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Sahlqvist Formulas Unleashed
in Polyadic Modal Languages

VALENTIN GORANKO AND DIMITER VAKARELOV

ABSTRACT. We propose a generalization of Sahlqvist formulas
to polyadic modal languages by representing such languages in a
combinatorial PDL style and thus, in particular, developing what
we believe to be the right syntactic approach to Sahlqvist formulas
at all. The class of polyadic Sahlqvist formulas PSF defined here
expands essentially the so far known one. We prove first-order
definability and canonicity for the class PSF.

Introduction

The quest for general frame-completeness results in modal logic has
driven research ever since the first examples of incomplete modal logics
were discovered by Thomason and Fine in the mid 1970’s. One of the
most general result of the sort was Sahlqvist theorem Sahlqvist 1975
where he proved two notable results for a large, syntactically defined
class of modal formulas, called now Sahlqvist formulas: first, the corre-
spondence result: they all define first-order conditions on Kripke frames
and those conditions can be effectively “computed” from the modal for-
mulas; and second, the completeness result: all these formulas are canon-
ical, i.e. valid in their respective canonical frames, hence axiomatize com-
pletely the classes of frames determined by them. Some landmarks in the
study of Sahlqvist formulas (SF) include, besides Sahlqvist’s paper itself:

e Lemmon’s conjecture in Lemmon and Scott 1977 on first-order de-
finability and canonicity of a substantial subclass of Sahlqvist for-
mulae, proven in Goldblatt 1976a, Goldblatt 1976b and indepen-
dently confirmed and extended by Sahlqvist’s result.
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e the systematic development in Benthem 1983 of Sahlqvist’s algo-
rithm for computing the first-order equivalent of a Sahlqvist for-
mula, based on the substitution method;

e the modern approach to Sahlqvist formulas proposed in
Sambin and Vaccaro 1989 , based on topological properties of de-
scriptive frames allowing for unified treatment of first-order defin-
ability and canonicity.

o Kracht 1993 where the class of first-order formulas corresponding
to Sahlqvist formulas was studied and a calculus computing the
modal equivalent of such formulas is proposed, and further devel-
oped in Kracht 1999. (See also Blackburn et al. 2000 for a good
exposition of Kracht’s calculus.)

e Jénsson 1994 where an algebraic proof of canonicity of Sahlqgvist
formulas is given, building on ideas from Jénsson and Tarski 1952a.
Actually, the latter can be regarded as a precursor and the earliest
essential reference on the topic.

e Ghilardi and Meloni 1997, using new algebracic-topological ideas,
prove an analogue of Sahlgvist’s canonicity theorem for interme-
diate and intuitionistic modal logics.

Nice expositions of the ideas and technicalities around Sahlqgvist’s
theorem can be found in Sambin and Vaccaro 1989, Gabbay et al. 1994,
Blackburn et al. 2000, Chagrov and Zakharyaschev 1997.

Most of the results on Sahlgvist formulas are confined in the scope
of monadic modal (or polymodal) logic. As de Rijke 1992 has shown,
attempts for easy generalization for polyadic modal languages can fail
badly. On the other hand, everyone who has worked on the topic must
have felt that the phenomenon extends beyond the realm of the monadic
languages, and actually, de Rijke and Venema in de Rijke 1993, Venema
1993, and de Rijke and Venema 1995, as well as Kracht and Wolter 1997
have proposed generalizations to the polyadic case. Blackburn et al. 2000
offers an insightful account of the first-order definability and canonicity
results for the class of polyadic Sahlqvist formulas considered there.

All known to us approaches, however, follow the tradition of treating
Sahlqvist formulas as implications', where the consequent is a positive
formula, and the antecedent satisfies some syntactic restrictions, so es-
sentially the only avenue for extension of the class of Sahlqvist formulas
has been to relax appropriately the restrictions on the antecedent. This
may be the right way to go in the monadic case. The polyadic languages,

LA notable exception is Thm 9.10 from Benthem 1983 which defines a class of
formulas syntactically larger, yet easily reducible to Sahlqvist formulas as defined
here.
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however, offer a new perspective to the phenomenon, which can only be
seen if the power of the polyadicity is fully unleashed, and this is what
we are trying to demonstrate in this paper.

To start with, a well known observation which so far considered as
trivial is that the disjunction and conjunction are actually dual to each
other dyadic modal operators : AVB = [=|(A, B) and AAB = (=)(A, B)
with very simple Kripke semantics:

M,z |= [=](A, B) iff Vyi,y2(R™xy1y2 = (M,y1 |E AV M,ys |= B)),

where R=zyz holds iff x = y = 2.

Using this observation one can eliminate all Boolean connectives,
except for the negation, from a polyadic modal language, and replace
them by respective modalities. This may seem just a gimmick, but in
fact it offers a new way of dealing with (polyadic) modal formulas, and
in particular with Sahlqvist formulas, as generalized modalities.? Thus,
one can work with a (almost) purely modal polyadic language defined in
the style of PDL with test, where there is nothing else besides atoms
and their negations, and polyadic diamonds and boxes. Here we use this
style to develop a new treatment of Sahlqvist formulas, which, apart
from extending their class, sheds a better light on their essence. In par-
ticular, this treatment allows us to give a more general definition of the
class of Sahlqvist formulas in the polyadic case, which smoothly and
naturally subsumes and even expands the monadic subclass, and also,
to compactify the first-order definability and canonicity proofs.

