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Abstract. We give a complete axiomatization of the identities of the basic game algebra

valid with respect to the abstract game board semantics. We also show that the additional

conditions of termination and determinacy of game boards do not introduce new valid

identities.

En route we introduce a simple translation of game terms into plain modal logic and

thus translate, while preserving validity both ways, game identities into modal formulae.

The completeness proof is based on reduction of game terms to a certain ‘minimal

canonical form’, by using only the axiomatic identities, and on showing that the equivalence

of two minimal canonical terms can be established from these identities.
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1. Introduction

The relationships between logic and games go back to the ancient Greek
philosophy, and have been explored in modern times by a number of logicians
and computer scientists (see [1] and [3] for details and further references).
Parikh has initiated a formal logical study of games by introducing the Game
Logic in [5]. Recently this idea has been advanced in [1] and systematically
developed for coalition games in [4].

In particular, an algebraic approach to the study of the games structure
and equivalence between games emerged from [5] and was further developed
in [1], where the problem of establishing the complete axiomatization of the
valid identities of the basic game algebra was raised. Here we give a solution
to that problem.

The paper is organized as follows. In Section 2 we introduce the syntax
and semantics of the basic algebra of games in terms of abstract game boards
and in Section 3 we give an axiomatization of its valid identities. In Section
4 we define canonical forms of game terms and show that every game term is
provably equivalent to a minimal canonical one. In Section 5 we introduce a
translation of game terms and identities to plain modal logic and show that
it preserves validity of game identities. The converse preservation of validity
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is proved in Section 6 where we also establish other technical results used in
the completeness proof presented in Section 7. The last Section 8 includes
some further results and concluding remarks, where we show that restriction
of the semantics to determined and terminating games does not introduce
new valid identities. We also discuss the complexity of the validity problem
and the relations between game algebras and logics.

2. Basic algebra of games

We consider two-player games of a most general type. The game language

GL consists of:

• a set of atomic games Gat = {ga}a∈A;

• game operations: ∨,d , ◦.

For technical convenience, we include an ‘idle’ atomic game ι = g0 in
Gat.

Definition 1. Game terms:

• Every atomic game is a game term.

• If G,H are game terms then Gd, G ∨H and G ◦H are game terms.

Besides, we define G ∧H := (Gd ∨Hd)d.
Intuitively, the operations d,∨,∧, ◦ mean respectively dualization (swap-

ping the two players’ roles), choice of first player, choice of second player,
and composition of games.

The algebra of game terms will be denoted by GA. Atomic games and
their duals will be called literals.

Models for GL are game boards:
〈

S, {ρi
a}a∈A;i=1,2

〉

where S is a set
of states and ρi

a ⊆ S×P (S) are atomic forcing relations satisfying the
following forcing conditions:

• upwards monotonicity (MON): for any s ∈ S and X ⊆ Y ⊆ S, if sρi
aX

then sρi
aY ;

• consistency of the powers (CON): for any s ∈ S,X ⊆ S, if sρ1
aX then

not sρ2
a(S −X) and (hence) likewise with 1 and 2 swapped.

We also consider the following optional conditions:

• termination of the games (FIN): for any s ∈ S, sρi
aS. This is of a

less imperative nature, since some games may go on forever and never
reach an outcome state. Game boards satisfying that condition will be
called terminating and the class of terminating game boards will be
denoted by FIN.
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• determinacy (DET): sρ2
a(S−X) iff not sρ1

aX. Game boards satisfying
this condition will be called determined and the class of determined
game boards will be denoted by DET.

The forcing relations ρi
ι of the idle game ι have a fixed interpretation:

sρi
ιX iff s ∈ X. Compositions of idle literals (ι or ιd) will be called idle game

terms.
Given a game board, the atomic forcing relations are extended to forcing

relations {ρi
G}G∈G;i=1,2 for all game terms, following the recursive definitions

given in [1]:

• sρ1
GdX iff sρ2

GX;

• sρ2
GdX iff sρ1

GX;

• sρ1
G1∨G2

X iff sρ1
G1
X or sρ1

G2
X;

• sρ2
G1∨G2

X iff sρ2
G1
X and sρ2

G2
X;

• sρ1
G1◦G2

X iff there exists Z such that sρ1
G1
Z and zρ1

G2
X for each z ∈ Z;

• sρ2
G1◦G2

X iff there exists Z such that sρ2
G1
Z and zρ2

G2
X for each z ∈ Z.

The meaning1 of sρi
GX is: “Player i has a strategy to play the game G so

that if an outcome state is attained, it is in X.”

Proposition 2. Each forcing condition propagates over all forcing relations.

Proof. Routine check. Note that the cases for (FIN) and (DET) use
(MON).

It is easy to see that all idle terms have the same forcing relations as ι.

