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Introduction

By a structure we mean a non-empty universe with a collection of func-
tions and predicates of finite arity. Every such a structure can be regarded
as a generalized Kripke frame with a collection of accessibility relations
corresponding to the principal predicates and the graphs of the principal
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functions. Given a class of structures C of a signature o (o-structures),
we consider the induced multi-modal language M, with modalities corre-
sponding to these accessibility relations, and the multi-modal logic M Lg in
that language which captures the modal formulae valid in C. On the other
hand, with every class of o-structures we associate the class of their com-
plex algebras (power structures in Brink 1993) which provides the algebraic
semantics for that logic.

In this paper we give uniform schemes for complete axiomatization of
the modal logics for a broad family of elementary classes (incl. all 13-
classes) of o-structures, assuming that the difference operator is present
in the corresponding modal language. That operator i1s definable in many
important classes of structures, such as all expansions of implicative lat-
tices (e.g. Heyting and Boolean algebras) and all expansions of groups
(e.g. rings and modules). In other cases, such as arbitrary lattices and
semigroups, it has to be added to the language. The difference opera-
tor has recently been widely studied and used as a useful tool both for
boosting the expressiveness of modal languages and for axiomatizing ex-
tended modal logics, combined with using specific non-Hilbert style context
dependent rules, often referred to as “Gabbay-style” rules. For some re-
lated results see Goranko 1990, Gargov and Goranko 1993, de Rijke 1992,
de Rijke 1993, Venema 1993, Goranko 1998.

This paper, in particular, contributes further in that direction, by pre-
senting a general completeness proof which does not assume versatility of
the languages, as in Venema 1993. It is based on a modified canonical con-
struction, very close to the Henkin completeness method for the first-order
logic. The idea of the construction is taken from Passy and Tinchev 1991
where similar construction has been applied to PDL with so called “data
constants”.

Besides the various specific applications for particular classes of struc-
tures, the obtained results can be appreciated from a few general view-
points.

First, the modal logic M L corresponding to a class of structures C
encapsulates the universal fragment of the monadic second-order theory of
C, and thus provides an axiomatization for that fragment.

Second, that modal logic can be regarded as an axiomatization of the
class of corresponding complex algebras (see Goldblatt 1989) of the struc-
tures in C.

Third, from viewpoint of modal logic, the structures in C can be re-
garded as Kripke frames in which the universe of possible worlds has a
specific algebraic structure, besides the traditional relational componen-
t. In cases when suitable representation theorems exist, (e.g. for groups,
lattices, Boolean algebras etc.) that algebraic structure can accordingly



reflect some internal structure of the possible worlds themselves. A num-
bers of recent papers contain particular studies of such “structured” Kripke
frames. For instance in many-dimensional modal logic Venema 1992 pos-
sible worlds have an internal structure of n-tuples; in some arrow logics
Vakarelov 1992, Vakarelov 1996 possible worlds have a structure of the ar-
rows of a multigraph; in the interval tense logic Venema 1990 they have
a structure of intervals of some ordered set. We should also mention Or-
lowska’s work Orlowska 1996 where relational framework for modalization
of semigroups and various extensions is developed.

The main precursor of the present paper 1s Goranko and Vakarelov 1998
where the method presented here is applied to axiomatize the modal logic
of Boolean algebras, i.e. the class of frames (called there hyperboolean
algebras) the worlds of which are elements of a Boolean algebra, and the
frame is endowed with the usual Boolean operations.

The structure of the paper is as follows. In section 1 we introduce o-
structures and complex o-algebras, as well as the syntax and semantics
of the corresponding multimodal languages. We also discuss the role of
the difference operator and define a translation of the universal first-order
formulae on e-structures to identities in complex c-algebras. Section 2
introduces an axiomatic system for the minimal multimodal logic of the
class of all o-structures and presents a detailed proof of its completeness.
Section 3 considers modal logics for classes of o-structures. It gives a u-
niform axiomatization, by means of additional axioms, of the modal logic
of any universal first-order class of o-structures, which is then extended to
a uniform axiomatization, by means of additional rules, of the modal logic
of any universal-existential class. We also briefly discuss second-order de-
finability on structures and second-order quantification over substructures
or congruences, definable in the modal languages and their expressiveness
as universal fragments of monadic second-order languages. The paper ends
with some concluding remarks and questions arising from the present study.

The reader 1s assumed to have a technical knowledge on modal logics
and some background in abstract algebra.

1 Preliminaries

1.1 o-structures and complex o-algebras.

Let o be an arbitrary signature. For notational convenience we shall assume
that 1t consists of finitely many functional, constant and predicate symbols
resp. fi,...fr;c1,-..¢571, ... T, and let p be the arity function.



A o-structure W is any non-empty set with designated functions, con-
stants and relations corresponding to the symbols in o:

WI <W,F1,Fk,01,CI,R1,Rm>

With every signature ¢ we associate an algebraic (purely functional)
signature o* which extends the signature of Boolean algebras, containing
the usual Boolean symbols L, = A (and T,V,=, < accordingly definable),
with a set of operators {(f1),...{fx), {c1),...{(c1),{r1), ..., {rm)} of arities
respectively p(f;),0, and p(r;)—1 corresponding to the functional, constant,
and predicate symbols.

Further, with every o-structure W we associate a o*-structure called
here its compler o-algebra:

POV = (PW): 0, —, 0 (), .. AF): (CL), . ACY; (R, o {Ron))

which is the Boolean algebra of sets over W endowed with the corre-
sponding power operations, respectively defined as follows:

<E>(X1, C. ,Xn) = {Fi(l‘l, c. ,l‘n)|l‘1 € Xy,...,x, € Xn},

<Cl> = {Cl}a

and (R))(X1,...,X,) =

{le e W|3Fzy € Xy) ... (T, € Xp)(Ri(z,21,...,20)) )

In particular, for unary relational symbols, (R;) = {# € W|R;(»)}.

For every non-constant symbol s in ¢ we introduce a “box” operator,
dual to the “diamond” operator:

[s](A1, ..., An) = 2{(s)(m A1, ..., 0A4p).

Given a complex algebra P(W) we further extend it to a differentiated
complex algebra by adding to its signature a difference operator (#) defined
as follows:

(F)X =qer {x € W|Fy € X and = # y}.

We denote its dual by [#].

Note that differentiated complex algebras are Boolean algebras with
(normal and additive) operators in the sense of Jénsson and Tarski
(Jénsson and Tarski 1951).

It turns out that for a large family of important structures the differ-
ence operator 1s definable by means of the other operators in the complex
algebras. Two important general cases are given below.

e Implicative lattices and expansions.
As shown in Goranko and Vakarelov 1998, the difference operator
can be defined in complex Boolean algebras (called there “hyper-
boolean algebras”) as follows: <#> A =



(CAAN((A<—=><1>)<=>T))V
(A<—=> QA< >)<—=><1>)<=>T)

This definition obviously works in all implicative lattices, hence all
pseudo-Boolean (Heyting) algebras, as well as all structures expand-
ing pseudo-Boolean or Boolean algebras with additional operators,
such as Post algebras, modal, relation, cylindric algebras, etc.

e Groups and expansions.
The difference operator can be defined for complexes of groups, too:!

