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Abstract

We generalize and extend the class of Sahlqvist formulae in arbitrary polyadic modal languages, to the class of so calle
inductive formulae. To introduce them we use a representation of modal polyadic languages in a combinatorial style and thus, in
particular, develop what we believe to be a better syntactic approach to elementary canonical formulae altogether. By generalizir
the mehod of minimal valuationa la Sahlgvist—van Benthem and the topological approach of Sambin and Vaccaro we prove that
all inductive formulae are elementary canonical and thus extend Sahlqvist’s theorem over them. In particular, we give a simple
example of an inductive formula which is not frame-equivalent to any Sahlqgvist formula. Then, after a deeper analysis of the
inductive formulae as set-theoretic operators in descriptive and Kripke frames, we establish a somewhat stronger model-theore
characterization of these formulae in terms of a suitable equivatergntacticadly simpler formulae (‘primitive regular formulae’)
in the extension of the language with reversive modalities. Lasthydudy and characterize theeghentary canonical formulae in
reversive languages with nominals, where the relevant notion of persistence is with respect to discrete frames.
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0. Introduction

0.1. Historical remarks

The quest for general frame-completeness results faesndresearch in modal logic ever since the emergence of
the Kripke semantics, and particularly after the hopes for its universal adequacy were shattered by the discoveries ¢
incomplete modal logics due to Thomason and Fine in the mid-1970s. One of the most general results of the sort we
the celebrated Sahlqgvist’s theoreBY] where he proved two notable facts about a large, syntactically defined class
of modal formulae, called now Sahlqvist formulae: first-order correspondence: that they all define elementary
conditions on Kripke frames and these conditions can be effectively “computed” from the modal formulae; and
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the completeness via canonicity: that all these formulae are valid in their respective canonical frames, and hence
axiomatize completely the classes of frames Batig their corresponding first-order conditions.

Sahlqgvist's work was partly induced by Lemmon-Scott’s eatijire, claiming first-orer definability and canonicity
of a subset of Sahlqvist formulae, confirmed by Goldblatt (28p.[Sahlqgvist's theorem (also proved independently,
in a similar form, in A9)) substantially generalizes the set of formulae covered by that conjecture, while the class
of Sahlqvist formulae, modulo inessential manipulations, has turned out to be remarkably robust, so much so that
widespread opinion has developed over the years that taes®t be extended further without exorbitant technical
complications (see e.g2]and [33)).

The striving for better understanding of what makes Sahlqvist formulae tick and the pursuit of their further
extenson have been an active line of research in modal lo§@mme landmarks in thewsdy of Sahlqvist formulae
include:

e the systematic development id946], later generalized in12], of an algorithmic approach for computing the
first-order equivalents of Sahlgvist-type formulae, based on the method of substitutions with minimal valuations;

e the nodern approach to Sahlqgvist formulae develope®#j,[based on the topological properties of descriptive
frames, allowing for unified treatment tifst-order definattity and canonicity;

e Kracht’s calculus developed ir82] where the class of first-order formulae corresponding to Sahlqgvist formulae
was stidied and described;

¢ the extension of the class of Sahlqgvist formulae to polyadic languages3n [

e the algebraic proof of canonicity of Sahlqvist forraa| without using their first-order definability, iBQ], building
on ideas from the seminal pap&d] where a restcted version of Sahlgvist's theorem was already established in
algebraic terms;

e in some recent papers (which aaped while the current paper was under submission) canonicity has been
generalized to a much wider setting than Boolean algebras with operator20jn 4nd Sahlqgvist's theorem has
been extended to distributive modal logics 24]|.

Other inportant contributions related to the topic inclu@€][and [50] where alternative results on canonicity have
been obtained for non-first-order definable foramjlas well as the recent work by Goldblatt et 28] [refuting Fine’s
conjecture.

Good expositions of the ideas and tedatities around Sahlqvist’s theorem, with different proofs, can be found
in [39,2,4,33], and [L6].

0.2. Aims and content of the paper

This study was initiated as a systematic attempt to answer the quegitat are Sahlqvist formulae, after all?”.
While defined in a purely syntactic manner which is vulneeabl ctherwise innocuous transformations (including
taublogical equivalence), they bear a precise, but practigatipctable semdit characterization. The two important
features of Sahlqvist formulae, which together imply Sahlqvist’s theorem(l@e&ly) first-order definability and
(local) d-persistence in a ®nse which depends on the construction of the canonical models for the logical systems
under consideration and implies canonicity, hence cotapdss. In the case of ordinary polyadic modal languages,
with no special rules of inferencalded to the axiomatisystems, this isl-persistence. The famulae in a given
polyadic modal language having these properties will be calledentary® canonical formulae. Thus, he concept
of elementary canonical formulae isethitimate semantic idea behind SahlgpMiormulae which in turn are only a
syntactic approximation of it. From this megeneral perspective we use the teBahlqvist theorem’ as a gaeric
claim that all formulae from a given effectively defined class are elementary and canonical.

The current paper is intended as the first part of a comprehensive study of elementary canonical formulae from
syntactic, computational, model-theoretic, topokajiand algebraic perspectives (for sequels $%1[0)). In this
part of the study we take a new approach to the syntactic description of elementary canonical formulae, by mean:
of syntactic re-shaping of the adal languages and introducing 8ection 2the so callecburely modal languages
whereby disjunctions, (respectively, conjunctions), are regarded as boxes (respectively, diamonds), and formulag

1 ‘Elementary’ here is used as a synonym of ffissder definable’, as customary in logic.
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are built from propositional variables, negations and pdilydoxes only, in a combinatial style resembling the
Propositional Dynamic Logic. This syntactic framework allows us to introducBedntion 3a largeand natural
syntactic class ofregular’ formulae (ncluding not only Sahlqvist formulae, but also e.g. thed@l-L6b formula
and Segerberg’s induction axiom). We identify a subclassmfle regular formulae and show that conjunctions of
such famulae subsume all so far defined polyadic Sahlgvist formulae {Se Further, we extend these to the larger
classl of inductive formulae? the syntactic description of which is based on a cerdejpendency digraph defined on
the set of variables in the formula, and generatipggial ‘dependency’ ordering on these variables.

After a sd-theoretic and topological analysis of the polyadic descriptive general franfésdtion 5 we extend
the mehod of minimal valuations® of Sahlqvist-van Benthem4§]) and the topological approach of Sambin and
Vaccaro (seeq9, [2]) to establish respectivelypcal first-order definability in Section 4andlocal d-persistence of the
formulae inl in Section §therdoy proving the Sahlqgvist theorem for them.Section 4we also show ha the méhod
of minimal valuations works for regular formulae, too, but in general produces effectively computable equivalents in
firstorder language extended witdast fixed point operators. (However, not all regular formulae are canonical, nor
evencomplete.)

We show inSection 7that the clas$ extends the class of Sahlqvist formulae in the basic modal language not only
syntactically, but semantittg, too (contrary to the commmwopinion mentioned above).

In the rest of the paper we further analyze, from a topological perspective, the inductive formulae regarded a:
sd-theoretic operators and eventually establish a somewhat stronger semantic characterization of them in suitab
extended modal languages. This approach involveresideas of Sambin and VacocarKracht, and especially
Venema, as it uses a detour via the ‘reversive’ extension of the language (containing all inverses of the basic mod:
operators) where all inductive formulae can be reduceditonitive’ ones for which both parts of the Sahlqgvist
theorem ee proved in a uniform way.

In particular, inSection 8veintroducereversive extensions of polyadic modal languages and show that the inverse
operators in such extensions are closed in descriptive frames of the basic languagestidn 9we show that
inductive formulae are persistent with respect to passing from descriptive frames to their ‘closure extensions’ and thel
following ideas from 7], we prove that every inductive formulain a given polyadic modal language can be effectively
transformediito an equivalent in a suitable semantic sense, primitive regular formula in the reversive extension of
the language, thus eventually re-proving the Sahlqvist thadoe inductive formulae in arbitrary polyadic languages.
Then, inSection 11we consider polyadic modal languages withminals and introduceliscrete-canonical formulae
which is the right notion of canonicity in such languages, where the relevant persisterdiepessistence’, with
respect taliscrete general frames (with all singletons admissible). We show that in reversive languages with nominals
every primitive elementary canonical formula is equivalent fauee formula (containing only nominals), which can
be computedhithin the minimal logic for that language, and which in a rather direct way encodes the corresponding
firstorder equivalent. This yields an analogue of the Sahlqgvist theorem for inductive formulae in reversive polyadic
languages with nominals. Eventually we obtain a simple and natural characterization of the discretely canonica
formulae in such languages: they are precisely those, locally equivalent over discrete frames to inductive formulag
and hence to pure formulae.

1. Preliminaries

We assume basic familiarity with the syt and semantics of the standardy@alic modal languages, a state-of-
the-art reference for which is e.@][ from where we quote some of the definitis below and give a few additional
definitions, not explicitly mentioned in that book.

1.1. Some syntactic and semantic notions

Hereafter we consider an arbitrarily fixed polyadic modal language

2In [28] we call these ‘polyadic Sahlqgvist formulae’. Thbange of terminology, here and elsewherfieats: first, our effort to avoid the arising
ambiguity and confusion caused by the overuse of the term 'Sahlqvisufae’; second, the shift of the focus in the study; and third, the (now
established) fact that inductive formulae essentially exteagdfyadic Sahlqvist formulae as previously defined, e.g2]n [

3 The minimal valuations of the variables in inductive formulae aeéined inductively on the depemitey ordering, whence the term.
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Definition 1. FormulasA andB from £ are:

o tautologically equivalent, if A <> B is a Boolean tatology.

e semantically equivalent, hereafter denoted\ = B, if A <> B is a valid formula.

e locally equivalent, if they are véid at the same states in the same general frames for

¢ locally frame-equivalent, if they are véid at the same states in the same Kripke frame<far
e frame-equivalent, if they arevalid in the same Kripke frames fag, .

e axiomatically equivalent, if thelogicsK ; + A andK; + B have the same theorems, equivalentl i+ A+ B
andK ;+B A, whereK ; + A means the; -logic obtained by adding the axiottoK ;.

Hereafter, the term ‘equivalent formulae’ will mean ‘serieally equivalent formulae’, unless otherwise specified.
Positive and negative for mulae are defined as usual: a formula is positive (resp. negative) if every occurrence of
a\ariable is in the scope of an even number of even (resp. odd) number of negations.

1.2. Sahlgvist formulaein classical polyadic languages

The following definitions are combined fror@][and [13].

Definition 2. Boxed atom is a formula; - - - Op p where[y, . . ., Oy is a (possibly empty) strig of unary boxes and

p is a propositional variable.

Sahlgvist antecedent: a formula constructed from propositional comdtg boxed atoms and negative formulae by
applyingv, A, and diamonds of arbitrary arities.

Definite Sahlquist antecedent: a Sahlgvist antecedent adihed withoutapplying v (i.e. constructed from
propositional constants, boxed atoms aedative formulady applying onlya and diamonds of arbitrary arities).
(Definite) Sahlqvist implication: A — B whereA is a (definite) Sahlgvist antecedent aBds a positive formula.
The Sahlqvist implication ismonadic if no polyadic modalities occur in it.

Definition 3. (Definite) Sahlqvist formula ((D)SF): a formula ©@nstructed from (definite) Sahlqvist implications by
freely applying unary boxes and conjunctions, and applying polyadic boxes and disjunctions to formulae sharing no
common variables. The Sahlqvist formulanenadic if no polyadic modalities occur in it.

Basic Sahlqvist formula is a definite Sahlqvist formula obtained without applying conjunctions to Sahlqgvist
implications.

This class of polyadic Sahlqgvist formulae, so defined by de Rijke and Venema, will be denatBY by

We note that every Sahlqvist implication is tautologically equivalent to a formula of the-ty/pevhere A is a
Sahlqvist antecedent, and thereforemyvSahlqgvist formula is equivalent sonegated Sahlqvist antecedent, too.

Some examples>Up — Op, D(O—p v S0O-q) ASOp) — OGO(p v <04q)), and(2)(p, a) — [21(p, 9),
where[2] is a binary box and2) is its dual diamond, are Sahlqvist formulae, whilg>p — p, O(p Vv q) —
(pv ), and[2](p, p) — (2)(p, p)) are not. Even th& -axiomO(p — q) — (Op — 0Qq), orits equivalent
Op AO(—p Vv Q) — 0Oqg are (syntactically) not Sahlqgvist formulae.

The following easy observations will be used in the next section.

Proposition 4.

(1) BEvery Sahlgvist implication is equivalent to a conjunction of definite Sahlqvist implications.
(2) Every Sahlgvist formula from dRV is equivalent to a conjunction of basic Sahlqvist formulae.

Remark 5. [34] defines a similarlass ofpolyadic Sahlqvist formulae, using also definable operatorsfik®, B) =
O(A, B) AO(—A, B) AO(A, —=B) which is actually equivalenttdl(A, 1) A O(L, B), so that classloes not extend
dRV.
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2. Purely modal polyadic languages and logics
2.1. Purely modal polyadic languages: Syntax

Definition 6. A purely modal polyadic languag®; contains a countably infinite set of propositional variatMaR,
negation—, and amodal similarity type r consisting of a set dbasic modal terms (moddities) with pre-assigned
finite arities, including a 0-ary modality, aunary onaj and a binary one.

The intuition behind théhree distinguished modalities above is simpjewill be interpreted as the constantand
its dual asL; ¢1 will be the self-dual identity;, will be v and its dual —A. Treating these connectives as modalities,
besides allowing for elegance and uniformity, will provide suitable technical framework for working with elementary
canonical formulae.

Definition 7. By simultaneous mutual induction we define the setrmidal terms MT (t) and theirarity function
p, and tre set of(purely) modal formulae M F(7) as follows:

(MT i) Every basic modal term is a modal term of the predefined arity.
(MT ii) Every formula containing no variables (hereafter callembastant formula) is a 0-ary nodal term.
(MTiii)y If n > 0,0,B81,...,8n € MT(z) andp(«e) = n, thena(B1,...,Bn) € MT(z) andp(a(B1,...,Bn)) =
p(BY) + -+ p(Bn)-

Modal terms of arity O will be callechodal constants.
(MF i) Every propositional variable is a modal formula.

(MF ii) Every modal constant is a modal formula.
(MFiii) If Ais aformulathen-Ais aformula.

(MFiv) If Ag,..., Ay are formulaew is a nodal term ando(«) = n > 0, then[a](A1,..., An) is a nodal
formula.
Definition 8. The modal terna in the modal formul&A = [«¢](Ag, ..., Ap) is calledtheleading term of A.

Note that constant formulae and 0-ary terms are resghad both modal terms and formulae. This ambiguity of the
syntax should not cause confusion if properly handled, and we have put up with it for the sake of technical simplicity
and convenience.

For tednical purposes we extend the seriessofiith n-ary moddities ¢: inductively as followstn+1 = t2(t1, tn)
for n > 1. Furthermore, again for technical convenience, we can assume that the language t@msiosers:
operator®;j which swap the-th and j-th argument of a modal term, i.8j (@)1(Az, ..., Ai, ..., Aj, ..., Ap) =
[0](Ag, ..., Aj, ..., Ai, ..., An). We will not treat these transposers formally, but assuming them in the language
will allow us not to be concerned with the specificering of the arguments in a modal formula.