3. Axiomatization of the algebra of games

3.1. Inclusions and identities of game terms

Definition 3. Let G1 and G2 be game terms and B a game board.

• G1 is i-included in G2 on B for i = 1, 2, denoted G1 ⊆i G2, if
ρi

G1
⊆ ρi

G2
.

• G1 is included in G2 on B, denoted B |= G1 � G2 if G1 ⊆1 G2 and
G2 ⊆2 G1 on B.

1This is the ‘partial correctness’ style of interpreting forcing relations. Alternatively,
they can be interpreted like ‘total correctness’ statements: “Player i has a strategy to play

the game G so that an outcome state is attained and it is in X.”
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• G1 and G2 are equivalent on B, denoted B |= G1 = G2 if they are
assigned the same forcing relations in B.

• Further, G1 is included in G2, denoted G1 � G2 if B |= G1 � G2 for
every game board B. Then we also say that G1 � G2 is a valid term

inclusion, denoted by |= G1 � G2.

• Respectively, G1 and G2 are equivalent, denoted G1 ∼ G2 if they
are equivalent on every game board, i.e. G1 = G2 is a valid term

identity, also denoted by |= G1 = G2.

Analogous notation will be used for validity in a class of game boards,
e.g. DET |= G1 = G2 will mean that G1 = G2 is valid in every determined
game board.

Note that G1 ∼ G2 iff G1 � G2 and G2 � G1. Actually, � can be reduced
to ∼ in the well-known lattice-theoretic fashion:

Proposition 4. G1 � G2 iff G1 ∨G2 ∼ G2 iff G1 ∧G2 ∼ G1.

3.2. The axioms of the algebra of games

The main goal of this paper is to make precise and confirm the conjecture of
[1] that the following term equivalences provide a complete axiomatization
of the game algebra:

1. Double dualization: G ∼ Gdd;

2. The usual identities for ∨ in distributive lattices: idempotency, com-
mutativity, associativity.

3. Absorption: G1 ∨ (G1 ∧G2) ∼ G1.

4. Distributivity: G1 ∨ (G2 ∧G3) ∼ (G1 ∨G2) ∧ (G1 ∨G3).

5. Associativity of ◦.

6. Distribution of d over ◦ : (G1 ◦G2)
d ∼ Gd

1 ◦G
d
2.

7. Left-distribution for ∨ and ◦ : (G1 ∨G2) ◦G3 = (G1 ◦G3)∨ (G2 ◦G3).

8. Right-distributive inclusion: G1 ◦G2 � G1 ◦ (G2 ∨G3). (According to
Prop. 4, this is equivalent to an identity).

9. The extras for ι: multiplicative unit: G◦ι ∼ ι◦G ∼ G and self-duality:
ι ∼ ιd.

We denote the set of all these identities by GAι, and the set of those
not involving ι by GA.

Note that the respective identities for ∧, as well as the dual absorption,
distributivity, left-distribution for ∧ and ◦, right-distributive inclusion G1 ◦
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(G2∧G3) � G1◦G2, and the two De Morgan’s laws for ∨,∧ and d easily follow
from the definition of ∧ and GAι in the equational logic for the algebra of
games, which includes the standard set of derivation rules reflecting the fact
that ∼ is a congruence in the algebra of games.

Proposition 5. All identities in GAι are valid.

Proof. Routine verification.

Theorem 6. Every valid term identity of the game algebra can be derived
from GAι in the standard equational logic.

The proof of this theorem will be presented in the last section, and
meanwhile we will build up the necessary machinery and will obtain auxiliary
results for it.

Remark. We note that ι can be omitted from the language together with its
axioms, and the remaining axiom system GA will remain complete for the
reduced language. The proof of this follows the same line as the one presented
here, with a little technical and notational overhead due to the absence of ι.

4. Canonization of game terms

Definition 7. Canonical game terms are defined recursively as follows:

• ι is a canonical term.

• Let {Gik|k ∈ Ki, i ∈ I} be a finite non-empty family of canonical terms
and {gik|k ∈ Ki, i ∈ I} be a family of literals such that gik can be an
idle literal only if Gik is an idle term. Then

∨

i∈I

∧

k∈Ki
gik ◦ Gik is a

canonical term.

Remark. Any (or all) index sets I,Ki above can be singletons. Nevertheless,
the respective disjunctions/conjunctions remain in place.

The only essential use of the idle term ι here is to facilitate this canonical
presentation of game terms and to provide a convenient base for structural
induction on canonical terms. Its use can be circumvented at the cost of
minor technical complications, though.

