Temporal Logics with Reference Pointers and Computation
Tree Logics

Valentin Goranko
Department of Mathematics, Rand Afrikaans University
PO Boz 524, Auckland Park 2006, Johannesburg, South Africa

e-masil: goranko@raua.rau.ac.za

Abstract.

A complete axiomatic system CTL,, is introduced for a temporal logic for finitely branching
wt-trees in a language extended with so called reference pointers. Syntactic and semantic inter-
pretations are constructed for the branching time computation tree logic CTL* into CTL,,. In
particular, that yields a complete axiomatization for the translations of all valid CTL"-formulae.
Thus, the temporal logic with reference pointers is brought forward as a simpler (with no path
quantifiers), but in a way more expressive medium for reasoning about branching time.

Key words: Computation tree logics, temporal logics, reference pointers, interpretations, axiomat-
ic system, completeness

1. Introduction

The article deals with branching time temporal logics for computation trees of non-
deterministic or concurrent programs. This area of research in theoretical computer
science has been vigorously developing in the past twenty years, particularly since
the seminal paper of (Pnueli, 1977) which discusses the usefulness of temporal
logics for formal specification, analysis and verification of programs, in particular
for reasoning about non-deterministic, concurrent and reactive programs. Since
then, a number of linear and branching time temporal logical systems have been
put forward with this purpose, some of the most popular ones of the latter type
being UB, CTL, CTL* and variations of them (see (Emerson and Srinivasan, 1989;
Emerson, 1990), (Penczek, 1995), and (Stirling, 1992) for surveys on these). Since
CTL* subsumes the others, it will be the one in the focus of this paper, though
the results will accordingly apply to the others as well. Besides the computation-
al interpretation, branching time logics have important philosophical and pure-
ly logical aspects, in particular those related to decidability and decision proce-
dures generated by automata-theoretic methods, complexity, model checking and
axiomatizations. For some important results and further discussion on these the
reader is referred to (Gurevich and Shelah, 1985; Thomas, 1988; Wolper, 1995;
Zanardo & Carmo, 1993; Zanardo, 1996) in addition to the above mentioned sur-
veys. Of course, (Prior, 1967) should be added as a classical reference to philo-
sophical aspects of time.

Here we propose syntactic and semantic interpretations of CTL* into the tem-
poral logic with reference pointers (TL,,) introduced in (Goranko, 1994) and



2 Valentin Goranko

(Goranko, 1996), where expressiveness and (un)decidability are discussed and a
complete axiomatic system is constructed. The language of TL,,, is a kind of hybrid
language, see (Blackburn and Seligman, 1995), combining features of both propo-
sitional modal and classical first-order languages. It has a great expressive power,
in particular admitting translation of CTL* therein, after an appropriate modi-
fication of its semantics into extended computation trees. Moreover, TL,, enables
formalization of properties beyond the expressiveness of CTL*, like talking about
the past and expressing various looping and non-looping conditions.

The main result in the paper is the construction of a complete axiomatic system
(though involving an infinitary rule) CTL,, for extended computation trees, which
is furthermore decidable, due to the general result in (Gurevich and Shelah, 1985).
In particular we have obtained a complete axiomatization of the translations of all
valid CTL*-formulae.

The paper begins with a preliminary section 2 which briefly describes the syntax
and semantics of temporal logics with reference pointers and of the computation
tree logic CTL*. In section 3 we introduce syntactic and semantic interpretations
of CTL* into the temporal logic with reference pointers for extended computation
trees. Section 4 presents a complete axiomatic system and completeness theorem
for the temporal logics with reference pointers for extended trees CTL;,. Finally,
we discuss some open problems and directions for further research.

The reader is assumed to have some background in propositional temporal logics
(syntax, semantics, deductive systems and completeness theorem) within either of
(van Benthem, 1991), (Burgess1984), (Goldblatt, 1987).

2. Preliminaries
2.1. TEMPORAL LOGIC WITH REFERENCE POINTERS.

We consider a propositional temporal language with basic operators A (always)
with dual E (sometime), G (always in the future) with dual F (eventually), and
X (at all immediate time-successors). As we shall see further, the other traditional
temporal operators U (until), H (always in the past), and its dual P (sometime in
the past) are definable in terms of A and G using reference pointers. The operator
X is definable, too, but we shall retain it in the language in order to preserve the
notion of a CTL*-model.

The idea of reference pointers (see (Goranko, 1994) or (Goranko, 1996)) in brief
is as follows. One or more pairs of new symbols (}, Tx) are added to the temporal
language; the point of reference | is a unary connective, and the reference pointer
T 1s an atomic symbol like a propositional variable. In a sense, these reference pairs
play a role of variables on states (instants, possible worlds, etc.) and quantifiers
over these variables. It is therefore natural that some first-order style notions have
their natural analogues in the language with reference pointers, viz.:



Computation Tree Logics 3
e The first occurrence of |; in the formula |; ¢ has a scope .

e An occurrence of 1; in a formula ¢ is bound if it is in the scope of an occurrence
of |;; otherwise it is free.

o If ¢ and 1) are formulae, p(1)/1;) denotes the result of simultaneous substitu-
tion of all free occurrences of 1; in ¢ by 1.

e A formula ¢ is closed if there are no free occurrences of 1’s in .

Here is the intuitive semantics of the new symbols: when a formula |y is being
evaluated in a model, | marks the state of evaluation s, and all (free) occurrences
of 1 in ¢ are rendered true at and only at the state s, thus enabling references to
that state throughout ¢.

