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Abstract. We introduce and study hierarchies of extensions of the propositional modal and temporal 
languages with pairs of new syntactic devices: "point of reference - reference pointer" which enable 
semantic references to be made within a formula. We propose three different but equivalent semantics 
for the extended languages, discuss and compare their expressiveness. The languages with reference 
pointers are shown to have great expressive power (especially when their frugal syntax is taken 
into account), perspicuous semantics, and simple deductive systems. For instance, Kamp's and 
Stavi's temporal operators, as well as nominals (names, clock variables), are definable in them. 
Universal validity in these languages is proved undecidable. The basic modal and temporal logics 
with reference pointers are uniformly axiomatized and a strong completeness theorem is proved for 
them and extended to some classes of their extensions. 
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1. Introduct ion 

The rapidly expanding scope of applications (actual or potential) of modal and 
temporal logics to theoretical computer science and artificial intelligence demands, 
inter alia, strengthening of the expressive power of their languages to make them 
really appropriate tools for adequate treatment of various phenomena, while keep- 
ing a relatively simple and efficient proof mechanism, convenient for applications 
and for implementation of automated deduction systems. This demand is partic- 
ularly relevant for propositional languages. Their most valuable assets are the 
perspicuity of the syntax and deductive apparatus on the one hand, and on the other 
hand their intensional semantic nature which allows for representation of sophisti- 
cated first- or higher-order schemata on a propositional syntactic level. These two 
assets are in mutual controversy, reflecting the fundamental controversy in logic: 
"expressiveness vs. tractability". A number of languages and systems have been 
devised in seeking the best compromise in this controversy. 

This article is intended as a further contribution to this trend. It proposes relative- 
ly simple but particularly strong extensions of modal and temporal logics (likewise 
applicable to dynamic and all other multimodal logics, too). As it usually happens, 
this enterprise was motivated from dissatisfaction with the expressiveness of the 
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classical modal and temporal languages. One of their major drawbacks, at least 
from the point of view of natural language, is the lack of means to make references 
to points of the model (possible worlds, time instants, etc.), somehow specified 
in the formal context. For instance, one cannot say "now", "then", "when" in the 
classical temporal language. (For thorough discussion on "now" and "then" the 
reader is referred to e.g. Kamp (1971) and Vlach (1973).) As a consequence, very 
basic and natural features of the temporal frame cannot be expressed syntactically. 
To give just one example, the simple fact that "now will never occur again", or 
formally, that the flow of time is acyclic, is beyond the expressive abilities of the 
classical temporal language. 

Various enrichments of modal and temporal languages have been proposed to 
improve its expressiveness. Let us mention three basic types of enrichments. The 
first one extends the language with new particular operators motivated from the 
specific semantics, e.g. Kamp's binary temporal modalities Since and Until and 
the more sophisticated Stavi's connectives U~(p, q) and S~(p, q) (see e.g. Burgess, 
1982, 1984; and Gabbay, 1981b; see the latter as well for a general approach to 
this type of enrichments of the temporal language). The second one provides the 
language with new sorts of syntactic objects, (constants, restricted variables etc.), 
again naturally arising in the semantic framework. A characteristic example are 
Prior's "clock-variables", (Prior, 1967); (see also Bull, 1970; the constants in Passy 
and Tinchev, 1991; the nominals in Blackburn, 1989; and the names in Gargov and 
Goranko, 1993) which are bound to be true at exactly one instant of the flow of 
time. The third type of enrichment is implicit: the language remains the same but 
new rules of inference are added which are intended to depict semantic features 
not expressible by means of formulae by restricting the class of models to those 
for which the new rules are sound, and thus discarding unwanted non-standard 
models and therefore increasing the expressiveness of the language. A notable 
example here is Gabbay's "irreflexivity rule" (Gabbay, 1981a); see also Gabbay 
and Hodkinson (1990), Passy and Tinchev (1991), Gargov and Goranko (1993), 
Venema (1993). 

What is proposed in this article can be attributed to each of these types of 
enrichments. We extend the language with a specific syntactic device intended to 
enable making references in the model but the result turns out to be a significant 
general improvement of the expressiveness of the language. The idea in a nutshell 
can be explained as follows. The process of evaluation of a formula consists of 
shuttling to and fro in the model and evaluating subformulae at points of that 
model. Thus, a snapshot of that process looks like this: the evaluating device 
is positioned at a point x and is evaluating certain subformula ~b at that point 
(by looking at the main connective and taking an according action). Suppose, 
further in the process of evaluation we want to make references to that point 
z, saying for instance "A is true here if B was true at x". In order to do so 
we have prefixed the subformula ~b by a point of reference ~ thus telling the 
evaluating device "Now, remember this point" and it does so, after which proceeds 
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to evaluate ~b. Hereafter, whenever in that process we want to refer to the point z 
we put an atomic symbol T, called a reference pointer saying "being at the point 
indicated by l "  (in a temporal setting, simply "then, or at that instant"), which 
the device will judge "true" if and only if it is positioned again at the point z. 
Schematically it looks like this: . . .  J. ( . . .  T . . .  T . . .  T . . - )  . . . .  For instance 
I G ~  T says "Now will never occur again". This construction can be iterated, e.g 
�9 .. J. ( . . .  T . . . .L ( . . .  T . . . ) . . -  T . . . ) . . .  etc. The language can be further extended 
with more than one reference pairs "nowi-theni" thus enabling cross-references. 
(Actually, the reference abilities of a language with more than two reference pairs 
already go beyond those of the utilized fragment of the natural language.) Adding A 
reference pairs, for A = 1,2, 3 , . . . ,  w to the modal or temporal language we obtain 
two hierarchies of increasingly expressive language. To indicate how strong they 
are it suffices to say that even one reference pair added to the temporal language 
makes it rich enough both to express Kamp's and Stavi's operators, and to simulate 
Prior's clock-variables. 

Let us note that the idea of reference pointers, being a quite natural one, has 
been worked out by other authors, too, e.g in Gabbay's many-dimensional con- 
nectives (Gabbay, 1981b) and in the temporal logic IQ in Richards et al. (1989). 
Although employing different formalisms, the various approaches pursue similar 
ideas. Their relationships will be discussed elsewhere. Reference pointers bear also 
certain familiarity with nominals (names, constants) and can be partly simulated 
by quantifying over them (for temporal and dynamic logics with quantifiers over 
nominals see Bull (1970), Passy and Tinchev (1985, 1991). 

In the article we introduce the two hierarchies: of modal languages/~Am, and of 
temporal languages JESt ~, their semantics, discuss their expressiveness and prove 
that they have undecidable satisfiability problem. Then we give axiomatizations 
of their basic logics K ~m and K ~{ for which we prove a strong completeness 
theorem and generalize this result to some classes of their extensions. 

The reader is assumed to have some background in modal and temporal propo- 
sitional logics (syntax, semantics, deductive systems and completeness theorem) 
within the bounds of e.g. Goldblatt (1987). 

