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Abstract

In this paper, we focus our attention on tableau methods for propositional interval temporal logics.
These logics provide a natural framework for representing and reasoning about temporal properties
in several areas of computer science. However, while various tableau methods have been developed
for linear and branching time point-based temporal logics, not much work has been done on tableau
methods for interval-based ones. We develop a general tableau method for Venema’s CDT logic in-
terpreted over partial orders (BCDT™ for short). It combines features of the classical tableau method
for first-order logic with those of explicit tableau methods for modal logics with constraint label
management, and it can be easily tailored to most propositional interval temporal logics proposed in
the literature. We prove its soundness and completeness, and we show how it has been implemented.
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1. Introduction

In this paper, we focus our attention on tableau methods for propositional interval tem-
poral logics. These logics provide a natural framework for representing and reasoning
about temporal properties in several areas of computer science. However, while various
tableau methods have been developed for linear and branching time point-based temporal
logics, e.g., [5,9,18,29,33], not much work has been done on tableau methods for interval-
based temporal logics. One reason for this disparity is that operators of interval temporal
logics are in many respects more difficult to deal with. As an example, there exist straight-
forward inductive definitions of the main operators of point-based temporal logics, such as
the future and the until operators, while inductive definitions of basic interval modalities
turn out to be much more complex (consider, for instance, the one for the chop operator
given in [4]).

Various propositional and first-order interval temporal logics have been proposed in
the literature (see [13] for an up-to-date survey that analyzes the main contributions in
the field). Propositional interval temporal logics include Halpern and Shoham’s Modal
Logic of Time Intervals (HS) [17], Venema’s CDT logic [32], Moszkowski’s Proposi-
tional Interval Temporal Logic (PITL) [22], and Goranko, Montanari, and Sciavicco’s
family of Propositional Neighborhood Logics (PN L) [11], while the most interesting
first-order versions are Moszkowski’s Interval Temporal Logic (ITL) [22] and Zhou and
Hansen’s Neighborhood Logic (NL) [36]. Two different semantics have been given to in-
terval logics, namely, a non-strict one, which includes intervals with coincident endpoints
(point-intervals), and a strict one, which excludes them. We restrict our attention to the
propositional setting, and we assume the non-strict semantics as the default (it is the most
common and general).

In this paper, we develop a sound and complete general tableau method for Venema’s
CDT logic interpreted over partial orders, called (Non-Strict) Branching CDT (BCDT™
for short). BCDT™ features the same operators as CDT; however, since it is interpreted
over partially ordered domains with linear intervals, it is expressive enough to include as
subsystems or specializations all the above-mentioned propositional interval logics. While
most existing tableau methods for modal and temporal logics are terminating methods for
decidable logics, and thus they yield decision procedures, the proposed tableau method
for BCDT™ only provides a semi-decision procedure for unsatisfiability. In this respect,
even though it shares some basic features with explicit tableaux for modal logics with
constraint label management, it comes closer to the classical, possibly non-terminating
tableau method for first-order logic [8]. Furthermore, it presents some similarities with
the explicit tableau method developed for the guarded fragment of first-order logic [14].
Finally, it can be easily adapted to variations and subsystems of BCDT™, thus providing a
general tableau method for propositional interval logics.

The rest of the paper is organized as follows. In Section 2, we introduce the syntax
and semantics of BCDT™, and we compare its expressive power with that of the main
propositional interval logics. In Section 3, we provide a survey of existing tableau methods
for propositional temporal logics. In Section 4, we present our tableau method, and we
prove its soundness and completeness. In Section 5, we describe the basic features of an
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efficient implementation of the method in an imperative language. Conclusions provide an
assessment of the work and outline future research directions.

2. CDT over partial orders (BCDT™)

In this section, we give syntax and semantics of BCDT™ and discuss its expressive
power. To this end, we introduce some preliminary notions. Let D = (D, <) be a strict
partial order. A (non-strict) interval on D is an ordered pair [dyp, d1] such that dy, d; € D,
and dy < d1. When djy < d; we say that the interval is proper or strict; when dy = d it is
a point-interval. The set of all non-strict intervals on D will be denoted by I(D)™, while
the set of all strict intervals will be denoted by I(ID)~; by I(D) we will denote either of
these. As in [17], we assume intervals to be linear, that is, for every interval [dy, d] and
every pair of points d, d’ belonging to it, namely, dy < d < d; anddy < d' <di,d <d' or
d' <d or d =d'. Such an assumption keeps the temporal setting still very general, while
making it fitting our intuition about the nature of time. In Fig. 1 we give an example of
a non-linear interval structure with the linear interval property (left) and an example of a
non-linear interval structure that does not satisfy it (right). A pair (D, (D)) is called an
interval structure. We can constrain an interval structure to be linear, branching, discrete,
dense, unbounded above and/or below, Dedekind complete, and so on, by imposing suitable
conditions on it. An element d € D such that there are no elements d’ € D with d < d’
(resp., d’ < d) is called minimal (resp., maximal) element.

BCDT features the same operators as CDT, but it is interpreted over partially ordered
domains with linear intervals. Its language consists of a set of propositional variables AP,
the logical connectives — and A, the modalities C, D, and T, and the modal constant 7.
The other logical connectives, as well as the logical constants T and _L, can be defined in
the usual way. BCDT™ well-formed formulas, denoted by ¢, v, . . ., are recursively defined
as follows (where p € AP):

p=m|pl=¢ldAY|9CY [¢DY | 9T

The semantics of BCDT™ is given in terms of non-strict models of the type M =
(D, I(D)*, V), based on non-strict interval structures, where V is a valuation function for
propositional variables. The valuation function is a mapping V:I(D)" 24P where
I(D)™ is the set of all intervals in ID, such that, for any p € AP, p holds over [do, d;] if
and only if p € V([do, d1]). Truth over an interval [dy, d;] in a model M is defined by
induction on the structure of formulas:

NN AN
VAN N

Fig. 1. A non-linear interval structure with/without the linear interval property.
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M, [dy, di]F p iff p € V([dy, d1]), for all p € AP;

M, [do, d1] - = iff it is not the case that M ™, [dy, d1] IF v/;

M, [do, di]IF ¢ Ay iff MY, [do, di]1F ¢ and M, [do, d1]IF 5

M, [dy,d1] - ¢Cv iff there exists do € D such that (i) dy < d» < dj, and

(i) M™, [do, d>] IF ¢ and M, [da, d1 ] IF ;

e M™, [dy, di]IF ¢ Dy iff there exists d» € D such that (i) d» < dop, and (ii) M, [d2, do]
IF¢ and M, [do, d{]IF ;

o M™, [dy, di]IF ¢ T iff there exists dr € D such that (i) d; < dy, and (ii) M, [d], d2]

IF ¢ and M, [dp, do] IF V.

Satisfiability and validity of BCDT formulas are defined in the usual way.

Let us compare the expressive power of BCDT™ with that of the main propositional
interval logics proposed in the literature. We say that a logic Ly is at least as expressive
as a logic L, if for every L, formula there exists an equivalent L; formula, and that L is
(strictly) more expressive than L if and only if L is at least as expressive as Ly, but not
vice versa.

‘We preliminarily summarize the main characteristics of the considered interval temporal
logics. HS features four basic operators: (B) (begins) and (E) (ends), and their transposes
(B) (begun by) and (E) (ended by). Given a formula ¢ and an interval [do, d;], (B)¢ holds
over [dp, d1] if ¢ holds over [dp, d»], for some dy < d» < d1, and (E)¢ holds over [dp, d; ]
if ¢ holds over [d;, d;], for some dy < d>» < dj. It is possible to show that HS captures
all Allen’s relations [2]. In particular, it allows one to define the strict after operator (A)
(and its transpose (A)) such that (A)¢ holds over [dy, d1] if ¢ holds over [d, d»] for some
dy > dj, the non-strict after operator <>, (and its transpose <>;) such that <,.¢ holds over
[do, d1] if ¢ holds over [d;, da] for some dy > di, and the sub-interval operator (D) such
that (D)@ holds over a given interval [dp, d1] if ¢ holds over a proper sub-interval of
[do, d1]. In [17], Halpern and Shoham have shown the undecidability of HS over various
classes of linear orders by a suitable encoding of the halting problem.

CDT has three binary operators C (chop), D, and T, which correspond to the ternary
interval relations occurring when an extra point is added in one of the three possible distinct
positions with respect to the two endpoints of the current interval (between, before, and
after), plus a modal constant & which holds over a given interval if and only if it is a point-
interval. Since HS can be embedded into CDT, undecidability results for the latter follow
from those for the former.