The idea in a nutshell is that in purely modal polyadic languages,
Sahlqvist formulas are represented by polyadic boxes the arguments of
which are either positive formulas or formulas behaving as unary boxes
over parametrically defined composite modal terms, which allow for first-
order definable minimal valuations satisfying them. For simple polyadic
Sahlqvist formulas these valuations are computed at once, while the gen-
eral case requires an inductive procedure. Furthermore, these minimal
valuations are closed sets in an appropriate topology, which yields the
canonicity.

The structure of the paper is as follows. The preliminary section 1
briefly introduces the largest class SF of Sahlqvist formulas in polyadic
modal languages, known to us from the literature (see de Rijke and Ven-
ema 1995). In section 2 we introduce the purely modal polyadic languages,

2We have meanwhile found that the idea of composing boxes in polyadic lan-
guages has also been used in Givant and Venema 1999 to describe a class of equa-
tions preserved under completions of Boolean algebras with operators. This class is
essentailly an algebraic translation of the class of polyadic Sahlqvist formulas defined
in de Rijke and Venema 1995.
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define the class SPSF of simple polyadic Sahlquist formulas then the full
class of polyadic Sahlquist formulas which in turn substantially extends
SPSF. We show that the class of polyadic Sahlqvist formulas introduced
here extends the so far known polyadic class both syntactically and se-
mantically, and extends the monadic fragment at least syntactically. In
section 3 we prove first-order definability of the polyadic Sahlgvist for-
mulas. Section 4 is devoted to polyadic descriptive frames and contains
the technical results needed to prove the canonicity of polyadic Sahlqvist
formulas in section 5.

1 Sahlqvist formulas in classical polyadic languages.

We assume basic familiarity with the syntax and semantics of the stan-
dard polyadic modal languages, a state-of-the-art reference for which is
e.g. Blackburn et al. 2000, from where we quote some of the definitions
below.

Consider an arbitrarily fixed polyadic modal language. Positive and
negative formulas of the language are defined as usual.

Definition 1.1 Boxed atom is a formula L;...L,,p where L, ...,L, isa
(possibly empty) string of unary boxes and p is a propositional variable.

Sahlqvist antecedent: a formula constructed from propositional
constants, boxed atoms and negative formulas by applying V, A, and
diamonds of arbitrary arities.

Definite Sahlqvist antecedent is a Sahlqvist antecedent obtained
without applying V (i.e. constructed from propositional constants, boxed
atoms and negative formulas by applying only A and diamonds of arbi-
trary arities).

(Definite) Sahlqvist implication: A — B where A is a (definite)
Sahlqvist antecedent and B is a positive formula.

The following definition is combined from Blackburn et al. 2000 and
de Rijke and Venema 1995.

Definition 1.2 (Definite) Sahlqvist formula ((D)SF): a formula
constructed from (definite) Sahlqvist implications by freely applying
unary boxes and conjunctions, and applying polyadic boxes and dis-
junctions to formulas sharing no common variables.

Basic Sahlqvist formula is a definite Sahlqvist formula obtained
without applying conjunctions.

This class of polyadic Sahlqvist formulas will be denoted by dRV.
The following easy observations will be used in the next section.
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Proposition 1.3

1. Every Sahlquist implication is equivalent to a conjunction of defi-
nite Sahlquist implications.

2. Every Sahlquist formula from dRV is equivalent to a conjunction
of basic Sahlquist formulas.

Remark 1.4  Kracht and Wolter 1997 too define a similar class of
polyadic Sahlqvist formulas, using also definable operators like &(A4, B) =
O(A, B)AO(=A, B)AO(A, ~B) which is actually equivalent to CJ(A, L)A
O(L, B), so that class does not extend dRV.

2 Sahlqvist formulas in polyadic modal languages.

2.1 Purely modal polyadic languages.

Definition 2.1 A purely modal polyadic language £, contains proposi-
tional variables, negation —, and a modal similarity type 7 consisting
of a set of basic modal terms (modalities) with pre-assigned finite
arities, including a 0-ary modality ¢o a unary one ¢y and a binary one
Lo.

The intuition behind the 3 distinguished modalities above is simple:
to will be interpreted as the constant T and its dual as 1; ¢t; will be
the self-dual identity; ¢ will be V and its dual — A. Treating these
connectives as modalities, besides allowing for elegance and uniformity,
will provide suitable technical framework for working with Sahlqvist
formulas.

Before we give the definition of a formula, let us stipulate that con-
stant formula will mean a formula containing no variables.