2. Syntax 

The languages •m and Et of the propositional modal, resp. temporal, logic contain 
a countable set P = {Pl, P 2 , . . .  } of propositional variables, logical constants _L, T,  
connectives ~ and A, and a modality [2, resp. two temporal modalities G ("always in 
the future") and H ("always in the past"). The symbols V, ---,, ~--~, ~ ,  F ("sometime 
in the future") and P ("sometime in the past") are definable in a standard way. The 
temporal language ~t will be regarded as an extension of the modal language Lm 
by identifying [] (resp. ~ )  with G (resp. F). 

We now introduce hierarchies of extensions of these languages: 

cm c cI l c  zI c.., c c i r c . . ,  c cI , 
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and 

. . . . . .  ~ O) c ccI ccI c ccI c c 

where, for A = 1 , 2 , . . . ,  w , / ~ m  extends Z~m with: 
- a universal modality A ("always"), whose dual ~ A ~  is denoted by E ("some- 

time"); 
- and A pairs of symbols {lk (point of  reference), Tic (reference pointer) }, for 

k < A .  
/~ t  ~ extends/~t likewise. 
Syntactically the reference pointer symbols Tic behave like propositional vari- 

ables, while the point of reference symbols .[k are unary connectives which resem- 
ble quantifiers binding Tk. 

The recursive definition of formulae in/~,z, (resp. in Z~t), is extended to Z ~  
(resp. t o / ~ t  ~) with the following clauses: 

�9 Tic is a formula, for k < A; 
�9 If ~ is a formula then A~g is a formula; 
�9 If ~ is a formula then lk qo is a formula for any k < A. 
We need a few syntactic notions borrowed from first-order logic: 

The first occurrence of ~k in the formula J.ic ~g has a scope ~g. 
An occurrence of Tic in a formula ~g is bound if it is in the scope of an 

occurrence of .[ic; otherwise it is free. 
If ~ and r are formulae, ~g(r Tk) denotes the result of simultaneous 

substitution of all free occurrences of Tk in ~ by r  
A formula qo is closed if there are no free occurrences of T's in ~. 
The complexity of a formula ~ of Z ~  is the number of logical connectives 

(including A, l"'s and ~.'s) in ~. 
The reference depth of a formula qo is the largest number r(cp) of nested 

occurrences of ~'s in ~. 

3. Semantics 

We shall introduce relational (Kripke) semantics for the languages { s } ~_<~ and 

{ E ~  } ~_<~ in a uniform way, using as a paradigm/2 ~ .  The notions of frame, 

valuation and model are the standard ones. Given a model .Ad -- (T, R, V) and a 
point (world, instant) t E T we have a recursive definition of truth .Ad ~ ~[t] for 
all formulae of Lt, which we want to extend over the new symbols. However, we 
have no suitable way to define truth at a point for non-closed formulae of s  since 
that truth would depend on the "points of reference" which are not determined if 
the formula is not closed. We shall propose three ways to avoid this obstacle, which 
eventually yield the same semantics, but illuminated from different perspectives. 
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3.1. SEMANTICS I: STANDARD TRANSLATION ST 

In order to define truth at a point of a model we extend the well-known standard 
translation ST, see van Benthem (1983), of modal and temporal languages as 
follows: Let L1 be the first-order language containing a binary predicate R and 
a countable set of  unary predicates {P1, P2, . . .} .  For convenience we split the 
set of individual variables of L1 into two disjoint subsets: W = {wk}k<;~ and 
Y = {x, Y0, Yl, Y2,...} where each of x and w's will play special roles, viz.: 

x will represent the actual point in time (the current "now"), and wk will 
represent the point of  reference ("thenk)". 

Now we define the standard translation ST  inductively: 

1. ST(pi) = Pix, 
2. ST(Tk)  = (x = wk),  

3. S T ( = ~ ) =  ~ST(~) ,  
4. ST(qo i ~) = ST(~)  i ST(C),  
5. S T ( G { )  = Vy(Rxy ~ ST(~)(y /x)) ,  
6. S T ( H ~ )  = Vy(Ryx ---+ ST(~)(y /x)) ,  
7. S T ( A ~ )  = Vy(ST(qo)(y/x)), 
8. ST(,[k ~) = ST(~)(x /wk) .  

In 5, 6, and 7 above y is the first variable from Y, different from x and not 
occurring in ST(qo); u/v  means uniform substitution of u for all free occurrences 
ofv .  

Note that if qa is in / : ~  o r / : ~ t  k then x and Wl, . . .  , w k can only have free 
occurrences in ST(qa), where they are the only possibly free variables. Furthermore, 
qo is closed if and only if no wi occurs in ST(qo). 

The model .M = (T, R,  V)  can be regarded as an Ll-model where R is 
interpreted by R and Pi by V(pi) ,  i = 0, 1,2, . . . .  In order to distinguish validity 
in A4 as an Ll-model from validity in .M as a Kripke model we shall use the 
symbol F- for the former case and ~ for the latter. Now we define truth at a point 
for any closed formula qo: 

.M ~1 qo[s] if A4 I[-ST(qo)(s/x),  

and then validity in a model: 

J ~  ~1 qP if .h4 ~1 q0[t] for every t E T,  i.e. if .M 1~- VxST(qo). 

Finally, qo is valid in a frame if it is valid in every model on the frame, and ~ is 
(universally) valid if it is valid in every Kripke frame. 

Here we only define validity for closed formulae since only they have a deter- 
mined meaning, and we shall not be interested in non-closed formulae on their 
o w n .  
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3.2. SEMANTICS II: EXTENSIONAL OF A FORMULA AT A POINT 

Another way to introduce the semantics of languages with reference pointers is by 
introducing the extensional of a formula ~o at a point sofa model .A4 = (T, R, V}, 
denoted by C(A4, s, qo), which is a subset of  W A defined inductively as follows: 

{ W  ~ if s e V(p~), 
1. E(.A4, s,pi) = 0, otherwise 

2. E ( M ,  s, Tk) = { ( v ~ , . . . ,  ~k , . . . )  : ~k = s}, 
3. E ( M ,  s, =~)  = W ~ \ C(M,  s, ~), 
4. C(Ad, s, ~ A ~b) = C(.A4, s, ~o) 71C(.A4, s, ~b), 

5. g(M, s, G~) = f~tE(M, t, ~), 

6. g(A4, s, I-I~) = t~,g(.A4, t, ~), 

7. g(.A4, s, A ~ )  = t?wS(.M, t, ~), 

8. E(J~,s,~.k gg) ---- {(Vl , . . . ,Vk, . . . )  : (Vl , . . . ,Vk-I ,S,  Vk+I,. . .)  E 
e(M,s,~)}.  

Now, we define 

.h4 ~2 ~[s] if g(.A4, s ,~)  = W ;~ 

Validity in a model and in a frame are now defined as before. 
Intuitively, C (.hal, s, ~) consists of those strings (Vl, �9 �9 �9 vk,. . .)  which, if taken 

as strings of reference points for T1, . . . ,  Tk, . . .  respectively, would render the 
formula ~ true at s. Note that the extensional of a closed formula is either W ;~ or 
O. 

The advantage of this approach is that it defines truth of all formulae, not only 
the closed ones; the disadvantage is in its unfitness for syntactic manipulations. 