Proposition 8. Every game term G is equivalent, provably in GAι, to a
canonical game term.
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Proof. First we prove by induction on canonical terms that the dual of a
canonical term is equivalent to a canonical term. The case of ι is trivial since
ιd ∼ ι. Let G = Hd where H =

∨

i∈I

∧

k∈Ki
hik ◦ Hik and the claim holds

for the canonical terms Hik. Then Hd ∼
∧

i∈I

∨

k∈Ki
hd

ik ◦Hd
ik which, using

the distributive laws for ∨ and ∧ and using the inductive hypothesis for the
Hik’s, converts into an equivalent canonical term.

Now, we prove the main claim by induction on the length of arbitrary
terms. The atomic case: g ∼

∨∧

g ◦ ι. The case of duals was done above.
The case G = G1 ∨G2 is almost trivial, using ι ∼ ι ◦ ι, if necessary.

The remaining case G = G1 ◦G2 is treated by induction on G1, assuming
that G2 is canonical. If G1 is a literal, G1 ◦G2 can be written as

∨∧

G1 ◦G2

where
∨

and
∧

are over singletons, so it is canonical. The inductive step
for G1 =

∨

i∈I

∧

k∈Ki
gik ◦ Gik is enabled by the left-distributive laws for

◦, pushing it inside the
∨

and
∧

, followed by the associativity of ◦ which
eventually reduces the case to all Gik ◦G2 which are covered by the inductive
hypothesis.

This proof also outlines an algorithm for canonizing game terms which
can be easily made precise.

Remark. Canonical game terms impose a periodic structure on games: ev-
ery game is a composition of one or several rounds, each consisting of:

• a choice of player I,

• followed by a choice of player II,

• followed by an atomic game by one of the players (depending of the
sign of the literal).

Of course, some of these choices may be vacuous, when only one dis-
junct or conjunct is available to choose from, but still the ‘ritual’ is strictly
followed.

Definition 9. Two canonical terms G,H are isomorphic, denoted G ' H,
if one can be obtained from the other by means of successive permutations
of conjuncts (resp. disjuncts) within the same

∧

’s (resp.
∨

’s) in subterms.

In other words, isomorphic terms are the same, up to the order of the
conjuncts and disjuncts. Term isomorphism is the intermediate syntactic
notion between identity and semantic equivalence ∼, which we will eventu-
ally prove equivalent to the latter. In fact, isomorphism of terms can be
replaced by genuine identity at the cost of introducing a linear ordering on
literals and terms and applying it to order the

∧

’s and
∨

’s in the definition
of canonical terms.
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Proposition 10. Isomorphic terms are equivalent, provably in GAι.

Proof. Easy.

Definition 11. We define recursively embedding of canonical terms, de-
noted by � as follows:

• ι � ι;

• Auxiliary notions: if g, h are literals andG,H are canonical terms, g◦G
embeds into h ◦H iff g = h and G � H; a conjunction

∧

k∈K gk ◦Gk

embeds into a conjunction
∧

m∈M hm ◦Hm if for every m ∈M there
is some k ∈ K such that gk ◦Gk � hm ◦Hm.

• Let G =
∨

i∈I

∧

k∈Ki
gik ◦Gik and H =

∨

j∈J

∧

m∈Mj
hjm ◦Hjm. Then

G � H iff every disjunct of G embeds into some disjunct of H.

Proposition 12. If G,H are canonical terms and G � H then G � H is
provable in GAι. To be precise, then GAι ` G ∨H = H.

Proof. Double induction on G and H, using, inter alia, the right-distribu-
tive inclusions.

Thus, embedding of terms is the syntactic counterpart of inclusion.

Definition 13. Minimal canonical terms:

• ι is a minimal canonical term.

• Let G =
∨

i∈I

∧

k∈Ki
gik ◦ Gik be a canonical term where all Gik are

minimal canonical. Then G is minimal canonical if:

1. ιd does not occur in G.

2. None of gik is ι unless Gik is ι.

3. No conjunct occurring in a conjunction
∧

k∈K gik ◦ Gik embeds
into another conjunct from the same conjunction.

4. No disjunct in G embeds into another disjunct of G.

Thus, minimal canonical terms are systematically ’minimized’ canonical
terms.

Proposition 14. Every term G can be reduced to an equivalent minimal
canonical term c(G) and this can be done provably in GAι.

Proof. First, transform G to a canonical term, which then can be pruned
down to an equivalent minimal canonical one, using the identities in GAι

(e.g. right-distribution inclusions and the absorption laws for 3 and 4).
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From now on, our strategy towards proving Theorem 6 will be to show
that two minimal canonical terms are equivalent iff they are isomorphic.
Presumably, that can be done entirely within game semantics. Instead, we
introduce and use for the purpose a simple translation of game terms and
identities to modal logic, which will make our task essentially easier.

