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Abstract. This paper deals with propositional calculi with strong negation(N­
-logics) in which the Craig interpolation theorem holds. N-logics are defined to be 
axiomatic strengthenings of the intuitionistic calculus enriched with a unary connec­
tive called strong negation. There exists continuum of N-logics, but the Craig inter­
polation theorem holds only in 14 of them. 

" 
A propositional calculus with strong negation is an extension of the 

intuitionistic propositional calculus by an additional logical connective ,....; 
c8Jled "strong negation". It formalizes in a way the following idea: 
usually for the refutation of a given assertion there exist two ways: 
reductio ad absurdum and construction of a counter-example. From 
a constructivist's point of view these two ways are not equivalent; the 
weak and strong negation of the above calculus correspond to them. 

The smallest such logic i, called the constructive logic with strong 
negation was formulated independently by Nelson [12J and Markov [2] 
and studied by them as well as by Vorobiev [3], [4], [5], Rasiowa [6], 
[7J, [8J, [9], Vakarelov [10J, [l1J and others. The strong negation in 
this logic has constructive properties, which do not hold for the intui­
tionistic negation: from i 1-. "" (A nB) it follows that either i I- f""oJ A or 
iI-,....., B, and in the corresponing predicate logic the derivability of 
'" VxA(x) implies the derivability of ,""A(T) for a certain term T. 

An algebraic semantics for the propositional calculus with strong 
negation, introduced by Rasiowa [7], is based on a special kind of dis­
tributive lattices, named N-Iattices (algebras of Nelson, quasi-pseudo­
-Boolean algebras). Vakarelov in [11] gives a construction of the so-called 
special N-Iattices, with the help of which a number of problems, related 
to the extensions of constructive logic with strong negation (called in 
this paper N-logics) and N-lattices can be attacked successfully, reducting 
them to analogous problems for the superintuitionistic logics and pseudo­
-Boolean algebras, respectively. Thus, for example, Sendlewski in [13] 
announces the complete list of the critical varieties of N-Iattices (called 
here N-varieties). 

In the present paper all N-Iogics, in which the Oraig interpolation 
theorem holds, are found. This property, as in a number of other cases, 
proves to be equivalent to the amalgamation property of the correspon­
ding N-varieties. All logics, which are of interest to us, are divided into 
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two classes, the truth of the Craig interpolation theorem (OrT) in each 
of them proves to be equivalent to the truth of the CrT in the-eorrespon­
dingsuperintuitionistic fragments. Thus, the problem is reduced to the 
analogous problem in the domain of superintuitionistic logics, which was 
solved by Maximova [1]. It turns out, that in the continuum of consistent 
N-logics, the OrT holds only in 14 of them. 

§O. Propositional calculi with strong negation. N-logics and N-Iattices 

0.1. By recursion we define a set of formulae For of the language 2, 
which is an extension to the language of intuitionistic propositional cal­
culus 2, containing logical signs n, u, -+, I and a set of propositional 
variables <Po = {Po, Pu ... } by adding a new, one~argument logical sig,n f',J 

which will be called strong negation. By fm' we shall denote the subset 
of For, containing the formulae in which the sign "-' does not enter. 

Some abbreviations: A => B ~(A -+B) n( f',J B -+ '" A); A <c--+B ~(B-+ 
-+A) n(A -+B), A ~B ~(A => B) n(B => A); 0 ~ Il. 

The set of axioms of the Vorobiev's calculus is .A = AouV, where At} 
is a set of axioms for the intuitionistic propositional calculus and V is 
the system of Vorobiev's axioms: 

(VI) '" A-+(A-+B) 
(v2 ) ,-,(A-+B)<c--+An,-,B 
(V 3) ,-, (A nB)<c--+,-,A U '"'-'B 
(v4) ,-, (A uB)<c--+,....,.,A n--,B 
(v5) ,....,., IA<c--+A 

(v6 ) '" '" A <c--+A 

Rules of inference: modus ponens and substitution. An inference (proof) 
and provable (derivable) formula (theorem) are defined as usual. 

\iVe shall call any set L s:; For, coptaining A and closed with respect 
to the rules of inference, a logic with strong negation (N-logic). 

The smallest logic with strong negation i bears the name: "a con­
structive logics with strong negation". 

NOTE. Since ",A-+(A-+O) Eiand (A-+O)-+IA Ei, then i I- ""A-+ 
-+ lA, which explains the name "strong negation". The converse impli­
cation, as we shaH see below, is equivalent to A u ",A and added to i 
gives an N-Iogic which coincides in essence with the classical logic. 

The Oraig interpolation theorem (OrT) in a logic L reads: If A-+B EL, 
then there exists a formula 0, containing only variables, which enter 
simultaneously A and B, such that A -+0 ELand 0 -+B EL. 

The main aim of this paper is to describe all N-Iogics in which the 
OrT holds. 
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NOTE. The same question can be put as to the truth of the arT 
relatively to the so-called strong implication => but, as we shall see below, 
it is solved trivially. 