3.3. SEMANTICS III: FORMULAE WITH PARAMETERS 

Yet another approach, similar to the previous one is to define truth of formulae with 
parameters. This approach reveals familiarity with Gabbay's "many-dimensional 
connectives", see Gabbay (1981b). 

Now we define inductively truth of a formula ~ at a point s of a model .h4 = 
(T, R, V) with respecttoparameters Vl, v2, �9 �9 E T, denoted A/[ ~ ~[8; Vl, V2,...] 
as follows: 

1..A.4 ~ pi[8; Vl, v2,...] if s E V(pi), 
2. Ad ~Tk [s ;vl ,v2, . . . ]  if vk = s, 
3. A/I ~-~[S;Vl,V2,.. .] i fnot  A4 ~ ~o[s;vi,v2,...], 
4..A/[ ~ (~ A ~3)[S; Vl~ V2,...] if .A.4 ~ ~[8; Vl, v2,...] and 

M ~ r ~ ,  ~2,...]. 
5. AA ~ G~o[s; Vl, v2,. . .]  if Vt(sRt => AA ~ qo[t; Vl, v2,. . .]) ,  
6. M ~ n ~ [ s ;  v~, ~2, . . . ]  if vt(tRs ~ M ~ ~[t; ~1, ~2,...]), 
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7 . .h4  ~ A~[s;  Vl, v2, . . . ]  if Vt(.M ~ cp[t; Vl, v2, . . . ] ) ,  
8..h// ~ . k  ~[S;Vl,V2,.. .]  if .M ~ ~[S ;Vl , . . . ,Vk_l ,S ,  Vk+l, . . . ] .  

Clearly, the truth of a formula only depends on those parameters which corre- 
spond to reference pointers having free occurrences in the formula; in particular 
the truth of a closed formula does not depend on the parameters at all. We can 
therefore define for any closed formula ~: 

J~  ~3  (p[8] if .M ~ ~p[s; Vl, V2,. . .]  for any string Vl, v2 , . . .  E .M. 

Again, validity in models and frames is standard. 

Remark 1. Although for uniformity we write infinite strings, when introducing 
semantics for Z ~  or E~t ~ we use strings of length A. 

3.4. EQUIVALENCE OF THE THREE SEMANTICS 

THEOREM 2. 
1. For every formula with reference pointers qo, model Ad, point s E AA, and 

string of  points Vl, v2, . . .  E All, the following are equivalent: 
(a) M 1~- ST(~)(s ,  Vl, V 2 ,  . . . ) ,  where s, Vl, v2, . . ,  substitute respectively the 

free variables x, Wl, w2, �9 �9 �9 in ST(Q). 
(b) (Vl, v2 , . . . )  E C(.M, s, ~). 
(c) M vl, v2, . . . ] .  

2. For every closed formula with reference pointers ~, model AA, and a point 
s E A/I the following are equivalent: 
(a) .A4 ~1 ~[8]. 
(b) .A4 ~2  qo[s]. 
(c) M 

Proof. 
1. A routine induction on ~. 
2. Follows from 1. 

Hereafter we shall only write ~ meaning e.g. ~1.  Besides, when a formula 
contains only one pair of reference pointers their indices will often be omitted 
when irrelevant. 

4. Notes on Expressiveness and Definability in LI~ a n d / ~  

THEOREM 3. The languages C ~m and C ~t are ordered by expressiveness in 
models as follows: 
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Proof For the i n c l u s i o n / : ~ C  E~ k+l it suffices to show how the past operator 
H can be expressed in a modal language by means of an extra reference pair (1, T) 
which is not used for any other purposes: 

H ~  ---J. A ( F T ~  ~). 

As for Z : ~ =  L1, note that every Ll-formula in a prenex form 

a : QlXl . . .  Q,~xn(Rxixj, xixj ,  Pixj) 

is expressible in s ~ by 

r  --J,n+l 01 ,L1 . . .  On J,n (E(yi AO Y5), E(Ti A Tj), E(piA Tj), 

where V = A and 3 = E. This means that VxST(r  is equivalent to a,  which is 
verified by a routine application of the translation ST.  

As a corollary, the languages s ~t ~ and Z: ~m cover the II~-fragment of the 
monadic second order language with one binary predicate with respect to defin- 
ability in frames. 

It is natural to expect that the above hierarchy is strict with respect to expres- 
siveness. The strict inclusion Z:It k C Z:~ k+l can be easily shown as follows. Let F~ 
be the frame (W~, ~) consisting of n isolated irreflexive points and let Mn be the 
model over Fn such that all propositional variables are false everywhere. If k < n 
we regard Mk as a submodel of Mn. Now, the models Mk and Mk+l,  k > 2 are 
distinguished in/:~k m by the formula 

E l l  . . .  E J.k A(T1 V . . .  V Tk) 

which is valid in the former but not in the latter model. These two models, however, 
cannot be distinguished by a (closed) formula of E~t k-1 because for every formula 
r of that language, and for every point s E Mk, 

k-1 E(Mk, s, r = E(Mk+I,  s, r VI W; , 

a fact which can be established by induction on r 
As for the strictness of the inclusion Z: ~k m C /2 ~ ,  it needs more elaborated 

distinguishing models and is left open. We also conjecture that the above hierarchy 
of languages is strict with respect to definability of frame properties. 

Another open problem is to find proper notions of E~km-bisimulation and Z~t k- 
bisimulation, invariance under which would characterize expressiveness of first- 
order formulae in these languages. 

Now we shall present a few eloquent testimonials to the strength of the languages 
with reference pointers. 

1. Various postulates for Kripke frames which are beyond the scope of L:t are 
readily expressed in Z2~lm . Just two simple examples: 
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- irreflexivity: F I b  Vx-~Rxx r F ~ l  rq~ T, 
- antisymmetry: F IFVxVy(x < y --+ ~y < x)ce~F ~[]c3-~Y. 

2. A number of modalities not definable in Et can be easily defined in Z~lm. A 
simple but important example is the difference modality [#] (see e.g. de Rijke, 
1992): 

[#] ,  = ,  @. 

3. Kamp's S(p, q) (Since) and U(p, q) (Until) and Stavi's U'(p, q) and S'(p, q) 
are explicitly definable in E~:  

U(p, q) = ,LF(p A H ( P  T+q)) and S(p, q) = SP(p A G(F  T---~q)); 

U'(p, q) = 

F H ( P  t---~q) A 

A 

~U(~q  v - U ( T ,  q), q) 

.L F(",q Ap A H(PT AP(PT A~q) ~ p)) 

and likewise for S'(p, q). 
4. The idea of clock-variables or names for instants can be adequately formalized 

in s m without introducing a separate sort for them: The formula $ A(p ~T)  
says "p is valid only now", and accordingly, E.LA(p ~--q') means "p is valid 
at exactly one instant". Thus, in the consequent of the formula 

E~.A(p+-+T) ---* ~(p, . . . )  

the variable p plays a role of a clock-variable. This fact will be essentially 
exploited in our axiomatic system. 