5. Translation of the algebra of games to modal logic

Here we introduce a translation of GL into plain modal logic. This transla-
tion, naturally, resembles Parikh’s translation of the language GL∗ extending
GL with game iteration (∗) into µ-calculus, but is simpler, computationally
lighter and easier to use. In particular, we will use it in the next section to
construct counter-models to invalid game equivalences, since Kripke mod-
els are rather more transparent, flexible and easier to deal with than game
boards.

To begin with, we consider the modal language ML comprising:

• a set of atomic variables V = V ∪ {q} where V = {pa}a∈A and q /∈ V
is an auxiliary variable.

• the usual modal connectives: ∨,∧,¬,�,♦, where ♦ will be regarded
as an abbreviation for ¬�¬.

Some terminology and notation:

• Substitution ϕ(ψ/q) : ψ is substituted for all occurrences of the variable
q in ϕ.

• A dual of a modal formula ϕ with respect to the variable q is ϕd
q =

¬ϕ(¬q). Note that (ϕd
q)

d
q ≡ ϕ.

• Furthermore, we will often treat modal formulae as set operators in
the standard sense, and thus, given a formula ϕ(q), Kripke model
M = 〈S,R, V 〉 and a set X ⊆ S we will allow ourselves the sloppiness
of writing ϕ(X) assuming its natural meaning, viz. that q has been
evaluated as X.

5.1. The translation:

All duals of modal formulas used in the translation will be with respect to
q, so we can safely omit the subscript. Likewise, all substitutions will be of
the type ϕ(ψ/q), which hereafter we will simply write as ϕ(ψ).

With every game term G we associate a modal formula m(G) as follows:

• m(ι) = q;
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• m(ga) = ♦�(pa → q) for any non-idle atomic game ga, a ∈ A;

• m(G1 ∨G2) = m(G1) ∨m(G2);

• m(Gd) = (m(G))d, also denoted by md(G).

• m(G1 ◦G2) = m(G1)(m(G2)).

Note that:

• Every formula m(G), being positive in q, is monotone in q.

• m(gd
a) is equivalent to �♦(pa ∧ q). Hereafter we will simply consider

these equal.

• m(G1 ∧G2) = m(G1) ∧m(G2).

• md(G1 ◦G2) = md(G1)(m
d(G2)).

Example.

• m(g1 ◦ (g2 ∨ g3)) = ♦�(p1 → (♦�(p2 → q) ∨ ♦�(p3 → q)));

• m((g2 ∨g3)◦g1) = ♦�(p2 → ♦�(p1 → q))∨♦�(p3 → ♦�(p1 → q)) =
m((g2 ◦ g1) ∨ (g3 ◦ g1)).

• m(((g1 ◦ g2)∨ g1)
d ◦ g3)) = �♦(p1 ∧�♦(p2 ∧♦�(p3 → q)))∧�♦(p1 ∧

♦�(p3 → q)).

5.2. Preservation of validity

The main result regarding this translation is:

Theorem 15. For any game terms G,H, if the game inclusion G � H is
valid on all determined game boards then |= m(G) → m(H).

Proof. By contraposition, suppose M,u 2 m(G) → m(H) for some
model M with a domain S and state u ∈ S. Then we define a game board
BM =

〈

S, {ρi
a}a∈A;i=1,2

〉

as follows. For every X ⊆ S and s ∈ S :

sρ1
aX iff M, s � m(ga)(X),

and
sρ2

aX iff M, s � md(ga)(X).

Lemma 16. BM is a determined game board.

Proof of the lemma. The condition MON is immediate from the mono-
tonicity of m(G) in q. For CON and DET, notice that M, s 2 m(ga)(X) iff
M, s � ¬m(ga)(X) i.e. M, s � md(ga)(¬X).

Lemma 17. For every s ∈ S, X ⊆ S and term D :

sρ1
DX iff M, s |= m(D)(X),

sρ2
DX iff M, s |= md(D)(X).
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Proof of the lemma.

Structural induction on D. For atomic games this holds by definition.
The cases D = Dd

1 and D = D1 ∨D2 are straightforward. Let D = D1 ◦D2

and suppose sρ1
DX. Then sρ1

D1
Z for some Z ⊆ S such that zρ1

D2
X for each

z ∈ Z. Then M, s |= m(D1)(Z) and Z ⊆ V (m(D2)(X)), so by monotonicity
M, s |= m(D1)(m(D2)(X)), i.e. M, s |= m(D1 ◦D2)(X).

The case of sρ2
DX is quite analogous, modulo the duality, but we’ll do

it nevertheless: let sρ2
D1
Z for some Z ⊆ S such that zρ2

D2
X for each z ∈ Z.