Definition 2.2 By simultaneous mutual induction we define the set
of modal terms MT(7) and their arity function p, and the set of
(purely) modal formulas M F(7) as follows:
(MT ii) Every basic modal term is a modal term of the predefined arity.
(MT ii) Every constant formula is a 0-ary modal term.
(MT iii) Ifn > 0, o, B1, ..., Bn € MT(7) and p(a) = n, then a(fy, ..., Bn) €

MT(7) and p(a(Br, ..., Bn)) = p(B1) + - + p(Bn)-

Modal terms of arity 0 will be called modal constants.

(MF i) Every propositional variable is a modal formula.
(MF ii) Every modal constant is a modal formula.
(MF iii) If A is a formula then —A is a formula;
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(MF iv) If Ay,..., A, are formulas, « is a modal term and p(a) =n > 0,
then [a](41, ..., Ap) is a modal formula.

Note that constant formulas and 0-ary terms are regarded as both
modal terms and formulas. This ambiguity of the syntax should not
cause confusion if properly handled, and we have put up with it for the
sake of technical simplicity and convenience.

For technical purposes we extend the series of :’s with n-ary modal-
ities ¢y, inductively as follows: ¢, 11 = t2(t1, ) for n > 1. Furthermore,
again for technical convenience, we can assume that the language con-
tains transposers: operators 8;; which swap the i-th and j-th argument
of a modal term. We will not treat these transposers formally, but as-
suming them in the language will allow us not to be concerned with the
specific ordering of the arguments in a modal formula.

Some notation on formulas:

(@)(Ar, ..y Ay) = 1[0 (—Ay, ..., 0 AL);

T= Lo, 1= —Lo;

AVB = [13](A4, B), AAB = (12)(A, B), and respectively A;V...VA, =
[tn](ALy ey An), AL Ao N Ay = (L) (Ax, 0y Ar);

A— B=-AVB.

Positive and negative occurrences of variables and positive and
negative formulas are defined as usual.

One effect of the mutual definition of modal terms and formulas is
that it allows construction of parametrized modal terms. For instance, if
a is a unary term and £ is a binary one, then v = B(—[8]([a] (L), T), 1) is
a unary modal term. Indeed, the formula []p can be essentially identified
with [8](=[8]([e](L), T),p), but the advantage of our approach is that
this formula can now be treated just like a normal unary box-modality,
which will be of important technical convenience.

The semantics of purely modal languages is a straightforward com-
bination of the standard Kripke semantics for polyadic modal languages
and PDL-type of polymodal languages, taking into account the fact that
conjunctions and disjunctions are now treated as modalities. In partic-
ular, a 7-frame is a structure <VV, {Ra}aeMT(T)> where R, C Wr(a)+1
is defined recursively by:

b RLO = VV’ RLl = {(CC,SC)|I € W}a sz = {(I,I,I)|£L‘ € W}

L4 Ra(ﬁl,...,ﬂn) = {(1‘, L1l eeey Tabyyeeey Tnly ey Inbn) g Wb1+m+b"+1|
1 Yn(Razyr.yn A NiZy Rp,yiti1 .. Tav,)},
where p(8;) = b;,i = 1,..n.

Note that R,, = {(z,...,x) € W"H|z € W}.



SAHLQVIST FORMULAS / 223

Now, the truth definition of a formula at a state of a Kripke model
extends the classical modal case with the clause (where § = y1...yn):

o M,z | [a](A1, ..., An) it VY(Razyr...yn = Viey M, yi = A).
In particular, M,z = « iff R,z for any modal constant a.

It follows immediately from the definitions that
[@(B1y vy Br) (A1, ooy Alnyy ooy Aty ooy Amn,, ) is equivalent to
[a]([ﬁl](Alla tey A1n1)a tey [ﬁn](Amla tey Amnm))

Accordingly, the standard translation ST generalizes the one for
monadic languages with the clauses:

e ST(0) = R,(x) for every modal constant o;
o ST([a](A1, ..., An) = VY(Razy1..yn — Vi ST(A;)(yi/z))

Again, note that all propositional logical connectives, as defined
here, have their standard interpretation. Furthermore, the purely modal
polyadic languages are equally expressive as the traditional ones.

2.2 Simple Polyadic Sahlqvist formulas.

Definition 2.3 Essentially positive formula (EPF) of a variable
p is a formula A = [a](p) or A = [a](p, A1, ..., Ar) where Ay, ..., A,, are
negative formulas not containing p. The variable p in such a formula
is called the essential variable of A, while all other variables are
inessential in the formula.

Definition 2.4 A set of essentially positive formulas is: independent
if no essential variable in a formula from the set occurs as an inessential
variable in any formula from the set; separated if all EPFs have differ-
ent essential variables; strongly independent if it is independent and
separated.

Of course, the essential variable in an EPF need not be the first
argument, but to simplify the notation we shall put it usually in first
position.

Definition 2.5 Simple Polyadic Sahlqvist formula (SPSF) is any
modal constant o, or A = [a](41,...,A,) where a is an n-ary modal
term and each formula A; is either positive, or a negation of an essen-
tially positive formula, and the subset of essentially positive formulas in
{Ay,..., A, } is independent.