We saw that L; ~l m is at least as strong as a modal language with difference 
modality or with clock-variables (these two are equivalent with respect to defin- 
ability, shown in Gargov and Goranko, 1993). Therefore some results about these 
two languages (see Gargov and Goranko, 1993; de Rijke, I992) hold for s ~, too: 

- every finite frame is described up to isomorphism in L~t ~. 
- all universal sentences in the monadic second-order language for R and = are 

definable in Z~t ~. 
In fact, Z ; ~  is even stronger than any of these languages. Indeed, the formula 

A(OTA .L 13~ T) --~ EiE(O0 1"Arab1") 
says that if a frame is irreflexive and every point has a successor then it is not 
transitive. It is valid in every finite model but not in the frame (A/', <). Therefore 
this condition is not definable in any of those languages, since their minimal logics 
enjoy the finite model property. 

Moreover, as one could expect about such a powerful language, the set of valid 
formulae i n / ~ 1  (and therefore in any other language from the hierarchies) is even 
not recursive. 
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THEOREM 4. The satisfiability problem in 1~ 1 is H~ 
Proof. We show that the unbounded tiling problem for ./V" x A/', known to be 

II~ (see Harel, 1983), is reducible to the satisfiability problem in Z ~ .  
The idea for doing this we borrow from de Rijke (1993). 

First we define a formula GRID which is supposed to set the grid for tiling: 

GRID = (p A q) A ~1 A ~2 A ~3 

where: 

~1 = A((p  A q --~ O (p A --q) A O (-'p A q) A I~((p A -~q) V (-'p A q))) A 

(p A -~q --, O(p A q) A o(-~p A -~q) A n((p A q) v (-~p A -~q))) A 

(~p A q --, o(-~p ^ -.q) A O(p A q) A D((-~p A ~q) v (p A q))) A 

(-~p A ~q --, O(~p  A q) A O(p A -~q) ^ D((-~p A q) v (p A -~q)))). 

qo2 = A I ((P A q -+ A ( O  T--* t3(p A q -+T))) A 

(p A -~q -~ h ( o  T-~ [](p A -~q ~ t ) ) )  A 

(--p A q -~ A ( O  T-+ [](-~p A q -~T))) A 

(-~p A -~q --* A(O T--~ D(-~p A -~q --~T)))), 

~3 = A J . ( ( p A q ~ A ( ( - ~ p A ~ q A O O T ) ~ D D ( p A q ~ T ) ) )  A 

(p A --q --~ A( (~p  A q A O 0  T) --~ rnrn(p A --q ---~T))) A 

(-~p A q --, A((p A -~q A o o  T) - ,  Dn(~p A q - 'T)))  A 

(~p ^ -~q -~ A((p  ^ q A o o  T) -~ ~D(-~p A ~q - 'T)))) .  

The formula q91 A qo 2 A ~3 says that every point of the model has exactly 
two successors; at one of them the valuation of p changes and the valuation of q 
remains the same (that would be the move "to the right"), while at the other (the 
move "upwards") the opposite happens. Moreover, by ~3, the routes "right;up" 
and "up;right" converge. That will be enough to embed a copy of Af x Af into any 
model of GRID. 

Now, consider a tiling problem with a set of tiles T = {tl, ..., t~}  and colours 
C = {Cl, ..., ck}. Every tile has four sides: "up", "down", "left" and "right", 
each coloured in one of the colours from C. To every colour c / w e  assign four 
propositional variables ui ("up"), di ("down"), li ("left"), and ri ("right"). Each 
tile t with sides "up", "down", "left" and "right" coloured respectively in civ ci2, ci3, 
and ci4, we represent by the formula 

= A A A (d 2 A A  dj) A (I 3 A A A (ri4 A A  rj) 
j~il j5~i2 j~i3 j~ia 

Now we define the formulae 
~TL 

COVERT = A(  V 0i), 
i = l  
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which says that the model is properly tiled, i.e. every point in the model is covered 
by exactly one tile (note that 0i and 0j are incompatible when i ~ j); 

k 

MATCHUP = A ( A  (ui ---+ (p A q ~ [:](p A ~q ~ di)) A 
i=1  

(p A --q ~ n (p  A q ~ di)) A 

(-~p A q ~ D(~B A -~q ~ dS)  A 

(-,p A ~q -~ t3(-~p A q --~ di))), 

which says that the colour"up" of each tile of  the cover matches the colour"down" 
of the one above it; 

k 

MATCHRIGHT = A ( A  (ri --* (p A q --* t3(-,p A q --. li)) A 
i=1  

(p A ~q --~ D(-,p A -~q --* li)) A 

(~p A q -~ D(p A q - ,  l~)) A 

(-,p A -~q --* D(p A -~q --~/i))), 

which says that the colour "right" of each tile of the cover matches the colour "left" 
of the one to the right of it. 

Finally, we put 

OT = GRID A COVERT A MATCHUP A MATHCHRIGHT. 

We claim that ~T is satisfiable if and only if Af x Af can be properly tiled by T. 
Indeed, if A/" x A/" can be tiled by T we can define a model AA = (A/" x A/', R, V) 

where 

( m l , n l ) R ( m 2 ,  n2) iff m 2  = ml + 1,n2 = n l  

o r  m 2  --- m i e n 2  ~- Ttl -t- 1; 

V(p) = {(2m,  n) : m , n  �9 Af}, V(q) = {(m,2n)  : m , n  �9 A/'}, 

Y(u i )  = {(m, n) : the "up" colour of the tile at(m, n) is c./}, 

and likewise for di, li, and ri. 
T h e n ,  

M ~ r 

Conversely, if for some model A4 = (W, R,  V),  2k4 ~ ~2T[X], we define a 
mapping f : A/'• --~ W as follows: f (0 ,  0) = x; suppose that f ( m ,  n) is defined, 
then f ( m  + 1, n) is the unique "right"-successor of f ( m ,  n), and f ( m ,  n + 1) is 
the unique "up"-successor of f (m, n). The tiling of Af x .Af is now determined by 
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COVER: for any (m, n> there is a unique 0i which is true at f ( m ,  n); then we put 
the tile ti at (m, n). Due to MATCHUP and MATCHRIGHT the tiling is a proper 
one, and this completes the proof. 

5. Deductive Systems for s and/:~t ~ 

We first axiomatize the basic logics K~t ~ of the temporal languages E~t ~ as follows: 

Axioms for K ~ :  
A1) The axioms ofthe basic temporal logic Kt, written over propositional variables 
A2) S5(A), 
A3) Ap ---+ (Gp A Hp), 
A4) J.kTk, 
A5) J.k A(Tk ~'* p) --~ (q --~ A(p --~ q)) 
A6) lk A ( T k ~  p) -~ (s r ~ r  for any closed formula J.j ~b 
where p, q are propositional variables and j, k < A. 

Rules: 
1. MP: 

~ , ~  ---+ r  
r ' 

2. NECA:  

A~;  
3. CLSUB: 

clsub(~) ' 

where clsub(~) is a result of uniform substitution of closed formulae for 
propositional variables in ~. 

4. WITNESS: 

J.k A(Tk~  p) ~ ~ for every propositional variable p 

where k < A. 