(#)A = (AQ)(A(YA) V ((A() A1) A= (e)) (o) T.

where (o}, ('}, and {e) are the power operators of the group operations
and identity.

Thus, (#) is definable in all expansions of groups, such as ordered
groups, rings, modules, vector spaces, (ordered) fields etc.

On the other hand, the difference operator seems not definable in other
important classes of structures such as lattices (even distributive lattices
with top and bottom) and semigroups (even monoids).

Henceforth, we shall assume that the difference operator is part of the
signature of any complex algebra, unless otherwise indicated.

1.2 Modal o-languages and o-frames. Syntax and se-
mantics of multimodal o-logics.

Every signature o determines a propositional multi-modal language M,
containing a denumerable set VAR = {p1, ps, ...} of propositional variables,
the usual Boolean symbols L, = A (and T,V, =, < accordingly definable)
and a set of modalities {{(#£), (f1),... {f&), {c1),.. . {c1), (r1),..., {rm)} cor-
responding to the algebraic operators of o*. For technical convenience we i-
dentify the language M, with the algebraic language for complex o-algebras
and use the same symbols in both languages. The notion of a formula of
M, is defined as usual: besides the classical formulae, (¢} is a formula for
every constant symbol ¢, and if 4;,..., 4, are formulae and {«) is an n-
ary modality, then (a)(Aq,..., Ap) is a formula, too. [a](A1,...,An) is
an abbreviation of—={a)(—Ay,...,74,) as usual. We adopt the standard
omission of parentheses. The set of formulae of M, will be denoted by

FOR,.

1A similar formula was independently proposed by Yde Venema



According to the notational convention above, every modal formula of
M, can also be regarded as an algebraic term for complex o-algebras.

Complex g-algebras provide an algebraic semantics for the language M,
in the usual way: by a veluation in a complex o-algebra P(IV) we mean
any function v from VAR into P(W). Each valuation v is then extended
to arbitrary formulae by a straightforward induction:

v(L) =0,
v(AAB)=v(4)Nu(B)
v(—A) =W —v(A)
v((#)4) = (F)(v(A)),
v({s;)) = (S;) for any constant or unary relational symbol s;,

v({fi)(A1,..., An)) = (Fi)(v(A41),...,v(A,)) for any n-ary functional
symbol f;,

v({r) (A1, ..., An)) = (Ri)(v(A1), ..., v(Ayp)) for any n+1-ary predicate
symbol r;.

A formula A is valid in the complex algebra P(W) if v(A) = W for any
valuation v.

Given a class C of o-structures, by C* we denote the class of complex
algebras of the structures from C.

A formula of M, is valid in C if it 1s valid in every complex algebra
from C*. A formula of M, is valid if it is valid in every complex o-algebra.

The semantics given above can be regarded as a Kripke-style semantics
on o-structures by considering every complex o-algebra as a Kripke frame,
called here a o-frame:

FE: <W;¢aGF1a"'GFka{Cl}a~~~a{Cl}aR1a~"Rm>

where Gp is the graph of the function F', though taken with the last
argument first: Gp = {(F(x1,...,20),21,...,20)|21, ..., 2y € W} (just
in order to comply with the customary notation in modal logic).

Then the truth definitions above become standard truth definitions of
the Kripke semantics respectively generalized for n-ary modalities. They
can be reformulated in terms of the satisfaction relation £, A: “the
formula A is true at « under the valuation v”, defined as follows: « =, A
iff © € v(A). This relation can be defined independently by induction on
A as usual.

A pair (Fw,v) for a o-structure W and a valuation v in W is called a
model (over W). A formula A is valid in a model (Fw ,v) if for any « € W,
zE, A Ais velid in Fy if it is valid in all models over W. Clearly, any
formula is valid in a o-frame Fyw if and only if it is valid in the complex

algebra of W.



Finally, a formula is valid in a o-structure W if it is valid in its complex
algebra.

Hereafter, an arbitrary finitary signature o is fixed, unless otherwise
indicated.

1.3 Using the difference operator

The presence of the difference operator in the complex algebras of a class
of structures renders the modal language very expressive (see e.g.
Gargov and Goranko 1993, de Rijke 1992, de Rijke 1993). Here we shall
only mention some algebraic consequences which are of importance for the
axiomatization of the corresponding modal logic.

The following are definable by means of the difference operator (#):

the universal modalities:

(U)X =qer X V(#)X and [U]X =g 2(U)=X = X A[#]X,
and the “Only” operator: OX =g X A [#]2X.

Remark 1.1 Taking the universal modality and the Only operator as
primitives we can define the difference operator: (#)X =ger (U)X A-OX.
This makes possible to base our investigations not on difference but on
the universal modality and the Only operator. In some sense this will be
more natural, because in the applications of difference we mainly use the
universal modality and the Only operator. We prefer however to preserve
the tradition, because difference is better known and more popular in the
area of modal logic.

Remark 1.2 Using the universal modality we can define a discriminator
term t(x,y, z) in the complex algebras:

Ha,y,2) = ([Ul(x 2 y) Az) vV (=[UN(z < y) Aw).

The existence of such a term has a significant impact on the algebra-
ic properties of the complex algebras and the variety generated by them
(see e.g. Burris and Sankappanavar 1981).  In particular, it allows for
reduction of all universal formulae of the language of complex o-algebras
to identities.

Moreover, using the universal modality [U] and the operator @ we can
construct a uniform translation 7 of all universal formulae of the first-order
language L, of o-structures into identities in the first-order language L} of
their complex o-algebras.



For simplicity and further applications we assume that the atomic for-
mulae of L, are the following: = = x;, 2 = ¢;, * = fi(x1,...,2,),
ri(x,21,...,2,), where z, 21, ..., 2, are individual variables of L,. We
may do that without loss of generality since we consider languages with
equality, hence every term can be “unnested” into a conjunction of such
atomic formulae. (That assumption, however, is not essential for the exis-
tence of the translation.) Also, for notational convenience we use the same
variables for the languages L, and L.

Definition 1.3 The translation 7 is defined as follows (x,21,... 2, are
variables):
For atomic formulae:

i) = (U)(Oz A Og;),

o (2 ;

;) = (U (Ox A{e;)) for any constant symbol ¢;,

o (= filwr,...,20)) = (U Oz A{f;)(Ox1,...,0x,)) for any n-ary
functional symbol f;,

o T(ri(e,xy, ..., x,) = (O A{r;)(Ox,0xq,...,0z,)) for any rela-

teonal symbol r;.