Somenotation on formulae:

(@)(A, ..., An) = —la](=Aq, ..., =An);
T =10, L = —up;
AV B = [12](A, B), AA B := (12)(A, B), and respctively

ALV v A= [n](AL - An), AL A - A A= () (A, - An);
A—-B=-AVvVB; A< B:=(A—> B)A(B— A).

Positive and negative occurrences of variables andpositive and negative for mulae are defined as usual.

One effect of the mutual definition of modal terms and formulae is that it allows constructioerafetrized
modal terms, to be fondly introduced later. For instance, i& is a unary term and3 is a binary one,
theny = B(—[Bl(«](L), T),t1) is aunary modal term, and the formula]p can be essentially identified
with [B](—[B1([«](L), T), p). The same transformation will be allowed further to non-constant arguments, too,
where under certain conditions, some variables cantrbated as parameters and imported into the modal
terms.
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2.2. Purely modal polyadic languages. Semantics

The semantics of purely modal languages is a straightforward odmation of the standard Kripke semantics for
polyadic modal languages and the setiwof PDL-type polymodal languagesteaftaking into account the fact that
conjunctions and disjunctions are now treated as modalities.

Let us fix an arbitrary purely modal languagde.

Definition 9. A (Kripke) t-frameis a structurd- = (W, {Ra}aeMT(,))where theelaionsR, are defined recursively
by:

e Ry =W, R, ={(w,w)|weW}, R, ={(w, w, w)|we W}

e for every basic modal term, R, € WP@+1,

L4 Ra(ﬁl ,,,,, ﬁn):{(w»wll»"'swlbl»"'swnl»"'swnbn

Jup...Jup(Rywus...un A AlL; Rg Uiwit ... wip)},
wherep(Bi) =bj,i =1,...,n.

)€ Wb1+"'+bn+l|

Note thatR,, = {(w, ..., w) € W™|jw e W} and thatR, € W*®+1 for every modal terna.

Definition 10. Given at-frameF = (W, {R),}%MT(,)), a Kripke) T-moddl over F is a pairM = (F, V) where
V : VAR — P(W) is avaluation of the propositional variables iR.

Definition 11. Thetruth definition of a formulaat a statav of a Kripke modelM is defined through the following
clauses:

e M,w = piff weV(p),

e M, w = —Aiff notM, w = A,

e Mw E [a](Ay,..., Ay iff for all ug,...,us € W suchthat R,wui...un, M,u; = A holds forsome
ief{l,...,n}.

In particular,M, w = « iff R,w, for ary modal constand.
A formula Aisvalid in M, denotedM = A, if M, w = Afor everyw € W.

Definition 12. Given a formulaA € MF (1), ar-frameF = (W, {R,}qemT (1)) @andw € W :

e Aisvalidat win F, denotedF, w = A, if M, w = A for every modeM overF;
e Aisvalidin F, denotedF = A, if F, w &= Aforeveryw e W, iff M = A for every modeM overF;
e Aisvalid, denoted= A, if itis valid in everyz-frame.

The following equivalence, hereafter called (COMP), follows immediately from the definitions:
a(Br, .- Br)I(Adg, ... Atng, ooy Amt, oo Amng)
is equivalent to

[al([B1l(A11, ..., Atny), - .o [Bnl(Amt, - - ., Amnp)).

We note that the basic normal modal lodor the polyadic modal languagg is axiomatized as the normal modal
logic of a standard polyadic modal language, by adding @magheme corresponding to (COMP). For more detalil,

see P7].

Hereafter, whenV is fixed, the complement i of a subseX < W will be denoted by X.

Definition 13. Given at-frameF = (W, {R),}%MT(T)), everyn-ary modal termg € MT(z) defines twon-ary
operators, (8) and[8], onP(W) as follows:

[B1(X1, ..., Xn) = {X € W|RgXX1...Xnimpliesxy € Xy 0r ... orx, € Xn},
and dually,
<ﬂ>(xl’ ) Xn) = _[ﬂ](_xla D) _Xn)a
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(B)(X1,..., Xn) = {X € W|RgXXy...Xn for somexy € Xg, ..., Xn € Xn},
In particular,(8) = Rg for every O-ary ternp.

Note that the operatorg) and[B] are monotonic on each of their arguments. Besideg,8a#i arenormal and
additive in the sense ofy1], and therefore every structu(rE(W), n,—,a, {(a)}aeMT(,)) is a (complete and atomic)
set-theoretidBoolean algebra with operators (BAO), also satisfying (COMP), and called hdpolyadic) modal z-
algebra. In [31] (see also2]) Boolean algebras with operators are defingdlbstact structures and a representation
theorem for them, extaling the Stone representation, has been established. That representation theorem readil
extends to the class of polyadic modadalgebras which is varigy for any modal similarity type.

Sometimes, for convenience, we will regard the dual operéteis,cmT(-) as the basic ones instead.

We can now give an alternative definition of truth of a formula at a state of a n{MdeRa}aeMT(T), V), by way of
extending (in the unique possible way) the valuatién VAR — P (W) to ahomomorphisnV : MF (t) — P(W) of
MF(t), regarded as adely generated algebra owR, to (P(W), N, —, g, {(a)}aeMT(,)). Then thetruth definition
for all formulae is uniform:

M, w = Aiff w e V(A).

The equivalence of both definitions is a straightforward exercise and can be found for Boolean algebras with operato
e.g. in P]. The latter definition will be used in further sections, where we will regard formulae as set-theoretic
operators.

Definition 14. A general framefor £, (general z-frame) is a structure{W, {Ry}aeMT (1) W) extending ar-frame
with a Boolearalgebra ofadmissible subsets of P(W), closed under the operators corresponding to the basic modal
terms, and therefore under all operatfss (and(8)).

Thus,W is a subalgbra of P(W), N, —, @, {{&)}aeMT (1))-

Definition 15. Given a geeralt-frameg = (W, {Ra}aeMT(T),W), amodel over § is any nodel over the Kripke
r—frame(W, {Ra}aeMT(r)) with valuation of the variables ranging oVeéf.

Definition 16. Given a formulaA € £, a geeralr-frameF, andw € W, we saythat Ais (locally) valid at w in §,
denoteds, w = A, if Ais true atw in every nodel overg; Aisvalid in §, denoted¥ = A, if Ais valid in§ at every
w € W, i.e. Ais valid in every model ovey.

Proposition 17. (See [2]) Local validity in a general z-frame is preserved under Modus Ponens and uniform
substitutions. Validity in a general z-frame is preserved under Modus Ponens, Necessitation, and uniform
substitutions.

Generalr-frames and modat-algebras are equivalent as semantic structures. For more details on the links and
dudity between these se@4] or [2]. Hereafter ve will deal primarily with general frames.

Kripke t-frames can be regarded as first-order structurbe.associated first-order language with equality and a
family of predicate R, }oeTM (1), With arities matching those of the respective relations-fnrames, will be denoted
by LFC. Hereafter we will use the same symb@,, for the pedicate B in £5° and for the relation which interprets
it in a givent-frame. This abuse of notation should not lead to any essential confusion, but will allow us to make
smooth transition between syntax and semamntigthout being excessively formal.

Definition 18. Given amodal formulaA € MF (1), a fomulag(x) of Efo is alocal first-order equivalent of A if
for everyr-frameF = (W, {Ry}aemT(r)) @andw € W,

F,w k= Aiff F IFo(w/x),

whereF IF ¢(w/Xx) denotes the first-order truth @fx) in F under the assignment af to the variablex.
The formulaA is locally first-order definableif it has a local first-order equivalent.

Thestandard trandation ST generalizes the one for monadic languages with the clauses:
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e ST (0) = R, (x) for every modal constant;
o ST([@](At, ..., An) = VY(RXY1. .. ¥n = \/{_q ST (A (i /X)).

Again, note that the propi®nal logical connectives\, v, —, as defined laove, have their standard semantic
interpretation. Therefore, the puyghodal polyadic languages are equalkpeessive as the traditional ones.

3. Regular and inductive formulaein purely modal polyadic languages
An arbitrary purely modal polyadic language is fixed hereafter.
3.1. Regular polyadic formulae

Definition 19. An essentially box-for mulais a £, -formula of one of the following two types:

e B = [BI(Ny, ..., Nn) whereg is anm-ary modal term, fom > 1, andNj, ..., Ny, are negative formulae. A
formula of this type will be called headless box.
e B =[B](p, N1, ..., Nn) whereg is an fn+ 1)-ary modal term, fon > 0, andNjy, ..., N, are negative formulae.

A formula of this type will be called eheaded box, and the wariable p is called thehead of the formula. The
head need not be the first argument of a headed box, but to simplify the notation we will usually put it in the first
position.

All variables in an essentially box-formula, ext¢dpr the head of the formula, (if any) are callédessential
variablesin that formula.

In particular, every formuldg]p (including p = [t1]p) is a headed box, while every negative formula is a
headless box. An example of a headless box, wheamd 2 are respectively unary and binary modal terms, is
[21([1){1)—p, —[2](p, Q)), while the formula[2]([1] p, —[2](p, (1)q)) is not an essentially beformula, but it is
equivalent to the headed b§2(1, t1)]1(p, —[2](p, (1)q)).

Note the close analogy between essentially box-formulae and Horn clauses in first-order logic.

Definition 20. A regular (polyadic) formulais any nodal constant, or a famula A = [«](—Bs, ..., = By) where
« is ann-ary modal term andB,, . . ., B, are essentially box-formulae, called tiee main components of A.
The class of regular formulae will be denotedRly.

Examples of regular formula€2)([1]co, —[1]w0), [1]—p, [1(D)]—p, [1]-—POS, [2](—p, =—POS), [2](—[1]p,
—-=POS), wherePOSis any positive formula. Simple non-examples aifd] p and—[1]—p, but they are@spectively
equivalent to the regular formulde ]—[1]p and[t1]—[t1]——[1]—p (note that[:1]——[1]—p is a headless box). A
more essential non-example is the formuld(—[1](1) p, (1)[1] p) which is apurely modal version of McKinsey’'s
formula[1](1)p — (1)[1]p.*

Definition 21. An occurrence of a variable in a regular formélds essential in Alif it is a head of a main component
of the formula, therwise it isinessential in A. A variablein a regular formulaA is essential in Aif it has & least one
essential occurrence in it, otherwise itigssential in A.

A regular formulaA = [«¢](—By, ..., —Bp) is lean if every variable occurring in it is essential A

For example,ie variableg andr are esential iN2](—p, —[2](r, —(1)q)), while q is inessential there.

Definition 22. A set ofessentially box-formulae isndependent if no head of a formula from the set occurs as an
inessential variable inrgy headed box from the sesgparated if all headed boxes in the set have different heads;
strongly independent if it is independent and separated.

A headed boB = [B](p, N1, ..., Nm) sichthat none ofNy, ..., Ny, contains the head (i.e. { B} is independent)
is anessentially positive box of the variable p.

4 This formula cannot be written as a regular formula even up to semaniicadence, but the proof of that claim goes beyond the scope of this
paper.
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For indance:

e the set{[2](—[1]p, q), [2](q, [2](—(1)p, —r)), [1][1]—q}isindependent but not strongly independent;

e the setq[2](—[1]q, )} and{[2](—=[1]p, q), [2](p, [2](—=(1)r, —=r))} are not independent but separated;

o the set{[2](=[1]p, 0u), [2](G2, [2](—(1)p, —r)), [1][1]—a1} is stongly independent;

o the formulg2](q, [2](—(1) p, —r)) is an essentially positive box of the varialgleand so is evgrboxed atom of.

Definition 23. Aregular formulaA = [¢](—Bg, ..., —=Bp) such that the set of essentially box-formulag, ..., Bn}
is indgpendent is asimple regular formula. In paticular, every headed box frofBy, ..., B,} is an essentially
positive box of its head.

The class of simple regular formulae will be denotedSRF.

For instance, the brmula[3](—=[2](—=[1]p, q), —[2](q, [2](—={1) p, —r)), —[1][1]—q) is a simple rgular formula.

We could also close the class of simple regular formulas under conjunctions, but for technical reasons we prefer ti
keepitasis.

A lean simple regular formula has the fordv = [a](—=Hi,...,—Hn, P1,..., Pk) where Hy,..., Hp
are headed boxes, each containing only its head as a variableP@and., P are positive formulae. After
composing constant arguments with the leading modal terms of the headed boxes, it turn& into
[e]l(—=[B1]P1, - --» —[BnlPn, P1, - .., Px). We will show further that, up to frameqgiivalence, the variables can be
assumed different. The following definition considers the particular case whgn all., 8, are just.

Definition 24. A lean simple regular formul& in which all headed boxes are justffdrent) variables will be called
aprimitiveregular formula.

The primitive regular formulae generalize the “very simple” Sahlqvist formulag]in [
3.2. Smpleregular formulae subsume all polyadic Sahlqvist formulae

Lemma 25. Every definite Sahlqvist antecedent A is equivalent to a negation of a simple regular formulain which all
headed boxes are boxed atoms.

Proof. Induction onA:

e The cases of constant, boxed atom or a negative formula are trivial (note that every constant formula is equivalent
to a negation of a positive formula);

e A = A1 A Ay, whereA; = —B; and A, = —B; for some simple regular formulaB; and By. Then
A = —[12](B1, Bp). After composing the leading terms &; and B, with ¢, this becomes a simple regular
formula, since all headed boxes in it are boxed atoms, hence still form an independent set.

e A= (a)(A1,..., Ay). ThenA = —[a](—A1, ..., ~Ay) wWhere each-A; is equivalent to a siple regular formula
in which all headed boxes are boxed atoms, hencegd(sA1, ..., —An). O

Proposition 26. Every definite S from dRV is equivalent to a simple regular formula, and hence every S from dRV
is equivalent to a conjunction of simple regular formulas.

Proof. FromProposition /andLemma 25Note hat if A — C is a SF andA = —B for some simple regular formula
B thenA — C = [12](B, C) is a simple rgular formula, and also that applying disjunctions and polyadic boxes to
SFs not sharing variables preserves tidependence of the essential variables.

Actually, SRF properly extendsdRV. A simple example is
[21(=[21(L, p), (2)(p. T)),

where2 is a binary modality. It defines the frame conditiéxyz(Roxyz — Juvw(Reyuv A Rozvw)).



V. Goranko, D. Vakarelov / Annals of Pure and Applied Logic 141 (2006) 180-217 189

3.3. A simple syntactic extension of the classical monadic Sahlqvist formulae

The class of monadic Sahlgvist formulae can be simply extended if the notidooafia generalized by allowing,
besides compositiorf dbox-modalitierom the language, aldests (in PDL-style).