The formal semantics follows below.

Let Ei’f be a temporal language as above, extended with k pairs of reference
pointers. The models of L]} are the same as the models for the classical tem-
poral logic: (T, R,<,V), where T is a temporal structure, R is a binary relation
connecting every state to its immediate successors (if any), < is a binary relation
connecting every state to all future states, and V is a valuation of the atomic
propositions in 7. In order to define truth of a formula from Ei’f at a point of
a model we extend the well-known standard translation ST (see (van Benthem,
1991)) as follows. Let L; be the first-order language containing binary predicates
R and <, and a countable set of unary predicates {P;, P»,...}. For technical con-
venience we split the set of individual variables of L; into two disjoint subsets:
W = {z,wiy,...,w;} and Y = {yo,y1,92,...}, where each of z and w’s will play
special roles, viz.:

z will represent the actual point in time (the current "now”), and w; will
represent the point of reference for the pointer 1; ("then;”) fori =1,... k.

We now define the standard translation ST of £]F into L; recursively as fol-
lows:

1. ST (pi) = Bz,

2. ST(1;) = (z = wy),

3. ST (~p) = =ST(p),

4. 8T (p A1p) = ST(p) A ST(1h),

5. ST(Xy) = Vy(zRy — ST(¢)(y/z)),
6. ST(Gyp) = Vy(z<y — ST (p)(y/z)),
7. ST(Ayp) = Vy(ST(p)(y/x)),



4 Valentin Goranko

8. ST(li ) = ST(p)(x/wi).

In 5, 6, and 7 above y is the first variable from Y, not occurring in ST(p); u/v
means uniform substitution of u for all free occurrences of v.

Note that if ¢ is in Eif then z and wy,...,w, can only have free occurrences
in ST(¢), where they are the only possibly free variables. Furthermore, ¢ is closed
if and only if no w; occurs in ST ().

The model M = (T,R,<,V) can be regarded as an Lj-model where R is
interpreted by R, < by <, and P; by V(p;),i = 0,1,2,.... In order to distinguish
validity in M as an Lj-model from validity in M as a temporal model we shall
use the symbol |- for the former and |= for the latter. Now, we define truth at a
point for any closed formula :

M= pls] it M- ST(p)(s/x),
and then validity in a model:

MEp it MEyplt] foreveryt € T—, ie. if M |FVzST(p).

Finally, ¢ is valid in a temporal structure if it is valid in every model on the
structure, and ¢ is (universally) valid if it is valid in every temporal structure.

Here we have only defined validity for closed formulae since only these formulae
have a determined meaning, and we shall not be interested in non-closed formulae
on their own.

The reference pointers considerably increase the expressiveness of the language,
as numerous examples in (Goranko, 1996) testify. The temporal logic with reference
pointers outlined here was introduced and axiomatized in (Goranko, 1994).

2.2. COMPUTATION TREE LOGICS

The full branching time computation tree logic CTL* was introduced in (Emerson
and Halpern, 1983). Here we offer a very brief summary of the syntax and semantics
of CTL*, referring the reader to (Emerson and Srinivasan, 1989), (Emerson, 1990),
or (Penczek, 1995) for more detail.

2.2.1. Syntaz

The language of CTL* is a propositional language with a set of atomic propositions
(propositional variables) AP, temporal operators X (nexttime) and U (until), and
path quantifiers, V meaning "for all paths”, and its dual 3, meaning ”for some
path”, which will be regarded as an abbreviation of =V-.

Two types of formulae are traditionally introduces for CTL*, state formulae
and path formulae. This distinction is essential for some of its restricted versions
like CTL, but is also convenient for the truth definition: the former are evaluated
at states and the latter at paths in the model. Here is the joint recursive definition
of state and path formulae:



Computation Tree Logics 5
e every atomic proposition is a state formula;
e if ¢, 1 are state formulae then so are ¢ and ¢ A 9;

e if ¢ is a path formula then V¢ is a state formula;

e every state formula is a path formula;

e if ¢, 1 are path formulae then so are —¢, ¢ — ¥, X¢ and ¢pU;

These definitions can be combined into a uniform definition of a formula of
CTL*, the Backus-Naur form (BNF) of which is:

¢p:=p|-¢|d1— ¢ | X$| p1Ugs | Ve,

where p is an atomic proposition.
Two of the most popular predecessors of CTL* are:

e UB (introduced in (Ben-Ari, Manna, and Pnueli, 1981)), the language of which
contains the temporal operators X, G (always in the future), with dual F
(eventually) but not U. The BNF definition of formulae of UB is:

p:=p|¢|d1— d2 | IX¢ [ IGP | VG;

e CTL (introduced in (Clarke and Emerson, 1981)), with the same language as
CTL* and BNF definition of formulae:

b:=p| 9| p1 — ¢p2| IXp | I(h1U2) | V(1 Ugo).

These will not be discussed further but, being subsystems of CTL*, the inter-
pretations of CTL* introduced here will apply for them, too.

2.2.2. Semantics of CTL*

Intuitively, models for CTL* are computation trees generated by executions of non-
deterministic or concurrent programs. They consist of all possible computation
paths of such a program (i.e. sequences of consecutive states in an execution of the
program).

Remark: In fact, computation paths may loop or meet, hence a typical model
for CTL* should rather be a directed graph. Every such a model, however, is
indistinguishable in the language of CTL* from a rooted tree-like model obtained
from the former by unwinding (see (Emerson, 1990)). Therefore the class of rooted
tree-like models 7 is adequate for CTL* and we shall restrict our attention to
that class.