==z
e T(z=¢

For open formulae:
o 7(mp) = 27(p),
o T(p AY)=T(p) AT(V).

For unwersal formulae:
Let v = (Va1)...(Vap)e(wy, ... 2n) where o(x1,...,2,) is an open
formula. Then

o () = (UNOx) A . . A{UNOxy) = m(p(21,...,20)).

Lemma 1.4 (Modal definability lemma for universal classes) A closed u-
nwersal formula v is valid in a o-structure W iff the corresponding identity

7(y) =T holds in P(W ).
Proof. Straightforward. &

2 The minimal modal logic for the class of all
o-structures. o-logics.
In this section we axiomatize the minimal modal logic M L? consisting of

the valid formulae of the class of all complex algebras of o-structures for
any signature o, and prove completeness of that axiomatic system.



2.1 Axiomatic system for ML°.
2.1.1 Axioms:

I. Enough propositional tautologies.

IT. Axioms of the minimal multimodal logic:
(I{[Oé]) [Oz](Al,...,Ai_l,B:>C,AZ'+1,...,AH):>
([Oz](Al, . ,Ai—laB,Ai+1, . ,An) = [Oz](Al, L ,Ai—la C, Ai+1, . ,An)),

and
(Dual)  (a)(A41,...,4,) & —[e](mAq, ..., —A4,)
for every n-ary operator [a] and 7 € {1,...,n}.

ITI. Axioms for [#]:
(D1) AV [A-[£4,
(D2)  (#FHFA)A = (AV (#H)A),
IV. Axioms for [U]:
(U) [U]A:>[Oz](Al,...,Ai_l,A,Ai+1,...,An),
V. Axioms for the constant and functional modalities:
¢) For every constant symbol ¢ from o,
cl)  (U)O{c),
c2)  ({c) = Ole),
f)  For every n-ary functional symbol f from o,
f

(
(
E
(F1)  (U)OA A ATYOA,) = (U OA,,...,04,)

(F2)  (/YOA;,... 0A,) = O(f)OA,...,04,).

2.1.2 Rules of inference:

Uniform substitution (SUB):

sub(A)

where sub(A4) is the result of application of any uniform substitution of
formulae for variables in A.

Modus Ponens (MP):
AA=B

B
Necessitation for [U] (N[U]):
A
1A

Witness rule schema:



(WIT):

A= ([0](A1,...,4;-1,0p = B, Aiy1,..., An)), forall pe VAR
A= ([Oé](Al,. ~~aAi—1aBaAi+1;~ .. ,An))

for any n-ary modality [«] and 7 € {1, ... n}.

Let us note that, as usual, the Witness rules can be replaced by finitary
rules assuming the proviso not for all p € VAR but for some p not occurring
in A, B, Ay, ... Ay

The Witness rule used here shares the idea of Gabbay’s Irreflexivity
rule in Gabbay 1981 and originates from Passy & Tinchev’s COV rule (see
Passy and Tinchev 1991, Gargov and Goranko 1993). Such rules and
have been used in a number of recent publications, e.g. Venema 1992,
Venema 1993, Gargov and Goranko 1993, de Rijke 1992, de Rijke 1993,
Balbiani et al. 1997.

Remark 2.1 As we have mentioned earlier, the difference operator (#)
and its dual can be defined by the universal modality [U] and O:
(FYA =< U > AAN-0A. So, the logic ML can be alternatively axioma-
tized using only the operators [U] and @. Then, instead of the axioms for
(#) (D1 and D2), we can use the following list of axiom schemes:

(K[U)  [U](A= B) = (U]A = [U]B)

(S5(U])  [UA = A, Av[UIL[UJA, [UJA = [U][U]4,

(01) [Ul(A< B)ANOA = OB,

(02) OA= A,

(03) 0OA= 00A,

(04) AA<U>0A= 0A,

(05) <U>AANO(AV B)= OA.

The rules are as before, only for the rule (WIT) with o = [#] we use
the definition of [#].

For the proof of completeness of the axiomatic system for M L7 we need
some preparatory work, which will be done in the following subsections.

2.2 o-logics. The sublogic M L7.

By a o-logic we mean any set L of formulae closed under substitution of
propositional variables, containing the axioms and closed under the rules
of the logic M L?. A o-logic L is consistent if L is not a theorem of L.

An important sublogic of M L7 is based on the axioms from the groups
I-TV, Modus Ponens and Necessitation for [UU] (witness rules are dropped).

10



It is the minimal normal polymodal logic with difference modality and will
be denoted by M L#. All the axioms of this logic are in a Sahlqvist form, so
it is complete in the semantics, definable by its axioms. The semantics for
the difference modality now is not standard. If we denote the accessibility
relation for (#) by Rz, we see that it satisfies the following conditions:

o rliyy — yRyx,
o If xRy and yRyz then = = 2 or xRxz.
o If R(x,21,...,2,) then xRy, for each i =1,... n.

e If we denote the accessibility relation of the modality [U] by Ry then
we have: zRyy iff x = y or zR.y. It is easy to see that Ry is an
equivalence relation containing R and hence [U] is an S5 modality.
We will use this fact later on saying “by S5”.

e The semantics of @ now is also non-standard:
vl OAiff x| A and (Vy)(zRey = y £ A).

Later on we make use of the completeness theorem of M L# with respect
to the above nonstandard semantics instead of making formal derivations
from the axioms. We will refer to that as: “by the nonstandard semantics
of ML# 7.

Lemma 2.2 The following rules are derivable in M L% :
(i} Necessitation for arbitrary modality [o] (N]e]):
A
[a]A,

(i) Monotonicity for [a] and {«):

A= B
[O[](Pl,...,Pi_l,A,...,Pn) = [OZ](Pl,...,Pi_l,B,...,Pn),

and
A= B
<a>(P,...,P_1,A ... P)=<a>(P,...,P_1,B,...,Py),

(iita)

A= [U]B

<U>A=1B
(iiib)

<U>A=1B

CA=[U]B

11



Proof. (i) follows from the Necessitation for [U] (N[U]) and axiom IV.
(ii) follows from (i) and axiom II.

(iii) follows by Sb. &

Lemma 2.3 The following variations of the Witness rule are derivable in
the logic ML°.
(i} Basic Witness rule (WITy):

Op= A, forallpe VAR
A

(ii) Extended Witness rule (WIT) ):

A= [UI(B = ([0](A1,...,4i-1,0p = C,..., Ap))), forallpe VAR
A= [01B = ([a](Ar. s A, Coen s An))

for any n-ary modalily [«] and i € {1,... n},
Proof. (i) Easily obtained from (WIT) by taking o = U,i = 1,B = A, and
A =T, using the Necessitation for [U] and the M L?-theorem [U]A = A.
(i) Suppose
ML°F A= [UI(B = ([a](41,...,4i-1,0p = C, Ajy1, ..., 4n)))
for all p € VAR. Then, by the rule 2.2(iiia),
ML F{NA = (B= ([a](A1,...,Ai1,0p= C, Ay, ..., Ap)))
for all p € VAR, hence
ML F({UYAAB)= ([a](A1,...,4i-1,0p = C, Ajp1,..., An))).
Then, by (WIT),
ML F ({UYAAB)= ([o](A1, ..., Aio1,C Aigr, ..o, AR)))
0
ML F{NA = (B= ([a](A1,...,Ai—1,C  Aigr, .., AR)))

hence, by the rule 2.2(iiib),

ML+ A= [U)(B = ([a)(Ar, ..., Ai_1,C, Aip1, ..., An))).