As for K~m, we replace A1 and A3 respectively by 
A1 ') The axioms of the basic modal logic K, written over propositional variables 
A3') Ap --~ []p 
and add 
A7) p ---+ [] lk E(<> Tk Ap) 
The rules remain the same. 

Hereafter we shall use Z:~ as a generic name for any of the languages Z:~m 
and Z:~t ~ and respectively K~ for any of the logics K~m and K ~ ,  possibly with 
specifying the superscript A. 
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Note the following: 
- Only closed formulae are derivable in K~. 
- In the presence of CLSUB the infinitary rule WITNESS can be replaced by a 

finitary version: 

Sk A ( T k ~  p) ~ qo for some var.p not occurring in qa 
W I T N E S S I  �9 qo 

-- The rules 

and N E C H  : qo resp. N E C  : r  N E C G :  Gqo H--~; D---~ 

are derivable from N E C A ,  M P  and A3. 

Here are some important theorems of KI;~: 
(tl) Sk qo ~ qo for every closed formula qo; 
(t2) lk 7qa ~ ~ ~k qa; 
(t3) Sk (~ A ~) ~ (lk ~A J.k r  
(t4) lkA(Tk ~ p) ~ p .  
(t5) ~k A(Tk *-~ P) ~-~.Lj A(Tj +-~ p). 
for any j ,  k < A. 

We exemplify derivations in K I  ;~ by sketching a proof of (t2): 
1. lk A(Tk~--* p) --~ (.Lk ~ ~ 7qo(p/Tk))  by A6, 
2. ~kA(Tk~-~ p) ~ ( l k ~  ~ ~(P/Tk)) byA6,  
3. ~ A ( T k ~  p) ~ (7  .Lk ~ ~ ~ ( p /  Tk)) by 2 and contrapositions, 
4. J .kA(Tk~ p) --* (--1 l k ~  ~J .kT~)  by 1 and3, 
5. 7 ~k ~ ~--~lk - ~  by 4 and WITNESS. 

The other derivations are similar. 

Now we can show that axiom A7, translated to E ~ ,  is derivable in K ~ :  

First, ~- p ~ G~k E(FI"k Ap) iff f- P p  --qk E(FTk Ap); 
Then, Kt  ~- q ---+ (Pp --~ P ( F q  A p)), 
hence K i t  ~ F- q ~ (Pp ~ E(Fq  A p)). 
Therefore, using (t4), 
K~t ~ t- lk A(q ~--~Tk) --+ (PP "-~ E(Fq  A p)). 
Now, apply A6, then (t2) and (t3) to obtain 
K:~t ~ F- Sk A(q ~Tk)  ~ (Pp ~J.k E(FTk Ap)), 
and finally, apply WITNESSI .  

A few remarks are in order here. 
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1. The reason we design our axiomatic systems for closed formulae only is that 
we have clear meaning for these formulae only. Besides that, however, the 
formulae which are not closed behave rather irregularly. For instance, the rule 
for equivalent replacement 

applied to such formulae, does not always preserve validity in a frame. The 
same happens with the substitution rule su-~(~) ' so that special provisions must 

be made, like "a formula free for substitution in a formula" etc. which would 
lead to the typical complications of the first-order machinery. 

2. The intuition behind the rule WITNESS (which has a number of ancestors, 
e.g. some versions of rules for quantifiers in first-order logic, the w-rule in 
arithmetic, the "irreflexivity rule" in (Gabbay, 1981a), COV in (Gargov and 
Goranko, 1993) etc.) is the following. If a formula is not valid, then it is false at 
some point t of some model A4. Then, a propositional variable p can be made 
a "t o'clock-variable" (in temporal setting) i.e. evaluated to be true exactly at 
that point t, and then p will be a "witness" of the falsity of ~. Therefore if all 
"clock-variables" testify that ~ is true at the point (world, instant) in which 
they live, then ~ must be valid. 

3. Although WITNESS and WITNESS/ in fe r  the same theorems, they generate 
deductive systems different with respect to logical consequence, which is com- 
pact in the system with WITNESSy, but not in the system with WITNESS. 

Amongst the basic syntactic properties of K and Kt which are inherited, mutatis 
mutandis, in the extended logics we only mention the following: 

LEMMA 5. For any closed formulae a,/3, ~ and variable p, 
if  

then 

Proof. (Sketch) Induction on the reference depth r(qo). 
If r (~)  = 0, the proof repeats the standard one for K. 
If r (~)  = r > 0 we assume that for all formulae with reference depth less than r 

the statement holds, and then do induction on the complexity of ~. The interesting 
case is ~ =$ 0. Here we apply axiom A6 (with a variable q not occurring in ~, o~,/3) 
which replaces ~(a/p) by {O(a/p)}(q/T) = {O(q/T)}(oz/p) and likewise for 
~(/3/p). The resulting formulae have reference depths lesser than r. Applying the 
inductive hypothesis for them, followed by application of  WITNESS/ ,  completes 
the induction. 



MODAL AND TEMPORAL LOGICS WITH REFERENCE POINTERS 15 

THEOREM 6 (Soundness theorem). 1. All axioms of K~ are valid. 
2. All rules of K~ preserve validity in a frame, and therefore universal validity. 

Proof. 
1. First, consider K~t ~. For A1 the result comes from Kt;  for A2 from 85; for 

A3 and A4 it is quite simple. As for A5, it is enough to note that 

VxST(~ A(T+-+ Pi) -+ (Pj --+ A(pi  ~ pj))) = 

Vx(Vy(y = x +-+ PlY) --+ (Fix --+ Vy(Piy --+ Pjy))) 

which is universally valid. 
Finally, take A6. S T ( r  Tj)) is obtained from ST(C)  by replacing all 
occurrences of the kind y = wj (which are the only possible occurrences 
of wj in ST(C))  by PiY. Due to the antecedent Vy(y = x +-+ PlY) this is 
equivalent to replace all occurrences of y = wj by y = x. The result of this 
substitution is exactly ST(  r  x /wj  ) ) = ST(  ~ j r 
The validity of axioms A1-A6 for K~m is verified likewise. Now, A7: 

VxST(pi --* [] .Lk E ( ~  Tk A p i )  = 

Vx(Pix ~ Vy(xRy ~ 3z(3t(zRt  A t = y) A/~z)) ) ,  

equivalent to 

Yx(P~x --* Vy(xRy --+ 3z(zRy  A Piz))) 

which is universally valid. 
2. The only interesting case is the rule WITNESS.  Suppose that for some model 

(T, V} and point t E T, (T, V) ~: qo[t]. Choose a variable p not occurring in 
and change the valuation V to V ~ as follows: Vl(p) = {t}, and V t coincides 

with V elsewhere. Then (T, V') ~$ A(T~--~ p)[t] and (T, V'} ~ qo[t], hence 
(T, V') V:I A(T  p) --, v[t]. 

6. Completeness 

Now we set ourselves to prove completeness of K ~. We follow an elaborated 
version of the traditional in modal and temporal logic "canonical model  technique", 
further developed in Passy and Tinchev (1991) and Gargov and Goranko (1993). 
The basic steps of the proof will be scrupulously outlined in a series of lemmata, 
but the standard details in their proofs will be usually omitted. 