PITL features the two modalities () (next) and C (the specialization of the chop oper-
ator for discrete structures). Intervals are defined as finite or infinite sequences of states.
Given two formulas ¢, ¥ and a (finite) interval dy, . . ., d,, O¢ holds over d, .. ., d, if and
only if ¢ holds over dy, ..., d,, while C holds over dy, . .., d, if and only if there exists
i, with 0 <i < n, such that ¢ holds over dy, ..., d; and ¥ holds over d,, ..., d,. PITL has
been proved to be undecidable by a reduction from the problem of testing the emptiness
of the intersection of two grammars in Greibach form [22]. A decidable fragment of PITL
extended with quantification over propositional variables (QPITL) has been obtained by
imposing a suitable locality constraint which states that each propositional variable is true
over an interval if and only if it is true at its first state [22]. By exploiting such a con-
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straint, decidability of Local QPITL can be easily proved by embedding it into quantified
propositional Linear Temporal Logic.

Finally, propositional neighborhood logics in PN L have two modalities for right and
left interval neighborhoods, namely, (A) and (A) in the strict semantics (PN L™ logics),
and <, and <; in the non-strict semantics (PA'LT logics). While the undecidability of
the first-order Neighborhood Logic NL can be easily proved by embedding HS in it, the
decidability problem for its propositional fragments is still open.

We first note that both CDT and non-strict Propositional Neighborhood Logics
(PNLT) are interpreted over linear structures, and that the operators of PA/LT logics
can be expressed in CDT by means of the formulas <,¢ := ¢T T and < i := ¢DT.
Moreover, it is well known that CDT does not semantically include HS in its full gener-
ality, since the latter allows the interval structure to be branching, while the former does
not. On the other hand, HS is not more expressive than CDT, because it cannot express the
chop operator [21].

BCDT™" generalizes Venema’s CDT (and thus all logics in PA L") by allowing the
interval structure to be non-linear, for as long as all intervals in it are linear (as in HS).
Furthermore, it is strictly more expressive than HS and PITL. HS operators can be de-
fined in BCDT™' as follows: (B)¢ := ¢C—m, (B¢ == —nT¢, (E)p := = C¢, and
(E Y¢ 1= —m D¢. Besides, the strict neighborhood operators (A) and (A) can be defined
in BCDT™ by using 7 as follows: (A)¢ := (¢ A —m)T T, and (A)¢ := (¢ A—m)DT. By
exploiting such derived operators, all conditions on the interval structure mentioned in the
preliminaries can be easily expressed in BCDT™. In particular, linearity can be expressed
in BCDT™ by means of the following formula:

linZ ((A)p — [Al(p Vv (B)p V (B)p)) A ((A)p — [Al(p V (E)p Vv (E)p)),

while discreteness of linear interval structures can be imposed by means of the formula:
disc=m Vi1V ((B)I1 A (E)1),

where /1 stands for (B)T A [B][B]L.

As for the PITL operators, C is an operator of BCDT™, while O can be defined over
(linear) discrete structures as follows: (¢ :=[1C¢. On the other hand, BCDT is strictly
more expressive than PITL, since the latter is not able to access any interval which is not a
sub-interval of the current interval.

The undecidability of BCDT™ with respect to a number of interval structures imme-
diately follows from results in [17], while finding meaningful decidable fragments of
BCDT is an interesting open problem.

3. Tableau methods for temporal logics

In this section, we survey existing tableau methods for propositional point-based and
interval-based temporal logics over linear and branching time. According to [8], tableau
methods for (modal and) temporal logics can be classified as explicit or implicit. Explicit
methods keep track of the accessibility relation by means of some sort of external device.
One possibility is to maintain an auxiliary graph of named nodes n;, n;, ..., where each
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node contains a subformula, or a set of subformulas, of the formula to be checked, and the
existence of an edge from n; to n; means that n; is accessible from n;. Another possibility
is to include structured labels into nodes to constrain the formula, or the set of formulas, as-
sociated with each node to hold only at the domain element(s) identified by the label. The
resulting labeled tableau systems capture the accessibility relation by means of labeled
formulas, and they provide suitable notions of closed branches and tableaux. In implicit
methods [10,27], the accessibility relation is built-in into the structure of the tableau. As an
example, in the case of linear and branching time point-based temporal logics the tableau
represents a model of the satisfiable formulas (a timeline or a tree, respectively). The non-
standard finite model property can then be exploited to show that the resulting tableau
methods are actually decision procedures (they do not lead to infinite computations). In
[18], implicit methods are further partitioned into declarative and incremental ones. Meth-
ods in the former class first generate all possible sets of subformulas of a given formula,
and then they eliminate some (possibly all) of them, while those in the latter generate only
‘meaningful’ sets of subformulas.

3.1. Point-based linear and branching temporal logics

The problem of devising tableau systems for propositional Linear Temporal Logic
(LTL), as well as for some extensions and fragments of it, has been extensively inves-
tigated in the literature. An exponential time declarative method to check LTL formulas
has been developed by Wolper [33] and later extended by Lichtenstein and Pnueli to Past
LTL (PLTL) [26], while an incremental method for PLTL has been proposed by Kesten
et al. [18]. A labeled tableau system for the LTL-fragment LTL[F] has been proposed by
Schmitt and Goubault-Larrecq [29] (an attempt to extend it to full LTL is reported in [30]).
Finally, a tableau method for PLTL over bounded models has been developed by Cerrito
and Cialdea-Mayer [5] (in [6], Cerrito et al. generalize the method to first-order PLTL). The
satisfiability problem for LTL and PLTL is PSPACE-complete [31], while that for PLTL
over bounded models of polynomial length and LTL[F] is NP-complete [5,31].

Wolper’s tableau method is a natural extension to the one for propositional logic. The
key idea is to take advantage of the so-called fix-point definition of temporal operators that
allows one to split every temporal formula into a (possibly empty) part related to the current
state and a part related to the next (resp. previous) state. As an example, the formula ¢U
is analyzed as follows: either i holds now, or ¢ holds now and ¢U ¢ holds at the next
state. Since only a finite set of distinct scenarios can be generated in this way, it is possible
to devise a mechanism to control the repeated appearances of formulas, and to identify
periodic situations in a finite time. The algorithm for checking the (un)satisfiability of a
PLTL-formula ¢ behaves as follows: first (construction), it builds the tableau for ¢; then
(elimination), it removes unsuitable maximal strongly connected components (maximal
strongly connected components which are not reachable from an initial node including ¢
or are not self fulfilling and have not outgoing edges [33]). It turns out that the formula ¢ is
satisfiable if and only if the elimination phase does not end with an empty tableau. In [18]
Kesten et al. provide an efficient incremental variant of Wolper’s declarative procedure,
which extends to PLTL the incremental method for LTL originally developed by Pnueli
and Sherman [25]. Its basic ingredients are the same as Wolper’s. However, instead of
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preliminarily generating the set of all nodes of the tableau and thus immediately paying the
worst case exponential complexity price, it builds the tableau incrementally by introducing
only those nodes which are reachable from an initial nodes including the formula to be
checked. Even though in the worst case this procedure takes exponential time, one can
expect that in many cases a much smaller number of nodes is explored.

Unlike the above-described implicit methods, the labeled tableau systems for LTL[F]
and for PLTL over bounded models, respectively developed by Schmitt and Goubault-
Larrecq [29] and by Cerrito and Cialdea-Mayer [5], employ a mechanism for labelling
formulas with temporal constraints somewhat similar to ours.

The distinctive feature of Schmitt and Goubault-Larrecq’s tableau system is that its ter-
mination can be established locally: it terminates when no further expansion rule can be
applied, which is guaranteed to happen. The basic notions are those of signed clause, bor-
rowed from [16], and temporal constraint. A signed clause is either a pair [d;, d;]© or a
pair [o0|®, where @ is a (multi)set of formulas (the clause) and [d;, d;] is a time inter-
val, where d; can possibly be co. A signed clause [d;, d;]® evaluates to true in a given
structure if for every d € [d;, d;], there exists ¥ € & such that ¥ holds at d (disjunc-
tive interpretation), while |oo|® is true if for infinitely many time points d, every ¢ € ©&
holds at d (conjunctive interpretation). A temporal constraint is an expression of the form
di <dj. A tableau T is a set of branches, where a branch is a pair (B, K) consisting of
a set of signed clauses B and a set of temporal constraints K. The construction of the
tableau is accomplished by applying two kinds of steps: expansion and closing steps. An
expansion step is performed by choosing a branch (B, K) and an unused signed clause
® € B, and by applying a matching logical tableau rule. As a result of this application, the
premise clause is marked as used and the branch (B, K) is extended by adding the signed
clauses and the constraints, possibly involving new states, in the conclusions of the rule to
B and K, respectively. Whenever the conclusions include various alternatives, the branch
is split accordingly. A signed clause such that & includes only literals is called atomic.
A branch whose unused signed clauses are all atomic is called atomic, and it cannot be
further expanded. An atomic branch (B, K) is satisfiable if there exists an interpretation
that satisfies all signed clauses in B and the set of constraints in K; otherwise, it is unsat-
isfiable. A closing step is applied to an atomic branch, and it marks the branch as closed
if it is unsatisfiable. Termination is proved by introducing a suitable complexity measure
and by showing that, for every rule, every conclusion is smaller than the premise with re-
spect to such a measure. Critical formulas, such as GF¢, which potentially lead to infinite
computations, are dealt with by using the symbol oo in a suitable way.