12



Note that every instance of all three Witness rule schemata can be
represented in a uniform way:

o(Op = A), forall p e VAR
p(A)

for a suitable formula ¢(q). We shall refer to such a representation as
p(Op = A)[p(A).

Note also that the antecedent of any instance of (WIT) or (WIT;) can
be T, and therefore omitted.

In the next lemma we list some technical theorems of M L#, which will
be of later use.

Lemma 2.4 The following formulae are theorems of M L% :
(i) <U>(0OpAA)= [Ul(Op = 4),
(it) <U>0p=(<U>(0pAA) < [Ul(Op = 4)),
(iti) <U > (OANOC)A<U > (OBAOC)=><U > (0OANOB),
(iv) <U>0p=(<U>(0pAr-A)-<U>(0pAA),
(v)<U>(OpA(AVB)) e (<U>0pAAV<U>(0pAB)),
(vi) <U > (OpA<a>(O0aANA,....00, ANAL)) &
<U>(O0pA<a>0q,...,0)NDA<U > O ANADA... AU >
(OQn /\An)y
(vii) < U > Op= (< U > OpA(F#)OgAA)) & =< U > (OpAOgA <
U > (0gAA))).

Proof. Use the nonstandard semantics for M L#.
The following is an important lemma for M L7 which is based only on
the properties of the universal modality and axiom IV.

Lemma 2.5 (Strong Replacement Theorem) Let ¢(p) be a formula in
which the variable p has unique occurrence and let p(A) be the result of
the replacement of p by A. Then the following formula is a theorem of
ML#.'

[U)(A & B) = (¢(A) < ¢(B)).

Proof. The proof can be done by induction on the complexity of ¢(p). The
nontrivial case is ¢(p) = [&](P1,..., Pi—1,%(p), Pix1,..., Py), where p is
not in Py,..., P, and by the induction hypothesis the assertion for ¢ (p) is
true.

The following is a sketch of the proof of this case. For notational con-
venience we will assume that [o] is a one-place modality.

1. [Ul(A < B)= (¢(A) < ¢(B)) — by the induction hypothesis,

13



N ] [UNUN(A & B) = [Ul(¢(A) & ¢(B)) — from 1 by the monotonicity
[Ul(A < B) = [UJ(¥(A) < #(B)) - from 2 by S5,
[U(4(A) < ¢(B)) = [a]((¢(A) < #(B)) — by axiom IV.
. [[oz](( (4) & ¢(B)) = ([a]¥(A) < [o]¢(B)) — by the minimal modal
ogic K,
6. [Ul(A < B)) = ([o]¢(A) & [o]¥(B)) — by the propositional logic
from 3, 4 and 5. &

2
U
3.
4.
5.

2.3 Theories in o-logics

Throughout this section we consider L to be a fixed consistent o-logic.
A set of formulae T is called a theory wn L if it satisfies the following
conditions:

(t1) All theorems of L are contained in T,
(t2) T is closed under Modus Ponens, i.e., if A,A = B €T then B €T,
(t3) T is closed under the rules (WIT), (WITy) and (WIT}) i.e., whenever

all premises of an instance of any of these rules are in I' then its
conclusion is in I'.

Obviously the set of all theorems of L is a theory of L.

A theory T is consistent if L ¢ T.

I' is said to be a maximal theory if it is consistent and for all A: either
A€eT or—-Ael.

Note that every maximal theory is consistent.

We will use without explicit mentioning the following properties of a
maximal theory I':

o —A€Tiff A¢T,
e AABETiff AeT and BeT,
e AVBeTiff AcTor BeT.

Let T’ be a set of formulae and A be a formula. Define:

'+ A={BeFOR,|A= BeT}
Lemma 2.6 (Deduction lemma for theories) Let T' be a theory in L. Then:

(i) T+ A is the smallest theory, containing T' and A,
(ii) T 4+ A is consistent iff ~A ¢ T.

14



Proof. Standard. Note that A = ¢(Op = B)/A = ¢(B) is tautologically
equivalent to an instance of a Witness rule whenever ¢(Op = B)/¢(B) is
such an instance. &

Lemma 2.7 (Lindenbaum Lemma)

(i} Any consistent theory T can be extended to a mazimal theory A.

(ii) If T is a theory and A ¢ T then there exists a maximal theory A
such that T C A and A ¢ A.

(iii) If A is not a theorem of L then there exists a maximal theory T
such that A ¢T.

Proof. (i). Let Ag, A1,... be an enumeration of all formulae. We define
inductively a sequence of consistent theories I'y, 1, . .. in the following way.
Define I'y = I' and suppose that I'g,...,I',, are defined and consistent.

For I',,41 we consider two cases.

Case 1: If I'y, + A, is consistent, then put I'ny1 = 'y + Aj.

Case 2. Let I';, + A, be inconsistent. Then —A, € I',,. Note that
there are finitely many representations of A,, as a conclusion of any of the
Witness rules ¢1(B1), . .., ¢x(Br). We define the finite sequence TS, ... T
inductively as follows. Let TY = T, and suppose that 2 ... T? i < k
are defined. Then there exists a propositional variable p such that I'!, 4
—¢;(Op = B;) is consistent. For, suppose the contrary, i.e. for any p, '}, +
—¢;(Op = B;) is inconsistent. Then ¢;(Op = B;) € ['}, for any variable p
and by the corresponding Witness rule we obtain that ¢;(B;) = A, € Ffl.
But —A, also belongs to '\, which implies that I is inconsistent — a
contradiction. Let p; be the first variable such that F; + —;(Op; = By)
1s consistent. Then define Ff{"l = Fﬁl + —;(Op; = B;).

Finally T,y = T'%. That completes the definition of the sequence
Lo, Ty, ...

Now put A = |J;2,,,. It is straightforward to show that A is a
maximal theory containing T

Conditions (ii) and (iii) follow from (i).

We denote by W the set of all maximal theories of L.