First we introduce yet another syntactic notion originating from the admissible 
forms in Goldblatt (1982); see also Gargov and Goranko (1993). Let �9 be a symbol 
not belonging to L:~. We define recursively universal forms of* in s as follows: 
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1. �9 is a universal form of ,.  
2. If u ( , )  is a universal form of , ,  qo is a closed formula in s and L is a box- 

modality in s  (i.e. A, G, F or I2) then ~ ~ u ( , )  and Lu(,)  are universal 
forms of �9 in s  

Every universal form of �9 in/:~ can be represented (up to tautological equiva- 
lence) in a uniform way: 

U(*)  = ~0 --+ LI(VgI - + . . .  Ln(~n  --+ * ) . . . )  

where L I , . . . ,  L,~ are box-modalities in Z:l and some of ~ 1 , . . . ,  ~n may be T if 
necessary. The number n is called a depth of the form u, denoted by O(u). 

For every universal form u ( , )  and a formula 0 we denote by u(O) the result of 
substitution of 0 for �9 in u( , ) .  Obviously, if 0 is a closed formula then u(O) is a 
closed formula, too. 

Now we introduce the rule 

W I T N E S S u  : U(lk A(Tk ~--~ P) ~ qo) for every propositional variable p 

where u is an arbitrarily fixed universal form. 

W I T N E S S u  seems much stronger than WITNESS,  but: 

THEOREM 7. The rule W I T N E S S u  is derivable in K~. 
Proof. First, consider K~t  ~. The key argument, see (Gabbay and Hodkinson, 

1990), is the following. Given a universal form 

U(*)  = OF0 ---+ LX(CPl - ' - + ' ' '  Ln(~Pn "'+ * ) . . . ) ,  

we define a form 

I d  ! ! �9 �9 U' (*) -1..-----r (~9 n ~ n(~n-1 "-+' ' '  Ll"n~O) "), 

where A'  = A, G '  = H and H '  = G. Now, for every closed formula 0, u(O) 
is deductively equivalent to u'(O) in the sense that K ~t ~ +u'(O) [- u(O) and 
K~t +u(O) ~- u'(O). 

This trick does not work for K~m, but the axiom A7 comes to help there. We 
shall prove derivability of W I T N E S S u  in K~m by induction on O(u). 

If cO(u) = 0 then u ( . )  = qa0 ~ * and W I T N E S S u  is obviously equivalent to 
WITNESS applied to qao ---* qa. 

Now, let u(*) = qo0 ---+ L1(qo1 "-+ . . . L ~ ( ~ n  ~ *) . . . ) , n  > 0, and 
W I T N E S S u  is derivable for all universal forms of  depth less than n. Denote 

V(*) = V91 ~ L2(qP2 --+ . . .  Ian(qOn ---+ * ) . . . ) ,  

i.e. u ( , )  = ~0 --+ Ial (v( ,)) .  Then O(v) = n - 1. 
Let C = v(~k A(l"k~--~ p) --* qo) and v" = v(qa). 
We have to prove that ~- qao ~ L1 (C) for all p implies f- qOo ~ L1 (v") for all 

p. 
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Case 1: L 1 = A. Note that ~- qo0 ~ A(v ' )  implies t- E~0 ~ v' which is an 
instance of a universal form of depth n - 1. Then, by the inductive hypothesis, 
~- E(p0 ~ v" which implies ~- ~0 ~ A(v") .  

Case 2 :L1  = D. Let q be any variable. Here is a sketch of the derivation. 
1. b ~0 ~ [](v~), assumption; 
2. J.kA(Tk~--~ q) --~ (-w 1---* A(q --* -w')),  byA5;  
3. ~- A(q  --* --v ~) --~ A ( n ( v ' )  --~ []-~q), by easy derivation from A1-A3;  
4. J.k A(Tk *'-~ q) --~ (~v' --* A ( n ( v ' )  --~ n--~q)), by 2, 3; 
5. ~.k A(Tk ~-~ q) ~ (-~v' ---* A(~o -+ []~q)), by 1, 4; 
6. lkA(Tk+-~q) A E ( ~ o A ~ q ) - - * v ' ,  by5 ;  
7 . . L k A ( T k ~  q)AE(~oA<>q) --* v", by 6, applying the inductive hypothesis 

to the form J.k A(Tk+--~ q) A E(~o A <>q) --~ v(*), which has a depth n - 1; 
8. s  q) -+ (E(~o A (>q) ~-~J.k E(~o A �9 Tk)), byA6;  
9. J.k A(Tk+-~ q) --~ (~k E(~0 A ~ Tk) --~ v"), by 7, 8; 

10. Sk E(~0 A ~ Tic) -+ v", by 9, applying WITNESS;  
11. [ ] ~ k E ( ~ o A ~  Tk) -~ [ ] (v" ) ,  b y l 0 ;  
12. ~- ~o ~ ~(v") ,  by 11 andA7.  

This completes the induction and the proof. 

Henceforth the completeness proofs for K~t ~ and K ~  are entirely analogous 
and we shall concentrate on K~{. 

DEFINITION 8. 
1. A theory in s is a set of closed formulae of EIt  ~, which contains all theorems 

of K~t ~ and is closed with respect to MP. 
2. A W-theory (witnessed theory) is a theory in E~t ~ which is closed with respect 

to WITNESSu. 

Note that for every set of closed formulae F there is a minimal W-theory 
WTh(F) / resp .  a minimal theory Th(F)/containing F. Indeed, the set of all closed 
formulae is a W-theory. Furthermore, the intersection of every family of W- 
theories is a W-theory. Then WTh(F) is the intersection of all W-theories contain- 
ing F. Likewise for theories. 

DEFINITION 9. A theory, resp. W-theory, is consistent if it does not contain _1_. 
A set of closed formulae A is W-consistent if WTh(A)  is consistent. 

The following property, well-known for theories, holds for W-theories, too. 

LEMMA 10 (Deduction theorem for W-theories). I fF is a W-theory and ~, ~ are 
closed formulae then ~ ~ r E F iff ~b E WTh(F U {~}) 
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Proof. If qo ~ ~b E F then, by M P ,  ~ EWTh(P U {qo}). Vice versa, suppose 
that r E WTh(P U {qo}) and consider the set 

A = {0 : 0 is a closed formula and qo --+ 0 E F}. 

We shall prove that A is a W-theory containing F U {~}. The proof goes as in the 
standard deduction theorem, with one additional step: closedness with respect to 
WITNESSu,  which follows form the fact that F is a W-theory, and ~ ~ u ( , )  is 
a universal form whenever u ( , )  is. 

LEMMA 11. I f  F is a set o f  closed formulae in which infinitely many propositional 
variables have no occurrences then WTh(F) -- Th(F). 

Proof. It is a standard fact that 

Th(~)  = {0" ")'1 A . . .  A ")'k ~ 0 E K~t ~ for some " f l , . . .  ,")'k E F}.  