PLTL interpreted over bounded models, that is, finite sequences dp, d1, . . ., di of states
where k is known in advance, has been introduced to address planning problems in Al
A tableau method for it has been developed by Cerrito and Cialdea-Mayer [5]. The bound-
aries of the model are encoded by means of the special constant symbols start and finish.
A state d; is encoded by means of an expression of the form ¢ + n, where c is a constant
and n is a natural number. A tableau is a set of branches to which expansion and conflict
resolution rules are applied. Tableau nodes are either temporal constraints or labeled for-
mulas. Temporal constraints are expressions of the form d; < d;, where d;, d; are states.
An initial constraint finish < start + k, where k is the length of the model, is associated
with every tableau. A labeled formula is a pair ([d;, d;], ¥), where [d;, d;] is an interval
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and ¢ is a PLTL-formula, which states that v is true at every state between d; and d;
(conjunctive interpretation). Expansion rules are applied to pairs of nodes of the forms
([di,d;], ) and d; < dj, and they cause the expansion, and possibly the splitting, of the
branch. Conflict resolution rules force the two intervals over which contradictory literals
hold (if any) to be disjoint. The closure of a branch B is established by checking the set
K of constraints associated with it (which includes the initial constraint): B is closed if
and only if K is unsatisfiable. Termination, soundness, and completeness of the method
are proved by exploiting a suitable notion of canonical tableau.

The main differences between these tableau methods and ours are: (i) they are specifi-
cally designed to deal with natural/integer time structures (i.e., linear and discrete), while
ours makes no assumptions; (ii) intervals only play a secondary role in them (e.g., in Cer-
rito and Cialdea-Mayer’s system a formula is true on an interval if and only if it is true at
every point in it), while in our system intervals are primary semantic objects on which the
truth definitions are entirely based; (iii) the closedness of the tableau is defined in terms
of unsatisfiability of the associated set of temporal constraints, while in our system it is
entirely syntactic.

We conclude this section by considering the satisfiability problem for CTL, which is
known to be EXPTIME-complete. An implicit tableau method to check the satisfiability of
CTL formulas, that generalizes Wolper’s method for LTL, has been proposed by Emerson
and Halpern in [9]. The algorithm for checking the (un)satisfiability of a CTL-formula ¢
basically behaves as Wolper’s one: first, it builds the tableau for ¢; then, it removes unsuit-
able maximal strongly connected components. The elimination phase encompasses both
a local pruning process, that removes local inconsistencies, and another pruning process,
that removes nodes including requests which are not fulfilled in the current tableau. As in
the case of LTL, the formula ¢ is satisfiable if and only if the elimination phase does not
end with an empty tableau.

3.2. Interval-based linear temporal logics and duration calculi

To the best of our knowledge, there exist very few tableau methods for interval tem-
poral logics (and duration calculi) in the literature. A tableau-based decision procedure
for an extension of Local PITL interpreted over finite state sequences (LPITL,,,;), which
pairs the operators () and C with a projection operator proj, has been proposed by Bow-
man and Thompson [4]. Such a procedure refines a previous tableau system for quantified
LPITL,,,; developed by Kono [19]. It rests on a normal form for LPITL,,,; formulas that
allows one to exploit a classical tableau method, devoid of any mechanism for constraint
label management. In [7], Chetcuti-Serandio and Fari nas del Cerro isolate a fragment of
Propositional Duration Calculus (PDC,,;), which only includes PDC formulas that satisfy
suitable syntactic restrictions. PDC,, is expressive enough to capture Allen’s relations [2]
and decidable. The tableau construction for PDC,,s; combines the application of the rules
of classical tableaux with that of a suitable constraint resolution algorithm and it essentially
depends on the assumption of bounded variability of state expressions (they may have only
a finite number of discontinuities on a bounded interval, thus being Riemann-integrable on
all bounded intervals).
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LPITL,,,; extends LPITL with the binary operator proj which yields general repeti-
tive behavior. For any given pair of formulas ¢ and ¥, ¢ proj ¥ holds over an interval if
such an interval can be partitioned into a series of sub-intervals each of which satisfies
¢, while i (called the projected formula) holds over the new interval collecting the end-
points of these sub-intervals. LPITL,,,; formulas are interpreted over finite state sequences
do,d1, ..., dy. The valuation function V maps each interval [d;, d;] into the set of proposi-
tional variables that hold over it. The locality constraint imposes that, for any propositional
variable p and interval [d;,d;], p € V([d;, d;]) if and only if p € V(|d;, d;]). The prob-
lem of satisfiability checking for LPITL,,,; is non-elementary [13]. The core of Bowman
and Thompson’s tableau method is the definition of suitable normal forms for all operators
of the logic, which reflect the locality constraint and provide the operators with uniform
inductive definitions. Taking advantage of them, Bowman and Thompson develop an im-
plicit tableau-based decision procedure for satisfiability checking in the style of Wolper’s
one [33]. The normal form for LPITL,,,; formulas has the following general format:

T Age) v \/ (@i A OP)).

where 7 stands for the formula ()L characterizing point-intervals, ¢, and ¢; are point for-
mulas, and ¢ is an arbitrary LPITL,,; formula. The first disjunct states when a formula
is satisfied over a point interval, while the second one states the possible ways in which
a formula can be satisfied over a strict interval, namely, a point formula must hold at the
initial point and then an arbitrary formula must hold over the remainder of the interval.
This normal form embodies a recipe for evaluating LPITL,,,; formulas: the first disjunct
is the base case, while the second disjunct is the inductive step. Bowman and Thompson
show that any LPITL,,,; formula can be equivalently transformed into this normal form.
As in the case of implicit methods for point-based temporal logics, the tableau construc-
tion splits the requirements imposed by any temporal formula into requirements about the
present (the first state of an interval) and requirements about the remainder of the interval,
and it generates a directed graph G = (N, E), where each node corresponds to a state of
the sequence and is labeled by a set of formulas. The construction of the graph G for a
formula ¢ starts with the initial node ng labeled with the set {¢, TCx}. The expansion
rules for the Boolean connectives are the standard ones; formulas of the forms ¢ C6 and
Y proj 6, as well as =(y C0) and —(y proj 0), are expanded by exploiting the normal forms
of their subformulas; finally, as in Wolper’s tableau method, formulas of the form Qv are
expanded into a new node, corresponding to a new state, labeled with . Once the con-
struction of the graph G has been completed, the procedure looks for unsatisfiable nodes
in G and marks them. Unsatisfiable nodes are (i) nodes which contain a formula and its
negation, (ii) nodes which contain both a formula (O and the formula , and (iii) nodes
whose successors are unsatisfiable. The formula ¢ is satisfiable if and only if the initial
node is not marked. The proofs of termination, soundness, and completeness are similar to
those for PLTL in their structure, but they are much more involved.