Lemma 2.8 (Witness Lemma) For any T’ € W there exists a variable p
such that Op € I

Proof. Suppose, for the sake of contradiction, that I' € Wy and for any
variable p we have Op ¢ T'. Then, by the maximality of T' for any variable
p we have that Op = L € ' and hence, by the Basic Witness rule, 1L € T
— a contradiction. &
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2.4 Canonical models for o-logics

Throughout this section we will assume that L is a fixed consistent o-logic
and I is a maximal theory of L. Following an idea very similar to the clas-
sical Henkin’s construction of canonical models in first-order logic we will
construct a canonical o-structure (WF, flr, Cey ,5, clf, S ,cf, 7“1;, Cy 7“,1;),
and a canonical valuation on it, related to I'.

First we define Xpr = {p e VAR| < U > Op € T'}.

By the witness lemma Y1 # . We define the following relation & in
EFZ

prqiff <U > (OpAOq) €T.

It is easy to see that = is a reflexive and symmetric relation in Xr.
By 2.4(iii) we obtain that a is also a transitive relation. Hence & is an
equivalence relation in Y. Then define:

lp| = {q € Zrlp = q},

wh=A{lpl | p~ 4}

2.4.1 Definition of relations:

Let r be a relational symbol of arity n 4+ 1 from the signature o. For
pl il laa] € WT define

Y(pl, lgil, - lgn]) iff < U > (OpA <7 > (Oqy,...,0q,)) €T.

The correctness of this definition follows from the next lemma.

Lemma 2.9 Let r be an n + 1-place relational symbol from the signature
o and let for i =1,...,n the following hold:

1. pap/aqiaQQ S EF;

2.prp, u=q,

and
3. <U>(0OpA<r>(Oq,...,0q,)) €l.
Then < U > (Op'A<r>(04),...,0q,) €T.

Proof. Suppose that the conditions (1)—(3) are fulfilled. Then by (1) and (2)
we obtain:
<U>(O0pAOp)eTl,<U>(0¢ANOg)eT,i=1,...,n.
Then, applying 2.4(i), we obtain
[U(Op=Op) el [UJ(O; «0¢)eT,i=1,...,n.
From this, applying n + 1 times the strong replacement lemma to (3),
we obtain the result. &
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2.4.2 Definition of functions:

Let f be a functional symbol of arity n. Before defining the function fT we
define an (n + 1)-ary relation R; as in the definition of relations. Namely,
for pl, g1, -, lgn] € W we put

Re((Ipl laal, - lan) ff <U > (OpA < f>(Oqq,...,0¢,)) €T.

The correctness of this definition follows from 2.9. In the next lemma we
will show that Ry is a total functional relation with respect to |q1],. .., |¢n].

Lemma 2.10 Let f be an n-ary functional symbol from the signature o.

Then for every |qil, ..., |qn| € W' there exists a unique |p| € W' such that
Re(lpl lgsl, - - lanl)-
Proof. (Existence) Let |qi],...,|¢gn] € WL, Then < U > Oqy,...,< U >

Oq,, € T'. From this and axiom (f1) we obtain

(1) <U><f>(0q,...,0q¢,)€T.

Now we will show that there exists p € VAR such that

(2) <U>(OpA<f>(0q,...,0¢,))€l.

Suppose the contrary, namely that for every p € VAR we have

<U>(0pA< f>(0q,...,0q,)) ¢ T.

From this, by the maximality of I' we get that for every p € VAR
we have [Ul(Op = = < f > (Oq1,...,4,)) € T. Then by the Extended
Witness rule for T we get [U](= < f > (Oq1,...,¢n) € T and from here
< U>< f>(0q,...,q,) €T, which contradicts (1).

Using monotonicity of < U > it follows from (2) that < U > Op € T,
Ipl € WE and R¢(|p|,|q1],---,|gn]) — the existence part is proved.

(Uniqueness) Suppose R¢(|p|, 1], -, |a.]) and Re(|p'], |qal, - - lanl)-
By the definition of Ry we obtain

(3) <U>(O0pA< f>(0q,...,0¢,)) €T and

(4) <U>(O0pA<f>(O0q,...,0q,)) €T

Applying the monotonicity of < U > and axiom (f2) to (3) and (4) we
obtain

(3) <U>0pANO<f>(0q,...,0¢,)) €T and

4) <U>OpANO<f>(0q,...,0q,))€T.

Now from (3’), (4) and Thm 2.4(iii) we obtain < U > (Op A Op') € T,
which shows that p = p’ and consequently [p| = |p/|. &

Now the definition of fT is the following: we put

lpl = A (ail, - lan D) i Ry (lpls laal, - lanl)-
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2.4.3 Definition of constants

Let ¢ be a constant symbol from the signature o. If we treat ¢ as zero-place
function we can repeat the construction for the functions given above. We
will only formulate the relevant lemma.

Lemma 2.11 Let ¢ be a constant symbol from the signature o. Then there
exists unique |p| € WU such that < U > (OpA < ¢ >) € T.

Proof. Similar to the proof of 2.10, using axioms (cl) and (¢2). &
Now we put ¢ = |p|, where |p| is the unique element of W' from 2.11.

We have defined the canonical o-structure. To define the canonical

model it remains to define the canonical valuation v,

2.4.4 Definition of the canonical valuation:

For arbitrary ¢ € VAR we put
vH(g) = {lpl e W' <U > (OpAg) €T}
The correctness of this definition is obtained from the following lemma.

Lemma 2.12 et
1. pxp and
2. <U>(OpAq)€el.

Then
<U>(0p Aq)€eT.

Proof. From (1) we obtain < U > (Op A Op') € T. Applying 2.4(i) we obtain
[U(Op < Op') €.
Now from this, (2), and strong replacement lemma we obtain the result.

&

2.5 The Truth Lemma

The following theorem, often called “truth lemma”, states that the canon-
ical valuation has the same form for arbitrary formulae.

Theorem 2.13 (Truth Lemma) Let v = v' be the canonical valuation.
The following equivalence is true for any formula Q and |p| € W'
ple Q) iff <U > (OpAQ)eT

Proof. The proof will be done by induction on the complexity of ().
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e Q € VAR. This case is true by the definition of v

Suppose @ has one of the forms =4, AVB, (#)A, < r > (41,...,Ap),
< f>(A1,...,A), <e>and for A, B, A1,..., Ay the assertion is
true (induction hypothesis, TH).

[ ] Q = —|A:
b € v(~A) iff [p| ¢ v(A) iff (by IH) < U > (OpAA) ¢ T iff
(by the maximality of T') = < U > (Op A A) € T iff (by 2.4(iv))
<U>(0OpAn-A)eT.

e (=AVB:
Ip| € v(AVB)iff [p| € v(A)or |p| € v(B)iff (by IH) < U > (OpAA) €
T'or < U > (OpA B) €T iff (by the maximality of T') < U > (Op A
AWV <U>(OpAB)eliff (by 24(v)) <U > (OpA(AV B))€eT.

o Q=<r>(A1,...,A4,),Q =< f>(41,...,4,),Q =< ¢ >,Q =

(#)A. The proofs of these cases follow from the next four lemmas.
Lemma 2.14 The following are equivalent:
(Z) < U > (Op/\ <o > (Ala .. 'aAi—laAiaAi-l-la' .. aAn)) € F7

(ii) There exists ¢; € VAR such that
<U> ((’)p/\ <o > (Al, e Ay, (OQZ /\Ai)aAi+1a . ,An)) cl.