Definition 27. Let £ be a monadic (multi-)modal language and # be a symbol not belongiigthen abox-form
of #in L is defined recursively as follows:

e #is abox-form of #;
o If B(#) is abox-form of # andd is a box-modality inC thenOB(#) is abox-form of #
o If B(#) is abox-form of # andA is a positive formula irC then A — B(#) is abox-form of #

Thus, box-forms of # are, up to tautological equivalence, of the type
O1(Ar = O2(A2 — -+ -On(An — #) -+ ),
where(y, ..., O, are (compositions pbox-modalities inZ, andAy, ..., A, are positive formulae irf.

Definition 28. Given amonadic (multi-)modal languagé and a variablep in £, abox-formula of p is the result
B(p) of substitution ofp for # in any box-formB(#) in L.

Note that every box-formulal1 (A1 — O2(A2 — ---0On(An — p)---) is equivalent tdd1(—A1 v O2(—=A2 Vv
...0On(—=An Vv p) - --) which can be represented as a headed[bdi- A1, = Ao, ..., = Ay, p) with a headp and all
other variables inessential there.

Definition 29. Simply generalized monadic Sahlqvist formulae are defined by replacing in the definition of
classical monadic modal Sahlqvist formuldexed atoms' by ‘ box-formulae’, and further requiring that the set of
all these box-formulae occurring in the construction of the formula, is independent.

For indance >(O(0O<¢g — O0Op1) A OO0 — Oq — p2))) — <O(p1r A O p2 Vv Q)) is not a Sahlgvist
formula, but a simply generalized one.
The proof ofLemma 25andProposition 2&an now be modified acedingly to obtain:

Proposition 30. Every simply generalized monadic Sahlgvist formulais equivalent to a conjunction of simple regular
formulas.

It should be noted that this extension of monadic §eist formulae is only syntactic, because all inessential
variables in théox-formulae have only positive occurrences in the simply generalized Sahlqgvist formula, and hence
can be eliminated by replacement with thus producing an ordinary Sahlqvist formula.

3.4. Inductive polyadic formulae

Let A = [a](—H4,...,—Hp, P1, ..., P) be a regular formula, wherdy, ..., Hy are headed boxes with (not
necessarily differentheads respectivelys, ..., pn, and Py, ..., P are positive formulae (hence, equivalent to
negated headless boxes). In general, such formula need not have the virtues of a Sahlqvist formula. For instanc
de Rjke has shown in 11] that [:2](—=[2]([2](p, P), P), (2)({2)(p, p), p)) is not FO definable. An gen simpler
example is[t2](—[2](p, p), (2)(p, p)) which defines the non-elementary frame conditiéor every x the binary
relation Ry on the remaining two variables y and z has an unoriented cycle of odd length.”

Definition 31. Given a regular formul& = [«](—H1, ..., —~Hp, P1, ..., P), thedependency digraph of Ais a

digraphG = (Va, Ea) whereVa = {py, ..., pn} is the set of heads iA, andp;Eapj iff p; occurs as an inessential
variablein a formula from{Hg, ..., Hn} with a headpj. A digraph is calledxcyclic if it does not contain oriented
cycles.

Definition 32. An inductive (polyadic) formulais any rgular formulaA with an acyclic dpendency digraph.
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In particular, in any inductive formulda](—=H1,...,—=Hpn, P1,..., Px) all headed boxedH, ..., H, are
essentially positive boxes of their respective heads.

The class of inductive formulae will be denoted IbyNote hat the particular case when there are no arcs in the
dependency digraph corresponds to the ¢, 0 every simple regular formula is inductive.

Example 33. The formula[3](—=[1]p, —[2](—p, d), (1)[1]q) is an inductive formula but not a simple regular formula.

The clasd can be further closed under conjunctions, and then it extends essentially the original class of monadic
Sahlgvist formulae. On a syntactic level, tkhi@n be easily seen from the following example.

Definition 34. Generalized monadic Sahlgvist formulae are defined by replacing in the definition of classical
monadic Sahlqgvist formuladbxed atoms’ by ‘ boxed formulae’, and further requiring that the set of all such boxed
formulae occurring in the anteceddmas an acyclic dependency digraph.

Generalized monadic Sahlqgvist formulae are essentially the restrictlao tiie monadic (multi)-modal language.

Example 35.
(1) The formula
D1 =pAO©p— 0g) — 00q
is not a Sahlqvist formula, nor it is tautologically reducible to one. Furthermore, its kgg@abrrespondent:
FO(D1) = 3y(Rxy A VZ(Ryz — Ju(Rxu A Rux A Ruz)))

is not (syntactically) a Kracht formula (se@3 and [2], Sect. 3.7). On the other hand, written in a purely modal
polyadic languag€d); becomes a generalized monadic Sahlqgvist formula, but not a simply generalized one:
D1 = [i3](=p, —la(2(a, @) 1(—=p, D). (@)[]q),

wherea is the modal term corresponding td. However, it isnot difficult to check thathis formuh is frame
equivalent (and hence axiomaticadigjuivalent) to the Sahlqvist formufa— O(¢op v OL).
(2) The formula

D2 =pAD0©p— 0Og) — 000q

written in a purely modal polyadi@ahguage, is again a generalizednadic Sahlqgvist formula:
D2 = [i3l(—=p, ~[a(2(e, 2)](—p, ), (@) [«][x]q).

Its localFO correspondent:
FO(D5) = 3y(Rxy A Vz(R?yz — Ju(Rxu A Rux A Ruz)))

is not a Kracht formula either, and moreover, as we will prov&éttion 7 D, is not frame equivalent to any
Sahlgvist formula in the basic modal language. Still, thisrfola is frame equivalent ta Sahlqvist formula in the
basictemporal language:

D} = p— FGGP(Fp A Pp).

Further we will prove that every inductive formula is locally first-order definable and canonical, thereby extending
the Sahlqgvist theorem in glireviously proved versions.

3.5. Equivalences, pre-processing, and reducibility to inductive formulae

The syntactic definition of the class of inductive formulaest jike that of the Sahlqvist formulae, is rather rigid
and sensitive to even very innocuous (e.g. tautological) transformations. For instance, themiksess some quite
simple cases of locally first-order definable and canonical formulae, e.g. all those of tHelype> q) A [8](q —

p) — POS(p, q) wherea, 8 are arbitrary unary modal terms aR®S(p, q) is any positive formula op andg. While
the dependascy graph of such a formula contains a cyfie q}, the famula is easily seen to Hecally equivalent to
the mnstant formuldOS(L, 1).
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It is natural, therefore, to attempt extending that class by closing under a suitable equivalence which preserve:
the importat semantic properties of the formulae frémwhile breaking their syntactic shape. For instance, such is
the tautological equivalence, which for a purely modal languégeshould be understood as follows: the formulae
from L, are translated to the traditional polyadic languagedlealisjunctions and conjunctions are treated as logical
connectives rather than boxes or diamonds, and then tautological equivalence is defined as usual. Moreover, it i
decidable whether a modal formula is semantically edeitao an inductive formula, and therefore the closuré of
under semantic equivalence produces an even larger decidable class of elementary canonical formulae.

On the other hand, the undecidability akiomatic equivalence to an inductive formula follows by an easy
adaptation of a similar result offagrov and Zakharyaschev (s&}) [for Sahlgvist formulae. Therefore, the largest
decidable extensions by equivalencd dit between semantic and axiomatuivalences. This issue is explored in
more detd in [ 9] and [10].

Another, related approach to effective extension of the tlsdsy way of asyntacticpre-processing, i.e. sysematic
syntactic transformations of modal formulae to légaquivalent inductive formulae. For instance4®] a large class
of so cdled complex Sahlgvist formulaeis introduced and shown to be effectively reducible to inductive formulae by
way of non-trivial substitutions, preserving the formula up to local equivalence.

The question of syntactic reducibility to induetiformulae is studied in more detail i®][ Since this issue is
relatively unrelated to the rest of this paper, it will not be discussed here.

By further pre-processing, an inductive formula can, for instance, be made lean by eliminating all inessential
variables. Since these only occur positivéiythe formula, they can be all replaced hyand that substitution would
preserve the formula up to local equivalence.

Also, the set of essentially positive boxes in an inductive formula can be made separated by means of successiv
splittings of a cmman head of two essentially positive boxes into two different variables, illustrated by the following

exanple: [a](—[B1]p, —[B21p, P(p, q)) is locally equivalent tdo ] (—[B1] p1, —[B2] P2, P(P1V P2, @), wherepy, p2
are new variables. Thus we obtain the following.

Proposition 36. Any inductive formula can be converted into a locally equivalent one in the following standardform:
A = [a](_‘Hls ceey _'Hna Pl» ceey H()»
where {Hy, ..., Hy} isa separated set of essentially positive boxesand Py, . . ., Pk are positive formulae.

Furthermore, if the inductive formula is simple regular, after elimination of the inessential variables every headed
box H in it becomes anary box over its head, so it can be eventually converted into the following standard form:

[e](=[B1]As, - .., ~[Bnlth, P1, ... P

wheregs, ..., Bn are unary modal termsy, . . ., g, are different propositional variables, aRg, . . ., Pk are positive
formulae. Each oh andk above can be 0, and that standard form may become a constant formula. Note that all
primitive regular formulae are in standard form.

Unlike dmple regular formulas, not all essentially positive boxes in an inductive formula can be made unary boxes.
Still, as we will realize later, these essentially positive boxes can be regargacha®trized unary boxes.

We note that this pre-processing does not affect the (a)cyclicity of the dependency graph of the formula. Hereafter,
whenever suitable, we can assume that any inductive formula has been pre-processed to one in a standard form.

Finally, we note that another algorithmic approach has been proposédvihére analgorithm, called SQEMA,
has been developed, to identify elementary canonical formulae by systematic transformation to so called ‘pure
formulae’ (seeSection 10 in suitably extended languages, from which the local first-order equivalent can be readily
obtained.

4. Local definability of inductive and regular formulae

In this section we prove the first-onddefinability part of Sahlqvist's theone, extended to the class of inductive
formulae by adapting and generalizing the methorhimimal valuations of Sahlqvist—-van Benthem (se€g2]).

We then showthat all regular formuladave equivalents in the extension of first-order logic with least fixed points
FO(LFP).
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4.1. Local first-order definability of inductive formulae

Theorem 37. Everyinductive formulaislocally first-order definable. Moreover, itslocal first-order equivalent can be
computed effectively.

Proof. Let A = [a](—H1,...,—Hn, C1,...,Ck) be a pre-processed inductive formula, whék, ..., Hp} is a
separated set of essentially positive boxes@nd . ., Cx are positive formulae. Léf = qs, . . ., g be the vaiables
occurring inA, Q = Q1, ..., Qn be the respective unary predicate variables,yanrd vy, ..., yn+k be a sting of

fresh different individual variables. BT (A) we denote the second-order closureSif(A), which corresponds to
validity at a point in a frame. Then

ST(A)
n

k
=VvQvy (RaXY1- - Yk = (\/ —ST(H)(Yi/x) v _\/ST(Ci)(yn+i)>>

i=1 =1

n
=VvQvy (RaXY1- < Yok A J\ ST(H) (i /X) > POS(Yn1, - ., yn+k)>
i=1

for some positive first-order formuROS.
First, let us consider the particular case whiers a simple rgular formula, so all essentially positive boxes are
unary boxesH; = [8j1(q;) for some modal terng; and essential variably. Then

ST(H(yj /%) = Vzj (Rg, ¥jzj — Qj(z))).

Note that, in anyr-frameF = (W, {Ra}aeMT(,)), once the variablgj is assigned a value there, the formula
above says that the sB; (yj) of Rg;-successors af in F is included in the interpretation @; in F; in other words,
Rg; (y;) is theminimal interpretation of Q; that satisfies that formula i for the given value of/;. With this in mind,
we defire the sacalledminimal valuation Vi, of the propositional variablg; uniformly in any givenc-frameF as
follows:

Vim(@j) = Rg; (yj).

With a slight (but harmless and justified) abuse of notation, in what follows we will Yigéd; ) as a unary predicate
in the first-order language far-frames, and allow ourselvesdliberty to substitute it forQ; in the formulaST (A).
Furthemore, we will useV () as an abbreviation for the tuplgn(g1), . .., Vim(n).

Itis now easy to see that for anyframeF andw € F:

F.w = YQST(A) iff F,w k= ST(AVm@)/Q).
hence
Fow Aff F,VmwE A

Indeed,ST(A) = VYVYQ(ANT(Q) — POS(Q)) whereQ is the dring of predicates corresponding to all
essential variables amANT(Q) = RyXy1. .. Ynik A /\i”=1 ST(Hi)(yi /X). Now, note again that, once the parameters
X, Y1, ..., Ynt+k are fixed so thaR,xys ... yn+k holds, the valuatiotVy, is the minimal one (in set-theoretic sense)
which makes eachlj, andhenceANT (Q), true. Therefore ifF, Vi, w = A, wherew is the assigned value for,
thenPOS(Vin(4)) must be true in order fdBT (A) to hold atw. Now, take anyaluaion V. If it falsifies anyH;, then
ANT is rendered false, so the whole formula is true. Otherwi4g(q) < V (q) for every essetial variableq. Then,
by monotonicity of positive formuladOS(Viy(4)) — POS(V (Q)) is valid, hencdPOS(V (Q)) is true, sohe formula
turns out tue again.

Thus, A défines the following local first-order condition on frames, equivalerSToA) (Vm(@)/Q) (w/X) :

FO(A, ) = VY (RoXy1. - Ynsk — POSVim(@/Q) )
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suchthat
FwkEA iff FIF FO(A, X)(w/X),

wherelt denotes first-order truth.

Now, the proof for the general case of an inductive formilleessentially repeats in several steps the one above.
The key concern again is to define the right minimal valuation.G&gtbe the dependency digraph Af First, note
that sinceG 5 does not contain cycles, it definestact partial ordering < between the vertices; < q iff there is
an arc path leading from; to gj. Consider any linear @gnsion of that partial orderingp < --- < gn. Fdlowing
that ordering, a minimal valuation can be defined on the set of essential variables inductively as follows.

Suppose alkk-predecessors (if any) of an essential variapleave already been assigned values. Let the string of
these predecessorsijgand let the string of second-order variables corresponding to th@@I be

Take any esentially positive boxj with a heady;:

Hj = [Bj1(dj, =Pj1(d1, ..., dj-1), - .., =Pjn; (@1, - . -, Aj—-1))
wherePjq, ..., Pjn; are positive, forf = 1, ...n.
Then:
nj
ST(H)(Yj/X) EVZjVU_j<RﬂjijjUj1...anj /\/\Sl'(Pji)(Uji/X) — Qj(Zj)).
i=1

Note that all predicate variabl&3x occurring in anyST(Pji)(uji/x) above correspond to predecessorgjgfso
theyare amongsﬂ_gqj and hence they have already been assigned their minimal values.
Then we put

n
Vm(@j) = {Z 305 (Rg; Yjzuj1---Ujn; A /\ ST(Pji) (Vim(@,)/Qq, ) (Uji)) }
i=1
In particular, iquj is empty, i.eqj is <-minimal, thenVi(q;) is defined as before.
Now, an inductive argument or proves thatvy, has indeed the properties of the minimal valuation needed to
provefirst-order definability ofA as in the case of a simple regular formulal

Example 38. Let us compute the local first-order equivalent for the inductive formula fsample 33

D3 = [3](—[1]p, =[2](=p, @), (1) [1]aD).