Chetcuti-Serandio and Fari nas del Cerro’s tableau method operates on a decidable frag-
ment of (propositional) Duration Calculus (DC). DC is a first-order interval temporal logic,
interpreted over the set of reals, which is based on ITL [35,36]. The first-order language
for DC extends the propositional one essentially the same way as in classical logic, but
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accounting for the fact that the first-order domain may change over time. Among the con-
stants, there is a specific and important one, that is, the constant /, whose interpretation
can vary over time, denoting the length of the current interval. It is combined with the
structure of the additive group of reals as part of the temporal domain, which allows, for
instance, to compute the length of concatenated intervals. A specific additional feature of
the syntax of DC is the special category of terms called state expressions which are used
to represent the duration for which a system stays in a particular state. Chetcuti-Serandio
and Fari nas del Cerro provide a tableau method for PDC,, that presents many similarities
with the one of Cerrito and Cialdea-Mayer. Tableau nodes are conjunctions of labeled for-
mulas, labeled state expressions, and constraints (not all these components are necessarily
included in any node). Labeled formulas (resp., state expressions) are pairs (¢, [d;, d;])
(resp., (0, [d;,d;])), where ¢ (resp., o) is a formula (resp., state expression) and [d;, d]
is an interval. Constraints can be either qualitative, e.g., d; < dj, and quantitative, e.g.,
dj —d; =k ord; —d; > k, where k is a constant. The construction of the tableau is fairly
standard. It starts with an initial node including the pair (¢, [dy, d1]), where ¢ is the for-
mula to be checked and [dp, d1] is a generic interval, and it proceeds by applying suitable
expansion rules to labeled formulas or labeled state expressions in the leaf node of the
considered branch. Closing rules detect contradictory formulas associated with the same
interval or inconsistent sets of constraints in a leaf node. The proof of termination basi-
cally exploits a lemma showing that each expansion rule can be applied finitely often to
any branch, while the soundness and completeness proof takes advantage of a lemma show-
ing that expansion rules preserve (a suitable notion of) satisfiability. Complexity issues are
not addressed.

3.3. Miscellany

We conclude the section by mentioning some additional tableau systems that present
interesting connections to ours, such as the tableau methods for temporal logics of knowl-
edge and belief, the free-variable tableau methods for modal logics, the tableau methods for
first-order temporal logics, and the generic tableau provers, such as Paulson’s [24]. Tableau
methods for the propositional temporal Logics of knowledge and belief KL, and BL,, are
described in [23,34]. They are implicit methods, like those for PLTL, that introduce a
specialized accessibility relation and specific rules for agent management. Free-variable
semantic tableaux are a well-established technique for first-order theorem proving. In [3],
Beckert and Goré show that they can be exploited to deal with propositional modal log-
ics, providing a compact, efficient, and easily implementable technique. Tableau methods
for decidable (monodic) fragments of first-order temporal logic over the natural numbers
have been developed by Kontchakov et al. [20]. The decision procedure is obtained by
separating the temporal and the first-order components of the formula to be checked and
by dealing with the former using tableau methods for LTL, and with the latter using ex-
isting procedures for first-order decidable fragments. Finally, Abate and Goré [1] propose
a tableau workbench that allows one to easily derive implicit tableau methods for various
systems of modal logics by specifying the appropriate expansion rules. Furthermore, it al-
lows one to express side conditions for rule firing and to maintain the history of the applied
expansion steps.
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4. A tableau method for BCDT*

In this section we devise a tableau method for BCDT ™. The method can be adapted to
its strict version BCDT ™, and can be accordingly restricted to CDT, HS, PITL, and some
PN L logics. We first introduce some basic terminology. A finite tree is a finite directed
connected graph in which every node, apart from one (the root), has exactly one incoming
edge. A successor of a node n is a node n’ such that there is an edge from n to n’. A leaf
is a node with no successors; a path is a sequence of nodes ny, ..., n, such that, for all
i=0,...,k—1,n;4; is a successor of n;; a branch is a path from the root to a leaf. The
height of a node n is the maximum length (number of edges) of a path from n to a leaf. If
n, n’ belong to the same branch and the height of n is less than (resp. less than or equal to)
the height of n’, we write n < n’ (resp. n < n').

Definition 1. If C = (C, <) is a finite partial order, a labeled formula, with label in C, is
a pair (¢, [¢;, ¢j]), where ¢ € BCDT™ and [¢;, cjle I(C)*. For a node n in a tree 7, the
decoration v(n) is a triple ((¢, [c;, cj]), C, un), where (¢, [c;, c;]) is a labeled formula,
with label in C, and uy, is a local flag function which associates the values 0 or 1 with
every branch B in 7 containing n.

Intuitively, the value O for a node n with respect to a branch B means that n can be
expanded on B. For the sake of simplicity, we will often assume the interval [c;, c;j] to
consist of the elements ¢; < ¢;11 <--- < c¢j_1 < cj, and sometimes, with a little abuse of
notation, we will write C = {¢; < ¢k, cm <cj,...}.

Definition 2. A decorated tree is a tree in which every node has a decoration v(n).

For every decorated tree, we also use a global flag function u acting on pairs (node,
branch through that node), and defined as u(n, B) £ 4. (B). Sometimes, for convenience,
we will include in the decoration of the nodes the global flag function instead of the local
ones. For any branch B in a decorated tree, we denote by Cp the (partially) ordered set in
the decoration of the leaf of B, and for any node n in a decorated tree, we denote by @ (n)
the formula in its decoration. If B is a branch, then B - n denotes the result of the expansion
of B with the node n (addition of an edge connecting the leaf of B to m). Similarly, B -
n; |...| ng denotes the result of the expansion of B with k immediate successor nodes
ny, ..., ng (which produces k branches extending B). A tableau for BCDT™ will be defined
as a special decorated tree. We note again that C remains finite throughout the construction
of the tableau.

Definition 3. Given a decorated tree 7, a branch B in 7, and a node n € B such that
v(m) = ((¢, [ci, ¢cj]), C, u), with u(m, B) = 0, the branch-expansion rule for B and n is
defined as follows (in all the considered cases, u(n’, B") = 0 for all new pairs (n’, B) of
nodes and branches):

o If ¢ = ——, then expand the branch to B - ng, with v(ng) = ((¥, [¢;, c;]), Cp, u);
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If ¢ = o A Y1, then expand the branch to B - ng - ny, with v(ng) = (Yo, [ci, ¢;]),

Cp,u) and v(ny) = (Y1, [ci, ¢;]), Cp, u);

If ¢ = = (o A1), then expand the branch to B -ng|ny, with v(ng) = ((—vo, [¢i, ¢;]),

Cp,u) and v(ny) = ((=¥1, [ci, ¢j1), Cp, u);

If ¢ = = (Yo Cy1) and there exists ¢; € Cp, with ¢ € [c;, ¢;], which has not been used

yet to expand the node n on B, then take the least such c; and expand the branch to

B -np|ny, with v(ng) = ((—=v, [ci, ck]), Cp, u) and v(my) = (=1, [ck, ¢;]), Cp, u);

If ¢ = —(YoDy1), ¢ is a minimal element of Cp such that ¢ < ¢;, and there exists

¢’ € [c, ¢;], which has not been used yet to expand the node n on B, then take the least

such ¢’ and expand the branch to B - ng|ny, with v(ng) = ((—o, [¢/, ¢;]), Cp, u) and

v(ny) = (=1, [, ¢;]), Cp, u);

If ¢ = =(YoT 1), ¢ is a maximal element of Cp such that ¢; < ¢, and there exists ¢’ €

[c}, c] which has not been used yet to expand the node n on B, then take the greatest

such ¢’ and expand the branch to B - ng|np, with v(ng) = ((—¥o, [¢}, ¢']), Cp, u) and

v(ny) = (=1, [ci, ']), Cp, u);

If ¢ = (YoC¥1), then expand the branch to B - (m; - my)[...|(n; - m;)|(n} -

m))|... |(n’j_1 -m’j_l), where:

(1) for all ¢ € [c;, cj], v(ng) = ((Yo, [ci, ck]), Cp,u) and v(my) = (Y1, [cx, ¢j]),
Cp, u);

(2) for all i <k < j—1, let C; be the partial ordering obtained by inserting a
new element ¢ between ¢ and ¢4 in [¢;, ¢j], v(n}() = ((Yo, [ci, c]), Cg, u), and
v(my) = (Y1, [c, ¢;1), Ck, u);

If ¢ = (YoDr1), then repeatedly expand the current branch, once for each minimal

element ¢ (where [c,c;] ={c=cp <c1 <--- <c;}), by adding the decorated subtree

(ng-mo)|...|(n; -my) (] -m))|...[(n;-m))|(ng-mp)|...|(n] -m) toits leaf, where:

(1) for all ¢k € [co, ¢i], v(ng) = (Yo, [ck, ¢i]), Cp, u) and v(myg) = (Y1, [cx, ¢;]),
Cp,u);

(2) forall 1 <k < i,let Ci be the partial ordering obtained by inserting a new element
¢’ between ci—1 and ci in [co, ¢;], v(my) = (Yo, [¢', ¢;i]), Ck, u), and v(my) =
(Y1, [, ¢;D, Cy, u);

(3) forall 0 < k < i, let Ci be the partial ordering obtained by inserting a new element
¢’ in Cpg, with ¢’ < ¢k, which is incomparable with all existing predecessors of ¢,
v(y)) = ((Yo, [/, ¢i]), Cr, u), and v(m)) = (Y1, [, ¢;1), Cy, u);