Then M, s |= md(D1)(Z) and Z ⊆ V (md(D2)(X)), so by monotonicity
M, s |= md(D1)(m

d(D2)(X)), i.e. M, s |= md(D1 ◦D2)(X).
Conversely, letM, s |= m(D1◦D2)(X), henceM, s |= m(D1)(m(D2)(X)).

Then Z = V (m(D2)(X)) is such that sρ1
D1
Z and zρ1

D2
X for each z ∈ Z, by

the inductive hypothesis. Therefore, sρ1
D1◦D2

X. Likewise for sρ2
D1◦D2

X.
This completes the induction and the proof of the lemma.
Finally, recall that M,u |= m(G) and M,u 2 m(H). Let X = V (q). Then

uρ1
GX while ¬uρ1

HX, so BM 2 G � H.

Corollary 18. For any game terms G,H, if DET |= G = H then
|= m(G) ↔ m(H).

6. Some technical results

First, some useful remarks.

• Since K is complete for the class of irreflexive tree-like Kripke models,
every non-valid translation of a game inclusion or identity can be re-
futed in a model rooted at a state s without predecessors. Note that
any re-evaluation of variables at s in such a model will not affect the
truth or falsity at s of any m(G), except m(ι), when the truth of q
is altered, because all occurrences of other variables in these formulae
are in the scope of modal operators.

• Let F∗ = 〈S∗, R∗〉 where S∗ = {∗, y, z}, R∗ = {(∗, y), (y, z), (z, z)}.
Then the Kripke model M+ = 〈S∗, R∗, V+〉 , where V+(q) = {∗, z}
satisfies all m(G) at its root ∗, while the model M− = 〈S∗, R∗, V−〉 ,
where V−(q) = ∅ and V−(pa) = {z} for all a ∈ A, falsifies all m(G)
at ∗. These models can be freely grafted on an irreflexive leaf of any
model (taking care of q, if necessary).

Here’s our main technical lemma:

Lemma 19. Let G and H be minimal canonical terms. The following are
equivalent:
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• G � H.

• (♠) There is a disjunct
∧

k∈K gik ◦Gik in G such that every disjunct in
H contains a conjunct hjmj

◦Hjmj
not including any of the conjuncts

gik ◦Gik for k ∈ K.

• There is a finite (tree-like) Kripke model M and a state s ∈ M such
that: M, s � m(G); M, s 2 m(H); and s has no predecessors in M.

Proof. We prove all equivalences by double induction on the structure of
G and H. The case when both of them are ι is vacuous, so suppose otherwise
and let G =

∨

i∈I

∧

k∈Ki
gik ◦ Gik, H =

∨

j∈J

∧

m∈Mj
hjm ◦ Hjm where the

claim holds for all pairs of Gik’s and Hjm’s. If one of G and H is ι we
represent it as

∨∧

ι ◦ ι.
1) Let G � H. Then there is a game board B =

〈

S, {ρi
a}a∈A;i=1,2

〉

such
that either G  1 H or H  2 G on B.

1.1) Suppose G  1 H. Then there is a state s and a disjunct (the choice
of player I)

∧

k∈Ki
gik ◦ Gik such that every conjunct gik ◦ Gik enables him

to achieve some outcome X from s which he cannot force on H, so every
disjunct

∧

m∈Mj
hjm ◦Hjm in H contains a conjunct hjmi

◦Hjmi
which lacks

the power for player I to force an outcome X. Thus, none of the terms
hjmi

◦Hjmi
, j ∈ J, includes any of gik ◦Gik, k ∈ Ki.

1.2) Suppose H  2 G. Then player II can force some outcome X in H
which she cannot force in G, so every disjunct

∧

m∈Mj
hjm ◦ Hjm (possible

choice of I) in H contains a conjunct (the reply of II) hjmi
◦ Hjmi

which
contains (s,X) in the forcing relation for II, while this is not the case for G,
so some disjunct

∧

k∈Ki
gik ◦Gik is such that no term gik ◦Gik in it contains

(s,X) in its forcing relation for II, hence none of gik◦Gik, k ∈ Ki is included
in any of hjmi

◦Hjmi
, j ∈ J .

Thus, in either case (♠) holds.
2) Suppose (♠). Note that there can be at most one idle term amongst

all {gik ◦Gik|k ∈ Ki} and {hjmi
◦Hjmi

|j ∈ J}.
We will build a Kripke model M which will satisfy all {m(gik ◦Gik)|k ∈

Ki}, and hence m(G), while none of {m(hjmi
◦Hjmi

)|j ∈ J}, hence it will
falsify m(H). M will be rooted at some state s with no predecessors, which is
needed for the inductive hypothesis because models like this will be grafted
at their roots on larger models as the induction goes on.

