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PROVING UNPROVABILITY
IN SOME NORMAL MODAL LOGIC

The present communication suggests deductive systems for the op-
erator a of unprovability in some particular propositional normal modal
logics. We give thus complete syntactic characterization of these logics in
the sense of  Lukasiewicz: for every formula φ either ` φ or a φ (but not
both) is derivable. In particular, purely syntactic decision procedure is
provided for the logics under considerations.

All background in modal logic, necessary for this paper can be found
in the initial chapters of [1], [3] or [5].

Henceforth we shall informally read S a φ as “φ is unprovable in
S”. All systems presented here will contain the “minimal” a` system  L
consisting of the axiom:

F : a ⊥

and the rules:

Reverse substitution:

RS
a σ(φ)
a φ

for any uniform substitution σ.
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Modus Tollens:

MT
` φ→ ψ, a ψ

a φ

(In this rule ` and a will always refer to one and the same logic.)
It is crucious that the rule a 2φ/ a φ, which is admissible for all

normal modal logics, turns out redundant in many cases including all con-
sidered here. Also let us note that the rule RS can be specified (as it
can be seen from the proofs below) in all considered cases as follows: it is
enough to admit only 2-free substitutions, i.e. such that every variable is
substituted by 2-free formula.

Definition. Let S be a modal logic and S a be a deductive system for a,
including  L. An Inference in S a is every finite sequence α1, . . . , αn such
that every αi is either an axiom of S a or is obtained form α1, . . . , αi−1, the
axioms of S a and the theorems of S, accordingly using some of the rules
of S a. The last formula α of every such a sequences is called S a-inferable,
denoted S a α.

We say that S a is correct for S if only non-theorems of S are inferable
in S a. We call a system S complete in the sense of  Lukasiewicz or  L-
complete for short ( L-decidable in [2] and [7]) if for every formula φ, exactly
one of S ` φ and S a φ takes place.

Here we shall sketch two methods for proving  L-completeness. The
first one (in theorem 2 below) is syntactic, based on some uniform presen-
tation of the formulas, and is suitable for particular cases. Similar idea is
used in [7] when an  L-complete system for S5 is presented. The second
method (theorem 3) is semantic and is applicable in more general situa-
tion. Its idea is close to the approach in [6] (where an  L-complete system
for the intuitionistic calculus is given), but using Kripke semantics rather
than algebraic one. Both the methods however, are essentially based on
suitable semantic characterizations of the unprovable formulas of the logics
under consideration. Other natural approach, using semantic tableau is
illustrated in [2].

The propositional language which deal with consists of a countable
set of propositional variables {p0, p1, . . .} and the logical signs >,∧,¬ and
2,⊥,∨ and 3 are accordingly introduced. Modal depth of a formula is
defined as usual. The formulae with depth 0 are called 2-free. We shall
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use the sign ‖– to denote the validity at the root of a generated model, i.e.
<F, V> ‖– φ means <F, V> ‖– φ[r(F )] where r(F ) is the root of the frame
F .

Hereafter by λ we shall denote an arbitrary 2-free formula.
Obviously, the system  L is correct for every consistent modal logic.

Moreover, the following holds:

Theorem 1. The system  L is  L-complete for (and only for) the two
maximal normal modal logics V er : K + 2 ⊥ and Triv : K + p↔ 2p.

This result corresponds to the fact that  L, taken in the classical propo-
sitional language, is L-complete for the classical logic CL, as shown by
 Lukasiewicz [4].

Theorem 2.
1) The system  L extended with the axiom a 3> and the rule

RKW
a λ, a 3ψ ∨ ψ ∨ θ1, . . . ,a 3ψ ∨ ψ ∨ θk

a λ ∨2θ1 ∨ . . . ∨2θk ∨3ψ

is  L-complete for the logic KW = K + 2(2p→ p) → 2p;
2) The system  L extended with the axiom a 3> and the rule

RK
a λ, a ψ ∨ θ1, . . . ,a ψ ∨ θk
a λ ∨2θ1 ∨ . . . ∨2θk ∨3ψ

is  L-complete for the logic K.

Sketch of the proof:
First we define normal modal form (NMF for short):
i) every 2-free formula is in NMF ;
ii) every conjunction of formulas of the kind λ∨2θ1 ∨ . . .∨2θk ∨3ψ

or λ∨3ψ, where λ is 2-free and ψ and θ’s are in NMF , is in NMF itself.
One can prove by an easy induction on the depth of formulae that for

every formula φ there exists a formula θ in NMF such that K ` φ↔ θ.
The proof of 1) is hung on the fact that KW is complete with respect

to all finite irreflexive transitive tree-like frames, or KW-trees, for short
(see [5]). Now, for every KW-unprovable formula φ we attach a natural
number l(φ) which is the least length of a KW-tree in which φ is refutable.
An induction on l(φ), proves that for every KW-unprovable φ,KW a φ.
The inductive step uses a normal form of φ.
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2) is proved much in the same way, using the fact that K is complete
with respect to all finite irreflexive intransitive trees (see [5]).