If ¢ = (YoT 1), then repeatedly expand the current branch, once for each maximal

element ¢ (where [cj,c] ={c; < cjy1 <--- < ¢, =c}), by adding the decorated sub-

tree (n; -m;)|...|(n, ~mn)|(n’j ~m’j)| TG W -m;_1)|(n’j/ -m/j/)| ... | -m)) to its
leaf, where:

(1) for all ¢, € [cj,cl, vimg) = ((Wo, [cj, ck]), Cp,u) and v(myg) = ((¥1, [ci, ck]),
Cp,u);

(2) forall j <k <n—1,let Cy be the partial ordering obtained by inserting a new
element ¢’ between c; and cx41 in [cj, c,], v(y) = (Yo, [c), ¢']), Cy, u), and
v(my) = (Y1, [ci, ']), Ci, u);

(3) forall j < k < n,let Cy be the partial ordering obtained by inserting a new element
¢’ in Cp, with ¢; < ¢/, which is incomparable with all existing successors of ¢,
v(my) = ((Yo, [c), '], C, u), and v(m)) = (Y1, [ci, ¢']), C, u).
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Finally, for any node m (# n) in B and any branch B’ extending B, let u(m, B) =
u(m, B), and for any branch B’ extending B, u(n, B’) = 1, unless ¢ = —=(¥oC¥1),
¢ =—(YoDyry), or ¢ = —(YoT ) (in such cases u(n, B’) = 0).

Let us briefly explain the expansion rules for {/oCvr; and —(1yoC1) (similar consider-
ations hold for the other temporal operators). The rule for the existential formula oC
deals with the two possible cases: either there exists ¢y € Cp such that ¢; < ¢ <cj, Yo
holds over [c;, ck], and 1 holds over [ck,c;] (j —i + 1 cases) or such an element ci
must be added to Cp (j — i cases). The universal formula —(yo0C) states that, for all
¢; <cx < c¢j, Yo does not hold over [c;, ck] or Y1 does not hold over [ci, c;] (j —i+1
cases). As a matter of fact, the expansion rule imposes such a condition for a single ele-
ment c in Cp (the least ¢; < ¢; < ¢; which has not been used yet), and it does not change
the flag (which remains equal to 0). In this way, all elements will be eventually taken into
consideration, including those elements in between c¢; and c; that will be added to Cp in
some subsequent steps of the tableau construction.

Let us define now the notions of open and closed branch. We say that a node n in a
decorated tree 7 is available on a branch B it belongs to if and only if u(n, B) = 0. The
branch-expansion rule is applicable to a node n on a branch B if the node is available on
B and the application of the rule generates at least one successor node with a new labeled
formula. This second condition is needed to avoid looping of the application of the rule on

formulas —(YoC¥1), =(YoDyr1), and —=(YoT ).

Definition 4. A branch B is closed if some of the following conditions holds:

(1) there are two nodes n,n’ € B such that v(n) = (¢, [¢;,c;]),C,u) and v(n') =
(=¥, [ci, cjD), C', u) for some formula ¢ and ¢;,c; e CNC’;

(2) there is a node n such that v(n) = ((7, [¢;, ¢;]), C, u) and ¢; # c;;

(3) there is a node n such that v(n) = ((—7, [¢;, cj]), C, u) and ¢; =c;.

If none of the above conditions hold, the branch is open.

Definition 5. The branch-expansion strategy for a branch B in a decorated tree 7 is defined
as follows:

(1) apply the branch-expansion rule to a branch B only if it is open;

(2) if B is open, apply the branch-expansion rule to the first available node one encounters
moving from the root to the leaf of B to which the branch-expansion rule is applicable
(@if any).

Definition 6. An initial tableau for a given formula ¢ € BCDT™ is the following finite
decorated tree 7 :

/ root \
(((b’ [607 cl])r {CO < Cl}: 0) ((¢7 [Co, COD? {60}7 0)
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where the value of u is 0. A tableau for a given formula ¢ € BCDT™ is any finite decorated
tree isomorphic to a finite decorated tree 7 obtained by expanding the initial tableau for ¢
through successive applications of the branch-expansion strategy to the existing branches.

It is easy to show that if ¢ € BCDT™, 7 is a tableau for ¢, n € 7, and C is the ordered
set in the decoration of n, then C has the linear interval property.

Definition 7. A tableau for BCDT™ is closed if and only if every branch in it is closed,
otherwise it is open.

We conclude the section by giving some examples of the application of the proposed
method (for the sake of readability, we omit some minor details in the figures). As a first
example, let ¢ be the unsatisfiable formula pT—(T Cp). A closed tableau for ¢ is given
in Fig. 2. As a second example, let ¢ be the formula =& A =(—=((p A =) T—=p)T—((p A
—m)T—p)), which is satisfiable, but it only admits infinite models. Hence, all its tableaux
include at least one open branch. A tableau (to be further expanded) for ¢ is given in
Fig. 3. Finally, let ¢ be the formula p <> pT 7w, which is one of the CDT axioms given in
[32]. Such an axiomatic system is (claimed to be) sound and complete for the class of all
linear (non-strict) interval structures. From this, it follows that the negation of the formula
(p = pTn) A lin (cf. Section 3) should be unsatisfiable in the class of all (non-strict)
interval structures. However, the open tableau for —=(p — pTm) shown in Fig. 4 proves
that this is not the case (as matter of fact, to remedy this it suffices to substitute pT7w — p
for p < pTr).

root
((pTﬁ(TCp), {007 COD= {CO}v 1) ((pTﬁ(TCp), [007 Cle {CO < 61}7 1)
((I% [00700})7 {CO}7 1) ((p? [Cl7 Cl])7 {CO < Cl}'/ 1)
((‘!(TC]?), [(507 COD? {CO}> 0) ((_‘(TCp)v [607 Cle {CO < Cl}: 0)

((J-v [00761])7{60 < 01}7 1)((_‘]37 [617(21]>>,<{(,‘0 < (,'1}, 1)

((J-v [607 CO])? {00}7 1) ((ﬁpv [CO, CO])v {00}7 1) x
X X

((p’ [CO>Cl])a {CO < Cl}: 1) ((p’ [01702})7 {CO <ca< 02}7 1)
(=(TCp), [ea, c1])s {eo < e1},0) ((=(TCp); [co, €2]), {co < 1 < €2}, 0)

(L, [60760]);({00 <ahl) ((-ps [Co,cxﬂl{co <eahl)
((J_./ [Co,Cl]), {Co < < 62}, 1)

((=p, [01,§2]), {co < c1 < e}, 1)

Fig. 2. A closed tableau for the formula p7—(T Cp).
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root

((¢)7 [60700})7{60}71) ((¢7 [60701})7{00 <Cl}71)

'

((’71 [60700])70) ((7: [00701})70)

'

((ﬁﬂ—v [CX’ COD7 1) ((_|7T, [001 Cle 1)
/ \
((:37 [(:1, Cle 1) ((187 [CUv Cl})v 1)
/
(((Y, [Clﬁcl])vl) (((Y, [(:llCd)’l)
((-p, [clx, cil), 1) ((=p, [ng ), 1)

((a7 [61702])7 {cl < 62}7 l) ((a7 [01702])7 {C] < 02}1 1)

((=p, [01X7 c)), 1) ((=p, [co, 2]), 1)
(8 [eo, c2]), 1) (B, [er, ca]), 1)
(@, [e2, c2]), 1) (@, [ez, c2]), 1)
((=p, [C&» c]), 1) ((=p, [Clx’ c), 1)
(@, [ca, 3]); {ea < s}, 1) (e, [ea; e]), {e2 < es}, 1)
((=p, [co, c3]), 1) ((=p, [ex, es]), 1)

Fig. 3. A tableau (to be further expanded) for the formula =7 A =(=((p A—=7)T—=p)T—((p A—7)T—p)), where
o, B, and y stand for p A =, T —p, and ~(—=BT—p), respectively.

4.1. Soundness and completeness

Definition 8. Given a set S of labeled formulas with labels in C, we say that S is satisfiable
over C if there exists a non-strict model M™ = (I, I(D) ™, V) such that D is an extension
of C and M, [¢;, ¢j]IF 4 forall (¢, [ci, cj]) € S.

If S contains only one labeled formula, the notion of satisfiability of a (labeled) formula
over C is equivalent to the notion of satisfiability given in Section 2.

Theorem 1 (Soundness). If ¢ € BCDT™ and a tableau T for ¢ is closed, then ¢ is not
satisfiable.