6 Valentin Goranko

The models from 7 are formalized as triples (S, R, V), where S is a nonempty
set of states, R is the immediate successor relation in S, and V: AP — P(S) is a
valuation assigning to each atomic proposition the set of states at which it is true.
We shall impose the additional assumption (which is quite natural in view of the
interpretation of the models as computation trees) that every R-path (i.e. maximal
linearly ordered set of states) is isomorphic to w. Trees satisfying this condition

will be called w-trees.
The basic semantic notion for CTL* is truth at o state s of a model M defined

by simultaneous induction on state and path formulae as follows:

(S1) M s p if s € V(p);

(S2) M |=5 ~¢ if not M =5 ¢;

(S3) M s = if M =4 ¢ implies M =, 1;

(S4) M =5 V¢, where ¢ is a path formula, if for every path p beginning from s,
M [=p ¢ holds.
In the following clauses p is a path {pg,pi1,...}, and p’ is the suffix path
{pia Pi+1,-- }

(P1) M [=p ¢, where ¢ is a state formula, if M [=p, ¢;
(P2) M |=p —¢ if not M |=p ¢;

(P3) Mp ¢ — 4 if Mi=p ¢ implies M |=p ¢
(P4) M |=p X¢, if M |=p1 ¢

(P5)

P5) M [=p ¢U%, if there is i > 0 such that M =5 ¢ and for every j, such that
0<j<i, M=pi ¢ holds.

A state formula ¢ is valid in a model M, denoted M |= ¢, if ¢ is true at every
state of M. A state formula ¢ is CTL*-wvalid if it is valid in every CTL*-model.

According to my knowledge, no finite complete axiomatization for CTL* with
respect of the class of standard models has been found yet (but some completeness
results for more general semantics are presented in (Stirling, 1992)).

The validity in CTL* was proved decidable in deterministic double exponential
time in (Emerson and Sistla, 1984).

3. Interpretation of CTL" into the Temporal Logic with Reference
Pointers
3.1. EXTENDED COMPUTATION TREES FOR CTL*-MODELS.

In this section we transform the CTL*-models from 7 into a form suitable for the
language with reference pointers.



Computation Tree Logics 7

For any model T' = (S, R, V') from T we define an extended computation tree of
T: T¢ = (S R, <,V¢) as follows:

Let T = (S,R,V) be the tree structure obtained from 7' by unwinding (see
(Emerson, 1990)) and

F = {s; : x is a maximal path in S}

be a set disjoint from S. Then we put:

S’e:S’U]:; Re:R;

< =RtU{(t,s;):t €S and z is a maximal path in S containing ¢},
where R* is the transitive closure of R;

Finally, V¢ coincides with V over S and is arbitrarily extended over all states
from F'.

Intuitively, T¢ extends 7' by adding a ”frontier” F of transfinite ”dead ends”
for all maximal paths, each dead end <-seen from all states of the corresponding
path and only from them. Thus, every maximal path in an extended w-tree will
be of ordinal type w™, so we shall refer to such trees as w™ -trees.

The class of extended computation trees for CTL*-models will be denoted by
ECT.

A (extended) computation tree is called finitely branching if every node has
finitely many immediate successors. The class of finitely branching extended com-
putation trees will be denoted by FECT .

Let us note that every formula from £} can be translated into a I} formula
of the monadic second-order language Lo obtained from L; by treating the unary
predicates as variables. The following result, proved in (Goranko, 1998), implies
that every such a formula is valid in ECT iff it is valid in FECT, and therefore
ECT and FECT provide equivalent semantics for any temporal logic with reference
pointers.

THEOREM 1. If a I formula of Ly is falsifiable in an wt -tree then it is falsifiable
in a finitely branching w™ -tree.

3.2. SYNTACTIC TRANSLATION OF CTL* INTO THE TEMPORAL LOGIC WITH
REFERENCE POINTERS.

We define a translation 7 of the formulae of CTL* into the temporal logic with
reference pointers inductively as follows. (Note that the states without successors
(the dead ends) in an extended computation tree are precisely the added states
sgz; the pointer |; will be used to indicate the current state of evaluation, while |9
indicates the dead end of the path on which the evaluation is being done.)

o 7(p) = p;
o 7(=p) = -7(9);



8 Valentin Goranko

¢ — ) =7(p) = 7(9);

Vo) =11 Gl2 (GL = A(T1— 7(8)));

X¢) = X(F12—=117(9));

dUY) =i 7(p) VF(F T2 AT() AH(P T =i 7())).

\]

T
T

\]

A~ NS

The translation 7 is faithful in the following sense:

THEOREM 2. For any state formula ¢ in the language of CTL* the following are
equivalent:

(i) ¢ is CTL*-valid;

(1) (FT — 7(¢)) is valid in the class ECT ;

(113) (FT — 7(¢)) is valid in the class FECT ;

Proof.

(11) < (iii) follows from the fact (see (Wolper, 1995), Lemma 3.5) that every
satisfiable CTL*-formula is satisfiable in a finitely branching tree.

(i) < (ii):

Recall that every CTL*-formula ¢ can be regarded as a path formula. A state
formula regarded as a path formula is valid in a model if and only if it is true on
every path of the model.