Of course, we can close the class of SPSFs under conjunctions, but
for technical reasons we will keep it as is.
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2.3

Pre-processing

Sahlqgvist formulas are traditionally (here as well) defined syntactically,
while the idea behind them is semantic. Thus, inessential syntactic ma-
nipulations, such as tautological transformations, can take a formula in
or out of the class of these formulas without chainging its semantic prop-
erties. Here we briefly discuss how a purely modal polyadic formula can
be pre-processed in a search for its representation as a SPSF, and how
to present SPSFs in a canonical form. By A ~ B we shall indicate that
the formulas A and B are equivalent with respect to frame definability.

1.

Tautological transformations can present the formula as a polyadic
box (if necessary, by prefixing with [¢1]).

All monotone variables, that have only positive/negative occur-
rences in the formula, can be replaced resp. by L/T. Some easy
logical equivalences can further simplify the formula.

Boxes can be pulled outwards and composed. Eventually the for-
mula can be written as [a](A1, ..., A,), where A4, ..., A,, are negated
boxes or variables.

At this stage one can identify if the formula is a SPSF (or to
a general PSF, to be introduced later) and if not, one can try
to convert it into one, by an appropriate substitution, typically
reversing the polarities of a variable p by replacing it with —p. For
example’ [Lg](—![()t] (pa Q)v [ﬁ](pa q)) ~ [LZ(Lla B)](_'[a](pa q)ap) q) ~
[[’2([’17 /6)](_'[05](_'177 _'q)a P, _'q) ~ [I’Q(Lla ﬁ)](<a>(pa q)a D, _'Q)'
Now, assuming the formula is a SPSF, every EPF B can be re-
garded as a unary box over its essential variable, where all negative
arguments of B are regarded as parameters. Computing the rela-
tion corresponding to this composite box is straightforward from
the definition.

Finally, an SPSF can be transformed to one, equivalent with re-
spect to frame validity, with a strongly independent set of EPFs.
This can be done by means of successive splitting a common es-
sential variable of two EPF's into two different copies, illustrated
by the following example:

[a](=[81]p, ~[B2]p, P(p, 7)) ~ [a](=[B1]p1, ~[B2]p2, P(p1 V p2,7)),
where p;, py are variables not occurring in A.

Actually, all these transformations can be easily performed deduc-
tively in the minimal polyadic modal logic.

Clearly, a series of such transformations can convert any SPSF into
one with strongly independent set of EPF's, so every SPSF can be trans-
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formed into an ~-equivalent one in a canonical form:

[a](_'[ﬂl]pla e _‘[ﬂn]pna Cla e Ck)

where (31,... 03, are unary modal terms, p1,...,p, are different proposi-
tional variables, and C4, ... C} are positive formulas. In particular, each
of n and k above can be 0, and the canonical form may become a con-
stant formula.

Hereafter, whenever suitable, we can assume that any SPSF has been
pre-processed this way.

2.4 SPSF subsumes dRV

Lemma 2.6 FEvery definite Sahlquist antecedent A is equivalent to a
negation of a SPSF in which all EPFs are boxed atoms.

Proof. Induction on A:

e The cases of A atomic, boxed atom or a negative formula are triv-
ial, (note that every atomic formula is equivalent to a negation of
a positive formula);

e A= A N Ay,where A; = =By and Ay = =By for some SPSFs B;
and BQ. Then A = _|[L2](Bl, BQ) Note that all EPFs in [LQ](Bl, Bg)
are boxed atoms, hence still an independent set.

o A = (a)(A1,..., 4y). Then A = —[a](—A4,...,~A,) where each
—A; is equivalent to a SPSF in which all EPFs are boxed atoms,
hence so is [a](—A41,...,mA,).

_|

Proposition 2.7 Every formula from dRV is equivalent to a conjunc-
tion of SPSFs.

Proof. Immediately from Lemmata 1.3 and 2.6. Note that if A — C
is a SF and A = =B for some SPSF B then A — C = [12](B,C) is a
SPSF, and also that applying disjunctions and polyadic boxes to SFs not

sharing variables preserves the independence of the essential variables.
_|

Actually, SPSF properly extends dRV. A simple example is

[2](=[2](L, p), (2)(p, T)),
where 2 is a binary modality. It defines the frame condition
Vayz(Razyz — Juvw(Rayuv A Razvw)).
Moreover, SPSF extend, at least syntactically the class of monadic
SF as they allow the antecedent of a SF can take not only boxed atoms
but any formulas of the type: Oy (41 — O2(A2 — ...0,(4,, — p)...)
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where Aq, ..., A, are positive formulas not containing p. Indeed, this is
equivalent to Oy (—A; VO (A V...0,(=A, Vp)...) which can be written
as an EPF [a](—A;, A, ..., A, D).