Proof. We will prove by induction on the height / of a node n in the tableau 7 the follow-
ing claim: if every branch including n is closed, then the set S(m) of all labeled formulas
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root

((=(p— pTWLfm co); {co}, 1) ((=(p — pT'm), [co, c1]), {co < e1},1)
((p: [Co, Co]), {00}5 1) ((p’ [60,61]), {CO < Cl}’ 1)

l

(=T, [co, o)) {c0},0)  (=(pT'7), [co, 1)), {co < e}, 0)

(=, [co, co]); {co}, 1) (=p,[er, a]), {eo < e}, 1)
X

(—'7‘—7 [CD7 CO])7 {CO}7 1) (—'ﬂ—v [COa Cl])a {CO < cl}a 1)

Fig. 4. An open tableau for the formula =(p — pTm).

in the decorations of the nodes between n and the root is not satisfiable over C, where C
is the interval structure in the decoration of n.

If h =0, then n is a leaf and the unique branch B containing n is closed. Then, either
S(n) contains both the labeled formulas (¥, [ck, ¢;]) and (=, [ck, ¢;]) for some BCDT -
formula v and cg, ¢; € C, or the labeled formula (7, [cg, ¢;]) and ci # ¢;, or the labeled
formula (—m, [ck, ¢;]) and ¢; = ¢;. Take any model M = (D, I(D)*, V) where D is an
extension of C. In the first case, clearly M, [ck, ¢;]IF ¥ if and only if M, [cg, c;/] ¥ —.
In the second (resp., third) case, M™, [ck, ¢l IF 7 (resp., —mr) if and only if cx = ¢; (resp.,
cr # c1). Hence, S(n) is not satisfiable over C. Otherwise, suppose /# > 0. Then either n has
been generated as one of the successors, but not the last one, when applying the branch-
expansion rule in A, C, D, T, =C,—D, or =T cases, or the branch-expansion rule has
been applied to some labeled formula (¥, [c;, ¢;]) € S(m) —{@(n)} to extend the branch
at n. We deal with the latter case. The former can be dealt with in the same way. Let C =
{c1,...,cn}, be the interval structure from the decoration of n. Notice that every branch
passing through any successor of n must be closed, so the inductive hypothesis applies to
all successors of n. We consider the possible cases for the branch-expansion rule applied
at n:

e Let yy = ——&. Then there exists ng such that v(ng) = ((¢, [¢;, ¢;]), C, u) and ng is a
successor of n. Since every branch containing n is closed, then every branch containing
ng is closed. By the inductive hypothesis, S(ng) is not satisfiable over C (since ng < n).
Since &y and ——&( are equivalent, S(n) cannot be satisfiable over C;

e Let ¥ = &y A &1. Then there are two nodes ny € B and n; € B such that v(ng) =
(%o, [ci, cj1), C,u), vimy) = (61, [ci, ¢j]), C, u), and, without loss of generality, ng
is the successor of n and n; is the successor of ng. Since every branch containing
n is closed, then every branch containing n; is closed. By the inductive hypothesis,
S(ny) is not satisfiable over C since n; < n. Since every model over C satisfying S(n)
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must, in particular, satisfy (5o A &1, [¢;, ¢;]), and hence (&, [c;, ¢;]) and (&1, [¢i, ¢j]),

it follows that S(n), S(ng), and S(n;) are equi-satisfiable over C. Therefore, S(n) is

not satisfiable over C;

Let = —(&1 A &). Then there exist two successor nodes ng and n; of n such that

v(ng) = (%o, [ci, ¢, C,up), v(ny) = (€1, [ci,¢j]), C,ur), mp, n; < n. Since every

branch containing n is closed, then every branch containing ng and every branch con-
taining n; is closed. By the inductive hypothesis S(ng) and S(n;) are not satisfiable
over C. Since every model over C satisfying S(m) must also satisfy (%o, [c;, c;]) or

(&1, [ci, cj]), it follows that S(n) cannot be satisfiable over C;

Let v = —(&C&p). Suppose that S(n) is satisfiable over C. Since (—(&yCé&), [ci,

¢;j1) € S(m), there is a model M™ = (D, (D)™, V) such that D is an extension of

C and M™, [¢;, cjlIF=(§C&). So, for every c such that ¢; < cx < cj, we have that

M, [ci, ck] - =&y or M, [¢k, ¢ 11 —&;. By construction, the two immediate succes-

sors of n are ny and n; such that, for an element ¢, with ¢; < ¢ < ¢, (=0, [ci, ck])

is in the decoration of ng and (—&1, [ck, ¢;]) is in the decoration of n;. By inductive

hypothesis, since nj, ny <n, S(ny) and S(ny) are not satisfiable over C. Thus, such a

model M cannot exist, and S(n) is not satisfiable over C;

e The cases = —(§yD&1) and = —(§pT &) are analogous;

o Let ¥ = £CE|. Assuming that S(n) is satisfiable over C, there is a model M™ =

(D,I(D)*, V), where D is an extension of C, such that M, [ci,cj]IF 6 for all

(0, [ci,cj]) € Sm). In particular, M, [¢;,d] I & and M*, [d,c;] IF & for some

¢ <d<cj. Consider two cases:

(1) If d € C, then d = ¢, for some ¢; < ¢,y < c¢j. But among the successors of n
there are two nodes n,,, m,, where v(n,,) = ((&o, [¢i, cm]), C,u) and v(m,,) =
((&1, [cm>¢j]), C, u), and since n,,, m,, < n (without loss of generality, suppose
n, < my,), by the inductive hypothesis S(n,;,) = Sn) U {(&, [ci, cm]), (€1, [cm,»
cj1)} is not satisfiable over C, which is a contradiction, and S(n) is not satisfiable
over C;

(2) If d ¢ C, then there is an m such that i <m < j—1 and ¢, <d < ¢cipy1.
Hence, there are two successors nj,, m), of n such that v(n),) = ((%o, [¢i, d]), CU
{d}, u), v(m),) = ((&1,[d, c;1), CU{d}, u), and since n),, m,, < n (without loss
of generality, suppose nj, < m/,), by the inductive hypothesis S(n),) = S(n) U
{(%0, [ci, d]), (&1, [d, cj])} is not satisfiable over C U {d} which, again, is a contra-
diction, and S(n) is not satisfiable over C;

Let ¢ = £ Dé&;. Assuming that S(n) is satisfiable over C, there is a model M+ =

(D,I(D)*, V), where D is an extension of C, such that M™, [¢;, ¢;] IF 6 for all

(0, [ci, cj]) € Sm). In particular, MY, [d, ¢;] IF & and M™, [d, ¢;] I & for some

d < ¢;. Consider 3 cases:

(1) If d € C, then d = ¢, for some c¢,, < ¢;. But between the successors of n
there are two nodes m,,, m,, where v(n,) = ((&, [cm,ci]), C,u) and v(m,,)
= ((¢1, [em, cj]), C, u), and since n,,, m,, < n (without loss of generality, suppose
n, < my), by the inductive hypothesis S(n,,) = S(m) U{(&, [cm, ci]), (&1, [cm,
cj])} is not satisfiable over C, which is a contradiction, and S(n) is not satisfiable
over C;
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(2) If d ¢ C and there exist a minimal element ¢ € C and an index m such that
Cms Cm+1 € [c,¢i] and ¢, < d < cpy1, then there are two successors n),, m),
of m such that v(m;,) = ((§o, [d, ¢;1), CU {d}, u) and v(m},) = ((&1,[d,¢;]),CU
{d}, u), and since n/,, m/, < n (without loss of generality, suppose n/, < m/,), by
the inductive hypothesis S(n),) = S(n) U {(£, [d, ¢i]), (&1, [d, c;])} is not satisfi-
able over C U {d} which, again, is a contradiction, and S(n) is not satisfiable over
G,

(3) If d ¢ C and there exist a minimal element ¢ € C and an index m such that
cm+1 € le,ci]l, d < ¢pm+1, and d is not comparable with all predecessors of
cm+1, then, again, there are two successor nodes n/,, m/, of n such that v(n}),) =
((%0,[d, ciD), CU{d}, u) and v(m),) = ((§1,[d,c;]), CU {d}, u), and since n),,
m/, < n (without loss of generality, suppose n), < m,,), by the inductive hypothe-
sis S(m)),) = S(m) U{(&o, [d, ¢i]), (&1, [d, c;j])} is not satisfiable over CU {d} which,
again, is a contradiction, and S(n) is not satisfiable over C;

e The case of y =§(T& is similar. O

Definition 9. If 7 is the three-node tableau built up from a root with void decoration and
two leaves decorated respectively by ((¢, [cp, cel), {ch < ce}, 0) and ((¢, [cp, cb]), {cp}, 0)
for a given BCDT* -formula ¢, the limit tableau T for ¢ is the (possibly infinite) decorated
tree obtained as follows. First, for all i, 7;1 is the tableau obtained by the simultaneous
application of the branch-expansion strategy to every branch in 7;. Then, we ignore all
flags from the decorations of the nodes in every 7;. Thus, we obtain a chain by inclusion
of decorated trees: 7; € 75 C - - -, and we define 7 = U?io 7;.