It can be proved by induction on ¢ that for every CTL*-model M and a path
p in it,

M p ¢ iff M® [ 3y(z <y) = ST(7(¢))(z, 2)

where the beginning of p (the current state) is assigned to z and the dead end of
p is assigned to z.
For that purpose it suffices to note that:

e ST(7(3¢))(z, z) is logically equivalent to Jw(Vu(—~w < u)AST(7(p))(x,w/z));
o ST (7(X¢))(z, z) is logically equivalent to Vy((zRy Ay < z) — ST (7(¢))(y/z, 2));

o ST(7(¢pU))(x, 2) is logically equivalent to ST (7(v))(z,2)) VIy(z <yAy <
2 ANST(1(¢))(y/z,z) ANVu((z < uAu<y)— ST(1(d))(u/x, 2)).

¢

Note that other important versions of temporal logic of programs can be accord-
ingly translated into the temporal logic with reference pointers, e.g. the anchored
version proposed in (Manna and Pnueli, 1989).

Furthermore, the temporal logic with reference pointers is in a way more expres-
sive than CTL*. For instance, the fact that no execution path of the program will
ever loop can be simply expressed by

VG | G= 1Ty,



Computation Tree Logics 9

while this fact is not expressible in CTL*.

4. Temporal Logic with Reference Pointers for £CT

4.1. SYNTAX AND SEMANTICS.

We fix a propositional temporal language with at least four pairs of reference
pointers L];.

The temporal operators H (with dual P), X, and U are defined in terms of
G and A as follows:

Ho =|3 A(F 13— ¢),

pUY =V (A L F(p NH(P Tu— ),

X¢ =4 G(HH- 14— ¢).

where the formulae ¢, have no free occurrences of 13,14. Actually, these two
pointers will only be used for the purpose of expressing the operators H, X, and
U. (Alternatively, a language with only two reference pointers and these operators
added to the basic ones can be considered, and axioms corresponding to the above
definitions should be included in the deductive system.) We shall, however, retain
X in the language in order to comply with the notion of a model introduced earlier.

The dual operator = X— will be denoted by N.
Note that every extended computation tree (S¢, R¢, <,V *¢) can be regarded as

a model for £J; in terms of the previous section.

4.2. AXIOMATIC SYSTEM: CTL,),

We propose a complete axiomatization of the class ECT in the language L£J; thus
introducing the logic CTL;,.

AXIOMS:

I. Axioms for the temporal operators:
In all axioms and rules below j, k range over all indices for reference pointers.

I.1 The K-axiom for G.
1.2 The S5-axioms for A.

1.3 Ap — Gp.



10 Valentin Goranko
L4 Jp X1iA(Tee (F1 AGG—1)).

II. Axioms for the reference pointers:

ILT Lkt
1.2 |y A(Tee p) = (@ = Alp — q))
IL3 |p A(Tker p) = ({4 <> ¥(p/1;)), for any closed formula | ;)

where p, g are propositional variables.
III. Axioms for the model structures:
IIL.1 | Gt (irreflexivity);
1.2 |, A(FFty— F1y)  (transitivity);
III3 E |y A((Tx VP 1) A FT) (there is a root and a leaf);
1.4 |1 HIs A(Ft1— (12 VP19 VFE1T9))  (every state has a linear past);

III.5 FT - (FGLANT AXFT) (every state which is not a dead end sees
one, has an immediate successor, and no immediate successor is a dead end);

IT1.6 | A((GL AHF?T,) =1%)  (every path has no more than one dead end).

RULES:
1. MP:
0=
‘l/} )
2. NEC u:
s
Ay’
3. CLSUB:
_ %
clsub(yp)’

where clsub(yp) is a result of uniform substitution of closed formulae for propo-
sitional variables in (.

4. WITNESS:

Ik A(Tk<> p) — ¢ for some propositional variable p not occurring in ¢
9’
4




Computation Tree Logics 11

5. PATH:
o — N™Hy for every m=20,1,2,...

¢ - F(GLAHY).

The last two rules deserve some comments.

The rule WITNESS is similar by idea to some quantifier rules in first-order
logic (e.g.: if - A(c) for some constant ¢ not occurring in A(x) then F VzA(z))
and especially to a type of rules, discussed in detail in (Venema, 1993), originating
from Gabbay’s "irreflexivity rule”, see (Gabbay, 1981a). In the presence of the
substitution rule WITNESS is deductively equivalent to

Il A(Tx p) = ¢ for every propositional variable p
. )

The effect of WITNESS is this: if a formula ¢ is not valid, i.e. it is falsified at a
point £ of a model in which validity is preserved under WITNESS, then there will
be a propositional variable p which is a witness of the failure ¢ by being a "name”
for the falsifying state t, i.e. being true at that state only. In temporal setting the
variable p says: ”it is ¢ o’clock now (when ¢ is false)”. For analogues and further
discussion of WITNESS see (Passy and Tinchev, 1991; Gargov and Goranko, 1993;
Goranko, 1994).

The rule PATH will ensure that in the canonical model every path is of type w,
and it either has a dead end or can be extended with one.

While the rule WITNESS plays a very important roéle in the derivations in
CTL,,, the main reason (so far) for the introduction of PATH is the proof of
completeness, though, it is used for derivations too, e.g. of the induction scheme
dANpAG(p— Nop) - F(GLAH).

Some related open problems are formulated at the end of the paper.

THEOREM 3. The logic CTL,, is sound and complete with respect to the class of
extended computation trees ECT .

Proof.