2.5 Polyadic Sahlqvist formulas.

Let A = [o](=B1,...,mBy,C1,...,Cy) where Bi,..., B, are EPFs with
essential variables resp. pi, ..., p, which after pre-processing can be as-
sumed different, and C4, ..., C} are positive. In general, this need not have
the virtues of a Sahlqvist formula. For instance, de Rijke 1992 has shown
that [e2](—[2]([2](p, p),p), (2)({2)(p,p),p)) is not FO definable. A sim-
pler example is [t2](=[2](p, p), (2) (p, p) )which defines the non-elementary
frame condition “For every x the binary relation R, on the remaining
two variables y and z has an unoriented cycle of odd length.*

Definition 2.8 Dependency digraph of the set of essential variables
{p1,..,pn} of Ais a digraph G = (V4,E4) where V4 = {p1,...,pn},
and p;Eap; iff p; occurs as an inessential variable in a formula from
By, ..., B, with an essential variable p;. A digraph is called acyclic if it
does not contain oriented cycles.

Definition 2.9 A Polyadic Sahlgvist formula (PSF) is any modal
constant o, or A = [a](A1, ..., An) where « is an n-ary modal term and
each formula A; is either positive, or a negation of an essentially positive
formula, and the dependency digraph of the set of essential variables in
A is acyclic.

A variable in a PSF is essential if it has at least one occurrence as
an essential variable in the formula, otherwise it is inessential.

The particular case when there are no arcs in the dependency digraph
corresponds to the class of SPSFs.

The class Polyadic Sahlgvist formulas PSF can be considered closed
under conjunctions.

Remark 2.10 PSFs can be assumed pre-processed, just like PSFSs, to
a canonical form in which there are no inessential variables and every
variable is essential in only one EPF. However, unlike SPSFs, not all
EPFs can be made unary boxes.

Note that this pre-processing does not alter the (a)cyclicity of the
dependency graph of the formula.

Example 2.11 The formula [3](—[1]p, =[2](-p, ¢), (1)[1]g) is a PSF but
not a simple one.
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PSF generalizes syntactically the classical monadic Sahlqvist formu-
las, but we do not know yet if it essentially extends their semantic con-
ditions.

Example 2.12 Consider:
D =pA0O(Cp — Og) — <OO0g.

This is not a classical Sahlqvist formula and by now we do not know
if it is semantically equivalent to one. In particular, its local FO corre-
spondent:

FO(D) = Jy(Rzy AVz(R?yz — Ju(Rzu A Rux A Ruz)))

is not a Kracht formula (see Kracht 1999 and Blackburn et al. 2000,
Sect. 3.7). On the other hand, D written in a purely modal polyadic
language becomes a PSF:

D = [13](=p, ~[a(e2(a, @))](=p, 9), (@) [e]q),
where « is the modal term corresponding to the O.
However, this formula has a Sahlqvist equivalent in the classical

tense language:
Dy =p— FGGP(Fp A Pp).

3 First-order definability of polyadic Sahlqvist formulas
Theorem 3.1 FEwvery polyadic Sahlquist formula is first-order definable.

Proof. We adapt the Sahlgvist — van Benthem’s algorithm. First we will
demonstrate it on a simple PSF and then will extend it to arbitrary
PSFs.

Let A = [a](=Bxy, ..., =By, C1, ..., Ck) be a pre-processed PSF, where
{B4i, ..., Bn} is a separated set of EPFs and Cj, ..., C, are positive formu-
las. Let § = qu, ..., ¢, be the variables occurring in 4, Q = Q1, ..., @, be
the respective unary predicate variables, and y = y1, ..., Yntr be a string
of fresh different individual variables. By ST(A) we denote the second-
order closure of ST(A), which corresponds to frame validity. Then

ST(A) =
VzvQvy (Raﬂﬂyl---ynJrk — (VI =ST(By)(y:/z) V Vi, ST(Ci)(yn+i)>
= Va2YQVY (Raayy--Ynik A Ny ST(Bi)(Yi/2) = POS(Yni1; oo Yntk))
for some positive formula POS.

First, let us consider the particular case when A is a SPSF, so all
EPF's are unary boxes: B; = [3;](g;) for some modal term ; and essen-
tial variable g;. Then

ST(Bj)(y;/x) = Vzj (Rsy;25 — Q4(2))) -
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We now define the minimal valuation V,, which makes these true:

Vin(aj) = Rg; (y;)-

It is now easy to see that for any frame F and z € F :
F,z = VQST(4) iff F,z = ST(4)(V.(@)/Q),

hence
F,e = A iff F,V,,,z |= A.

Indeed, ST(A) = VaVyVQ(ANT(Q) — POS(Q)) where Q is the
string of predicates corresponding to all essential variables and
ANT(Q) = Roxy1--Yn+k A Ny ST(B;)(yi/x).

Note that, once the parameters z,yi, ..., yntr are fixed consistently
with ANT, the valuation V,,, is the minimal one (in set-theoretic sense)
which makes each B;, and hence ANT(Q), true. Therefore if F, V., z |=
A then POS(V,,(qQ)) is true. Now, take any valuation V. If it falsifies
any B;, then ANT is rendered false, so the whole formula is true. Other-
wise, Vi, (q) C V(q) for every essential variable ¢g. Then, by monotonic-
ity of positive formulas, POS(V,,(q)) — POS(V(q)) is valid, hence
POS(V(q)) is true, so the formula turns out true again.