(11i) There exist |¢;| € WY, i =1,... n such that
<U>(0OpA<a>(0qgANAL...,0¢, ANAy)) €T,

(iv) (For the case a = r.) There exist |¢;| € W', i =1,... n such that
Y (pl, g1l - - lgnl) and < U > (Op A A;) €T for eachi=1,... n.

Proof. (i) — (ii): Suppose (i) and, for the sake of contradiction, that (ii) is
not fulfilled. Then by the maximality of I' we obtain that for any ¢; € VAR
the following is true:

[U]((’)p = [Oz](—!Al, vy A1, 0q = AL Ak, —|An)) el

From this, by (WIT;) we obtain

[U]((’)p = [Oz](—!Al, R ,—|AZ'_1, _‘Ai, _‘Ai+1, R —|An)) el

which is equivalent to

< U> (O0pA<a> (A, .. A1, A Aigr, -, AR)) €T

which contradicts (i).

Let us note that ¢;, the existence of which is claimed in (ii), belongs to
Y. This follows from the monotonicity of < U > and < « >, and axiom

(U).
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(#i) — (¢): This implication follows by the monotonicity of < U > and
< a>.

Thus we have obtained the equivalence (¢) < (éi). Using the above
note and applying this equivalence n-times for i = 1,... n we obtain the
equivalence (i) — (4ii).

The equivalence (iii) < (iv) follows by 2.4(v) and the definition of r'.
&

Lemma 2.15 The following are equivalent:
(i) <U>(OpA<f>(A,...,4,)) €T,
(ii) there exist |¢;| € WY, i =1,...,n, such that
Il = FFail,- -, lgn) and < U > (OpAA) €T foranyi=1,...,n.

Proof. The proof is similar to that of 2.14 by using the definition of f*. &
As a particular case we obtain:

Lemma 2.16 The following conditions are equivalent:
(i) <U>(OpA<e>)eT,
(W) |pl ="

Lemma 2.17 The following conditions are equivalent:
(1) <U>(OpA{#)A) €T,
(i) There exists |q| € W' such that |p| # |q| and < U > (OgA A) € T.

Proof. By 2.14 condition (i) is equivalent to the following one:
(") There exists ¢ € VAR such that < U > (Op A {#)(Og A A)) € T
For this ¢ we easily obtain that |¢| € W' hence, by 2.4(vii), (i) is
equivalent to:
(i”) There exists |¢| € W such that = < U > (Op A Og)A < U >
(OgnA)eT.
Finally, (i”) is obviously equivalent to (ii). &

The proof of the Truth Lemma is completed. &

2.6 The canonical model lemma

Lemma 2.18 (Canonical Model Lemma) Let L be an arbitrary consistent
o-logic. Then the following conditions are equivalent for any formula A:

(i} A is a theorem of L,

(ii) A is true in all canonical models of L.

Proof. (i) — (i%) Suppose that A is a theorem of L and, for the sake of
contradiction, that A is not true in some canonical model of L determined
by some maximal theory I'. Then there is a propositional variable p such
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that [p| € W' and that [p| ¢ v'(A4). So |p| € v'(=4). By the Truth
Lemma (2.13) we obtain that < U > (Op A—A) € T'. By the monotonicity
of < U > we get that < U > = A € T and hence that =[U]A € T'. But since
A is a theorem of L then [U]A is a theorem of L, too, and hence [U]4 € T
— a contradiction.

(#i) — (7). Suppose that A is not a theorem of L. Then by the Linden-
baum Lemma (2.7(iii)) there exists a maximal theory T such that A ¢ T,
so = A € I'. We shall show that A is falsified in the canonical model deter-
mined by I'. By the Witness Lemma there is a propositional variable p such
that Op € T'. Then OpA—-A €T and by Sb that < U > (OpA—-A) € T. By
the Truth Lemma we obtain that |p| € v'(=A), hence |p| ¢ v''(A), which
shows that A is not true in the canonical model determined by I'. &

2.7 Soundness and completeness of M L°.

Theorem 2.19 The logic M L, is sound with respect to its algebraic and
Kripke-style semantics.

Proof. Tt is straightforward to check that all axioms are valid and that all
rules preserve validity. (For the soundness of the Witness rule, see sim-
ilar results e.g. 1n Passy and Tinchev 1991, Gargov and Goranko 1993,
Goranko 1998.) &

Theorem 2.20 The following are equivalent for any formula A in ML, :
(i} A is a theorem of ML°.
(i) A is valid in all o-structures.
(iii) A is valid in all complex o-algebras.

Proof. (i) — (i1): — this is the soundness theorem for M L.

(#i) — (4): Suppose A is true in all o-structures. Then A is true in
all models over all o-structures and consequently A is true in all canonical
models of M L?. Then by the Canonical Model Lemma A is a theorem of
ML°.

Finally, (ii) and (iii) are equivalent by definition. &

3 Modal logics for classes of o-structures.
In this section we introduce uniform methods for complete axiomatization

of the modal logic M L consisting of the valid formulae of a class C of
o-structures for a large family of elementary classes.
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3.1 Canonical definability

Theorem 3.1 (Canonical definability of universal formulae) Let T be «
mazimal theory in a o-logic L and let WU be the canonical structure de-
termined by T'. Let ¢(xg,...,xn) be an open formula in the first-order
language of the signature o and 1 be the translation defined by 1.3. Then:

(i) For any |pol, ..., |pn| € W,

o(lpols-- -, lpnl) holds in wtb i m(e(po,...,pn)) €T.

(ii) Let ¢ be the closed formula (Vao) ... (Vap)e(xo, ..., xn). Then 7(¢)

1s a theorem of L iff v holds in all canonical structures of L.

Proof. (i) We will proceed by induction on the complexity of ¢(zg,. .., zy).
The case for atomic formulae:
o Ifp(xy,z;)is g = «; then:
lpol = |p;| iff po = p; ff < U > (Opo AOp;) € T iff 7(po = p;) €T.
o Ify(xg,x1,...,2,) 18 r(xg, 21, ...,2,) then:
(pol, [p1l, - - -, |pnl) is true in W iff
<U > (OpoA < r > (Opy,...,0py) € Tiff
(r(po,p1, ... pn)) €T.
o p(xo,®1,...,2n) 08 xg = f(x1,...,2y). Then we have:
ol = fX(pil, ... lpnl) iff < U > (OpA < f > (Opy,...,0p,)) € T iff
T(po = f(p1,-..,pn)) €T.
e p(xp)is #g = ¢. Then we have:
lpo| =il <U > (OpA<e>)eT iff 7(pg =c¢) €T

The case of arbitrary open formulae:

o(zo, ..., 2,) has aform = (xg, ..., 2,) or ¥(xg,...,2,)VE(2o,...,2,)
and by induction hypothesis the assertion is true for ¢ and #. Both cases
are standard.