Depending on the signs of the literals gik, k ∈ Ki and hjmi
, j ∈ J, the set

of all these terms splits into the following subsets:

• T
À

= {tα ◦Dα|α ∈ A} whose translations must be true at s;

• TB = {tdβ ◦Dβ |β ∈ B} whose translations must be true at s;
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• TΓ = {tγ ◦Dγ |γ ∈ Γ} whose translations must be false at s;

• T∆ = {tdδ ◦Dδ|δ ∈ ∆} whose translations must be false at s.

• Possibly, Tι = {ι ◦ ι}.

The terms tα, tβ, tγ , tδ above are non-idle atoms. Let pα, pβ, pγ , pδ be
their corresponding variables in the modal translation. Thus, we have to
satisfy at s simultaneously the following sets of formulae:

• FA = {♦�(pα → m(Dα))|α ∈ A},

• FB = {�♦(pβ ∧m(Dβ))|β ∈ B},

• FΓ = {�♦(pγ ∧ ¬m(Dγ))|γ ∈ Γ},

• F∆ = {♦�(pδ → ¬m(Dδ))|δ ∈ ∆}.

• Possibly, Fι = {q} or Fι = {¬q}, depending on whether there is an
idle term in {gik ◦Gik|k ∈ Ki} or {hjmi

◦Hjmi
|j ∈ J} respectively.

We build the model M = 〈W,R, V 〉 as follows:
W = {s} ∪ (A ∪ ∆) ∪ ((A ∪ ∆) × (B ∪ Γ)) ∪W ′, where A,B,Γ,∆ are

the index sets above, which will form the ‘carcass’ of the model, and W ′ will
be sub-models satisfying/falsifying the m(D)′s, which will be grafted on the
carcass accordingly (see further).

• For better readability, in what follows the elements of a product X×Y

will be denoted as xy, for x ∈ X, y ∈ Y.

R = {(s, x)|x ∈ A ∪∆}∪{(x, xy)|x ∈ A ∪∆, y∈ B ∪ Γ}∪R′ where R′

will be the union of the inherited relations from the grafted sub-models.
The rest of the model and the valuation V will be defined as follows:

• Every state αβ , for α ∈ A, β ∈ B must satisfy pα → m(Dα) and
pβ ∧m(Dβ). For that, we set pβ true at αβ and graft a copy of M+ at
αβ.

• Every state αγ , for α ∈ A, γ ∈ Γ must satisfy pα → m(Dα) and
pγ∧¬m(Dγ). If α 6= γ we set pα false and pγ true at αγ and graft a copy
of M− at αγ . If tα = tγ then Dα � Dγ (for, otherwise, tα◦Dα � tγ◦Dγ ,
which contradicts (♠)), hence by the inductive hypothesis there is
a model Mαγ rooted at some u such that Mαγ , u |= m(Dα) while
Mαγ , u 2 m(Dγ). Then we set pα true and graft a copy of Mαγ at αγ .

• Every state δβ must satisfy pβ ∧m(Dβ) and (pδ → ¬m(Dδ). This case
is treated analogously to the previous one.

• Every state δγ must satisfy pγ ∧ ¬m(Dγ) and pδ → ¬m(Dδ). For that
we set pγ true and graft a copy of M− at δγ .
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• Finally, s ∈ V (q) iff q ∈ Fι.

This completes the description of M. It is immediate from the construc-
tion that M, s will satisfy all formulae in FA ∪ FB ∪ FΓ ∪ F∆ and hence
M, s � m(G), while M, s 2 m(H).

3) If M, s � m(G), while M, s 2 m(H) then, by Theorem 15, G � H.

This completes the circle of equivalences and the induction step.

Corollary 20. For any game terms G,H:

1. |= m(G) → m(H) iff G � H is a valid game inclusion.

2. |= m(G) ↔ m(H) iff G = H is a valid game identity.

Proof. One direction of (1) is by Th. 15. For the other, suppose |=
m(G) → m(H). We can assume that G,H are minimal canonical, again
due to Th. 15, so G � H by Lemma 19. (2) follows immediately from
(1).

Corollary 21. |= G = H iff DET |= G = H.

Given a Kripke model M and a state s, T (M, s, u) will denote the model
obtained from M by adding two new states u, v such that uRv and vRs.

Lemma 22. Let G,H be any terms and g, h be non-idle literals. Then
g ◦G � h ◦H iff g = h and G � H.

Proof. One direction is obvious. The other we prove by contraposition,
assuming g 6= h or G � H and using the modal translation.

Case 1: g 6= h. We falsify m(g ◦ G) → m(h ◦H) at the root of a model
constructed by cases as follows:

1.1) g = ga, h = gb, a 6= b for some atoms ga, gb. Take a copy of
T (M−, ∗, u) and set pa false and pb true at ∗.