Thus, A defines the following first-order condition on frames:

FO(A) =VaVy (Raxy1---yn+k — POS(Vm(ﬁ)/ﬁ)) -

Now, the proof for the general case of a PSF A essentially repeats
the one above. The key concern again is to define the right minimal
valuation. Let G4 be the dependency digraph of A. First, note that
since G4 does not contain cycles, it defines a strict partial ordering <
between the vertices: ¢; < g; iff there is an arc path leading from g¢; to
g;. Following that partial ordering, a minimal valuation can be defined
on the set of essential variables inductively as follows.

Suppose all <-predecessors (if any) of an essential variable ¢ have
already been assigned values. Let the string of these predecessors be q,
and let the string of second-order variables corresponding to them be
Q.-

Take any EPF B; with an essential variable g;. Then, as before:

ST(B;)(y;/z) =

V205 (R, yjzjujnjn, A N2y ST(Pji) (uji/z) — Qj(25)) -

Note that all variables occurring in any ST(Pj;)(uj;/x) above corre-
spond to predecessors of g;, so they are amongst Q, and hence they
have already been assigned their minimal values.

a5
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Then we put

Vm(‘]j) = {Z

In particular, if q,; is empty, i.e. g; is <-minimal, then Vin(g;) is
defined as before.

Now, an inductive argument on < proves that V,,, has indeed the
properties of the minimal valuation needed to prove first-order defin-
ability of A as in the case of a SPSF. -

Ju;(Rg, yj2u)1-- Ujn; A /J\ ST(Pji) (Vi (a,)/Qq, ) (1)) } :

i=1

Example 3.2 Let us compute the PSF formula from example 2.11:

B = [3](—[1]p, 7[2](—p, q), (1)[1]g). Since p < ¢, we first compute
Vin(p) = R1(y1). Then V;,,(¢) = {z|3s(R2y282AR1y18). Thus, FO(B) =
Vzy1y2y3(Rszy1y2ys — Jv(R1ysvAVw(Rivw — Is(Ray25wAR1Y18)))).

Remark 3.3 Note that in the latter example above, once V;,,(p) is de-
termined, then [2](—p,q) can be regarded as a unary box [a](q) where
a = 2(=Vn,(p),t1) is a unary parametrized modal term, the relation
of which can be accordingly computed: R,zy iff Is(Razsy A Vi (p)(8)).
This trick will be essential in the proof of canonicity of PSF's.

4 Polyadic descriptive frames

In this section we obtain results about descriptive frames for polyadic
modal languages which will be used further. Most of these will be gen-
eralizations of well-known properties of monadic descriptive frames, but
we will establish some important relations between them and will present
them in a way suitable for purely modal languages.

Let us fix an arbitrary purely modal language £(7).

Definition 4.1 Given a 7-frame F = (W,{Ra}acmr(r)), €very n-ary
modal term 5 € MT(r) defines an n-ary operator (8) on P(W) as
follows:

(BY(X1,....,Xn) = {x € W|Rgzx;...xy, for some z1 € X1, ...,Tp € Xy}

In particular, (8) = Rg for every 0-ary term f.

Note that every operator () is monotone on each of its arguments.

Definition 4.2 A general frame for £(7) (general 7 -frame) is a
structure <VV, {Ra}acmr(r), W> extending a 7-frame with a Boolean al-
gebra of admissible subsets of P(W), closed under the operators cor-
responding to the basic modal terms, and therefore under all operators

(6)-
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Every general 7-frame § = <I/V, {Ra}acmr(r)s W> determines a topo-
logical space T'(F) with a base of clopen sets W. T'(F) is a Hausdorff
space with some additional properties which will be obtained further. For
detailed study of this topology, its properties and usage in modal logic,
see Sambin and Vaccaro 1988 and for topological treatment of Sahlqvist
formulas see Sambin and Vaccaro 1989.

Hereafter, a closed set in a general 7-frame will mean a subset of
the domain closed with respect of the above mentioned topology, i.e. an
intersection of a family of admissible sets.

We are going to extend the set of modal terms and respective class
of operators to allow parametrization with closed sets.

Definition 4.3 Let § = <T/V, {RQ}QGMT(T),W> be a general 7-frame.
We define the set PMT(7,§) of parametrized modal terms asso-
ciated with § and their respective operators on P(W) inductively as
follows:

e MT(r) C PMT(1,%);

e For every (n + 1)-ary term S € PMT(7,5§) and a closed set Z in
T(%), B(Z) is an n-ary term in PMT(7,§) such that
B2 X1y, Xn) = (BY( X1, oey Xy Z).

It is easy to see that Rg(zz, 1, ..., 7, iff there exists x,11 € Z such
that Rgxxy...TnTnt1 -

Definition 4.4 Let § = <I/V7 {Ra}aeMT(T),W> be a general T-frame
and 8 € PMT(7,5). The relation Rg is tight in § if the following
condition holds: for any z,x1,...,z, € W,

Rpz, 1, ..., zp iff

VX1, X € W(zy € X4,z € Xy = 2 € (B)( X1y -0ry Xi))-

Note that this condition is equivalent to: for every x € W,

z € (VB X1y, Xn)| X1y oo, X €W & 21 € X1,y € X}
In particular, every Rg for a O-ary term /3 is tight.