I. SOUNDNESS.

The validity of the first two groups of axioms (except for I.4) and all rules except
for PATH is shown in (Goranko, 1996). As for 1.4 and the third group of axioms,
it is a routine task to check that their ST translations are respectively equivalent
to the following first-order conditions:

i.4) Vy(zRy < (x <y AN-Fz(z < 2Nz <y)));
iii.l) =z < z;
ii.2) VyVz((z <y Ay < z) = z < x);

)
)
)
)

ii.3) Jy(Vz(y =2 Vy < z) AIz(y < 2));



12 Valentin Goranko
i) VyVz((y <z Ahz<z) = (y=2Vy<zVz<y));

ii.h) Jy(z < y) = Fylzr < yA-Fz(y < 2)) AJy(z < yA-Fz(z < zA 2z <
Y)) AVy((x < yA-Fz(z < zAz<y)) = 3z(y < 2)));

i.6) Vy((-3z(y < 2) AVz(z <y = 2 < 1)) = y = z);

which are valid in every extended computation tree.

Finally, the rule PATH preserves validity, too. Indeed, if the conclusion of PATH
is falsifiable in some w™-tree then it is falsified at a state s in a model M over
a finitely branching one, by theorem 1. If all premises are valid there, then there
are arbitrarily long finite paths starting from s, along which the formula ¢ is true,
hence by Konig’s lemma there is an infinite path starting from s along which ) is
true, and therefore there is a dead end of such a path — a contradiction.

II. COMPLETENESS.

The proof of completeness consists of two major parts: in the first part, given a
consistent formula ¢ we construct a model satisfying ¢, which is almost an extended
computation tree. In the second part, we modify this model into a proper extended
computation tree in such a way that the resulting model will still satisfy ¢.

Part II.1. This part closely follows, mutatis mutandis, the proof of complete-
ness for the basic temporal logic with reference pointers presented in (Goranko,
1994) (for the logic with one pair of reference pointers) and (Goranko, 1996) (for
logics with more pairs of pointers). Nevertheless, it will be outlined here in some
detail in order to make the paper more self-contained and to demonstrate that the
infinitary rule PATH presents no additional complications.

IT.1.i. We first introduce the syntactic notion of universal forms of * in L
(originating from the admissible forms in (Goldblatt, 1982), see also (Gargov and
Goranko, 1993)), recursively as follows:

e x is a universal form of *.

e If u(*) is a universal form of *, ¢ is a closed formula in £, and L is a box-
modality in £J; (i.e. A, G, X) then ¢ — u(x) and Lu(x) are universal forms
of x in L.

Every universal form of * in £J; can be represented (up to tautological equiva-
lence) in a uniform way:

where Ly, ..., L, are box-modalities in £J; and some of ¢1,..., ¢, may be T if
necessary. The number n is called a depth of the form u, denoted by 9(u).



Computation Tree Logics 13

For every universal form u() and a formula 6 we denote by u(f) the result of
substitution of 6 for * in u(x). Obviously, if € is a closed formula then u(0) is a
closed formula, too.

II.1.ii. Now we introduce the rules

u({x A(Te> p) = ) for every propositional variable p
u(¢p)

WITNESSy :

)

and
u(N™Hy) for every m =0,1,2,...

u(F(GL A Hy))
where u is an arbitrarily fixed universal form.
Although the new rules WITNESS; and PATHy seem much stronger than

WITNESS and PATH, in fact they are respectively derivable from the latter in
CTL,p (cf. (Goranko, 1996)), and therefore deductively equivalent to them.

PATHYy :

I1.1.iii. We now introduce and prove some necessary facts about an appro-
priately strengthened notion of a maximal theory, which will eventually serve as
building block of the canonical model for ¢.

DEFINITION 4. A theory in LJ; is a set of closed formulae of £];, which contains
all theorems of KJ; and is closed with respect to MP.

A good theory is a theory in LJ; which is closed with respect to WITNESS;
and PATH,;.

Note that for every set of closed formulae I' there is a minimal good theory
GTh(T") /resp. a minimal theory Th(I')/ containing I'. Indeed, the set of all closed
formulae is a good theory. Furthermore, the intersection of every family of good
theories is a good theory. Then GTh(I") is the intersection of all good theories
containing I'. Likewise for theories.

DEFINITION 5. A theory, resp. good theory, is consistent if it does not contain
1. A set of closed formulae A is well-consistent if GTh(A) is consistent.

LEMMA 6 (Deduction theorem for good theories (cf. (Goranko, 1996))). IfI' is a
good theory and @, are closed formulae then ¢ — 1 € T iff p € GTh(I' U {p})
Proof. The proof follows the standard lines of an inductive proof of deduction
theorem in modal logic, using in addition the fact that ¢ — w(*) is an universal
form whenever u(x) is. For more detail, see (Goranko, 1994)) &

As a corollary to the Deduction theorem, note that for every consistent formula
¢, the set {¢} is well-consistent.

DEFINITION 7. A (good) theory I' is mazimal if for every closed formula ¢,
either p eI or —p €T



14 Valentin Goranko

Every maximal theory is consistent and cannot be extended to another con-
sistent theory. The most important property of a maximal good theory I' is that
it contains a ”witness” |r A(Tx4> ¢q) for some propositional variable ¢. Indeed,
otherwise all =] A(1x4> p) would be in ', and hence, by WITNESS;;, L would
belong to T'.

LEMMA 8 (Lindenbaum lemma). Every well-consistent set I’y can be extended to
a mazximal good theory.