0.2. We recall the definition of an N-Iattice (see [8]): An algebraic 
system .¥ = (A, v, n, -+, "", 1,1) is called an N-Iattice if: 

(Ro) the relation -<, where a -< b denotes a-+b = 1, is a quasi-ordering 
on A, 

(Rl ) the system (A, v, n, ",,1) is a quasi-Boolean algebra, i.e. a dis­
tributive lattice with 1, in which the following identities hold: 
(ql) r-.J,....., a = a and (q2) ,....., (avb) = "-' an,......,b 

(R 2) a ~ b iff a=>b = 1 (a ~ b denote anb = a) 
(Ra) if c -< a and c -< b, then c -< anb 
(R4) if a -< c and b -< c, then avb -< c 
(Rs) '" (a-+b) -< an,......,b 
(R6) "-' bna -< ,-...,(a-+b) 
(R7) a -< ,....., la 
(Hs) ,....., la -< a 
(R9) an,...,a -< b 
(H10) anb -< c iff a -< b-+c 
(Ru) la = a-+ ,..., 1 

We define the relation ~: a ~ b iff a -< band b -< a. N-Iattices can be 
defined only by identities (see [6]), i.e. the class of N-Iattices is a variety. 

Some elementary facts in N-Iattices, which we shall use are the follo­
wing: 

1. ,......,1 = 0; ,....., a ~ la; 0 ~ a. 
2. if x -< y, then a-+x -< a-+y; if x ~ y, then a-+x ~ a-+y. 
3. if a -< b, then Ib ~ la; if a ~ b, then Ib = la. 
4. la = 1 iff a ~ O. 
5. ania ~ 0; an,....."a ~ O. 
6. ja-+a ~ Ila; a-+,...,a = la; a-+"1a = la. 
7. a -< ,......, la ~ Ila ~ I ,....., a; a ~ I '"" a. 
8. Illa~ la; Ilia ~ la. 

Additional information about N-lattices can be found in [6]. 

NOTE. Since from a -< band b -< a it does not follow that a = b, 
(A, v, n, --+, I, 1) is not a pseudo-Boolean a,lgebra. 

Examples of N-lattices: 

a. Let (Bo, n, v, -+, I) be a two-element Boolean algebra. Set "" a 0==; 

la in Bo and obtain a two-element N-lattice ~o. 
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b. In the linearly ordered set Go = {O, 15, I} (0 < 15 < 1) define opera­
tions ,..."" 1 and --?>- by the tables: 

1--?>-1 0 1b 11 

I 0 11 1 1 

15 /1 1 1 

1 10 b 1 

In this way a three-element N-lattice (£:0 = (Go, n, u, --?>-, I, """,1) is 
obtained. 

580 and (£:0 are the unique (up to the isomorphism) two- and three-ele­
ment N-Iattices, respectively. 

0.3. The reader can find in [6J a detailed information about the 
filter theory in N-lattices. Here, we briefly review some definitions and 
facts, that will be needed later. 

Let % = (A, u, n, --?>-, ~, 1,1) be an N-Iattice. A non-empty set 
V £ A is called a special filter of the first kind (s.f.f.k.) if: 

(1) a EV and bE V imply anb E V, 
(2) a E V and a -< b imply b E V. 

THEOREM 1. If Ker(h) is a kernel of an isomorphism of N-lattices, 
h: %1--?>-%2' then Ker(h) is a s.f.f.k .. h(a) = h(b) is equivalent to a<.;>b E 

EKm'(h); the relation =, where a ==b if and only if a~bEKer(h), is 
a congruence in %11 at that %1 / = "-' %2' [6J 

THEOREM 2. Let V be a s. f. f. k. i1'b a N-lattice .AI. Then the relation == 'V' 

denoting a-=- bE V is a congruence in JV. JV /V is an N-lattice. The map­
ping h: % --?>- % / V, where h(a) = jal is an epimorphism and Ker (h) =V. [6] 

0.4. Rasiowa in [7J shows that the Lindenbaum algebra for i is an 
N-lattice. This gives us the possiblity of examining the algebraic semantics 
for the N-Iogics. 

In the usual way we define a valuation of the variables and formulae 
from For in an N-lattice, the truth of a formula for a given valuation, 
and the validity of a formula in a given N-lattice, and in a class of N-Iat­
tices. 

To any N-Iogic L there corresponds a variety of N-Iattices varL, 
defined by the set of identities {A = 1 / A EL}. Oonversely, to any class 
of N-Iattices K there corresponds an N-Iogic L = {A / K 1= A = 1}. There­
fore, varL = var(K) - a variety generated by the class K. 

NOTE. The formula (pn"""'p) =>-(qur-->q) is derivable in i (it is valid 
in all N-Iattices). Therefore, if in an N-Iogic L the OIT holds relatively 
to =>-, then in L either (pn,-...,p)=>-O or l=>-(qu,,-,q) is derivable. In 
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both cases L r p U """p. Hence, as we shall see fmther, L coincides with 
the biggest consistent N-Iogic C, functionally equivalent to classical 
propositional logic, in which the aIT really holds. 

