕ, because, if m > n, πmB is a
subset of πnD which is disjoint from πnB. See Figure 1. ◻

Proof of Theorem 7. Suppose for reductio that B is likely. Then A∪C∪D
is not likely by Likeliness Exclusion, so by LikelinessDelineationwe have

B ≻ A ∪ C ∪D. (10)

By Invariance it follows, where π is a rotation with πC = A∪B∪C, that

πB ≻ A ∪ B ∪ C ∪ πA ∪ πD. (11)

So by Superset, πB ≻ B. Recall from the proof ofTheorem 6 that πB ⊆ D,
so πB ⊆ A ∪ C ∪D. Thus, by Superset again, we also have

A ∪ C ∪D ≻ B. (12)

By (10), (12), and Transitivity we have B ≻ B. By Additivity we then have
∅ ≻ ∅, which is impossible given Minimality. So B is not likely.

Let S witness n-Likeliness (where n > 1). By Likeliness Delineation
S ≻ B, so by Invariance and part (c) of n-Likeliness, S ≻ B ∪ C ∪ D.
We then have S ≻ C by Superset, and so S ≻ A ∪ B ∪ C by Invariance
and part (c) of n-Likeliness. We then have D ≻ S∁ by Complementation,
so B ∪ C ∪ D ≻ S∁ by Superset, so B ≻ S∁ by Invariance, part (c) of
n-Likeliness, and Complementation for ∼ (see note 9 above).

Now, by Lemma 3, there are n + 1 disjoint rotations of B, which by
a familiar argument are each more likely than S∁. But by the choice of S,
Ω can be partitioned into n+1 sets which are each equally as likely as S∁.
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14 Goodsell and Nebel

Hence the union of those rotations of B is more likely thanΩ givenAddi-
tivity and Transitivity, by Lemma 2—a contradiction given Minimality
and Complementation. ◻

Those who wish to reject Totality on the basis of Invariance there-
fore face two tasks. The first is to motivate Invariance in a way that does
not extend to Symmetry. The second is to explain why we should reject
one ormore of the above principles for reasoning about what’s likely.We
do not insist that these tasks are insurmountable, but we are inclined to
place our bets against Invariance and in favour of Totality.

5. Conclusion
We have argued that Symmetry is not nearly as obvious as it has seemed.
We therefore do not find IHH’s argument for imprecise probability com-
pelling. A better argument for imprecise probability appeals to Invari-
ance. But we have seen reason to question Invariance, on the basis of
principles which support Totality.

We acknowledge that failures of Symmetry and especially of Invari-
ance may seem highly counterintuitive. IHH point out that real-valued
probability functions defined on all sets of points are committed to ar-
bitrarily severe violations of these principles (p. 911). We agree that this
situation is extremely surprising and strange. But the measure-theoretic
paradoxes which give rise to these results are themselves extremely sur-
prising and strange. And our results suggest that any view about the com-
parative likelihood of propositions related to non-measurable regions
will have highly counterintuitive implications.10
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