Sincep < g, we first @mputeVih(p) = Ri(y1).-
ThenVm(a) = {z|3s(Ray2sz A R1y1S). Thus,FO(B)(X) = Vy1y2y3(RsXy1y2y3 — Jv(Riysv A Vw(Ruvw —
Is(Ray2sw A R1y1S)))).

Remark 39. Note that in the latter example above, onGg(p) is determined, thef2](—p, q) can be regarded as

a unary box[at(Vin(p))1(q) wherea!(Vm(p)) is a unary parametrized modal term, the relation of which can be
accordingly computedR 1 xy iff 3S(Roxsy A Vim(p)(S)). This trick will be essential in the proof of canonicity of
inductive formulas.

4.2. Definability of regular formulaein FOL with least fixed points

Here we extend the definability result fbto the class of all regal formulae, by further extending the minimal
valudions technique. The minimal valuations now are recursively defined and eventually expressed in a first-order
logic with leas fixed pointsFO,,. For background offO,, see e.g.15 or [1].

Proposition 40. Every regular formula has a local correspondent in the first-order logic extended with fixed point
operators FO,,.



194 V. Goranko, D. Vakarelov / Annals of Pure and Applied Logic 141 (2006) 180-217

Proof. Let A = [a](—=H4,...,—=Hp, Cy, ..., Ck) be a regular formula, whergH;, . .., Hn} is a set of essentially
positive boxes an€y, ..., Cx are negations of headless essentially box-formulae, i.e. positive formulae. The only
guaranteed effect of pre-processing here is that all imisé@ariables can be eliminated, i.e. we can assumeAhat
is lean.

We will begin as in the procedure for computing the first-order equivalent of an inductive formulg. et
Q1. ..., 0n be the ssential varialds occurring inA (not necessarily different) = Q, ..., Qn be the respective
unary predicate variables, ayd= yi, ..., Yn+k be a string of fresh different individual variables. By (A) we
denote the universal second-order closur8IafA), which corresponds to validity at a point in a frame. Then

ST(A)

n k
=VvQvy (RaXYL Yk = (\/ —ST(H)(Yi/X) v \/ Sr(ci)(yn+i)>>

i=1 i=1

n
=VQVy <<RaXY1- < Ytk A /\ Sl'(Hi)(Yi/X)> — POS(Yn+1, - - -, yn+k)>

i=1

for some positive formul®0S.
Now, instead of computindie minimal valuations ofjs, . . ., g, Step by step explicitly, as in the case of inductive
formulas, we write for them a system iacursive equations of the type:

l ¢1(le ceey Qn) g Ql»
@n(Qla .. -.; Qn) - Qn,

where ¢4, ..., &, are monotonic operators, uniformly composed from the headed essentially box-formulae as
follows. Let

Hj = [IB]](qj» _'le(ql» DR Qn)» DR _'Pjn] (qls cee »qn))
wherePjq, ..., Pjn; are positive, forj = 1,...,n. Then:

nj
ST(Hj)(yj/X) = Vzj (Elu_j<RﬁjijjUj1...anj /\/\ST(Pji)(Uji/X)> — Qj (Zj))
i=1
and we define

n;
9i(Q1,...,Qn) = {Zj | Elu_j(RﬂjijjUjl...anj A/\ST(Pji)(Uji/X))}.

i=1

Note that®; is monotonic in eacl®y, ..., Qn since allPjjs arepositive.
The recursive system above has a least pre-fixed point solutionl{}&eénjch is dso a least fied point:

V(@) = uQ1.91(Q1, ..., Qn), ..., Vm(Qn) = uQn.$n(Q4, ..., Qn).
Now, the localequivalent inFO,, of Ais (as before):
FO, (A %) =V (RoXY1. . Yok — POSVm(@/Q)) . O
We will illustrate the procedure desbed above with two well-known exgnles of non-elementary formulae.
Example41. Godel-Lob formula:GL = [1]([1]g — q) — [1]q.

(1) Pre processing into regular formula:

—[11(=[1lq v o) v [1]q = [e2](—[e](=[1]9, ), [1]q)
wherea = 1o, respxR,yziff XRiy Ay =z
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(2) Composing the recursive equation(s) for the minimal valuatigi{q) for g. The only condtion for Q is:

VYVZ(XRyYZ A R(Y) € Q — Q(2)),i.e.YY(XRwy A Ri(y) € Q — Q(y)).
This can be written as

2(Q) < Q,

where

P(Q) ={y [ xRy A Ru(y) € Q}.
Note that® is a monotonic operator, depending on the paramet&inceV(q) is to be thaninimal valuaion
satisfying the equatimalove, it mus be theleast (pre-)fixed point ofé. Thus,Vi,(q) = 1 Q. 2(Q).
(3) Computingu X. ®(X) :

&o =

P = (@) ={y | xRy A Ru(y) = o}

Do = &(P1) ={y | XRiy A R(Yy) € P4}
={y | XRiy AVy1(YRiy1 = XRiy1 A Ri(yn) = @)}

P3 = P(P2) ={y | XR1y A Vy1Vy2(yRiy1
— XRiy1 A (Y1R1y2 — XRiy2 A Ri(y2) = 9))};

Pnr1(X) ={y | XRiy AVY1...VYn(YR1y1 — XRiy1
Ao (Yn—1R1iYn = XRiyn A Ri(Yn) = 9) .. )},

from whichu X. #(X) becomes evident.
(4) Findly, computing theFO,,-equivalent:

FOL(GL, x) = Yu(XRu — puX.9(X)(u)) = vuin
> OVy1...Vyn(XRiU A (URLY1 — XR1y1 A (... (Yn—1Ri¥n — XRaiyn A Ri(Yn) = @) .. ).

Itis now easy to check thaix GL (x) is equivalent to transitivity oR; and non-existence of infinite;-chains.
Example 42. Segerberg’s induction axiom

IND = [2](q — [1]9) — (q — [2]9).

(1) Pre processing to regular formula

=[21(=q Vv [1]9) v —q Vv [2]q = [w3](—=[a](—q, q), —q, [2]9)
wherea = 2(12(t1, 1)), respx R, yz iff XRoy A yRyz.
(2) Composing the recursive equation(s)¥6(q). The @nditions forQ are:
(@) VYVZ(XxRyyz A Q(Y) — Q(2)), i.e.Vz(Ay(XRyyz A Q(y)) — Q(2)), and
(b) Q).
These can be written as:
$1(Q) € Q,
$2(Q) € Q

P(Q) € Q where

?1(Q) = {zIFy(XReyz A Q(Y))},
P2(Q) ={zlz=x}.

SFor proof of completeness of the logic axiomatized with this inductiom alone with respect to the frame condition computed heredi¢e [
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Both equatdns refer to the same variable, so they can be put together as

2(Q) < Q.

where

2(Q) = {zlz=x Vv IYy(XReyz A Q(Y))}
= {z|lz=X Vv IYXRYy A YRiZA Q(Y)}.
¢ is a monotonic operator, depending on the parameters Again, Q must be the least pre-fixed point of
@. Thus,Q = uX. d(X)
(3) ComputinguX.®(X) : g = &, 1 = ¢(2) = {X}, P2 = &(P1) = {X} U {Z|XxRox A XxR12Z}. If =x RpX, this is
the fixedpoint: u X. #(X) = {x}, otherwie theunfolding continues:

D3 = O(Py)
= {X} U {z|xRax A XR1Z} U {Z|XRox A Jy1(XRoy1 A XR1y1 A y1R12)},

P2 = Pny1 U {ZIXReX A y1---Iyn(XRoy1 A - - -
AXRoyn AXRiy1 AYiRiY2 A -+ AYnR12)},

from which X. @(X) is evident.
(4) Computing thé=O,-equivalent:

FO,(IND, X) = VU(XRau — uX.2(X)(u))
=VYU(XRoU = XRoXx A (U= XV 3In > 03yr...3y,
(XRay1 A -+« AXRoyn A XR1y1 A YiR1Y2 A -+ A ynRiU))).

We note that an algorithm for computirfgO,,-equivalents of classical modal formulae, based on Ackermann’s
method for second-order quantifier elimination, and in particular covering the two examples above, has been develope
in [35 and futher extended in4(0]. On the other hand, the algorithm SQEMA developedrindan be extended with
a recursive version of Ackermann’s rule to compute B@®,-equivalents of all regular formulae. For more details,
see B].

5. Polyadic descriptive framesand their topology

In this section we obtain results about descriptive frafoe polyadic modal languages which will be used further.
Most of these will be generalizations of known properties of monadic descriptive frames, but we will establish some
important relations between them and will present them in a way suitable for purely modal languages.

Every generat-frameg = (W, {RelaeMT () W) deternines atopological space T (§) with a base of clopen sets
W. For detailed study of this topology, its properties and applications in modal logic38kar[d for topological
treatmenbf Sahlqvist formulae se&§).

Hereafter, alosed set in a geeralt-frameg = (W, {Ry}aeMT (1) W) will mean a subset athe domain closed
with respect to the above mentioned topology, i.e. an intersection of a family of admissible sefXWgbe the set
of all closed subsets & in T (F).

5.1. Parametrized modal terms and formulae
We are nowgoing to extend the set of modal terms and the respective class of operators to allow parametrizatior
with closed sets and operators.

Definition 43. Let§ = (W, {Re}aeMT (1) W) be a generat-frame. We define the seMT(z, §) of §-parametrized
modal termsand their respective operators B1iW) by induction as follows:

PMT1. MT(t) € PMT(z, §);
PMT2: For every(n + 1)-ary termg € PMT(z, §) and a closed sé&t in T (§), 8(Z) is ann-ary term inPMT (z, §)
suchthat(8(Z2))(X1, ..., Xn) = (B)(X1, ..., Xn, 2).
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Accordingly, we defineRgz)X, X1, ..., Xn iff there existsxny1 € Z suchthat RgxXy ... XnXn4+1. AlsO, note that
thedual of (8(2)) is [B(2)] (X1,..., Xn) =[B] (X1,..., Xn, =2).
We will further allow the parameter to be taken from any argument by putting

(BI(2)(X1..... Xn) = (B)(X1..... Xj_1. Z, Xj11. ... Xn) and respectively,
(BN, ..., Xn) = [BI(Xa, ..., Xj—1,—Z, Xj41,.... Xp)forj=1,...,n.
Furthermore, the parameters damrepresented by formulae, too.

Definition 44. Given a geeralt-frameg, a §-parametrized formula is a formula in the extended language built
over the set bmodal term$PMT (z, F).

An F-parametrized formuld is positive in a variable p if all occurrences op in A are positiveA is positive if
it is positive in every variable occurring iA.

Definition 45. Given a gaeralt-frameg, ang-parametrized formul&(ps, ..., pn) is closed in § if the operator
AX1... Xp A(X1, ..., Xp)in Fis closed, i.eA(Xq, ..., Xp) is closed wheneveXy, . .., X, are closed ifT ().

5.2. Descriptive frames and closed operatorsin them

Definition 46. Let§ = (W, {Ry}aemT(x), W) be a generat-frame and8 € PMT(z, §). The rdation Ry is tight in
§ if the following condition holds: for any, X1, ..., X, € W,

RgX, X1, ..., Xn iff

VX1, ..., Xn € WXy € X1,...,Xn € Xp = X € (B)(X1,..., Xp)).
Note that this condition is equivalent to: for everys W,

RgX, X1, ..., Xn iff

x € [JUBYXL, ... Xn)IX1, ... Xn € W& X1 € X1,.... Xn € Xn}.
In particular, everyRg for a 0-ary termg is tight.

Definition 47. A family of sets 7 has thefinite intersection property (FIP) if the intersection of every finite
subfamily of F is non-empty.

Definition 48. A gereralz-frame(W, {Ry}oemT(r), W) is:

e differentiated if for everyx, y € W, if X # y then there isX € W suchthatx € X andy ¢ X;
e tight if for every basic modal terng the relationRg is tight in §;

o discreteif {w} € W for everyw € W,

e compact if every family of admissible sets ig with FIP has a non-empty intersection;

o refined if it is differentiated and tight;

e descriptiveif it is refined and compact.
We note that:

e The canonical general frame of every normal modal logialy purely modal polyadic language without nominals
or any special inference rules is descriptive.

e the poperty of being differentiated is expressed by the tightned? ofand so it becomes redundant. We keep it
in the definition mainly to respect the tradition.

e compactness of a generalframe §, as defined above, is equivalent to the standard topological notion of
compactness of (), i.e. every family ofclosed saswith the HP has a non-empty intersection.

e by (a weaker version of) Tychonov's theoremgifs compact then for eveny € N, the product spac€T (§))" is
compact, too.

Hereafter, closedness of Cartesian products of sets will mean closedness in the respective product topology.

It is immediate to see that fong compmct and differentiated-frameg, the T (¥) is a conpact Hausdorff space
with some additional properties, necessary to prove the caitgrdf any inductive formula, which will be obtained
in the rest of this section.
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Proposition 49. In every discrete frame § the topology T (§) is discrete.

Proof. Every non-empty set is a union of its singleton subsets, which are opE(§in herce every subset ¢f is
open. O

Furthermore, every discrete frame is refined, while thnverse need not hold, e.g. canonical general frames are
descriptive, but not discrete. In fact, no infinite descriptive frame is discrete.

Lemma50. In any differentiated z-frame § = (W, {Ry}aemT (1), W), for any n-aryterm g € PMT(z, §), Rg istight
iff for every x € W the set Rg(X) = {(X1, ..., Xn)|RgXX1...Xn} isclosed, i.e. Rg is point-closed.

Proof. For 0-ay modal termg3 each of these conditions is trivially true, so we can assumepttt > 0.
First, note that
VXl,...,Xn EW(X]_E x1,...,Xn (S Xn:x (S (ﬂ)(X]_,,Xn))lﬁ
VX1, ..., Xn € WX € [BI(—X1, ..., —Xn) = (X1, ..., Xn) € —=(X1 X -+ X Xp)).

Therefore Rg is tight iff for everyx e W,
Rg(x) = ﬂ{—(xl XX X)) X1y ooy Xn € W& X € [BI(—=X1, ..., —Xp)}. O

Definition 51. A family F of subsets of a seX is called downwards directed if F contains a subset of the
intersection of any two (and henax,any finite number of) members 4.

Lemmab2. If Aisa closed set in a t-frame (W, {Ra}aeMT (@) W) then there exists a downwards directed family
{Aj :i € 1} of clopen subsets (from W) such that A = ()¢, Ai.

Proof. SinceAis closed A = (). Ai forafamily of clopen set$A : i € J}. Sinceany finite intersection of clopen
sds is clopen, we can close that family under finite intersections. The resulting fefilyi € |} is now dowwards
directed andA = ", Ai. O

Lemmab3. If § = (W, {RelaeMT (1) W) is a differentiated and compact general z-frame, then the following are
equivalent for any n-ary term 8 € PMT (z, §):

(i) Rgistight.
(i) (Esakia’'slemma) For any downwards directed family {X1j x - -- x Xpiliel Of closed subsets of W™,

(B Xais ., Xni)} = (B) (ﬂxli,...ﬂxm>.

i€l i€l iel
(iii) For every x € W the set Rg(x) is closed.