Notice that the chain above may stabilize at some 7; if it closes, or if the branch-
expansion rule is not applicable to any of its branches. If 7 is a limit tableau, we associate
with each branch B in 7 the interval structure Cp = U?io Cpg,, where, for all i, Cp, is the
interval structure from the decoration of the leaf of the (sub-)branch B; of B in 7;. The
definitions of closed and open branches readily apply to 7.

Definition 10. A branch in a (limit) tableau is saturated if there are no nodes on that
branch to which the branch-expansion rule is applicable on the branch. A (limit) tableau is
saturated if every open branch in it is saturated.

Now we will show that the set of all labeled formulas on an open branch in a limit
tableau has the saturation properties of a Hintikka set in first-order logic.

Lemma 2. Every limit tableau is saturated.

Proof. Given a node n in a limit tableau 7, we denote by d(n) the distance (number
of edges) between n and the root of 7. Now, given a branch B in 7, we will prove by
induction on d(n) that after every step of the expansion of that branch at which the branch-
expansion rule becomes applicable to n (because n has just been introduced, or because
a new point has been introduced in the interval structure on B) that rule is subsequently
applied on B to that node.
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Suppose the inductive hypothesis holds for all nodes with distance to the root less than /.
Let d(n) = [ and the branch-expansion rule has become applicable to n. If there are no
nodes between the root (incl. the root) and n (excl. n) to which the branch-expansion rule
is applicable at that moment, the next application of the branch-expansion rule on B is
to n. Otherwise, consider the closest-to-n node n* between the root and n to which the
branch-expansion rule is applicable or will become applicable on B at least once there-
after. (Such a node exists because there are only finitely many nodes between n and the
root.) Since d(n*) < d(n), by the inductive hypothesis the branch-expansion rule has been
subsequently applied to n*. Then the next application of the branch-expansion rule on B
must have been to n and that completes the induction. Now, assuming that a branch in a
limit tableau is not saturated, consider the closest-to-the-root node n on that branch B to
which the branch-expansion rule is applicable on that branch. If @ (n) is none of the cases
—C, =D, and —T, then the branch-expansion rule has become applicable to n at the step
when n is introduced, and by the claim above, it has been subsequently applied, at which
moment the node has become unavailable thereafter, which contradicts the assumption.
Suppose that @ (m) = —(YoCr1). Then an application of the rule on B would create two
successors with labels (=, [¢;, c]) and (=1, [c, ¢;]), at least one of them new on B.
But ¢;, ¢, ¢ have already been introduced at some (finite) step of the construction of B
and at the first step when the three of them, as well as n, have appeared on the branch, the
branch-expansion rule has become applicable to n, hence is has been subsequently applied
on B and that application must have introduced the labels (v, [¢;, c]) and (Y1, [c, ¢;])
on B, which again contradicts the assumption. The same holds if @ (n) = —(y¥oD1) or

@) =—~(YoDy1). O

Corollary 3. Let ¢ be a BCDT ™ -formula and T be the limit tableau for ¢. For every open
branch B in T, the following closure properties hold.:

o Ifthere is a node n € B such that v(in) = (==, [¢;, ¢;1), C, u), then there is a node
ng € B such that v(ng) = ((Y, [c;, ¢;1), C, ug);

o If there is a node n € B such that v(n) = (Yo A Y1, [ci, ¢j1), C, u), then there is a
node ny € B such that v(np) = ((Yo, [ci, cj]), C,ug) and a node n; € B such that
v(my) = (Y1, [ei, ¢, C,up);

o If there is a node n € B such that vin) = (= (Yo A Y1), [ci, ¢j1), C, u), then there is
a node ny € B such that v(ng) = ((=yo, [¢i, ¢j]1), C, ug) or a node ny € B such that
v(my) = (=1, [ci, ¢j]), C,uy);

o If there is a node n € B such that v(in) = ((YoC¥1, [ci, ¢c;1), C, u), then, for some
c € Cp such that ¢; < ¢ < c;j there are two nodes n',m’ € B such that v(n') =
((Wo, [ci, cD), C',u') and vim') = (Y1, [c, ¢;1), C', u');

e Similarly for every node n with @ (m) = YyoDvyr1 or @(m) = YT Yy,

o If there is a node n € B such that v(n) = ((—=(YoC¥1), [ci, c;]), C,u), then for
all ¢ € Cp such that ¢; < ¢ < cj, there is a node 0 € B such that v(n') =
((=vo, [ci, c]),C',u") or anode m' € B such that vim') = (=1, [c, ¢;1), C',u');

e Similarly for every node n with @ (m) = —~(YoDyr1) or @(m) = —(YoT Y1).
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Lemma 4. If the limit tableau for some formula ¢ € BCDT™ is closed, then some finite
tableau for ¢ is closed.

Proof. Suppose the limit tableau for ¢ is closed. Then every branch closes at some finite
step of the construction and then remains finite. Since the branch-expansion rule always
produces finitely many successors, every finite tableau is finitely branching, and hence so
is the limit tableau. Then, by Konig’s lemma, the limit tableau, being a finitely branching
tree with no infinite branches, must be finite, hence its construction stabilizes at some finite
stage. At that stage a closed tableau for ¢ is constructed. O

Theorem 5 (Completeness). Let ¢ € BCDT™ be a valid formula. Then there is a closed
tableau for —¢.

Proof. We will show that the limit tableau 7 for —¢ is closed, whence the claim follows
by the previous lemma.

By contraposition, suppose that 7 has an open branch B. Let Cp be the inter-
val structure associated with B and S(B) be the set of all labeled formulas on B.
Consider the model M = (Cp, V) where, for every [c;,cj] € [(Cp)T and p € AP,
p € V([ci,c;Diff (p,[ci,cj]) € @(B). We show by induction on ¢ that, for every
(W, [ci cj]) € S(B), MT, [¢j, cjlIF 4.

We reason by induction on the complexity of :

o Let ¥ = m (resp., ¥ = —m). Since (7, [c;,c;]) € S(B) (resp., (—m,[ci,c;]) €
S(B)) and B is open, then c¢; # c¢; (resp., ¢; = c;). Hence MT, [ci, cj] Ik (resp.,
MT, [c;, cjllk—=m);

e Let Y = p or y = —p where p € AP. Then the claim follows by definition, because
if (=p, [ci,cj]) € S(B) then (p, [c;, c;]) ¢ S(B) since B is open;

e Let v = ——&. Then by Corollary 3, (§, [¢;, cj]) € S(B), and by inductive hypothesis
M*, [ci, ¢;j1IFE. SoM™, [¢j, ¢j]IF s

o Let v =&p A &1. Then by Corollary 3, (%o, [ci, ¢;]) € S(B) and (&1, [¢i, ¢;]) € S(B).
By inductive hypothesis, M, [¢;, ¢;]11F § and M, [¢;, ¢;]IF &1, 50 M, [, ¢j] IF 3

o Let ¥ =—(& A &1). Then by Corollary 3, (=&, [¢;, cj]) € S(B) or (—&1, [ci,cj]) €
S(B). By inductive hypothesis M, [c;, ¢;] IF =& or M*, [c;, ¢;] IF =&, so MT,
[ci, cjlIF 4,

e Let Y =£pCé&. Then by Corollary 3, (&g, [ci, c]) € S(B) and (&1, [c, ¢;]) € S(B) for
some ¢ € Cp such that ¢; < ¢ < ¢;. Thus, by inductive hypothesis, MY, [¢;, c] IF &
and M, [c, ¢;]1IF &, and thus M7, [¢;, ¢;] IF ;

e Similarly for =&y D& and  =§(T&;

e Let Yy = —=(§0C&). Then by Corollary 3, for all ¢ € Cg such that ¢; < ¢ < ¢},
(—&o, [ci, c]) € S(B) and (=&, [c, ¢;]) € S(B). Hence, by the inductive hypothesis,
M*, [¢;, c] Ik =& and M, [c, ¢;] IF =&, for all ¢; < ¢ < ¢j. Thus, MT, [¢;, ¢;]IF ¢;

e Similarly for = —(§pD&1) and ¥ = —(§0T&1).