Definition 4.5 A family of sets F has the finite intersection prop-
erty (FIP) if the intersection of every finite subfamily of F is non-
empty.

Definition 4.6 A general 7-frame (W, {Ra}acmr(r), W) is:

e differentiated if for every x,y € W, if x # y then there is X €¢ W
such that z € X and y £X;



SAHLQVIST FORMULAS / 231

e tight if for every basic modal term (3 the relation Rg is tight in §;

e compact if every family of admissible sets in § with FIP has a
non-empty intersection.

e refined if it is differentiated and tight.

e descriptive if it is refined and compact.

Note that:

e the property of being differentiated is expressed by the tightness
of R,,, and so it becomes redundant. We keep it in the definition
mainly to respect the tradition.

e compactness of a general 7-frame § as defined above is equivalent
to the standard topological notion of compactness of T'(F), i.e.
every family of closed sets with the FIP has a non-empty intersec-
tion.

e by (a weaker version of) Tychonov’s theorem, if § is compact then
for every n € N, the product space (T'(F))" is compact, too.

Hereafter, closedness of Cartesian products of sets will mean closed-
ness in the respective product topology.

In the rest of this section we show that every descriptive 7-frame has
the properties that will be necessary to prove the canonicity of any PSF.

Lemma 4.7 In any differentiated 7-frame § = (W,{Ra}acmr(r), W),
for any n-ary term 8 € PMT(7,5), Ra is tight iff for every x € W the
set Rg(x) = {(1, ..., Zn)|Rp2®1...2, } is closed.

Proof. For 0-ary modal terms 3 each of these conditions is trivially true,
so we can assume that p(3) > 0.

First, note that
VX1, Xn € W(zy € X1,y € X, = 2 € (B)( X1, ..., Xp)) iff
VXl,...,Xn € W(.’L‘ S [ﬂ](—Xl,...,—Xn) = (Il,...,ilﬁn) € —(X1 X ... X
X))

Therefore, Rg is tight iff for every x € W,
Rp(z) = N{—(X1 x .. x Xp)| X1, oo, Xn € W& z € [B](— X1, -0, —X0n) }-
_|

Definition 4.8 A family F of subsets of a set X is called downwards
directed if F contains a subset of the intersection of any two (and
hence, any finitely many) members of F.

Lemma 4.9 In any differentiated and compact general T-frame § =
<VV, {Ra}aeMT(T),W>, the following are equivalent for any n-ary term
g€ PMT(1,5):
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(i) Rg is tight.
(ii) (Esakia’s lemma) For any downwards directed family {X1; X ... X
Xnitier of closed subsets of W™,

(VB (Xniy oo Xni)} = (BY([) iy eons [] Xmi):

iel iel iel
(i1i) For every x € W the set Rg(x) is closed.

Proof. Again, the non-trivial case is p(8) > 0.
(i) = (iii): Lemma 4.7.
(iii) = (ii): The inclusion D follows from the monotonicity of (3).
For the converse inclusion, let = € (), {(B)(X14,..., Xni)}. Then,
due to the downwards directedness, the family of closed sets

Rﬁ(.’L‘) U {Xli X ... X Xni}iEI

has the FIP, so it has a non-empty intersection, i.e. there is a tuple
(%1, ..., 2n) such that Rgzz;..z, and (z1,...,7n) € (e {(Xu X .o X
an} = ﬂiEI Xli X ... X nie] an

Therefore, x € (B)(N;cr X1ir s [Nicr Xni)-

(i) = (i):

The implication from left to right in the tightness condition for Rg
holds by definition. For the converse, it suffices to note that by (ii):

N{B) (X1, ..., Xp)| X1y, Xn EW & 21 € Xy, oy € X} =

BY{za}, o {zn}). A

Lemma 4.10 In every descriptive T-frame §, each of the conditions of
Lemma 4.9 holds for every term 8 € PMT(1,F).

Proof. We shall prove that Esakia’s lemma holds for every [, by induc-
tion on S.

First, we will complete the induction on MT(7).

For the basic terms tightness holds by definition, and hence the claim
holds by Lemma 4.9.

The inductive step for 8 = a(ay, ..., ay,) is quite straightforward. Fi-
nally, suppose the claim holds for some (n + 1)-ary term 8 € PMT(7,5)
and let Z be a closed set in T'(F). Then

</8(Z)>(ﬂzeI Kliyeos ﬂie[ Xm)

= <5>(ﬂzel Xiiyeos ﬂie[ Xni, ﬂie[ Z)

=Nicr(B)(X1a, -+, Xniy Z)

:ﬂie[<ﬁ(z)>(X1i""7Xni)' -

Lemma 4.11 In any descriptive general T-frame §, for every positive
formula A(py, ...,p,) the corresponding operator in §
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AX1... X, A(Xy, ..., X)) satisfies Esakia’s lemma: for any downwards di-
rected family of closed sets {X1; X ... X Xp;}ier,

(AKX, o0, Xni)} = A(() Xy ooes [ ) Xini)-
icl icl iel
In particular, for every positive formula A(p1,...,pn) the operator
AX1... X0 A(Xy, ..., X)) is closed, i.e. A(Xy,...,X,) is closed whenever
X1,...,Xn are closed.