Proof. Again, the non-trivial case is(8) > 0.

(i) = (iii): Lemma 50

(iii) = (ii): The inclusion> follows from the monotonicity of ).

For the conerse inclusion, lex € ()i, {(8)(X1i, ..., Xni)}. Then, due to the downwards directedness, the family
of closed sets

Rg(X) U {X1j x -+ x Xniliel

has the FIP, so it has a non-empty intersection, i.e. there is a tuple.., xn) suchthat Rgxxz...x, and
(X1, .o, Xn) € e {Xgi x -+ X Xni} =Nier X2i X - X Nigr Xni-

Thereforex € (B)((Nic; X1is---»Nier Xni)-

(if) = (i): The implication from left to right in the tightness condition feg holds by definition. For the converse,
it suffices to note that by (ii):

(UBYKXL, .. Xn)IX1, .., Xn € W A X1 € X1, ..., Xn € Xn)
= <ﬂ>({xl}’ DR {Xn})~ D
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Lemma 54. In every descriptive r-frame §, each of the conditions of Lemma 53 holdsfor everyterm 8 € PMT (z, §).

Proof. We prove by induction ong that Esakia’s lemma holds for evep. For the bais terms tghtness holds
by definition, and hence the claim holds hgmma 53 The inductive step for8 = a(ao,...,am) iS quite
straightforward. Finally, suppose the claim holds for same- 1)-ary termg € PMT(z, §) and letZ be a closed set
in T(Z). Then

(B(2) <ﬂ xli,...ﬂxm)

iel iel
= (B) (ﬂxli,...,ﬂxmﬂz>
iel iel iel
=B X1i..... Xni. 2)
iel
= B@)(Xai..... Xn). O
i€l
Lemmabb. In any descriptive t-frame §F, for every positive F-parametrized formula A(pi,..., pn) the

corresponding operator in § A X1 ... Xn. A(Xy, ..., Xp) satisfies Esakia’slemma: for any downwards directed family
of closed sets {X1j x - -+ x Xpiliel,

fﬁmxﬁ“”,mﬂ}=A((]xm.”4jxm).

iel iel iel
In particular, every positive §-parametrized formula A(p1, ..., pn) isclosedin §.

Proof. First, note that every positivg-parametrized formula is equivalent to aiF-parametrized formula built from
propositional variables and modal comgtaby applying onlypolyadic boxes and polyadtiamonds with terms from
PMT(z, ).

We shall prove the statement by induction @y assuming it is constructed as above. For propositional variables
and modal constants the claim is trivial. Rg) (X1, ..., X,) the inductive step is the Esakia’s lemma and follows
fromLemma 54

Finally, for [8](X1, ..., X,) the inductive step follows from the identity

[ﬁ](ﬂxli,...,ﬂxm>= ) [B1Xa. - Xniy)

iel iel i1€l,....inel

which easily follows from the definitiof8](X4, ..., Xn), combined with the equality

[ BIXaiy, -, Xnig) = [(JIBIKai -, Xni)

iLel,..., inel iel

which follows from the devnward dilectedness. O

6. Canonicity of theinductive formulae

6.1. Local d-persistence via closed valuations

Definition 56. A formula A € L, islocally d-persistent if for every descriptive general-frameg = (F, W), where
F= <W’ {Rﬂl}leMT(r)>, andw e W,

3wk Aiff F,w = A

Theorem 57. Every inductive formulais locally d-persistent.
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Proof. We will follow the scheme of the proof of canonicity of Sahlqvist formulae presented],ind which the
reader is referred for those technical details which would not differ in the more general case presented here.
Again, as in the pvious proof, let

A=[a](—=H1,...,—=Hp, Q1,..., Qr)

be a pre-processed inductive formula, where

Hj = [8j1@@j, =Pj1(@1, ..., dj-1), .. -, =Pjn; (@1, . . ., dj-1))

for Pj1, ..., Pjn; positive,j = 1, ...n. Letagain the dependency digraphAtieternine a partial order on the heads,
extended to a linear ordering.

Take any éscriptive general framg = (F,W) suchthat§ = A. As we showedri theproof of Theorem 37if
F,Vm = Afor the minimal valuationvy,, defined as éfore, therf,V = A for any valudion V, so it suffces to prove
thatF,Vm = A. Theproblem is thathe minimal valuation need not be admissible in §. However, it will suffice to
show the following:

(C1) Vn is closed i.e. an intersection of admissible valuations.
(C2) For every closed valuatids in § and a positive formul®, U (P) = () cy V (P) where the intersection ranges
over all admisdile valuations/ which extendJ. B

For (C1), wecan restrict our consideration to the variables occurring in.e. the asential variableqy, . . ., gn.
We shall pove by~<-induction that every valuation

nj
3y (Rﬂ,- Yizuji...Ujn, A _/\ST(Pji)(Vm(qu)/qu)(uji)> }

i=1

Vm(@j) = {Z

is of the type Rg(yj) for someg € PMT(z, §), andhence, bjemma 54is closed irg.

For the<-minimal variables the claim is immediate, becatissr respective essentially positive boxes are unary
boxes.

Now suppose the claim holds for all predeces&y®f the varable p = gj, i.e. for everyqgi € G, Vim(q) =
R,gqi (yi) for someBy € PMT(z, §), andhence is closed.

Letnj = nand denot€; = Pji (Vm(@p)) fori =1,...,n. Note that eaclt; is closed by the inductive hypothesis
andLemma 55 sincePj; is positive.

Consider tleunary termy = B(Cy) ... (C2)(C1) € PMT(z, §), i.e. such thaty ](A) = [B](A, Cy,...,Cp) . Then
foranyz € W, R, yz holds iff there exist, . .., un suchthatRgyzu; .. .uy andu;j € Cj fori =1,..., n. Therdore
Vim(Pj) = Ry (¥j).

(C2) follows fromLemma 55

Now, to complete the proof, let us see WhyVy, = A. As in theproof of 37, let ST(A) = VYV Q(ANT(Q) —
POS(Q)). Fix the parameterg consistently withANT (otherwise the formula turns vacuously true) and take any
admissible valuatioty defined inductively orc and extendind/m. It will renderANT true, hencéOStrue, because
§ E A. Then, by (C2),POSwill be true forVy,. O

Finally, we note that the local d-persistence and canonicity resultdoes not extendto all regular formulae. In
particular, bothGL andIND are known not to be canonical. In fact, there are regular formulae which are not even
frame-complete. An example (sed])[is the formula[1]([1]g <> ) — [1]q which is weaker thaiGL but has the
same dhss of frames, and therefore is incomplete. That formula can be pre-processed into a regular formula, too:

(11([1]lg < 9) — [1lg = —~[1](([1lg — 9) A (@ — [1]9)) Vv [1]q
= —~([1I([1lg — g9) A [11(q — [1]q)) V [1]q
= -[1(-[llgva) v =[1](=q V [1q) Vv [1]q = [i3](—[a1](—=[1]q, ), =[e2](—q, ), [1]q),
wherea1 = 1o, a2 = 12(11, 1).

Remark 58. We emphasize that the minimal valuations for all essential variables in an inductive formula are of
the ype Rg(y) = (ﬂ‘l){y}, whereg is an odinary modal term in the case of a simple regular formula, and an
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appropriately parametrized one in the general case of an inductive formula. The closedness of these valuations woul
therefore follow in anygeneral frame where the singletons are closed 6etl. descriptive, discrete, and Kripke
frames) as soon as the operal(qﬂ‘sl) are poved to be cleed there.

The following notion is the central one of the present study.

Definition 59. A formula A € £ is anelementary canonical formulaif it is locally first-order definable and locally
d-persktent.

The class of elementary canonical formulae will be denoteB®F. Some omments:

e The crucial property of an elementary canonical formula is the (local) d-persistence which implies its canonicity,
i.e. validity in every canonical frame of a logic containing the formula as an axiom. Therefore, every logic
axiomatized with elementary canonical formulae is complete. However, we note that this notion will have to change
accordingly for extended mobtlanguages with nominals, or for modal loginswvhich special additional rules of
inference are allowed, that alter the construttibcanonical model and the notion of canonicity.

e The (local) first-order definability is nice but not really essential. In fact, one of the ultimate goals of this study is
to extend geeral completeness results to classes of formulaielware not necessarily $i-arder definable. This
issue will be treated in more detail in sequels to this paper.

e Locality is not essential either, but it is useful and natural, given the local nature of the notion of truth in modal
logic. Moreover, as noted irf], over trandgtive frames local and global first-order definability coincide.

In this paper, by Sahlqvist theorent for a set of formulaeS we will mean the claim that all formulae fro®are
elementary canonical in the respective sense of that term.

Corollary 60 (Sahlgvist Theoremfor I). Every inductive formula is elementary and canonical.
7. Theinductive formulae extend essentially the Sahlgvist formulae

As already noted, from ayatactical perspective considerably extend$RV. It is not clear yet, though, whether
every fomula froml is not semantically equivalent to a formula fromdRV. This question is pdicularly interesting
in the cases of the classical modal and temporal languages. We will show further that, up to axiomatic equivalence
(and hence frame-equivalence), and in tewhlocdly defined first-ader properties does not extend semantically
dRV in the classicalemporal language. On the other hand, here we will show thettendsessentially the Sahlqvist
formulae inthe classicamodal language (and in fact, in any non-reversive language). More specifically, we will show
that the formulaD,, defined inSection 3.4is not frame equivalent (and hencenot semantically equivalent) to any
Sahlgvist formula in the classical modal language. For that we will have to determine a suitable semantic property of
the latter set which is not satisfied B.

Let us denote the classical modal language&hy We begn by recallingProposition 2Gor the case ofn,: every
classical Sahlqgvist formula is semantically equivalent to a conjunction of simple regular formulas ihsuffices,
therefore & show hat D, cannot be locally (and hence semantically) equivalent to a conjunction of simple regular
formulas.

Next, wenote that, as evident from the proof teorem 37and noted irRemark 58the mnimal valuations for
all essential variables in a simple regular formula are of the fgpg/) = (ﬁ*l) {y}, wherep is a nodal term. All
modal terms inC, are, up to equivalence of their associated relations, disjunctions of composifiorigerex is the
basic unary modal term corresponding tofherhus, all minimal valuations in a fran{&V, R) for essential variables
of a simple regular formula igy, are finite unions of sets of the ty€'(y); the mhimal valuations for the inessential
variables & dther o or W. Thisobservation promis the following definitions.

Definition 61. A gereral frame(W, R, W) is ampleif for everyw € W andn e N, R"(w) = {u | wR"U} ¢ W.
Note that every ample general frame is discrete Rw) = {w}.

Definition 62. A modal formulaA is locally a-persistent if for every ample general framg = (F, W), where
F = (W, R),andw € W,

SwEA iff  FowgkA
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A modal formulaA is a-per sistent if for every ample general franig = (F, W), whereF = (W, R),
FEA iff FEA.
Clearly, locala-persistence impliea-persistence.
Proposition 63. Every simple regular formulain Ln, islocally a-persistent.

Proof. According to theobservations above, the minimal valuations for all variables in a simple regular formula are
admissible in every ample general frarii@e chim now follows from the fact the truth of a simple regular formula at
a datein a Kripke frame under the minimal valuation implies validity at that state.

Corollary 64. Every conjunction of simple regular formulas with pairwise digoint sets of variables is locally
a-persistent.

Proposition 65. The formula Do = p A O(Op — 0q) — OUOq is not frame-equivalent to any classical Sahlqvist
formula.

Proof. Suppose the contrary. Thddy, is frame equivalent ta conjunction of simple regular formulas, which can
beassumed with pairwise disjoint sets of variables (otherwise, we apply suitable substitutions to the conjuncts, whicl
do not affect the frame equivalence). Since bBthand A are canonical, they axiomatize the same modal logic,
hence they must be valid in the same general frames. So, to reach a contradiction, it suffices to sbovisthat
a-persistent. With that aim we are going to define an ample general faméV, R, W) as follows:

e LetY ={yo,v1,....}, Z = {20,271, ....},Un = {Uno, Un1, . ...}, for eachn € N, be pairwise disjoint countably
infinite sets. Let) = (J{Un [neN}andx ¢ YUZ UU.PutW ={x}uYU ZUU.
e Ris definedpointwise as follows:
Rx)=YUZUU;
R(yi) = Uj U {x}, for eachi € N;
R@z) =1{z}
R(Uik) = {uik, z }.
o To defineW we firstintroduce some terminology and notation:
For everyl € N we denoteU; = J{U; |i € I}.
Two subsetsX; and X2 of W will be calledalmost equal, denotedX; ~; X, if their synmetric difference is
finite. Note that~ ¢ is an equivalence relation ga(W).
Now, consider the followig family of subsets ofVv:
Wo = {Y}U{U, | | is afinitesubset ofN} U
{ZUU, | Jis a co-finitesubset ofN} U
{YUU | | is afinitesubset ofN} U
{YUZUUj | Jis aco-finitesubset ofN}.

Finally, we defineW to consist of all subsets & which are almost@ual to some set frori.
Lemma66. § = (W, R, W) isan ample general frame.

Proof. First, note that almost equality iR(W) is a angruence with respect to (finite) unions and complements.
Besides,Wq containsg (takeUg) andY U Z U U and is closed under finite unions and relative complements in
Y UZ UU, herceW is closed under finite unions and complements (i.e. under all Booleans). It remains to show that
W is closed under the modal operafdon (W, R).

Recall thatdX = {w € W | R(w) € X}. Hereafter in the proof we agree to denote Ibfinite subsets oN, and
by J co-finite subsets aXl.

We oonsider all cases:

o If X=¢ VY, X~;Uj,orX~f;YUU, thenOX ~; @;



V. Goranko, D. Vakarelov / Annals of Pure and Applied Logic 141 (2006) 180-217 203

o lf X~¢f ZUUjorX ~f YUZUUj;thenOX ~¢ Y U Z UUj for some co-finite subsel’ of N.

Thus,W is closed under all operators. An immediate inspection showsgtisaample: first, note that it is discrete;
also, evenyR(w) is inW. Further for anym > 0, RZ™1(x) = R(x) = YUZUU andR?™(x) = R%(x) = {x}UZUU;
R(Yi) = {X}UU;, R"2(y;) = R™(x); RE™2(y;) = YUZUU, RR™3(y;) = (x}UZUU; R™(uj) = {uik, zi};
R™1(z) = {z}. All these sets are /. O

Now, to complete the proof of the theorem, it remains to showghkab,, while (W, R) , x 2 D».