(ii) Recall that 7(¢)is < U > OpoA...A < U > Opp = 70(po, ..., Pn).

(—) Suppose 7(¢) is a theorem of L but, for the sake of contradiction,
that 1 is not true in some canonical structure over some maximal theory
[. Then for some |pgl,...,|p.| € W we have that ¢(|po|, ..., |p,|) does
not hold. By (i) we obtain

(1) 7(o(Por....pa)) ¢ 1.

From |po|, ..., |pn| € WY we obtain

(2) <U>0p;el,i=0,...,n.

But (1) and (2) imply that 7(¢) ¢ T, which contradicts the assumption
that 7(¢) is a theorem of L.

(<) Suppose that 7(¢) is not theorem of L. We shall show that ¢ is
not true in some canonical structure of L.

Since 7(¢) is not theorem of L then by the Lindenbaum Lemma (2.7(iii))
there exists a maximal theory T such that 7(¢) ¢ T. From here we obtain
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(3) <U>0p;eTl,i=0,...,n,and

(4) 7(p(Po,---pn) E L.
From (3) we get

(5) |p0|a"'a|pn|€WF

and from (4) we obtain

(6)  @(|pol,---,|pnl) is not true in the canonical structure determined
by T'.

From (5) and (6) we obtain that ¢ is not true in all canonical models

of L. &

3.2 The modal logic of a universal class of structures.

Given a universal class C of o-structures, axiomatized by a set of univer-
sal sentences A, we obtain the logic M Lg of all valid formulae in C by
extending M L7 with the following additional group of axioms:

Axioms for the class C*:

(¥*)  7(¢), for every formula ¢ from A.

Theorem 3.2 For any universal class C the following are equivalent for
any formula A of M, :

(i} A is a theorem of ML,

(i) A is valid in all o-structures of the class C.

(i) A is valid in all complex o-algebras from C*.

Proof. (i) — (4i): this is the soundness theorem for M LZ which follows from
the soundness theorem for M L7 and lemma 1.4.

(#i) — (7): Note that by the Canonical Definability Theorem, all canon-
ical structures of ML are in the class C. Suppose now that A is true in
all o-structures from the class C. Then A is true in all models over all
o-structures from the class C and consequently A is true in all canonical
models of M LZ. Then by the Canonical Model Lemma A is a theorem of
MLZ.

Again, (ii) and (iii) are equivalent by definition. &

This theorem covers a large family of important classes of structures,
such as:

e implicative lattices, pseudo-Boolean algebras, Boolean algebras (ax-
iomatized in Goranko and Vakarelov 1998 using a method which is
generalized here), Post algebras, N-lattices, modal algebras, dynamic
algebras, (representable) relation algebras, (representable) cylindric
algebras, etc.
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e groups, abelian groups, groups of exponent p, torsion-free groups;
ordered groups, etc.

e rings, commutative rings, integral domains, etc.

3.3 The modal logic of a II class of structures.

We shall extend the result above by providing a uniform complete axiom-
atization of any Iy class of structures, by means of additional rules of the
type of Witness.

Given a 11§ class C of o-structures axiomatized by a set of 113 sentences
A, we obtain the logic M L of all valid formulae in C by extending M L°
with the following additional group of rules:

Rules for the class C*:

For every formula ¢ = Vz3y¢(z,y) from A, where T = z1,..., 2,y =
Y1, -, Ym are disjoint strings of variables and ¢ is open, we add the fol-
lowing rule to the axiomatic system ML7:

(WIT¢)Z

For any n-ary modality [o] and 7 € {1,... n},if

FA=[o](A,..., 41, ({U)OGAT($(Z,9))) = B, Ait1,..., Ay) for
all y1,...,ym € VAR, where ()Oy = (U)Oy1 A ... A{U)Oyp, then

A = [&](Ar, ..., 421, {U)0% = B, Ait1,...,Ay) where (U)O2 =
<U>Ol‘1 A <U>0l‘k

Theorem 3.3 For any 113 class C the following are equivalent for any
formula A of M, :

(i} A is a theorem of MLZ,

(i) A is valid in all o-structures of the class C.

(i) A is valid in all complex o-algebras from C*.

Proof. We shall outline the major steps in the proof. For more details of

similar results, see Goranko 1998.
(1) — (i1): We only need to show the soundness of each of the rules
(WITy).
Let ¢ = VZ3yé(z, y), (U)OZ and (U)Oy be as above and suppose
MLEE A= ([0](Ar, .., 421, ((UYO0Z) = B, Aiyr -, An)).
Then, for some structure S € C,

SEA= ([0l(Ar,. .., A, ((U)0F) = B, Aiqq, ..., An)),

1.e. for some valuation v and a € S,
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S,v alt A= ([a)(Ar,..., Air, (UYOF) = B, Ait1, ..., Ay)).

Then S,v,a = A and S,v,q; = 45, S,v,a; £ ((U)OZ) = B for some
ay,...,a, € 8 such that R,(a,ay,...,a,) where R, is the relation in S
corresponding to a.

Then S,v,a; E (U)OZ% and S,v,a; = B. Therefore, there are ele-
ments s1,...,s; € S such that v(z1) = {s1},...,v(xx) = {si}. For these
$1,...,Sg there exist ¢1,...,¢,, € § such that

S ': ¢(51,...,5k,t1,...,tm).

Let y1,...,ym be variables not occurring in
A= ([OZ](Al, R ,Ai_l, (<U>Oi‘) = B,AH_l, .. ,An))
and v' be a valuation in & modifying v on y1,...,ym by v'(y1) =

{t1}, .., " (ym) = {tm}. Then

S, E(U)0y A(é(z,1)))

and

S,v a; £ B

hence

S.v'alE A= ([o](Ar,..., Aoy, (UYOy A T(9(2,9))) = B, ..., An)).
Therefore,

ML A= ([o](Ar,... Aic, (UYOg A T(6(2,7))) = B,..., An)),

whence the soundness of the rule (WITy).

(#i) — (¢): First, note that analogues of the Basic Witness and the
Extended Witness rules are likewise derivable for each of the rules (WITy).

We now modify the completeness proof for M L7 by building the canon-
ical model from theories, additionally closed under all (basic, standard
and extended versions of) rules (WITy ). All lemmas apply accordingly,
hence, as in the previous theorem, it suffices to show that all canonical
structures of M L¢g are in C. We shall demonstrate that for every canon-
ical structure W' and axiom ¢ = Vz3ye(z,y) as above, WL = o. In-
deed, let |z1], ..., || € W, hence (U)Ozy,...,{U)Oz; € T, and suppose
WU B o(|z1), - |2kl lal, - - -, lgm]) for any |q1], ..., |gm| € WE. Then for
any yi,...,ym € VAR, (U)Oy A 7(¢(Z,9)) € T, hence ({U)Oy, A ... A
(UYOym A 1(¢(2,9))) = L € I'. Then, by closedness under (WITy),
(UYOx = L €T, whence L € T — a contradiction. &
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3.4 Axioms vs rules.