Proof. First, note that every positive formula A is equivalent to a for-
mula built from propositional variables and modal constants applying
only polyadic boxes and diamonds.

We shall prove the statement by induction on A, assuming it is con-
structed as above.

For propositional variables and modal constants the claim is trivial.
For (8)(X, ..., X;,) the inductive step is the Esakia’s lemma.

Finally, for [5](X1, ..., X5 ) the inductive step follows from the identity

B X1is - [V Xni) = () B X1iys e Xini))
i€l iel i1€1,..in€T
which easily follows from the definition [5](X}, ..., X,), combined with
the equality

ﬂ [ﬂ](Xlip"'aXnin) = ﬂ[ﬁ](Xln)an)

i1€1,...inEl iel

which follows from the downward directedness. -

5 Canonicity of polyadic Sahlqvist formulas

Theorem 5.1 Ewvery polyadic Sahlquist formula is canonical.

Proof. We show that every PSF is d-persistent following the scheme of
the proof of canonicity of Sahlqvist formulas presented in Blackburn et
al. 2000, to which the reader is referred for those technical details which
would not differ in the general case presented here.

Let A = [a](—=B4y,...,mBp,C1,...,Ck) be a pre-processed PSF with
EPFs By, ..., B, and different essential variables resp. ¢, ..., ¢,,. Let the
dependency digraph of A determine a partial order < on these variables.

Let § = (F,W) be a descriptive general frame such that § = A.

As we showed in the proof of theorem 3.1, if F,V,, = A for the
minimal valuation V;,,, defined as before, then F,V = A for any valuation
V, so it suffices to prove that F,V;, | A. The problem is that the
minimal valuation need not be admissible in §. However, it will suffice
to show the following:
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(C1) V,, is closed i.e. an intersection of admissible valuations.

(C2) For every closed valuation U in § and a positive formula P,
U(P) = Ny<y V(P) where the intersection ranges over all ad-
missible valuations V which extend U.

For (C1), we can restrict our consideration to the variables occurring
in A, i.e. the essential variables ¢, ..., ¢,. We shall prove by <-induction
that every valuation

Vm(qj') = {Z

is of the type Rg(y;) for some 8 € PMT(7,§), and hence, by Lemma
4.10, is closed in §.

For the <-minimal variables the claim is immediate, because their
respective EPFs are unary boxes.

Now suppose the claim holds for all predecessors q,, of the variable
p = gj, i.e. for every ¢; € qQ,,, Vin(qi) = Rg,, for some 3y, € PMT(1,%),
and hence is closed.

Let n; = n and denote C; = P;;(V,,(q,)) for i = 1,...,n. Note that
each Cj is closed by the inductive hypothesis and Lemma 4.11, since P;;
is positive.

Consider the unary term v = 5(C,)...(C2)(C1) € PMT(r, §), ie.
such that [y](A4) = [5](4, C4, ..., Cy). Then for any z € W, R,yz holds iff
there exist uq, ..., un such that Rgyzu;...u, and u; € C; for i =1,...,n.
Therefore V,,,(pj) = R (y;)-

(C2) follows from Lemma 4.11.

Now, to complete the proof, let us see why F,V,, E A. As in the
proof of theorem 3.1, let ST(A) = VaVyVQ(ANT(Q) — POS(Q)). Fix
the parameters x,y consistently with ANT (otherwise the formula turns
vacuously true) and take any admissible valuation U defined inductively
on < and extending V,,. It will render ANT true, hence POS true,
because § |= A. Then, by (C2), POS will be true for V,,,. -

i=1

T (Rp, yjzujn--tjn; A /J\ ST(Pji)(Vm(ﬁqj)/qu)(uji))}

Remark 5.2 The conditions (C1) and (C2) in the proof above hold
trivially for Kripke frames (i.e. full general frames), which allows for si-
multaneous treatment of first-order definability and canonicity of PSFs,
in the spirit of Sambin and Vaccaro 1989 and Kracht 1993.

6 Concluding remarks

This work is certainly not the last word on Sahlqvist formulas. On the
contrary, we believe that the approach developed here will allow for
further generalizations and insights on them. An ultimate goal in this
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direction would be an explicit semantic characterization of the class of
all formulas for which the proof of Sahlqvist’s theorem work, through a
deeper analysis of their semantic and topological nature.

An important question is to what extent polyadic Sahlqvist formulas
can successfully co-operate in axiomatizations with non-orthodox rules
of inference, a line of research initiated in Venema 1993. In a separate
paper we study polyadic extensions of the class of Sahlqvist formulas in
extended languages and additional rules.

Last but not least, proof systems for modal logic are still to catch up
with the semantic richness and harmony of Sahlqvist formulas and make
them equally useful in a deductive framework. In particular, “displaying”
Sahlqvist formulas is a challenge to proof theorists.
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