First, we showg, x &= D2. We will reason set-theoretically, rather than semantically, i.e. treating formulae
as sets. Supposg, x=P A O@QP — 0Q) for someP,Q € W. Thenx € P, andR(x) € ¢P — 0OQ.
Besides,Y C O{x} € ¢OP (since{x} € P),andY C R(Xx),soY <€ OP — 0OQ. Herce,Y C 0OQ,
i.,e. RIY] = U{R(y) | y € Y} = U C Q. TherdoreQ ~f ZUUjorQ ~5 YU Z U Uj; for some co-finite
J C N,herteQNZ # @. Letz e QN Z. Thenz e OOQ (becausdR?(z) = {z}), sox € OOOQ, i.e.F, X = ¢0OQ.
Thus,3, X = Da.

Now, checking tha§, yi = D2: Let§,yi = P AOOP — OQ) for someP, Q € W. ThenR(y;) € ¢P — 0OQ,
in particularx € P — 0OQ, butx € ¢P sincexRy;, sox € 0Q, i.e. R(x) € Q,i.,e.YU ZUU C Q. But then
$, Ui = 00Q, so03g, yi = o00Q.

Then, checking, uik = D2: LetF, uik = P AOQP — 0OQ) for someP, Q € W. ThenR(ujx) € OP — 0Q,
in particularuix € 0P — 0OQ, butujx € 0P sinceuijk Rujk, soujk € 0Q, i.e. R(ujk) € Q, i.e.z € Q. But then
3§,z = 00Q, soF, Uik = 000Q.

Similarly, §, zi = Da.

On the other hand, the locfilst-order equivalent oDy :

FO(D2) = 3y(Rxy A Vz(R?yz — Ju(Rxu A Rux A Ruz)))

fails at X because every successorjofcan see in two steps an elementdfand ro elementz € Z satisfies
Ju(Rxu A Rux A Ruz).
Thus, D is not a-persistent. O

Corollary 67. The frame condition defined by the inductive formula D5 is not definable by any classical Sahlqvist
formula.

8. Elementary canonical formulaein reversive polyadic modal languages

In this section we introduce extensioofsbasic polyadic modal languages witversive moddities, generalizing
the idea of how the temporal language extends the basic modal languag2f{dee fnoredetals). We will establish
several technical results in such extensions, which will shed extra light on the topological nature of the inductive
formulae and will eventually lead to a uniform proof of both parts of Sahlgvist theoreimhich will not hinge as
directly on the syntactic shape of the formulae, as the fisbipgiven earlier. First, wavill prove that all diamond
operators in the reversive extension of a polyadic language abbsesl operators on descriptive frames in the basic
language. Then, we will show that all inductive formulae eree local validity in descriptive frames when extending
the range of the valuations from admissible to closed sets. Finally, we will give an effective procedure of transforming
inductive formulas in any polyadic language to primitive regular formulae in the reversive extension preserving their
important properties, and will thus establish again the Sahlqvist theordnirfarbitrary polyadic languages. At the
end of the section we will discuss some consequences and conjectures.

8.1. Reversive extensions and reversive polyadic languages

Definition 68. Thereversiveextension L., of a (purely) modal polyadic languadg is the (purely) modal language
obtained by adding for every-ary modal termx € MT (7) new diginctinversetermsa™?, ..., ™", such hata™

and;‘}—j are different whenever andg are different. The set of terms iy, will be denoted byM T (zr).

The semantics of ;; is defiredoverreversive extensions of -frames. These are frames for the language of the
reversive extension, in which for evewye MT (7) andk = 1, ..., n the relationR, -« is defined as follows:

XR,-kY1...Yk---¥n iff YkRaY1..-X. .. ¥n.
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Alternatively, we can think thaf;; is interpreted on standardframes by extending the interpretation®f to the
inverse terms as above.

Two modal terms inC,, aresemantically equivalent if they are interpreted ithe same relation in everyframe.

For instance, ifa andp are unary terms thefw(8)) ! andg—1(«~1) are semantically equivalent.

Note that not every term in a reversive extension has g&egven up to semantic equivalence, because inverses of
composed terms cannot always be expressed in terms gfasitions of the inverses of the components. For instance,
the inverses—! of § = y (B, o) whereq is a unary term ang@, y are binary terms, is not expressible in terms of
a, B, y and their inverses only, unless transposers are allowed in the language.

Still, by iterating the construction of a reversivetension, any (purely) odal polyadic languag#€, can be
extended to a languagé; ;) in which every term has all its inverses. More precisély,) is obtained by extending
the definition of modal terms id, with the following clause:

Definition 69. (MT iv) If n > 0,k < n ande is ann-ary modal term then—K is ann-ary modal term, too.

The language’; ;) will be called thecompletely reversive extension of £.. Such languages will be called
reversive languages.
The notion of frame fol; ;) extends accordingly, via the clause:

1
Ryk = {(X0, X1, - - -y Xke1s Xks Xkt1, - - - Xn) © W
(st Xls ceey kal» XO» Xk+l? ey Xn) [S R)t}'

The semantics of; ;) extends accordingly.

Thus,R,-« is obtained fromR, by transposing the 0-th and tketh arguments. In particular, for a unary tesm
R,-1 is the usual inverse af, as exgcted.

We can relax a bit the notion of a reversive language, by only requiring that with evary modal termx the
language contains a tersemantically equivalent to ¥ for eachk < n. Thus, e.g. the classical tense language is
regarded as a reversive language.

We note that reversive polyadic languages are closely related to (yet, different from) Venersatde languages
introduced in #7], and in fact have essentially the same exprespmser. For more details on the relations and
comparison between these, s&@||

The minimal normal modal logik ;) of a reversive polyadic languag . is axiomatized ovek’; ) by adding
the followingaxiom schemata for the inverse modalities :

Rl A — [a](_'Bl» ceey _'kals Ck» _'Bk+1» ceey _'Bn)v
whereCy = (@ %) (By, ..., Bc_1, A, Bisd, - .., Bn).
R2 [ .., A ..) o [a]..., A, ..).

In particular, in a standard temporal language axiom R1 becomes
A— [o] <a71> A

From thegs axiboms one can easily derive:

R3 (&%) (=By,..., ~Bx_1, Dk, =Bks1, ..., =Bn) = A,
whereDy = [«](By, ..., Bk-1, A, Bk+1, ..., Bn).

8.2. Computing first-order equivalents of inductive formulae in reversive languages:. Examples

Toillustrate some ideas in what follows, we will compute again the first-order equivalentsBk#meples 3zand
35, thistime in purely algebraic manner, and by considering the formulae as set-theoretic operators in the reversiv
extensions of their languages.

Example 70. Consider again the inductive formula

Do =pA0O@p— Og) — OOOQ.
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Let w be a stée in a Kripke frameF with a domainW. Then he minimal valuation forp at w is P(w) = {w},
hence the minimal valuation faris the minimal subse®(w) of W suchthatw € O(O{w} — OQ(w)) iff ¢~ Hw} e
Ofw} — 0Q(w) iff 0~ Hw}No{w} € OQ(w) iff 0~1(O™HwiNo{w})) € Q(w). Thus,Q(w) = OO HwiNo{w))
and the (set-theoretic record of the) local first-order equivaleBbadt w is

w € 000010 Hw) N Ofw)).
Example 71. Now, consider the inductive formula

D3 = [3](—[1]p, =[2](=p, Q). (D[1]q)

and again, letv be a stée in a Kripke frameF for the respective language, with a dom¥h Let w Rsuiuaus. First,
the minimal valuationP = P(w, us, U2, ug) for p at w associated withu1, up, uz is determined by the condition
up € [1]P, i.e.(17Y){u1} € P. Herce,

P(w, U1, Uz, Ug) = <1_1> {us}.

Then the minimal valuation fog is the minimal subsetQ = Q(w,us, Uz, u3z) of W suchthat u, €
[2](=P(w, us, uz, uz), Q), herce

(272) (P(w, ug, uz, u3), {uz}) € (272) (P(w, ug, Uz, U3), [2](=P(w, Uz, Uz, uz), Q)) € Q (using monotonicity of
(2*2) and the set-theoretic analogtbg reversive aom R3). Thus,

QEw, u, Uz, uy) = (272) ({17%) {ua}, (uz})

Then, the local first-order equivalent b at w in set-theoretic terms is
w e (3] (uz, vz, ()12 {272) ({17 o). (2 ) ).
8.3. Closedness of the inverse operatorsin basic descriptive frames

Here we consider ndal formulae as set-theoretical operators over general frames. In particular, we will consider a
more general nation of uniform substitution in formulae, viz. substitutionssef-theoretic operatorsfor propositional
variables. In the particular case where these operators are defined in terms of formulae we talgymthotit
substitutions; more specifically, given a modal similarity type substitution of formulae fronC, (resp.L.r) for
variables vill be called ar-substitution (resp.zr-substitution).

Let r be any modal similaty type, and letC,, be the reversive extension of the langu@geWe recall that, since
everyt-frame uniquely determines its reversive extension, all formulae f£gntan be interpreted in-frames. The
situation is different if we want to interpret formulae frofp; in generalt-frames because these need not be closed
under the inverse modal operators. Still, we can @efalidity (local or global) of a formula front;; in a generat-
frameg as validity (local or global) in every model over the underlyirframe assigning to the variables admissible
setsfrom §. This will be made precise further.

Theorem 72. Let o be an n-ary modal termin the language £, k < n and consider o X asamodal termin £, . Let

F = (W, {Ry}aeMT(r), W) be a descriptive t-frame. Then (¢ ) isa closed operator in T (§).

Proof. Given a tiple of closed set6Ay, ..., Ap) in F we must show tha(bfk) (A1, ..., An) isaclosed setitF. For
that we will prove the equality

@) (@ ) (A, ..., A =N(BeW: (e ) (As..., Ay C B}.

The inclusion(<) is trivial.

For (2), suppose by contrapositicthat for somexg € W we have
(2) x0 ¢ (™) (A, ..., An).

From (2) we obtain
(3) RyK(x0) N AL x -+ x Ay = 0.

Now, from (3)we obtain
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(@) Vy1...Vyn((Y1, ..., ¥n) € A1 x -+ X Aqg = (V1,...,¥n) ¢ R(;k(xo)), which isequivalent to
B) Vy1...¥Yn((Y1, ..., ¥n) € AL X -+ X Aqp = =Ry YkY1...X0-..Yn), (X0 is in thek-th postion aftery;).
By the tightness condition fdr,, R, (Yk) is a closed set, so we have (recall the proafefnma 50
(6) Re(Yk) = ({—=(=B1 x --- x —Bpn) : Ry(Yk) € —(—B1 x --- x —Bp), Bi € W}, which isequivalent to
(7) Ru(yk) = ({—=(=B1x --- x —=Bp) : Yk € [¢](B1, ..., Bn), Bi € W}.
Then, from (4) and (7), denoting= (y1, ..., Yn), weobtain
(8) (VY € A x --- x A@EBY ... B)(Yk € [@](B], ..., BY) & (Y1, ..., X0, ..., ¥n) ¢ —(=B) x --- x =B} x
. x —BY).
Equivalently:
(9) (VY e Arx - x Ap@EB]...BY e W)(yk € [@l(B],.... B & y1 ¢ B],.... X0 ¢ B/, ..., yn ¢ BY).

From (9) weobtain the following inclusion:

(10) Ax x --- x An S U{=B] x -+ x [@](B],...,B) x --- x =B : Y€ Ay x --- x An,Xo & B, & B/ € W},
where[«](BY, ..., BY) is thek-th component of the product.

Note that the seA; x --- x Ap is a closed set because &l are closed. The sets in the union from the
right hand side of (10) are open because they are products of elem@fita/bich are cbpen. So, (10) says that
the closed sef\; x --- x A, is covered by a familyf open sets. Sincé& (F) is a compact topological space,
there exists a finite subcover 8f x --- x Ay, herce there exists a finite subset (of indic@é_)x cee X A’n of
A1 x -+ x Ap suchthat 7 7 7

(11) A x - x A S UI=B! x - x [@](B],...,BY) x --- x =B} :y € A] x --- x A & Bi € W).
By the monotonicity and the distributivity o(bﬁk) over (finte) unions, from (11) we obtain:

(12) @) (A1, ..., A < U H(a‘k)(—-B{,...,[a](By,..., BY).....—B): Y€ A x --- x Aj&Bj € W}.
Applying the inclusion

(13) (@) (=By, ..., [@](B1, ..., Bk, ..., Bn), ..., —~Bn) € By,
where[a](. . .) is in thek-th postion (axiom R1), we obtain

(14) (@ ) (Ar, ..., A S UIB! Y€ A x--- x A & B € W} = Bo.
Since By is a finite unon of elements fronW it is itself an element ofW. But we have thatxy ¢ Blf for all
y € A1 x --- x An. From here webtain thatxg ¢ Bp.

(15) Thus we have founBg € W suchthat(a‘k) (Ag, ..., Ay C Bgandxg ¢ Bo.
From (15) we obtain

(16)xo ¢ N {BeW:(a ) (As, ..., An) S B}.

By contraposition we obtain (1), which completes the proafl
9. Persistence of inductive formulaein closed extensions of descriptive frames

Recall that the minimal valuaiis for the variables in inductive formulaeed not be admissible in any descriptive
frame, but they arelosed, i.e. intersections of admissible valuations there, and that accounts for the canonicity of
inductive formulae. In this section we will revisit and analyze deeper this property of inductive formulae.

9.1. Closed extensions of general frames

Definition 73. Let § = (W, {Ry}aeMT(1)> W) be a generat-frame. Theclosed extension of § is the structure
C@)= (W, {Ru}aeMmT(r), C(W)) whereC(W) is the st of all closed sets of the topolodyF).

Note thatC(J) is not (necessarily) a general-frame sinceC(W) is not closed (at least) under negations.
Nonetheless, we willlefine local validity of a modal formula frorfi;, in C(F), using the dea described above.

Definition 74. Given a gaeralt-frameg = (W, {RelaeMT () W), amode over C(g) is every Kripke model over
(W, {Ra}aemT (r)) With & valuation of the vdables ranging ove€(W).

Definition 75. Given a formulaA € £, a geeralt-frameF, andw € W, we saythat A is (locally) valid at w in
§, denoted§, w E A, if Ais true atw in every nodel overg. Resgctively, we say thaA is (locally) valid at w in
C(%), denotedC(F), w E A, if Aistrue atw in every nodel overC(g).
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Definition 76. A subditution o is closed in a general t-frame § if for every vaiable p, o (p) is a closed operator in
T@®.

Lemma 77. Local validity in a closed extension of a general z-frame § is preserved under Modus Ponens and closed
substitutionsin §.