Let us show that Th(F) is closed with respect to WITNESSu.  Suppose that for 
some universal form u, 

i.e. 

u ( l  A ( T ~  p) ~ ~) ~ Th(F) 

,~ A . . .  A ~,~, .--, ,.,(,1, A(I",-, p~)--, ~) e gl:~ 
for every propositional variable Pi. We can choose a propositional variable pj 
which does not occur in either of  u, qo, or F. Then, substituting any variable p for 
pj in 

A. . .  A l'~j ~ u(,L A(T+-, pj) ---+ ~) 

we obtain 

Vl ~ A . . .A  ~ ~ ~,($A(T~ p) --, ~ )  e KI~ 

for every p. Therefore ~1 A . . .  A 7gj --+ u(~)  E KZt ~ by WITNESSu,  hence u(qo) 

e Th(r). 

As a corollary, every set of formulae which satisfies the condition of Lemma 11 
is W-consistent iff it is consistent. 

DEFINITION 12. A W-theory F is maximal if for every closed formula ~, either 
E F or ~qo E F but not both. 

Every maximal W-theory is consistent and cannot be extended to another 
consistent W-theory. Moreover, every maximal W-theory F contains a "witness" 
Sk A ( T k ~  q) for some propositional variable q ("F o'clock variable") and every 
k < A. Due to the K~t ~-theorem (t5), it is enough to find a q for some k < )~. Suppose 
otherwise. Then all ~ lk A(Tk'~-~ p) would be in F, and hence, by WITNESSu,  A_ 
would belong to F. 
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LEMMA 13 (Lindenbaum lemma). Every W-consistent set Fo can be extended to 
a maximal W-theory. 

Proof. First, note that F -- WTh(Fo) is a consistent W-theory. Let ~bl, ~2 , . .  �9 
be a list of  all closed formulae of Z;~t ~ and u l , u 2 , . . ,  be a list of all universal 
forms in E ~t ~. Then we can list all combinations {ui(~bj)}i,~=l in a sequence 
01,02, . . . .  (obviously, with repetitions, but that does not matter). Now we shall 
define a sequence of consistent W-theories To C_ T1 C_ . . .  as follows: To = F; 
suppose that T,~ is defined and consider WTh(Tn U {On}). If it is consistent, this is 
Tn+l. Otherwise let On = ui(~bj). Then ~ui(~bj) E Tn by the deduction theorem. 
Therefore ui(J.k A(Tk ~ p) ~ ~bj) does not belong to T,~ for some propositional 
variable p and some k < A. Due to (t5), this is the case for all k < A. Then we put 

T=+I = WTh(T~ U {-~ui(,LoA(To~ p) ~ Cj)}). 

Tn+l is consistent. 

oo T, Finally, put T = Un=0 n. 
By virtue of  the construction, T is a maximal W-theory. 

For any set of formulae A we define 

Gz~ = {(p: G ~  E a } ,  I - I a  = {(p: H(p E a }  and AZl  = {(p: A ~  E a } .  

LEMMA 14. I f  A is a maximal W-theory then G A ,  H A  and AZl  are W-theories. 
Proof. We shall do the proof for G A ,  the others are analogous. 

That Gza  contains all theorems of K~t ~ and is closed with respect to M P  is nothing 
new. Gza  is also closed with respect to W I T N E S S u  since A is closed and G u ( . )  
is a universal form whenever u ( . )  is. 

LEMMA 15. I f  A is a maximal W-theory and FOE A (resp. POE A ,  EO E z~) 
then there is a maximal W-theory A I such that 0 E A I and G A  C_ A I (resp. 
H z~ C_ ,4 I, A za C_ zY.  

Proof. By Lemma 14 Gz~ is a W-theory. Moreover, G- ,0  ~ A since A is 
consistent. Therefore -,fl ~ G A ,  hence WTh(G,A U {0}) is consistent. Then, by 
Lemma 13 it can be extended to a maximal W-theory A ~. The other cases are 
analogous. 

DEFINITION 16. A model (T, R, V) is called clock-model if for every t E T there 
is a "t o'clock-variable" Pt such that V(pt) = {t}. 

LEMMA 17 (Strong completeness theorem for W-consistent sets). Every W-con- 
sistent set Fo in K~ ~t is satisfiable in a clock-model. 

Proof. First, we extend F0 to a maximal W-theory F. Then we define a canon- 
ical model A4 = (T, R,  V) as usual: 

- T = {A : A is a maximal W-theory and A P  C_ ,A}; 
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- forany  A1, A 2 E T, RA1A 2 i f G A  1 C_ A2; 
-- for any propositional variable p, V (p) = { A E T : p E A }. 

It is a standard task to prove that for any A1, A2 from T, RA1A2 iff H A 2  C_ 
A1 and that A z l l  _C A 2. 

Now we are going to prove that F0 is satisfied at the point F of the model .A4. 
This follows from the following sub-lemma: 

LEMMA 18 (Truth-lemma). For every closed formula 0 and A E T, 

M > e[ x] iff e e A. 
Proof of  Truth-lemma. Induction on r(O). When r(~9) = O, i.e. 0 contains 

no reference pointers, the proof goes by induction on the complexity of 0 and 
repeats, mutatis mutandis, the proof the the truth-lemma for Kt, as the universal 
modality A is dealt with in the same way as the temporal modalities. Now, let 
r(8) > 0 and assume that for all closed formulae with reference depth less than 
r(O) the statement holds. Then we do again an induction on the complexity 
of O. The only non-standard case is 0 = 1 r  for any fixed 1=$k, k < k. Let 
~ A ( T ~  p) be a "wimess" in A. Then, by axiom A6, I~P +-+ r  E A, 
i.e. ~r  E A iff r  E A. Since r(J.r  > r(r  by the inductive 
hypothesis .A4 ~ r  iff ~b(p/T) E A. To complete the proof of the 
lemma it remains to show that A4 ~ ~p(p/T)[A] iff A4 ~$r  Again by 
axiom A6 .A4 ~J.A(T*--~ p) ~ (J.~P ~ r  hence it is enough to show 
that A/[ ~ I A ( T  ~ p)[A]. ST(~ A ( T ~  p)) = Vy(y = x +-* Py)  where P 
is the unary predicate symbol corresponding to p. Thus, .AA ~ J.A (1" ~ P)[A] 
iff M [~- Vy(y = A ~ py )  which means that V(p) = (A}, i.e. p is a "A 
o'clock variable". Let us see that this is the case indeed. First, p E A by the 
K~t~-theorem (t2) and MP. Now, suppose that p E At for some A t ET. Take 
anY X E A. According to axiom A4, A(p --+ X) E A, hence p ~ X E A t, so 
X E A/. Thus A ___ A ', which implies A = A I. So, p E A I iff A t = A. The 
truth-lemma is proved, which completes the proof of Lemma 17. 

THEOREM 19 (Strong completeness theorem for K D. Every K~-consistent set F 
of  closed formulae in 12~ is satisfiable. 