Proof. First, note that I' = GTh(I'y) is a consistent good theory. Let 11,19, . ..
be a list of all closed formulae of £J and uy, us, ... be a list of all universal forms
in £]}. Then we can list all combinations {ui(¥;) 17521 in a sequence 61,0, . ...
(obviously, with repetitions, but that does not matter). We define a sequence of
consistent good theories Ty C 77 C ... as follows: Ty = I'; suppose that T;, is
defined and consider GTh(T;, U {6, }). If it is consistent, this is 7},;1. Otherwise
let 6,, = w;(vj). Then —u;(v;) € T, by the Deduction theorem. Therefore u;(lj
A(Tg<+ p) — 9;) does not belong to T}, for some propositional variable p and some
k (and therefore, due to Ax. I1.3, for all k). Then we put

Sn—l—l = GTh(Tn U {_‘UZ(J/kA(TkH p) — d)])})

By the Deduction theorem, Sj, 41 is a consistent good theory.

Now, if ¢; is not of the form F(G_L A Ht) then Tj, 11 = S, 41. Otherwise, let
¢; = F(GL A Hy). Then, by closedness of Sy, 1 under PATH, u;(N"Hz) does
not belong to Sy, 41 for some m € N and we put

Thy1 = GTh(Sn+1 U {—I’U,Z(Nde)))

Again, by the Deduction theorem, 7,11 is a consistent good theory.

Finally, we put T' = ;2 ; Ty, By construction, 7' is a maximal good theory. <

Now, for any set of formulae A we define

GA={p:Gpe A}, XA ={p:Xpec A} and AA ={p: Ap e A}

LEMMA 9. If A is a mazimal good theory then GA, XA and AA are good theo-
ries.

Proof. The proof hinges on the fact that Lu(x) is a universal form whenever
u(*) is, where L € {G, X, A}. o

LEMMA 10. If A is a mazimal good theory and FO € A (resp. N0 € AJEO € A)
then there is a mazimal good theory A" such that 8 € A" and GA C A’ (resp.
HA CA,AA C A/).



Computation Tree Logics 15

Proof. By Lemma 9 GA is a good theory. Moreover, G0 ¢ A since A is
consistent. Therefore =0 ¢ GA, hence GTh(GA U {6}) is consistent. Then, by
Lemma 8 it can be extended to a maximal good theory A’. The other cases are
analogous. &

I1.1.iv We are now prepared to construct a ”canonical” model for any well-
consistent set of formulae, in particular for the consistent formula ¢.

DEFINITION 11. A model (S, R, <,V) is called clock-model if for every t € S
there is a 7t o’clock-variable” p; such that V(p;) = {t}.

LEMMA 12. Every well-consistent set I'y in CTL,, is satisfiable in a clock-model.
Proof.
The proof follows, mutatis mutandis, the standard canonical model construc-
tion. First, we extend Iy to a maximal good theory I'. Then we define a good

canonical model M = (S, R, <, V') as follows:

e S ={A: A is a maximal good theory and AT' C A};
e For any Al,Ag €S: RA{Ay if XA C AQ, and Ay < Ay if GA; C AQ;
e For any propositional variable p,V(p) = {A € S:p € A}.

M is a clock model since every maximal good theory contains a ”witness”. This
completes the proof of the lemma. O

Not that for any Ay, As from the canonical model M constructed above, AA; C
As.

The model M satisfies the following truth lemma, the proof of which essentially
repeats the one in (Goranko, 1996) and crucially depends on the fact that M is a
clock-model:

LEMMA 13. For every closed formula 8 and A € T,
M EO[A] iff 0 € A.

In particular, I'g is satisfied at the point I' of the model M.

It also follows from the truth lemma that M is a model for all theorems of
CTL,p. In particular, all axioms for the structure, hence their corresponding first-
order conditions listed in the proof of soundness, are valid in M. Also, the axiom
1.4 guarantees that the relations R and < in M are related accordingly. Therefore,
M is a rooted tree where every path is of type w or w™. Indeed, every path will
have an initial segment of type w; suppose there is a state s beyond that initial
segment which is not a dead end and let p be the variable which is true at s and
only s. Then N""HFp is true at the root for every natural m, hence, by closedness



16 Valentin Goranko

under PATH, F(GL A HFp) is true at the root, so HFp is true at some dead
end, implying by (axiom III1.6 and WITNESS) that s as the dead end itself — a
contradiction.

Thus M is almost an extended computation tree, since not (necessarily) every
path in that tree has a dead end.

It now remains to note that, since {¢} is well-consistent, ¢ is satisfied in a good
canonical model M.

Part IL.2. Given a good canonical model M = (S, R, <,V) satisfying the
formula ¢ we shall modify it into an extended computation tree by adding the
missing dead ends to all maximal paths in such a way that the resulting model
will still satisfy ¢.

I1.2.i. Let pq,...,p; be the atomic propositions occurring in ¢. We restrict
the temporal language by omitting all other atomic propositions, and let Ly be
the corresponding first order language with unary predicates P4, ..., P,. We now
regard M as a model for the restricted languages.