Proof. The claim for Modus Ponens is straightforwardr Floe preservation under closed substitutions et
(W, {Ry}aemT (1), W) be a generat-frame,o bea dosed substitution i and M = (W, {Ry}aemT(x). V) be any
model ovelC(F). ThenV assigns sets fro@ (W) to all variables, hence for every varialpeo (p) is a set inC(W),
too, because is a closed operator. Therefore, the effectafan be simulated by a valuati®y in C(F), resgectively
defining a modeM,, overC(gJ), such hat M, w = o (A) iff M., w &= Aforeveryw € W. Thus,C(§),w = A
impliesC(®),w =o(A). O

9.2. Closure-persistence of inductive formulae

Definition 78. A formula A € L. is locally closure-persistent if for every descriptive r-frame § =
(W, {Ry}aemT (1), W) andw € W,

FwEA iff C®,wkE= A
Theorem 79. Every inductive formulain £ islocally closure-persistent.®

Proof. Let A(ps, ..., pn) be an inductive formula angl = (W, {RelaeMT () W) be a descriptive -frame. Without
loss of generality we can assume thahas already been pre-processed, so all variablés ane essential and all
essential variables are different, i&= [a](—H41, ..., =Hn, Q1, ..., Q) whereHy, ..., H, are headed boxes with
(different) headss, ..., pn andQs, ..., Q are positive formulae. Furthermomge can assume that the dependency
graph of A generates the linear orderipg < - -- < py and that

Hi = [B1]1(p1)
and
Hk = [Bk](Px, =Pxa(pP1, -, Pk=1)s - - =P (P2, - -+, Pk—1))

wherePyy, ..., Pq, are positive, fok = 2, ...n.
The claim of the theorem can be rephrased as

(VAL ... P) : P1. ... Pn € W)
= (A(PL. ... Pn) : PL.-... Pn € C(W)}.
We will need the following main lemma:
Lemma80. Letk, 1 < k < n, befixed. Then:
(AP ... Pn) : P1... Pk € C(W), k... pn € W)
= (AL, -, Pn) s P1-.. Pk € C(W), Prst .- Pn € W),

Proof. Note that the inclusiom is straightforward becaus®y < C(W). For the converse inclusion, suppose that for
somex € W,

X & [ J(A(PL ... Pn) : P1... Pk € C(W), Prs1... pn € B(W)}.
Then

X¢A(pI»v pzv Pk+1, ..., pn)

6 The retree has noted that the approach followed here is close in spigittd] and [20].
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forsomepy, ..., py € C(W) andpk+1. ..., pn € W, so
X ¢ [a](_'Hl’ sy _'Hna Qla D) Ql)(p;]k_a D) p;a pk-‘rl’ DR} pn)a
i.e. there exista, ..., ¥n, Z1, .. ., Z suchthat

(1) ReXy1...YnZ1...2,
) yj € Hj(p}.....ppforl < j <k,

(3) yj € Hj(PL..... PG Pkt -- - P fork+1<j<n,
(4) z ¢ Qi(p3s---» Pgs P2, ---» Pn) forl <i <I.

The formulaHj for k 4+ 1 < j < n has the following form:
[Bj1(Pj» =Pj1(PL. ..., Pk» Pktds - -» Pj—1), = Pji; (P, - o0 Pl Prtds - s Pj-1)).
Herep; € W, herce—p; € W and consequently p;j is a closed element and can be taken as a parameter. Then the
formulaHj can be represented as
—(B;(=pP)) (Pj1(P, - -\ Pfs PkoLs - - - Pj—1). Pji; (P, - -, Pis Pktls - - s Pj=1))s

denoted briefly by-Cj(pj, ..., P, Pk+1. .-, Pj)). Note that eaclCj, k+ 1 < j < n, is apositive paraetized
formula.
Now (3) has the following equivalent formulation

(Ba)yj ¢ Cj(py,---s Pgs Pkl ---» P, K+1<j<n.

Our strategy now is to find an elemepg € W to be substituted in the place pf in (3a), (4) and in (2) foj = k.
Sincepy; is a close subset ofW we have

G)pk=NlaeW:iel}

whereM = {g; € W :i € |} is a downwards directefdmily of clopen sets.

Now substitutep;; from (5) in (3a) and (4). By Esakia’s lemma we get:

Ci(pi,.--» pﬁ_l,ﬂ{qi eW:iel), pkets---, Pj)
=ﬂ{Cj(pI,..., Pi 1, Gis Pklo - P G €W,iel}k+1<j<n.

Then by (3a), for each suchthatk + 1 < j < nthere existsj € | suchthat
(3) yi € Cj(p1.-- - Pr_g: Gsj» Pkts -5 Pj))-

Analogously, we obtain from (4) that:
(4) For everyi suchtlat1<i <1 there existdj € | suchthat

z ¢ Qi(PL. .-, Pi_1: Ois PktLs - -5 Pr).

Now, we define
(6) Pk = (m?:k+1 Os;) N (m==1 Ot )-
Since all elements in this finite intersection are frivinand sinceM is closed under finite intersections we
obtain that
(7) px € M and, consequently, € W.

By (6) and the monotonicity of th€j and Q; we obtain from (3) and (4) that
Yj ¢ Ci(Pi. .., Pr_1. Pks Pks1, - --» Pj—1), K+ 1 < j <n, orequivalently

(3" yj € Hj(PL. ... Pe_1: P Pkt -+ - Pj-1)), K+ 1= j <n,and
(4//) Zl ¢ Ql(p;a» pﬁfl»qtis karl»"'s pn) fOI’lSI Sl

It remains o diminate p; from (2) for j = k. Note hat
Hk = [ﬁk](plts _‘Pkl(p;ﬁ_» ey pkfl)s e _'F)k|k(pI» D) p;—l))
By (7), px € M and hencep; < pk. Then by the monotonicity dffk] we obtain from (2) (forj = k) that
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From (), (2) (forthe cases ¥ j < k — 1), (%), (3’) and (4) we obtain that

X ¢ A(pI»s pifl» pks"'» pn)
for pi, ..., pg_; € C(W)andpy, ..., pp € W. Therdore:

X ¢ [ VAL ... Pn) < PL. -, Pee1 € CW), Pk, ..., Pn € BOW)},
which conpletes the proof of the lemma.O

Now, the claim of the theorem follows immediayt by applying the lemma consecutivelyfo=1,...,n. O
9.3. Transforming an inductive formula into a primitive regular formula

We haveproved in R7] that every inductive formula& in a reversive language can be effectively transformed into
anaxiomatically equivalent primitive regular formula RrA). As we will see in thenext section, both local first-order
definability and local d-persistence of primitive regular formulae are quite easy to establish, which thus yields the
Sahpvist theorem foll in reversive languages. Moreover, the local first-order equivalent of an inductive foAnula
can be computed imnagtely from P(A) as indicated further.

Hereafter,, is an arbitrary, possibly non-reversive polyadic modal language.

Here we replace #haxibmatic equivalence oA and PfA) by a stronger semantic equivalence, defined in terms
of local validity in closed extensions of descriptive frames, applying the results of the previous sections, and thus
extending the Sahlqgvist theorem to arbitrary polyadic languages.

Hereafter we will denote local equivalence between formélaadB in a language’, by A %'T B.

Definition 81. Let A= A(p1, ..., pn) andB = B(qy, ..., gm) be formulae inZ,;. We saythat A andB arelocally
closure-equivalent in L., in symbols A ~¢ B, if for any descriptive or Kripker-frameF = (W, {Ra}aeMT (@), W)
andw € W,

CH,wk=A iff CF),wkB,

m A(plv"'a pn)= m B(qlv"'aqm)'
p1... pneC(W) gz...-OmeC(W)

Clearly, ~¢ is an equivalence relation. Note that the closure equivalence for Kripke frames means simply

T

equivalence with respect to local frame validity.

Lemma 82 (Monotonicity Lemma). Let A, B, C be any modal formulaeand p = pt, ..., p™ be a list of positive
occurrences of a variable p in a formula A. Denote by A(Q/P) the result of the uniform substitution of a formula Q
for the occurrencespin A. Then = B — C impliesi= A(B/p) — A(C/P).

Proof. Easy structural induction on formulael

Lemma83. Let «, 8 be modal terms in L., Qi,..., Qn, be positive formulae from L, not containing
the variable p, and Pi,..., Py be any formulae from L,, positive in p. Then the formula A =
[a]l(=[B]1(p,—Q1,...,—Qn), P1,..., Pyn) islocally closure-equivalent in £, and is locally equivalent in L;; to
Ap = [a](—=P. op(PL), ..., op(Pm)) whereop(p) = (871) (p, Q1. ..., Qn) and op(q) = q for every q # p.
Proof. First, we will prove the locatlosure-equivalence ifi;. We recall the validity of the formulagR1] and[ R3]
in L., listed inSection 8.1

Let F = (W, {RalaeMT (@), W) be any descriptive-frame andw € W. SupposeC(F), w = A and substitute

(B7Y)(p, Q1,.... Qn) for pin A. SinceQq, ..., Q are positive(8~1) (p, Q1. ..., Qn) is closed, byrheorem 72
Then, byLemma 77Ave obtain

), w = Lol (=181 ((B7) (P. Qu.- . Qu). =Qu, .. =Qn) . 7p(PD), .. p(Pm)) )
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From the validity of R1 wenbtain by contraposition:

=181 ((B7*) (P, Q1.+ Q. =Qu ... =Qn) — —p.
Now, from (*) by the monotonicity emma 82and Modus Ponens we get
C(F), w k= [a](=p, op(P1), ..., 0p(Pm)).

Conversely, suppos€(F), w = [a]l(—=p, op(P1), ..., op(Pm)).

Let Q = (B~1 ([B1(P, =Q1. ..., —~Qn). Q1. ..., Qn). SinceQx, ..., Q, are closed (being positive), we claim
that the formuldg](p, —Q1, ..., —=Qn) is closed inF. Indeed, for any closed sets assigned to the variables occurring
in Q1, ..., Qn, the respctive value®y, ..., Q, are closed sets, and therefore the posifirparametrized formula
[B(Qn) ... (Qn](p) defines a closed operator hymma 55 Then, substituting[8](p, = Q1, ..., =Qn) for p, by
Lemma 77we obtain

C(F), w = [al(=IBI(P, =Q1, ..., =Qn), PL(Q/P), ..., Pm(Q/P)). (**)
Then, from the validity of R2, we obtain

= (71 (B1(P.~Q1, ... ~Qn). Qu..... Q) > . ie. = Q = p,
whence, by the Monotonicityemma 82

F [a](=[B1(p, =Q1, ..., =Qn), PL(Q/P), ..., Pm(Q/P))
— [a](=[B1(p, ~Q1,...,=Qn), P1, ..., Pm),

henceC(F), w = [a](=[B1(p, =Q1,...,=Qn), P1, ..., Pm) by (**).

The case ofF being a Kipke frame is an easy simplification of the argument above.

The argument for local equivalence i}, is essentially the same, but simpler, because it does not require any
restrictions on the substitutions.0)

The lemma applies likewise when the argumefg](p, —=Q1, ..., —=Qpn) is not in the first position.

Theorem 84. Every inductiveformulain £, can be effectively transformed into a primitive regular formula Pr(A) in

Ly, suchthat A~C Pr(A) and A~ ., Pr(A).

Proof. Let A = [a](—H1, ..., —Hpn, P1, ..., Px) be apre-processed inductive formula with essentially positive boxes
Hi, ..., Hy and different heads resq, . . ., On.
Let the dependency digraph ok determine a precedence order onstheariables, extended to a linear

ordering < suchthatgg < --- < qgn. We transform A into PrA) through a sequence of intermediate
formulae A = Aj,...,Ay = Pr(A) obtained by successive replacement of all essentially positive
boxes by variables, one by one inductively en using Lemma83 We have to she that he lemma
will remain applicable throughout that process. Indeed, we can show inductivelyj oa= 1,...,n
that the formulaA; will have the form [a](—|q1,...,ﬂqj,l,ﬂHJf,...,—-Hr’,, P;,...,P) where H/ =
[Bi1(di, =Qi1(01, ..., dj-1), ..., —Qin; (A1, ..., gj—1)) for some positive formula®is, ..., Qin;. Assuming this,

we note thatQjay, ..., Qijn; do not containg; while all ﬁHJfH, . ..,—-Hr’,, Pi...., P; are positive ingj, herce

4

" ” " . .
j+10---» ~Hn, Pp..... B which again

Lemma 83applies to—-ij in Aj, so Aj;1 = [el(—0y,...,—qj, —H
satisfies the guirements of the lemma.

In the long run we obtain the primitive regular formula
Pr(A) == An == [a](_'qla D) _'qnv Dla D) Dk)
whereDy, ..., Dg are positive formulae. Bemma 83 A ~¢ Pr(A). O

In particular, every formula in a reversive language can be effectively transformed into a suitably equivalent
primitive regular formula RrA) in the same language. Furthermore, note that®rhas the same variables as the
pre-processed inductive formufa
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Example 85. Consider the inductive formula

A1, G2) = [e](—[BlaL, ~[y1(=Q(a), d2), P(q1, ).

The precedence orderdg < g2 and we transformA(qy, g2) in two steps. The first step is to substitl(JﬂETl) gz for
01, and afte that to eplace~[8](8~1) a1 by —qs . The resit is:

Pa(@. ) = o] (= =v] (-Q ({8 o) . 2) . P (A7) aw. 2) ) -

The second step is to substitdte2) (Q (8~ 1) , &) for gz (herey 2 is taken because is the secondrgument

in =[y1(=Q((87)a1) . &2)), and after that to replacely] (—=Q ((8~*)a1) . (v ~2) (Q (7)) . d2)) by —ap. The
result is the primitive regular formula

PI(A) (A1, G) = [@](~az, =2, P ({8 aa. {» ) (Q((A ) an) . @2)) -

10. Inductive formulae and Sahlqgvist theorem in languageswith nominals

10.1. Adding nominals and universal modality to purely modal languages

Nominals(ornamesin [18]) are a special sort of propositional variabin modal languages which can only be true
in asingle possible world, i.e. their valuations are singletons. Adding nominals extends considerably the expressive
power of the modal language, while generally pregng its tractability and other good features (S8 [

In order for nominals to work well in the language, weed an additional mechanism which allows references
(access) to the state named by a nominal from amyelin the model. Such a mechanism is e.g. uheversal
modality [u], the sematics of which in ar—frame(W, {Ra}aeMT(,)) is given byR, = W2

Given a purely modal polyadic languagé., we deote by L7 its extension with countably many nominals
C1, C2, ..., andby £ the extesionof £ with [u].

Henceforth by ‘variable’ we will mean an ordinary profiamal variable, not a nominal. The definition of formulae
extends accordingly, adding the clauseat every nominal is a formula, and extending the set of modal terms as
described below.

Definition 86. A formula of £%" is pureif it does not contain propositional variables.
Now the definition of modal terms %" extends the basic oneith the clause:
e Every pure formula is a 0-ary modal term,

i.e. modal terms can be parametrized with pure formulaat Tlause essentially does not extend the expressiveness
of the purely modal languages, but gives them more fléxiand eventually enables us extend considerably the
se of inductive formulae in languages with nominals at no extra cost.

Further, the definition of a model accoarfor the restriction on the nominals: aft-"-model is a structure
M = (F,V) whereF is a L;-frame andV is a valuation for the propositionabviables and the nominals such
thatV (c) for any nominak is a singleton. To simplify notation we shall writé(c) = w instead offw}. Then:

M,wkEc iff V() =w.
Finally, the standard translati®T extends by

ST(Gi) = (X =Yi),
whereys, Yo, ... is a string of reserved variablassociated with the nominads, c, . . ..
Proposition 87. Every pureformulaislocally first-order definable.