Since every universal formula is a 115 formula, we have a choice to axiom-
atize a universal class either by means of axioms or rules, and it is quite
easy to derive the axiom from the corresponding rule.

Same choice exists for various modally definable I3 properties. Here is
a representative sample of some algebraically important 115 classes which
can be modally axiomatized either way.

o Atomless Boolean algebras can be modally axiomatized by extending
the axiomatic system for Boolean algebras with the additional axiom:

(OAN=(0)) = (UYANT A=A A={0));

e Rings with division can be modally axiomatized by extending the
axiomatic system for rings with the additional axiom:

(OAA={0)) = [UJ(A(X)T AT(x)A)

Division rings are then axiomatized as ring with division without zero
divisors (a universal condition).

e Flields are modally axiomatized over integral domains with the addi-
tional axiom:

(OAA=(0) = [U]({1) = A()T)

The modal logic of fields is easily extended further to fields of finite
characteristics, or fields with characteristics 0, ordered fields, etc.

Note however, that some modal formulae (such as GOp = OOp which
determines Church-Rosser’s 113 property Veyz3t(Rxy A Rxz — (Ryt A
Rzt))) although canonical in modal logics without rules, cease to be such in
the stronger sense relevant to logics with Witness type rules (where there
are fewer maximal consistent sets), and hence added as axioms to such log-
ics present a problem, while the corresponding rules co-operate smoothly.

This suggests that using rules for axiomatization is generally preferable,
at least what concerns proving completeness. Moreover, we argue that rules
behave better than axioms in the formal derivations, too, and this will be
discussed in more detail elsewhere.
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3.5 Some notes on the second-order expressiveness of
the modal languages.

The modal languages for complex algebras, being essentially of a second-
order nature, naturally allow for universal monadic second-order quantifi-
cation over important types of subsets of structures, such as substruc-
tures. For instance, universal quantification over subgroups can be ef-
fected by using a modally definable predicate for a subgroup: s(X) =
(VX AUNX ()X = X), and then s(X) = ¥(X) is valid in a group
iff all subgroups of the group have the property ¥. This pattern obviously
generalizes to substructures of an arbitrary structure.

Finally, the congruences in many classes of structures (such as Boolean
algebras, groups, rings) etc. can be determined by specific subsets (resp. fil-
ters, normal subgroups, ideals), which sometimes are modally definable and
thus enable universal quantification over congruences, hence over homomor-
phic images, too. For instance, a modally definable predicate for a filter in a
Boolean algebrais: £(X) = [U](({1) = X)A(X = 7 (0)HA(X(MNX = X)A
(X(W)T = X)), and for an ultrafilter: u(X) = £(X) A[U]({—)X < -X).

4 Concluding remarks

This study raises a number of interesting questions of logical or algebraic
importance, which will be addressed in a subsequent paper. We shall briefly
mention some.

Logical issues. Traditional logical problems arise around the modal
languages and logics for complex algebras. Some general questions are:

e Frpressiveness. The modal languages, via their standard transla-
tion a la van Benthem, cover a fragment of the universal monadic
second-order extension of the first-order theory of the underlying
class of structures. Can that fragment be characterized in a coherent
model-theoretic fashion extending Goldblatt & Thomason’s results
from classical modal logic?

e Modal axiomatizability. The axiomatization results presented here
can be further extended in various ways. Some of them are based
on appropriate generalizations of Sahlqvist-type syntactic forms (see
Venema 1993 for a discussion and some results) or of semantic per-
sistence conditions on formulae (see Goranko 1998) which would en-
sure preservation of their validity from canonical structures (in the
stronger sense used in this paper) to the underlying frames, i.e. their
behavior like canonical formulae in modal logics without additional
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rules, and hence the successful co-operation of such axioms with the
Witness-type rules employed by the axiomatic systems. Others call
upon extension of well developed model-theoretic techniques (such as
filtration, unraveling etc.) for proving completeness of non-canonical
modal logics to the general framework studied here.

A number of more specific logical questions arise regarding the ax-
iomatizations proposed in this paper, one of them being: when is the
Witness rule schema redundant, or at least replaceable by (finitely
many) axiom schemata? This question calls upon a general study of
the proof theory of Witness-type rules. Another one is about axiom-
atizing the finite structures of a given class. For instance, on partially
ordered structures, Grzegorczyk’s formula

0(Q(p — Op) —p) —p

where the modality O corresponds to the partial ordering, defines
the class of structures with no infinite descending chains, hence on
linear orderings or some finite partial orderings in which a bound on
the width can be established (such as Boolean algebras) it defines
the class of finite structures. The question arises when Grzegorczyk’s
formula added to the modal logic of a class of partially ordered struc-
tures axiomatizes the finite structures of that class.

Decidability. When is the modal logic of the complexes of a class of
structures decidable? This question is closely related to the previous
one. In general, the (un)decidability of the first-order theory does
not imply (un)decidability of the modal logic as the two languages
are incomparable, so a finer analysis of the expressiveness of the latter
is neccessary in order to adapt known techniques such as e.g. tiling,
or word problems. On the other hand, since the full monadic second-
order theory covers the modal language, decidability of the former
implies decidability of the latter, so in particular, Rabin’s theorem
guarantees decidability of the modal logic of any class of structures
interpretable in trees with at most countably many successors.

Complexity. How does the complexity change when passing from the
(universal) first-order theory of structures to the modal logic of their
complexes?

The first-order theory of complex algebras. The full first-order lan-
guage for complex o-algebras encapsulates, via the translation 7, the
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full monadic second-order theory of o-structures. What are the log-
ical implications of that translation? A challenging program in that
respect 1s to study the full first-order theory of complex o-algebras.

Algebraic issues. The main one is: to what extent is the proposed
modal treatment of arbitrary structures interesting from algebraic perspec-
tive and how does 1t contribute to the study of intrinsically algebraic prop-
erties of these structures? More specific questions include:

e What is the precise algebraic characteristic of the (non)definability
of the difference operator in a class of o-structures?

o What are the algebraic properties of the complex o-algebras and how
does the algebraic theory of the underlying o-structures determine
them? In particular, when do their substructures (up to isomorphism)
form a variety? One general approach to this question comes from
Goldblatt’s study of varieties of complex algebras Goldblatt 1989.

e What algebraically important, essentially second-order properties of
specific o-structures are definable in the modal language of their com-
plex o-algebras? And how far reaching are the consequences of the
capacity of the modal languages to quantify over substructures and
congruences for the formal modal analyzing of the algebraic theory
of structures?
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