Theorem 3.
1)  L extended with the rule

RS4Grz
a λ, a 3ψ ∨ θ1, . . . ,a 3ψ ∨ θk

a λ ∨2θ1 ∨ . . . ∨2θk ∨3((λ ∨2θ1 ∨ . . . ∨2θk) ∧ ψ)

is  L-complete for the logic S4Grz = S4 + 2(2(p→ 2p) → p) → p.
2)  L extended with the rule

RT
a λ, a ψ ∨ θ1, . . . ,a ψ ∨ θk

a λ ∨2θ1 ∨ . . . ∨2θk ∨3((λ ∨2θ1 ∨ . . . ∨2θk) ∧ ψ)

is  L-complete for the logic T.
3)  L extended with the axiom a 3> and the rule

RK4.3W
a λ, a 3ψ ∨ ψ ∨ θ
a λ ∨2θ ∨3ψ

is  L-complete for the logic K4.3W = KW+2(2p∧p→ q)∨2(2q∧q → p).
4)  L extended with the rule

RS4.3Grz
a λ, a 3ψ ∨ θ

a λ ∨2θ ∨3((λ ∨2θ) ∧ ψ)

is  L-complete for the logic S4.3Grz = S4.Grz + 2(2p→ q)∨2(2q → p).
5)  L extended with the rule

RC
a λ, a θ
a λ ∨2θ

is  L-complete for the logic K + 3p↔ 2p.
6)  L extended with the axiom a 3> and the rule RC is  L-complete

for the logic K + 3p→ 2p.

Sketch of the proof. 1) S4Grz is complete with respect to all finite reflexive
and transitive trees (called within this proof simply trees), (cf. [5]). Let us
give an exact definition:

i) Every frame of the kind O = < {x}, {< x, x >} > is a tree with a
root r(O) = x and a length l(O) = 0; call such trees trivial; they will be
freely identified with their roots.

ii) Let T1, . . . , Tk be disjoint trees, Ti = < Wi, Ri > for i = 1, . . . , k
with corresponding roots x1, . . . , xk and let x does not belong to any of
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T1, . . . , Tk. Then the frame T

x(T1, . . . , Tk) =< {x}∪
k⋃

i=1

Wi,
k⋃

i=k

Ri∪{< x, x >}∪{< x, y >: y ∈
k⋃

i=1

Wi} >

is a tree with a root r(T ) = x and a length l(T ) = max(l(T1), . . . , l(Tk))+1.
The elements of a tree will be called nodes. Every node x in a tree T

appears there as a root of a smaller tree, called a subtree of T generated
by x. Leaves of a tree are all nodes which generate trivial subtrees. An
easy semantic argument shows that the rule RS4.Grz (and hence the whole
system) is correct for S4.Grz.

Now, let T = < W,R > be an arbitrarily fixed tree with a set of
nodes W = {x1, . . . , xn}. We attach to these nodes different propositional
variables q(x1), . . . , q(xn) or for short q1, . . . , qn. This set will be referred
as var(T ). Denote χ(xi) = qi ∧

∧
{¬qj : qj ∈ var(T ), j 6= i}.

Now we shall successively define for every subtree S of T formulae φS

and ψS as follows: If S is a leaf, S = < {xi}, {< xi, xi >} >, put ψS =
φS = χ(xi) ∧ 2χ(xi)). Let S = y(S1, . . . , Sk), r(S1) = y1, . . . , r(Sk) = yk

and suppose φS1 , . . . , φSk
, ψS1 , . . . , ψSk

are already defined. Then put

ψS = χ(y)∧3ψS1∧. . .∧3ψSk
∧2((χ(y)∧3ψS1∧. . .∧3ψSk

)∨φS1∨. . .∨φSk
)

and

φS = ψS ∨ φS1 ∨ . . . ∨ φSk
.

Informally speaking, ψS is characteristic for the root of S while φS is char-
acteristic for the whole S.

The proof goes further through the following lemmas.

Lemma 3.1. S4Grz a ¬ψT for every tree T .

A valuation V in the tree T will be called suitable if for every xi ∈
T, V (qi) = {xi}. If V is a valuation in T , we may also consider it (its
restriction) as a valuation in any subtree S of T .

Lemma 3.2. For every trees S and T and a valuation V in S, if <
S, V >‖– ψT then there exists a valuation V ′ in S coinciding with V over
var(T ), such that there exists a p-morphism f :< S, V ′ > onto a model
< T, V ′′ > for some suitable valuation V ′′.
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Lemma 3.3. If < T, V >‖– ¬Θ then there exists a substitution σ such that
S4Grz ` σ(Θ) → ¬ψT .

Now, to prove  L-completeness, let S4Grz 6` θ. Then < T, V >‖–
¬θ for some tree-like model. Hence, by lemma 3.3, for some substitution
σ,S4Grz ` σ(θ) → ¬ψT . By lemma 3.1 S4Grz a ¬ψT , hence S4Grz a
σ(θ) by MT . Therefore S4Grz a θ by RS.

All other statements of the theorem are proved in the same way. They
are respectively based on the following facts (cf. [5]):

2) T is complete with respect to all finite reflexive intransitive trees.
3) K4.3 is complete with respect to all finite irreflexive (strict) linear

orderings. (It is also the logic of < N, >>.)
4) S4Grz is complete with respect to all finite linear orderings. (It is

also the logic of < N,≥>.)
5) K + 3p ↔ 2p is complete with respect to all finite intransitive

chains in which only the last element is reflexive. (It is also the logic
of infinite irreflexive intransitive chain < N, S > where S is the relation
“next”: xSy iff y = x+ 1.)

6) K + 3p → 2p is complete with respect to all finite irreflexive
intransitive chains.

Remark. In fact most of the above introduced rules are rather rule
schemata, since every number k yields a rule R(k). One can be easily
persuaded that these schemata cannot be restricted to some fixed k. For
instance, take RK. An easy induction shows that if we restrict RK to some
R(k) then all K a-deducible formulae would be refuted in trees in which
every node has no more than k branches. But then the K-unprovable
formula

Altn = (3p1 ∧ . . . ∧3pn) →
∨
i 6=j

3(pi ∧ pj)

for any n > k will remain K a-unprovable.
The full proofs of the above theorems as well as other related results

will appear in a forthcoming paper.
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