Proof. The pure formulaA(cy, ..., ¢y), wherecy, ..., ¢, are all nominals occurring i, locdly determines the
conditionFO(A, X) = Vy1,...,VyaST(A). O
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For conplete axiomatization of the basic normal lodi&"" of £Y" see P7]. In particular, that axiomatization
involves an ‘unorthodox’ rule of inference forcing every state of a model to be named by a nominal. The notion
of ‘canonical model’ changes accamdly, but the respective propgrof ‘ discrete canonicity’, se8ection 11still
implies completeness. The following result (s&&]], in which ‘canonical’ refers to discrete-canonical, justifies the
importance of pure formulae as axioms.

Proposition 88. Every extension of " axiomatized over CY:" with pure axiomsis canonical.
10.2. Sahlqvist Theorem for inductive formulae revisited

Let £, be an extension of,, with a denumerable set of nomindlesm(L). If (W, ...} is a frame theNom(W)
denotes the set of all singletofix} : x € W}.

Proposition 89. Let B(q1,...,qn) be a primitive regular formula in £, and § = (W, {Ra}aeMT(,),W) be a
differentiated general t-frame. Then

ﬂ B(Q1,...,0n) = ﬂ B(ca,...,cCn).
dz,--,Gn€C(W) C1,...,cneNom(W)
Proof. LetB = [«](—0Q1, ..., ~0On, D1, ..., Dk) Wherequ, ..., gn are different variables afd;, . . ., Di are positive
formulae.
The inclusion(<) is obvious because all singletons aresetbsets in a differentiated frame.
For (2) suppose that for some € W we havex ¢ ﬂql’_i_,qnec(w) B(Q1, ..., 0n)- Then here existQ1, ..., Qn €

C(W) suchthatx ¢ B(Q1,...,Qn). Then here areys, ..., ¥n, 21,...,2 € W suchthat RyXy1...YnZ1...2Z,
andy; € Q1,...,¥n € Qn,21 ¢ D1(Q1,...,Qn), ...,z ¢ Dk(Q1,...,Qn). As D1, ..., Dx are monotonic
we getzy ¢ Dai({yi),....{ynD.....zZ ¢ Dx({ya}.....{¥n}), herce x ¢ B({yi},....{¥n}), SO X ¢
mcl ,,,,, cheNom(W) B(ct,....,cn). O

Proposition 90. Let § = (W, {Ry}eeMT (1) W) be a descriptive or Kripke t-frame and A(qs, ..., Qn) be any
inductive formulain £, with alocally closure-equivalent primitive regular formula Pr(A) in L. Then

(| AQu....00) = ([l PrACL ... o).

O,-rrrGn€W C1.....cneNom(W)

Proof. By Theorem 79ve have
ﬂ A(Ql»»qn) = m A(le ~-~»qn)-

a1, ...,Gn€C(W) Qt--,On€W
By Theorem 84ve obtain
AL, ..., =[] PrA@L-... ).
a1, ---,Gn€C(W) q1.---,On€C(W)

Then byProposition 83ve obtain the required equality™

Thus, putting togetheTheorem 79and Proposition 90 we have obtaied the following result which can be
regarded as a stronger form of the Sahlqvist theorem for inductive polyadic formulae.

Theorem 91. Every inductive formula in £, is locally closure-persistent and locally closure-equivalent to a pure
formulain the reversive extension L', of £7.

Note that pure formulae, being 0-ary modal terms, trivially are inductive formulae.

Corollary 92 (Sahlqvist Theoremfor I). Every inductive formula in £, is elementary canonical. Moreover, its local
first-order equivalent can be effectively computed from the formula.
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Proof. By Proposition 90 appied to Kripke frames, A has a local first-order equivalent determined by
Pr(A)(c, ..., cy). By the same proposition, applied to descriptive frames, the form@&)Rr, . . ., cy), andhence
the formulaA itself, is valid at every pointv of the underlying Kripke frame of any descriptive frame whévés
vaidatw. 0O

Applying Propositions 8%and 90, we can describe a simple effective procedure for finding a local first-order
equivalent of every inductive formula:

(1) TransformA, considered as a formula in the languagje into its primitive form PKA) in L.
(2) Replace all variables of PA) by different nominals. The result is a pure formdld . That formula encodes the
expected local first-order condition.

Let us demonstrate the procedure for computing the local first-order equivalent with the example from the previous
sections. Let

A@Q1, 02) = [e](=[Blaz, —[y1(=Q(qw), g2), P(q1, 42))
with positive P, Q. Then

Pr(A) = [a](—01, —02, P’ (01, 02))

with P'(qz. 62) = P (") an. {y ) (Q (") an) . a2)).
Consider the cas®(q) = [81q V 0, P(d1, 92) = 01 A (@) (01, 2). Then
T(A) = Pr(A)(c1/d1, C2/02)
= fa] (~e1, 2. (B~ e n () (B ew (v 2) (181 (7Y ca v (87 1. c2)))
with two different nominal€, c2. The neaning ofT (A) in descrptive and Kripke frames is derived by considering
1, Cz ranging over the set of singletohlem(W) of the frame(W, .. .), by the setheoretic expressioRO(A)(X) :=

X € (e, cheNomewy T(A). This is readily translated into a first-order formula as the standard transl&figi (A)),
thus producing the desired first-order local equivalerof

11. Discrete-canonical formulaein rever sive languages with nominals
Recall that a general franf@V, { Ry }oemT (1), W) is discrete ifNom(W) € W.
11.1. Sahlqvist theorem for inductive formulae in reversive languages with nominals

Definition 93 ([47]). A formula A € L. is locally di-persistent if for every discrete general-frameg = (F, W),
whereF = (W, {Ry}oeMT (1)), andw € W,

FweEA iff F,wkEA

Clearly, every pure formula in a language with nominals is locally di-persistent. Also, note that any férraula
is locally di-persistent irC. iff it is locally di-persistent in the extension with nominal§ of £, sincethe discrete
frames in both languages are the same.

Local di-persistence is importanebause the appropriately modified camahigeneral frames in languages with
nominals or difference operator (se47]2]) are discrete, and therefore canonicity in a language with nominals
generally requires di-persistency. Thus, we have tHieviing natural modification of the notion of elementary
canonical formulae in languages with nominals.

Definition 94. A formula A € L is discrete-canonical if it is locally di-persistent.

The following is a strengthening of Lachlan’s result that ewepersistent modal formula is elementary (s2g [
Example 5.6.3, and alsd§], Theorem 8.7 for the localized version). It can also be derived from resulSjn [

Proposition 95. Every locally di-persistent formula in a language with nominals £ is locally first-order definable.
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Proof. We use a vadtion of van Benthem’s argument idg], Theorem 8.7, proving it a modal formula is locally
firstorder definable iff its local validity is preserved under ultrapowers. First, note that local non-validity of a modal
formula, being an existential second-order property, eserved under ultraproducts. Therefore, in order to apply
Keider's characterization of first-order definable properties it suffices to show that local validity of locally di-persistent
formulae is preserved under ultraproducts. This follows from the fact that local validity of modal formulae is locally
preserved in ultraproducts of general frames (g, [Theorem 4.12 for the classical modal language, routinely
generalized to arbitrary polyadic languages) and that &ngproduct of Kripke frames regarded as general frames is

a discete general frame.

Proposition 96. Every primitive regular formulain £7 islocally di-persistent.
Proof. Follows immediately fromd9and89. O

Corollary 97 (Sahlgvist Theoremfor | in Reversive Languages with Nominals). Every inductive formula in a rever-
sive language with nominalsis discrete-canonical.

Proof. Letg = (W, {Ry}aeMT(2r)> W) be any discrete general frame in the reversive language, which can be regarded
asL. for a suitable type. SupposeF, w = A. ThenF, w = Pr(A) by Theorem 84whence the claim follows by
Proposition 96 O

A few comments of comparison with similar earlier results by Venema are in orderfrengosition 9&vas poved
for ‘'very simple’ Sahlqgvist formulae (subsumed here ‘pgimitive regular formulae’) in versatile languages with
difference operator by Venema id7]. As a consequence, the respective §uaist theorem was established thére.
Furthermore, the fact that every Sahlqvist formula in a temporal language is di-persistent is preVgdaisp noted
as an exercise irg].

Another line of comparison and extension of the present results stems from the relationship between discrete fram
andatomic modal algebras in the respective polyadinduages. Indeed, every discrete geneifahme is an atomic
modalz-algebra. Conversely, every atomiealgebra2! is isomophic, by the dhsson-Tarski theorem to a general
t-framegF = (W, {RelaeMT(r)s W) which need not be discrete, because two or more states may not be separable by
W. However, & proved in |8], if in addition, al operatorsa) in 2 arecompletely additive, i.e. preserve abitrary
joins, theng can be constructed as a discrete frame oveattm structure At2( of 2 (see #8,49)) which is a Kripke
t-frame based on the set of atoms2fIn particular, this condition holds if the language is reversive or versatile
(see B9 for versatile languages). Venema has proved#that the validity of all Sahlqvist formulae from the class
dRV is preserved whengssing from atomicr-algebras in versatile languages to their respective atom structures.
Since all primitive rgular formulae are iRV, this result can be accordingly gemalized to all formulae fron
using the observations abovidheorem 84andCorollary 97.

11.2. Characterization of the discrete-canonical formulae in reversive languages with nominals

First, note that amongst all discrete general frames over a Kriplkame F there is aleast one interms of
the family of admissible sets, viz. @élone generated by all singletons ih denoted here byS(F). Thus, local di-
persistence is equivalent to peggation of the local validity fron&(F) to F for every Kripker-frameF.

Now, for every formulaA(py, . ... pn), in apolyadic language with nominald? we define he setA 4 of all pure
substitution instances of A, i.e. all formulaeA(Py/ps, ..., P1/pn) Where the variablegs, ..., pn are uniformly
substituted by pure formuldey, .. ., Py.

The algebraic analogue of the following observation was provedidh [

Lemma 98. For every r-frame F, w € F andaformula A € L7,
S(F,wEA iff F,wE Ap,
(i.e F,wE Afor every A’ € Ap).

7 Venema also allows additional ‘non-orthodox’ rslia the axiomatic system. Since these rulesndb affect the discreteness of the canonical
general frames, the canonicity ofpiersistent formulae still holds if such rules are added to axioms frionan arbitrary polyadic language.
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Proof. First, note that every admissible setd{F), beingconstructed from singletons by applying the set theoretic
and modal operators if;, is therdore of the typeP({xi},..., {Xm}) for some pure formulaP(cy, ..., Cm).
Therefore, every valuation ii(F) can be simulated by an appropriate pure substitution combined with an appropriate
valuaion of the nominals inF.

Now, supposeA = A(p1, ..., pn), and letS(F), w F A. Take anyA’ € Aa. ThenA' = A(P1/p1, ..., P1/pn)
for some pure formula@y, ..., P,. Consider any valuatio¥ in F of the nominals occurring iy, ..., P,. Then
V(P1),...,V(P,) are admissible sets i§(F). Let V' be the valiaion in S(F) assigning them tgos, ..., pn
respectively. Thes(F), w Fy: A, herceF, w Fy A'. Thus,F, w F A'.

Conversely, suppos8(F), w fv A for some valuatiorV in S(F). Then, according to the remark above, there is
an appropriate pure substitution insta&'eof A and a valuatiorV’ of the nominals inF suchthatF, w v A. O

Definition 99. FormulasA and B from L, arelocally di-equivalent if they are valid at the same states in the same
discrete general frames far, .

Note that local di-equivalence implies local frame equivalence, and for discrete-canonical formulae the latter
implies axiomatieequivalence, too.

Proposition 100. Every locally di-persistent formula A in a language with nominalsis locally di-equivalent to a pure
formula.

Proof. Let A be a locally di-persistent, and henceadly first-order definable, formula i6Y-" with a local first-order
equivalentxa(x).

Let I'a be the set of all local first-order equivalents(x) of pure formulaeP € Aa. We will show that
I'a IF aa(X). Indeed, suppos€, w = I'a. ThenF, w E Aa, herce S(F), w = A by Lemma 98 By local di-
persisence, it follows that, w = A, herceF, w I aa(X).

By commctness,l“/{ IF aa(Xx) for some finite subsef| = {yp (X), ..., ¥R (X)} of I'a, and theeforeaa(x) is
equivalenttoy (X) = yp, (X) A- - - Ayp(X), herce Ais locally frame-equivalent to the pure formta= Py A - - - A P¢
locally corresponding ter (x). In fact, A is locally di-equivalent tdP due tothe di-persistence of bothandP. O

The results above can be summarized in the following theorem, characterizing the discrete-canonical formulae in
reversive languages with nominals.

Theorem 101. For every formula A in a reversive language with nominals £ the following are equivalent:

(1) Aislocally di-equivalent to an inductive formula.

(2) Aislocally di-equivalent to a primitive regular formula.
(3) Aislocally di-persistent.

(4) Aiselementary and discrete-canonical.

(5) Aislocally di-equivalent to a pure formula.

Proof. (1) implies (2) by Theorem 84 (2) implies (3) by Corollary 97, sincelocal di-equivalence preserves di-
persisence. (3) implies (4) byroposition 95and aso from [25]. (4) implies (5) byProposition 100Findly, (5)
implies (1) because every pure formuladf is an inductive formula by definition. O

We note that not all locally first-order definable adepersistent formulae fall in the scope ©heorem 101A
counterexample is the formulalp — OOp) AOOp — OOp) A (OO p — <SOp) (see B, Lemma 7.5), which is
easily seen not to be locally di-persistent.

Still, it would be nice if we could accordingly exteritheorem 101to any reversive language. The only non-
trivial implication there is from (5) to (1). However, at present even the question whether every formula in a reversive
language with nominalg-, which islocally di-equivalent to a pure formula iff, is locdly di-equivalent to a locally
d-persstent formulds open to us.
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12. Concluding remarks

In this paper we have extended Sahlgvist formulae aatudvist's theorem, both in scope and depth, gradually
shifting the focus on the semantic essence of these, captured by the concept of elementary canonical formulae. T
best syntactic approximation of this concept so far is the inductive formulae, but the class of elementary canonice
formulae still remains largely under-explored. Let us repleatmain problem here: whithe syntax is too restrictive
and only partly reflects that semantic idea thiter seems too complex to be tractable a series of paper${10]
related to this study we explore further a hierarchy of natural and important classes of formulae betneECF,
trying to bridge the gap between syntax and semantics in quest for deeper understanding of elementary canonic
formulae. In particular, in7,8] we developan intermediateglgorithmic approach to elementary canonical formulae,
suggested by some algorithms for elimination of second-order quantifiers, such as SCANd DLS ([L4,36]).

Each of these defines a set of modal formulae for which the algorithm computes successfully a first-order equivalen
and for the case of SCAN, tha#t has been recently proved i29 to subsume all classical Sahlgvist formulae. The
relationship of these, and other algorithmically defined classes of formula&@Hts explored in B]. An alternative
algebraic approach to some problems considered in the present paper is discud8glljiin[ which the problem

of finding first-order equivalents of modal formulas is reduced to the problem of solving certain equations in modal
algebras by means of an algebraic modaiegralization of the Ackermann lemma.
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