Proof. For K ~  we reduce the theorem to Lemma 17 with a simple trick. Let p 
be a"renaming" of the propositional variables in s ~ as follows: P(Pi) = P2i+l, i ----- 

1,2, . . . .  If ~ is a formula, denote by p(qo) the result of uniform substitution p(p~) 
for each Pi in cp, and then put p(F) = {p(~) : qo E P}. Now, p(F) is a consistent 
set, since consistency is not affected by the renaming p. Furthermore, since the 
variables with even indices do not occur in formulae of p(F), it is W-consistent 
by Lemma 11, hence satisfiable at some instant t of a clock-model (T, R, V). Now 
we define a valuation W in < T, R > as follows: V'(p) = V(p(p)).  The resulting 
model (T, R, V t) (which is not necessarily a clock-model) satisfies F at t. 
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The proof of strong completeness for K~Am is an accordingly simplified version 
of the one for K~t ~. 

COROLLARY 20. 
1. For every ~, K~t is a conservative extension o f  K ~ .  
2. For every )~ > n, K ~  (resp. K~t)  is a conservative extension o f K ~  n (resp. 

KI~). 

7. Extensions 

7.1. WITNESSED ~-LOGICS 

DEFINITION 21. An E~-logic is a simple closed extension (extension by means 
of closed axioms only) of K~. 

The strong completeness theorem is provable, mutatis mutandis, for all E~- 
logics: 

THEOREM 22. For each E~-logic L, every consistent in L set o f  closed formulae 
is satisfied in some L-model. 

Of course, a valuable completeness theorem would guarantee satisfiability in 
a model based on an L-frame. Very few general results in that direction exist in 
modal and temporal logic, but for / :~-logics  there is an important one, stated in 
Theorem 24 below. 

For any formula 0 we denote w(O) = E J.A(T~--~ 0). w(O) says that 0 is true at 
exactly one instant of the model. 

DEFINITION 23. 
1. A formula ~ is witnessed if it is of the kind 

= W(ql) A . . .  A w(qk) ~ r  ,qk), 

where r is a closed formula which only contains propositional variables 
amongst q l , . . . ,  qk. In particular, every formula without propositional vari- 
ables is (equivalent to) a witnessed one. 

2. An/2~-logic is witnessed if it is axiomatized over K~ by means of witnessed 
formulae only. 

THEOREM 24. Let L be a witnessed F.~-logic. Every L-consistent set o f  closed 
formulae is satisfied in some model based on an L-frame. 
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Proof. Given a witnessed formula (which we can assume to be written over 
P l , . . . , P k )  ~ = w(pl)  A . . .  A w(pk) ~ r  we define the first- 
order formula a (~ )  = V X V Z l . . . V z k o - ( S T ( ~ ) )  , where Z l , . . .  , Z k are variables 
not occurring in ST(C)  and a ( S T ( r  is the result of uniform substitution in 
ST(C)  of all occurrences of atomic formulae of the kind PiY by y = zi 
respectively, for i = 1 , . . . ,  k. It is not difficult to verify the following: for 
every temporal flame F, F ~ ~ iff F I~- a(qa). Now, let p be an axiom of 
L and .A4 = (T, R, V) be a clock-model of L. Then 3,1 satisfies all variants 
w(Pil) A . . .  A w(Pik) ---* r  Pik) of ~ since they are theorems of L. This 
implies that (T, R) I~- a (p )  and hence (T, R); ~ ~. Thus, every clock-model of 
a witnessed s L is based on a frame for L. Therefore, by Lemma 17 and 
Theorem 19, every consistent in L set of closed formulae is satisfied in a model 
based on an L-frame. 

In fact, any witnessed formula 

= W ( q l )  A . . .  A W ( q k )  "+ r  

is equivalent (with respect to validity in a frame) to a formula without propositional 
variables but with more reference pairs: 

~ * = E ~ I  . . . E ~ k r  / q l , . . .  Tk /qk) 

where the pairs (J.1, T1),.. �9 (lk, Tk) do not occur in ~. 
Therefore, in a language with sufficiently many reference pairs witnessed logics 

admit even simpler axiomatizations. 
Here are a few simple examples of temporal logics whose complete axioma- 

tizations in the classical language involve sophisticated completeness proofs, but 
are readily axiomatized as witnessed/~t- logics.  

COROLLARY 25. The following extensions of  K~t are strongly complete. 
1. The Logic of Linear (irreflexive) Time: LT~t= K~t + 

- (irreflexivity) ~ G-, T, 
- (transitivity) ~ A(FF T ~ F T), 
- (linearity) J. A(F W v T v P  T). 

2. The Logic of Forward Branching Time: FBT~t=  K~t + 
- (common histories) .~ APF ]', 
- (linear past) 1 GH(F T v T v P  T). 

3. The Logic of Discrete Linear Time: DLT~t  LT~ + 
- (immediate predecessor) ~ PGG--, T, 
- (immediate successor) $ FHH--, T. 

4. The Logic of Rational Time: LRT~t=  LT~t + 
- (no beginning) PT,  
- (no end) FT,  
- (density) ~ A(F T--+ FF  T). 
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7.2. LOCALLY DEFINABLE OPERATORS 

The languages with reference pointers have a built-in mechanism for self-extension 
with operators (modalities) which can be defined locally (at the point of evaluation) 
with an axiom but when added to a language with a limited number of reference 
pairs they increase its expressiveness. 

Here is a general scheme for introduction of such unary operators. Let O(p, q) 
be a formula containing the propositional variables p and q (and possibly others). 
Then we define a new operator #0 with the following semantic clause: 

ST(#o4) = ST(O(p, 4/q)(x = v/Pv),  

where y ranges over all (free and bound) variables occurring in ST(O(p, r 
Intuitively, 0 is a scheme in which q is a placeholder for the argument and p a 

placeholder for a reference pointer to the point of evaluation. 
Two examples: 

1. O(p, q) = E ( O p  A q). It is easy to see that ST(#o4) is equivalent to 3y(Ryx A 
ST(zb)(y/x)), i.e. #04) has the semantics of P 4 .  

2. O(p, q) = E I A(p  ~ q). Then ST(#o4d) turns out equivalent to 3wST(~b), 
so the truth condition of#0~b at a point z says: there exists a reference point for 
the pointer J. which makes 4 true at z, i.e. this operator introduces the adverb 
"ever" in the language. 

Note that in fact the locally definable operator #o~b can be explicitly defined 
as ~ 0(1"~ /p, 4/q) where ( ~ ,  T~) is an extra reference pair. (otherwise an 
unwanted clash with unbound reference pointers in 4 may occur). Therefore the 
locally definable operators can be regarded as a "syntactic sugar" which avoids 
explicit over-referencing by introducing new linguistic structures and thus making 
the language more versatile. 

The above observation enables us to uniformly axiomatize the operator #0r by 
means of one additional scheme: 

(A0): 

l A(p (#0r 0). 
The soundness of that schema is easily verified. 

THEOREM 26. The logic K ~ +(Ao) is strongly complete with respect to the 
semantics of #o4. 

Proof. The only necessary addition to the proof of 19 is the clause for #04 in 
the proof of the truth-lemma, which is treated similarly to I ~, due to the additional 
axiom ( Ao ). 
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