1.2) g = ga, h = gd
b . Take a copy of F∗ and set pa and pb false at z.

1.3) g = gd
a , h = gb. Take a copy of T (M+, ∗, u), add a new successor

s to v and graft a copy of M− at s, setting pa true at ∗ and pb true at
s, so �♦(pa ∧ m(G)) is true at u, while pb → m(H) is false at s, hence
�(pa → m(H)) is false at v, so ♦�(pa → m(H)) is false at u.

1.4) g = gd
a, h = gd

b , a 6= b. Take a copy of T (M+, ∗, u) and set pa true
and pb false at ∗.

Case 2: g = h and G � H. We can assume that G and H are minimal
canonical. Let M, s 2 m(G) → m(H) (by Lemma 19) and suppose g = ga
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or g = gd
a. Then setting pa true at s will falsify m(g ◦ G) → m(h ◦ H) at u

in T (M, s, u).

Thus, in each case we have shown that g ◦G � h ◦H.

Lemma 23. 1. g ◦G � ι ◦ ι iff g is an idle literal and G � ι.

2. ι ◦ ι � g ◦G iff g is an idle literal and ι � G.

Proof of the non-trivial directions:
If g is non-idle then m(g ◦ G) → m(ι ◦ ι) is falsified at the root of

T (M+, ∗, u) by setting q to false at u. Thus, if g ◦ G � ι ◦ ι then g is idle
and |= m(g ◦G) → m(ι ◦ ι), hence |= m(G) → m(ι), so G � ι.

Likewise, if g is non-idle then m(ι ◦ ι) → m(g ◦G) is falsified at the root
of T (M−, ∗, u) by setting q to true at u. Thus, if ι ◦ ι � g ◦G then g is idle
and |= m(ι) → m(G), so ι � G.

7. Proof of the completeness of GAι

Lemma 24. If G,H are minimal canonical terms then G � H iff G � H.

Proof. If G � H then G � H is straightforward. For the other di-
rection we proceed by double induction on the structure of both terms.
The case when both of them are ι is trivial, so suppose otherwise and let
G =

∨

i∈I

∧

k∈Ki
gik ◦Gik, H =

∨

j∈J

∧

m∈Mj
hjm◦Hjm be minimal canonical

terms (again, representing ι as
∨∧

ι ◦ ι) such that G � H and the claim
holds for all Gik’s and Hjm’s, i.e. if one of these is included into another
then that inclusion is embedding.

Now, suppose G is not embedded into H. Then there is a disjunct
∧

k∈Ki
gik ◦ Gik in G such that every disjunct

∧

m∈Mj
hjm ◦Hjm in H con-

tains a conjunct hjmi
◦Hjmi

in which none of gik ◦Gik, k ∈ Ki is embedded.
But that means, by the inductive hypothesis and Lemmas 22 and 23, that
none of these terms is included in any of the hjmi

◦Hjmi
, for j ∈ J. This is

precisely the condition (♠) of Lemma 19. Therefore G � H.
This completes the inductive step and the proof of the lemma.

Proposition 25. If G,H are minimal canonical terms such that G � H
and H � G then G ' H.

Proof. Again, double induction on G,H. The case when both of them are
ι is trivial. Suppose G =

∨

i∈I

∧

k∈Ki
gik ◦Gik, H =

∨

j∈J

∧

m∈Mj
hjm ◦Hjm

be minimal canonical terms such that G � H and H � G and the claim
holds for all Gik’s and Hjm’s.
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Take any disjunct D from G. It embeds into some disjunct D ′ from H,
which in turns embeds into some D′′ from G, so D is embedded into D′′,
hence D and D′′ must coincide because G is minimal canonical. Therefore,
D � D′ and D′

� D, so for every conjunct C in D there is a conjunct
C ′ in D′ embedded into C; and there is a conjunct C ′′ in D embedded into
C ′, hence C ′′ is embedded into C. Again by minimal canonicity of G, that
implies that C and C ′′ coincide, hence C � C ′ and C ′

� C. Let C = t ◦ T
and C ′ = t′ ◦ T ′ for some literals t and t′ and minimal canonical terms T, T ′

for which the inductive hypothesis holds. Therefore, C � C ′ and C ′ � C,
hence by Lemmas 22 and 23, t = t′, T � T ′ and T ′ � T, so T � T ′ and
T ′

� T by Lemma 24, hence T ' T ′ by the inductive hypothesis. Therefore
C ' C ′.

Thus, every conjunct from D is isomorphic to a conjunct from D ′ and
vice versa. This is a bijection because of the minimal canonicity of G and H.
Hence, every disjunct from G is isomorphic to a disjunct from H and vice
versa. Again, this is a bijection due to the minimal canonicity of G and H.
Therefore, G ' H.