This completes the induction. In particular, we obtain that —¢ is satisfied in M, which is
in contradiction with the assumption that ¢ is valid. O



V. Goranko et al. / Journal of Applied Logic 4 (2006) 305-330 325

Fig. 5. The tree for the formula ¢ = (pT (—=pCq)) A —=(pT (—pCq)).

5. An implementation of the tableau method

In this section, we describe the main features of our implementation of the proposed
tableau method, which has been successfully used for testing a number of BCDT*-
formulas [28].

Input formula. The input BCDT " -formula is arranged in a tree structure whose internal
nodes contain a Boolean connective or a temporal operator and whose leaves contain a
literal. As an example, the formula ¢ = (pT (—pCq)) A —=(pT (—=pCq)) generates the tree
depicted in Fig. 5, left. The subtrees of the tree for a formula ¢ identify the subformulas
of ¢. Obviously, identical subformulas give raise to identical subtrees. To obtain a more
compact representation, we collapse identical subtrees, thus turning the tree into a direct
acyclic graph (DAG). To this end, we define a recursive procedure that enumerates the
distinct subformulas and generates a DAG whose nodes contain a subformula labeled by
a natural number. We constrain such a labeling procedure to associate even (resp. odd)
numbers with positive (resp. negative) subformulas; moreover, if the positive formula v
is labeled by n — 1, the corresponding negative subformula — (if present) is labeled
by n. This allows us to check whether two subformulas are identical, or whether one of
them is the negation of the other, by comparing two natural numbers. The application of
this enumeration procedure to the above formula ¢ produces the DAG of Fig. 5, right.
Furthermore, if a formula ¢ has A distinct subformulas, we can use an array of at most 2 - &
bits to compactly represent any subset of its subformulas: we set the nth bit of the array
to 1 if and only if the subformula labeled by n — 1 belongs to the subset.

Branch management.  Any single branch of the tableau for an input formula ¢ is managed
according to a depth-first strategy. A branch is (recursively) expanded until it is closed (in
such a case, the procedure backtracks and it starts again with the next branch, if any) or it
is open, but saturated (in such a case, the method returns a model for the input formula).
Obviously it may happen that the expansion goes forever with the branch neither closed
nor (open and) saturated. A single branch contains: (i) a list L of pairs (¢, [¢;, ¢;]), where
Y is a subformula of ¢ and [c;, c;] is an interval; (ii) a (possibly empty) sublist L’ of L that
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Fig. 6. An example of interval structure.

contains only those pairs (, [¢;, ¢j]), where ¥ is a formula of the form —C, =D, or =T
(universal formula); (iii) a graph G that represents the current interval structure associated
with (the leaf of) the branch. Furthermore, a current position is defined for the list L. All
elements of L to the left of the current position identify the expansion steps applied to the
branch so far, while those to the right (including that in the current position) correspond to
expansion steps that have never been executed yet. L’ includes the universal subformulas
of ¢ that can possibly be reused during some subsequent expansion step that extends the
interval structure. The nodes of G correspond to the endpoints of the intervals belonging
to the current interval structure (such a structure must be updated whenever an expansion
step introduces a new endpoint). Every node of G is labeled by a unique identifier ¢; and
provided with two lists of pointers to its immediate successors and predecessors (cf. Fig. 6).

The problem of keeping track of the subformulas of ¢ associated with (true over) the
various intervals of the current interval structure is dealt with as follows. For every node
(labeled by) ¢;, let ¢, with i < j, be the label with maximum index for which there exists
a subformula which is true over [c;, ¢;], or over [cj, ¢;] (if any). We associate an array
[ci, cit1, ..., cj—1,c;] with the node ¢;. Moreover, for every c; belonging to this array, if
there exists a subformula which is true over [c;, ck] (or [ck, ¢i]), we provide ¢ with an array
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of 2 - h bits, where / is the number of distinct subformulas of ¢. For every 1 <n <2-h,
the array has value 1 in the nth position if (and only if) the subformula of ¢ labeled by
n — 1 is true over [c;, ci] (or [ck, ¢i]). Such an encoding allows one to keep track of the
truth of a subformula over a given interval and to possibly detect a contradiction, as well
as to withdraw the truth of a subformula over an interval during backtracking, in constant
time. Finally, to efficiently deal with the labeled universal subformulas (¥, [¢;, ¢;]) in L,
we maintain an array of successors of ¢; (resp. predecessors of ¢;, elements between c;
and c;), that can be easily updated whenever a new endpoint is added to the interval struc-
ture. Taking advantage of these arrays, one can easily determine the universal subformulas
associated with the branch which are activated by the addition of the endpoint.

To illustrate the management of the interval structure, in Fig. 6 we describe the ef-
fects of the application of some expansion steps to a branch of a tableau for the for-
mula ¢ = (pTq)Tp)C—(pTq). We assume the subformulas of ¢ to be labeled as
follows: label(p) = 0, label(—p) = 1, label(q) = 2, label(—q) = 3, label(pTq) = 4,
label(—~(pTq)) = 5, label((pTq)Tp) = 6, label(—((pTq)Tp)) = 7, label(¢) = 8, and
label(—¢) = 9. At the first step, the interval structure consists of two nodes (labeled by)
co and ¢y, with ¢g < c1. The arrays [co, c1] and [c1] are associated with ¢y and cy, respec-
tively. Since 0 < 1, to constrain the formula ¢, with label(¢) = 8, to hold over [co, c1], we
provide the entry c; of the cp-labeled node with a 10-bits array whose 9th bit is set to 1.
Since there are not formulas associated with the intervals [cg, co] and [c1, c1], there are not
10-bits arrays corresponding to the entry cq for the cg-labeled node and to the entry c; for
the c1-labeled node. In Fig. 6, we denote this situation by the expression n.a., which stands
for not allocated. At the second step, we extend the branch by applying the expansion rule
for C to the formula ¢. Accordingly, we add a node ¢y, with ¢p < ¢2 < c1, to the current
interval structure. Since (pTq)T p (resp. =(pT q)) holds over [cy, c2] (resp. [c2, c1]), and
0 < 2 (resp., 1 < 2), we provide the entry ¢, of the co-labeled (resp. ci-labeled) node with
a 10-bits array whose 7th (resp. 6th) bit is set to 1. The next step shows how a branch
can be closed. Since ¢ is a successor of ¢, the application of the expansion rule for T
to the formula (pT¢)T p may result in the request for pT g (resp. p) to hold over [c2, c1]
(resp. [co, c1]). Since 1 < 2, the 10-bits array associated with the entry ¢, of the c¢j-labeled
node must be updated by setting its Sth bit to 1. This means that we require both pT g and
its negation to hold over [c3, c1] (contradiction). Such a contradiction can be immediately
detected: in the 10-bits array associated with the entry ¢, of the cj-labeled node there exist
two consecutive bits, the first one being in an odd position (in the example, the Sth and the
6th one), both set to 1. Once the contradiction has been detected, the procedure backtracks,
and it explores alternative expansions of the branch (if any). In the example, it chooses to
add a new node c3, with ¢ < ¢3, incomparable with cy.

Experimental results. We developed a C-implementation of the proposed tableau method
for BCDT™, and we carried out some tests on an Intel x86 machine, with a 2GHz Pentium 4
CPU, 40 Gb Hard Drive serial-ATA 150, and 1Gb of DDR SDRAM. We also compared its
performances with those of the well-known first-order theorem prover Spass [15] (installed
on the same machine), which takes advantage of a special form of syntactic unification. To
make the comparison possible, BCDT™ formulas have been mapped into their first-order
counterparts (in a language with a binary relation symbol < which has been constrained to
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Table 1

BCDT*-formula Our implementation Spass
—(=@Ty)Co — —¥) <l 30
—~(=@Ty)DY — —¢) 10 41
—(nCh < ¢) 9 29
—~(@T) < ¢) 11 32
(pTq)Tp)C—(pTq) 10 26
(p = (pTm)) 10 23

be a partial ordering). A comparison of the performances of the two systems on some mean-
ingful unsatisfiable/satisfiable BCDT* formulas (execution time is measured in msec) is
given in Table 1.

6. Conclusions

In this paper, we described a general tableau method for CDT logic, interpreted over
partial orders, which combines features of the classical tableau method for first-order logic
with those of explicit tableau methods for modal logics with constraint label management.
The method can be easily tailored to most existing propositional interval temporal logics.
We proved its soundness and completeness, and we provided it with an efficient imple-
mentation in C. We are currently looking for meaningful syntactic (fragments of the logic)
and/or semantic (classes of interval structures) fragments where the tableau terminates,
thus providing a decision procedure.
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