I1.2.ii. For every state [' from M and a natural number n we define a modal
description of depth n of I' inductively on n as follows:

do(T') =41 X= 11 ALt G= 11 Ap1, AL A Py
where p; = p; if I’ € V (p;), otherwise p; = —p;;

dn—l—l(F) =
dn (T)NA
Aazr 41 E(= 11 Ady(A))A
Ar<a Fdn(A) A Arga Ndp (A)A
Aa<r Pdn(A) A Aagr 41 E(N 11 Ady(A))A
G (Vrea dn(A)) A X(Vrga dn(A))A
H(Vacr dn(A)A 41 AN T1—= Vagr dn(A))A
1 A(= 11— Vazrdn(A))

Note that for every n € N there are finitely many different formulae d,(T") for
I' € M. For n = 0 we denote them by d1,...,d;.
Now, for every n € N' we denote

% = N\ Ed,(T)AA < \V dn(F)>

rem rem

I1.2.iii. A standard induction on n shows that ST (®7%,) is equivalent to the
formula ¢, as introduced in the proof of Fraissé’s theorem in (Ebbinghaus et
al, 1994), p.253, and therefore the following lemma holds (see Th. 3.10, p.255 in
(Ebbinghaus et al, 1994)).



Computation Tree Logics 17

LEMMA 14. For any Ly-model A and n € N,

A=, M iff Al-ST(®",)

IT.2.iv. Let {I';};en be a maximal path in M without a dead end. We add to
the model a new state I'® in such a way that it is a dead end for that path. In order
to define the truth of p1,...,p; at ['® we construct chains of sets DY D D} D ...
fori=1,...,7 as follows.

Let, for every n € N, Y-y, be all formulae dn(T;), @ € N and v, =
(V' V... Vr). Then Hy, is true at every T';,4 € I, hence N™Hy, are true
at every I'; for all m € N. Let ¢ € N be large enough so that for every r > ¢,
On =Py A...APy2 € T;. By the truth lemma and the rule PATH, F(G LAHy,)
is true at [';, hence there is a dead end A such that ', < A and Hy,, AP6,,, hence
Hu, A 6, is true at A. Since A is not a dead end for {I';};cnr, for large enough
r1 >r, Iy, £ A. Repeating the same argument for I';, we find a dead end A; sich
that I'y, < Ay and Hi, A 0, is true at Ay, etc.

Now, for every i = 1,...,j we define D to be the set of those (infinitely many)
dead ends A in M such that §; A Hy, A 0, is true at A.

Note that for every n:

i) at least one D} is infinite, and

ii) D?H C D} because 1,1 implies 1, and 6,,,; implies ,, since (by an easy
induction on n) for any A, d,1(A) implies d,(A).

Therefore, there is an index i such that D? is infinite for every n € N.

We then extend the valuation V' of the atomic propositions pi,...,pr to I'
according to d;.

I1.2.v. Let M® = (5% R, <% V*®) be the extension of the model M by adding
dead ends, as described above, to all maximal paths which do not have them,
i.e.:

e 5S¢ extends S by adding all newly constructed dead ends;

e <° extends < with I'; <¢ I'® for each maximal path {I';};c; with a newly
constructed dead end T'¢;

e V¢ extends V as described above.

Note that for every n € N and I' € M, d,(T") in M* is the same as d,, (") in M
(straightforward induction on n) and d,(I'*) = d,(A) for every A € D(I'°).

Therefore '}, = &7} .

d, (') = dp(A) for every A € D}

IL.2.vi. We now prove that M?¢ is elementarily equivalent in L4 to M, and
therefore M€ |- 32ST(¢). By 14 it is sufficient to show that M¢® |- ST(®%,), or
equivalently, M¢ = ®%,, which follows from the fact that &%, = &% ..



18 Valentin Goranko

This completes the proof of the main theorem. &

THEOREM 15. The logic CTLyy is decidable.

Proof. This follows from the more general result in (Gurevich and Shelah, 1985)
about decidability of the monadic second order theory of trees with path quanti-
fiers.

¢

We can now extend Th 2 as follows.

THEOREM 16. For any state formula ¢ in the language of CTL* the following
are equivalent:

(i) ¢ is CTL*-valid.

(ii) ¢ is valid in the class of finitely branching computation trees.

(117) (FT — 7(¢)) is valid in the class ECT .

() (FT — 7(¢)) is valid in the class FECT .

(v) (FT — 7(¢)) is a theorem of CTL,.

5. Some open problems and concluding remarks.

Due to the decidability of CTL,, the infinitary rule PATH can be replaced by a
recursive set of axioms. It is an open question for me if it can be eliminated at the
expense of adding finitely many new axioms.

An important question is whether the axiomatic system for CTL,, and its
completeness proof can be ”translated backwards” into CTL* and thus provide
a solution of the long-standing problem for an explicit axiomatization of that
logic.

The expressiveness of the TL,, still awaits precise characterization, though some
results are included in (Goranko, 1996). A related question is if there is a natural
notion of bisimulation which would correspond to TL,)-equivalence of models.

A few more open problems and directions for further research are related to
practical utilization of temporal logics with reference pointers for specification,
analysis and verification of programs. Some of them are:

e investigation of practically important properties of computation trees which
are expressible in these logics but not in CTL*.

e construction of efficient deductive systems for CTL,,, in particular semantic
tableaux;



Computation Tree Logics 19

e development of efficient decision procedures and model checking algorithms
for this logic;

e development and implementation of real systems for specification and verifi-
cation of programs based on temporal logics with reference pointers.

6. Acknowledgements

This work was supported by research grant GUN 2034353 of the Foundation for
Research Development of South Africa.

References

Backofen R., J. Rogers, & K. Vijay-Shanker, A First-order Axiomatization of the Theory of Finite
Trees, Journal of Logic, Language and Information, 4, 1995, 5-39.