Corollary 26. The minimal canonical terms G and H are equivalent iff
they are isomorphic.

Proof. G ∼ H iff (G � H and H � G) iff (G � H and H � G) iff
G ' H.

Proof of Theorem 6. Let G ∼ H and c(G), c(H) be minimal canon-
ical terms obtained from G and H by reduction within GAι. Then c(G) ∼
c(H), hence c(G) ' c(H) by Corollary 26. Since each of the equivalences
G ∼ c(G), c(G) ' c(H), c(H) ∼ H is derivable in GAι, so is G ∼ H.

8. Concluding remarks

8.1. Valid identities and game board conditions

On the one hand, it can be easily verified that all axiomatic identities, and
hence all valid ones, remain valid if the condition for consistency of powers
(CON) is omitted.2

On the other hand, as Corollary 21 shows, determinacy of game boards
does not add new valid identities of game terms. This result can be strength-
ened: termination can be added, too, without introducing new valid identi-
ties.

2This observation is essentially due to Yde Venema, who raised the question.
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Proposition 27. |= G = H iff (DET∩FIN) |= G = H.

Proof. It is sufficient to modify the proof of Lemma 19 by showing that
whenever G � H for minimal canonical terms G and H, the counter-model
for m(G) → m(H) can be constructed in such a way that the game board
determined by it as in the proof of Theorem 15 is terminating as well, i.e.
sρi

aS holds for each atomic game ga (and hence for every game term). These
conditions impose the following requirements on the Kripke model:

• Termination for ι. It holds trivially.

• sρ1
aS iff M, s |= ♦�(pa → >) i.e. M, s |= ♦>. This is satisfied by the

current construction.

• sρ2
aS iff M, s |= �♦(pa ∧>) i.e. M, s |= �♦pa for each non-idle a ∈ A.

To satisfy this condition we extend the construction in the proof of
Lemma 19 as follows: for each α ∈ A we add one more successor, α′ to
α, graft a copy of M+ at α′, and set all pa to be true at α′. Likewise,
for each δ ∈ ∆ we add one more successor, δ ′ to ∆, graft a copy of
M− at δ′, and set all pa to be true at δ′. That will preserve the truth
at s of all formulas from FA ∪ FB ∪ FΓ ∪ F∆, while forcing all �♦pa

to be true at s.

Thus, every invalid inclusion G � H can be falsified in a determined and
terminating game board.

8.2. On the complexity of the validity of game identities

While the translation m of canonical terms to formulae of modal logic is
polynomial in the size of the terms, because only literals occur on the left of
compositions, in general that translation can be exponential in the size of the
terms (e.g. consider the translation of (g11∨g21)◦(g12∨g22)◦ ...◦(g1n∨g2n)).
However, as Venema has noted, the number of different subformulae in the
resulting translation is still polynomial in the size of the term, which can be
shown by a simple induction on terms. Thus, the complexity of the validity
of game identities is not greater than the complexity of the validity in the
basic modal logic K. Thus, we obtain the following.

Proposition 28. The validity problem for identities of game terms is in
PSPACE.

8.3. From game algebras to game logics.

Clearly, the game algebra of a fixed language of game terms can be regarded
as a fragment of the corresponding game logic. In particular, every valid
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game identity G = H corresponds to a pair of valid formulas 〈G〉 q ↔ 〈H〉 q
and [G]q ↔ [H]q (in the notation of [5] and [3]) and vice versa.

The dual-free fragment of game logic (with tests) was axiomatized and
proved complete in [5], by modifying appropriately the completeness proof
for PDL, while the iteration-free game logic, corresponding to the game
language considered here (with additional tests), has been axiomatized and
proved complete in [4] using an adaptation of Parikh’s proof, combined with
the method of canonical models for neighbourhood semantics of modal logic.
That proof, however, does not imply the present completeness result because
it does not show if the derivation of every valid formula of the type 〈G〉 q ↔
〈H〉 q or [G]q ↔ [H]q can be translated into equational logic. On the other
hand, the modal translation introduced here readily extends to the iteration-
free game logic, and accordingly the method of proving completeness applied
here can be modified to an alternative completeness proof for that logic, by
extending the notion of canonical forms to all formulas. We note that this
method can also be adapted to prove completeness of modal logic itself. In
fact, that was essentially done quite a while ago in [2], where the use of
normal forms in modal logic was promoted.

8.4. Representing game algebras

Meanwhile, Venema has strengthened in [6] the completeness result pre-
sented here by proving a representation theorem for abstract game algebras
defined by the set of identities GA into game boards.

As the completeness of the full Game Logic introduced in [5] is still open,
it is interesting to see if the method applied here or Venema’s algebraic
approach can be extended to the game language with iteration and thus
provide a handle to solving that problem, too.
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