Ben-Ari M., Z. Manna, & A. Pnueli, The Temporal Logic of Branching Time, Proc. 8th ACM
Symp. on Princ. of Prog. Lang. Wililamsburg, VA, 1981, 164-176; also in: Acta Informatica,
20(3), 1983, 207-226.

van Benthem J.F.A.K., The Logic of Time, Reidel, Dordrecht, 2nd ed., 1991.

Blackburn P. & J. Seligman, Hybrid Languages, Journal of Logic, Language and Information, 4,
1995, 251-272.

Burgess J., Basic Tense Logic, in: Handbook of Philosophical Logic, D. Gabbay and F. Guenthner
(eds.), Reidel, Dordrecht, vol.II, 1984, 89-133.

Clarke E.M. & E.A. Emerson, Design and Synthesis of Synchronization Skeletons using Branching
Time Temporal Logic, in: Proc. Workshop on Logics of Programs, LNCS 131, Springer-Verlag,
1981, 52-71.

Ebbinghaus H.-D., J. Flum, W. Thomas, Mathematical Logic, Springer-Verlag, 2nd ed., 1994.

Emerson, E.A., Temporal and Modal Logic, in: Handbook of Theoretical Computer Science, vol.
B, J. van Leeuwen (ed.), Elsevier, 1990, pp. 995-1072.

Emerson, E.A.; & J.Y. Halpern, ”"Sometimes” and ”Not Never” revisited: on Branching versus
Linear Time Temporal Logic, in: Proc. of the 10th Annual Symp. on Principles of Programming
Languages, 1983, 127-140; also in Journal of the ACM, 33(1), 151-178.

Emerson, E.A., & A.P. Sistla, Deciding full Branching Time Logic, Information and Control,
61(3), 1984, 175-201.

Emerson E.A. & J. Srinivasan, Branching Time Temporal Logic, in: Linear Time, Branching Time
and Partial Order in Logics and Models for Concurrency, J de Bakker, W.-P. de Roever, G.
Rosenberg (eds.), LNCS 354, Springer-Verlag, 1989, 123-172.

Gabbay, D., An Irreflexivity Lemma with Applications to Axiomatizations of Conditions on Tense
Frames. in: Aspects of Philosophical Logic, U. Monnich (ed.). Reidel, Dordrecht, 1981, 67-89.

Gargov G. & V. Goranko, Modal Logic with Names, Journal of Philosophical Logic, 22(6), 1993,
607-636.

Goldblatt R.I., Aziomatizing the Logic of Computer Programming, Springer LNCS 130, 1982.

Goldblatt R.I., Logic of Time and Computation, CSLI Lecture Notes, No. 7., 1987.

Goranko V., Temporal Logic with Referemce pointers, in: Temporal Logic, D. Gabbay, H.-J.
Ohlbach (eds.), Lecture Notes in Artificial Intelligence 827, Springer-Verlag, 1994, pp. 133-148.

Goranko, V., Hierarchies of Modal and Temporal Logics with Reference Pointers, Journal of Logic,
Language and Information, 5, 1996, 1-24.

Goranko, V., A Note on Equivalences Between Trees, 1998, manuscript.

Gurevich Y. & S. Shelah, The Decision Problem for Branching Time Logic, Journal of Symbolic
Logic, 50(3), 1985, 668-681.



20 Valentin Goranko

Manna Z., & A. Pnueli, The Anchored Version of the Temporal Framework, in: Linear Time,
Branching Time and Partial Order in Logics and Models for Concurrency, J. de Bakker,
W.-P. de Roever, G. Rosenberg (eds.), LNCS 354, Springer-Verlag, 1989, 201-284.

Passy S. & T. Tinchev, An Essay in Combinatory Dynamic Logic, Information and Computation,
93(2), 1991, 263-332.

Penczek W., Branching Time and Partial Order in Temporal Logics, in: Time and Logic: a Com-
putational Approach, Univ. College of London, 1995, 179-228.

Pnueli A., The Temporal Logic of Programs, in: Proc. 18th Ann. IEEE Symp. on Foundations of
Computer Science (1977), 46-57.

Prior A., Past, Present, and Future, Clarendon Press, Oxford, 1967.

Stirling C., Modal and Temporal Logics, in: Handbook of Logic in Computer Science, vol. 2:
Computational Structures, S. Abramski, D. Gabbay, T. Maibaum (eds.), Clarendon Press,
Oxford, 1992, 478-563.

Thomas W., Computation Tree Logic and Regular w-languages, in: Linear Time, Branching Time
and Partial Order in Logics and Models for Concurrency, J de Bakker, W.-P. de Roever, G.
Rosenberg (eds.), LNCS 354, Springer-Verlag, 1989, 690-713.

Venema Y., Derivation Rules as Anti-axioms in Modal Logic, Journal of Symbolic Logic, 58(3),
1993, 1003-1034.

Wolper P.; On the Relation of Programs and Computations to Models of Temporal Logic, in:
Time and Logic: a Computational Approach, Univ. College of London, 1995, 131-178.

Zanardo A., J. Carmo, Ockhamist Computational Logic: Past-Sensitive Necessitation in CTL",
J. of Logic and Computation, 3 (3), 1993, 249-268.

Zanardo A., Branching-time Logic with Quantification Over Branches: The Point of View of
Modal Logic, J. of Symbolic Logic, 61 (1), 1996, 1-39.