§l. Special N-Iattices and special N-Iogics 

1.1. Let us recall the following construction of Vakarelov [11]: Let 
m = (B, n, u, ~, I, 0, 1) be a pseudo-Boolean algebra (PBA), Le. 
distributive lattice with 0 and 1 in which: 

1. 
2. 

for any x,a,bEB: xna~b iff x~a-+b 
j 

la . a-+O. 

NOTE. We shall deal simultaneously with two different algebraic 
systems - pseudo-Boolean algebras and N-lattices, but we shall use 
dentical signs for the corresponding operations in them for simplicity. 
This will not lead to confusion, since we shall always know which algebraic 
system we are dealing with. 

Set N(B) !=; {(au aZ)!a1 , a2 E ~ & a1naZ = O}, 
"-

(ro) I = (1, 0), 0 = (0,1) 
(r1) (au a2 ) u( bll b2) !=; (a l UbI' a2 nbz) 
(r2) (au aZ)n(bll b2 ) !=; (a1nb ll a 2 ubz) 
(ra) (aI' az)-+(bu b2 ) !=; (a1-+bl1 a1nb z) 

(r,) I(au az) !=; (la), a 1 ) 

(r5) "-'( aI' a 2) !=; (a 2 , a l ) 

It can be proved directly, that: 
(aI' az) -< (bu bz) iff a l ~ bI ; (au a2) ~ (b l , bz) iff a l ~ bl and b2 ~ a2 • 

PROPOSITION 3. For any PBA ~ the system 

N(~) = (N(B), u, n, -+, ,...." 1,1) 

is an N -lattice. 

PROOF. Without difficulties (Ro) - (Ru) may be proved. l1li 

Also, the following can be shown directly. 

PROPOSITION 4. Let m:-+~ be a homomorphism of PBAs. Then hN: 
N(m:)-+N(~), where hN ((a, b)) = (h(a), h(b)) is a homomorphism of N-lat­
tices. 

We shall call N-Iattices of the type N(~) special N-lattices over 
PBA m. 

NOTE. In [11] Vakarelov gives the following intuitive interpretation 
of the special N-lattices: PBA ~ can be considered as Lindenbaum al­
gebra of an intuitionistic theory or, more simply, as a set of assertions. 
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Let a l and a 2 be assertion. We say that a2 is a counter-example of a l 

if al na2 = O. Then, the set of all pairs (a l , a2 ), where aI' a2 E ~ and a2 

is a counter-example of all is just N(lB). The definitions (rO)-(r5) provide 
constructions of counter-examples of al ubI, a l nb I , a l ~ bI , a2 and la} 
if we have already constructed counter-examples of a} and bl • 

1.2. 

PROPOSITION 5. Let ~ = (B, n, u, ~, 1,1) be a PBA and N(lB) = 

= (N (B), n, u, ~, ,...." I, 1) be the corresponding special N-lattice. Then 
the map :n;: N(lB)~lB, where :n;((a, b» ~ a, is a lattice homomorphism, 
such that :n;(a~f3) = :n;(a)~:n;(f3) and :n;(la) = I:n;(a). 

PROOF. A direct examination of the preservation of the operations. 
[l1J • 

We shall call the map :n; a projector and :n;(N(~» - a projection of 
N(lB) into ~. 

PROPOSITION 6. R::! is a congruence in N-lattices with respect to the 
operations n, u, ~. [l1J 

Let .;V = (N, u, n, ~, ,...." 1,1) be an N-lattice. In the set P(N) = 

= NI R::! we define: 

(to) 0 0=; [01, 1 0=; III 
(t1 ) lal u Ibl 0=; laubl 
(t2) la! nib! 0=; lanb! 
(ts) !a!~lbl = la~bl 
(t4) Ilal 0=; Ilal· 

Proposition 5 implies the correctness of the definitions (to) - (t.). 

PROPOSITION 7. The system P(.;V) = (P(A), n, u, ~, 1,1) is a PBA. 

[11] 

PROPOSITION 8. The map h: ';v~N{P(';v»), where h(a) = (Ial, [""al), 
is a monomorphism of N-lattices. [l1J 

This proposition implies directly: 

THEOREM 9 (representation theorem). Any N-lattice is isomorphically 
embedable into a special N-lattice. 

1.3. 'We shall call a variety of N-Iattices (N-variety) special if it is 

possible to define it (as a subvariety of the variety of all N-Iattices m) 
by a system of additional identities, which only terms from for enter. 
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NOTE. Any identity in an N-Iattice can be written down in the 
form A = 1 since the identity A = B (A, B E Fm') is equivalent to 
A<?B = 1. 

'lYe shall further denote zero- and one-element of both pseudo-Boolean 
algebras and N-Iattices accordingly by 0 and 1 and this will not lead to 
confusion. 

PROPOSITION 10. Let NUB) be a special N-lattice over the PBA ~ and 
( a, b) E N (~). Then (a, b) = 1 i ff a = 1. 

The proof follows directly from the definition. 

LE~IMA 11. Let 23 be a PBA and A E for. Then ~ 1= A = 1 iff 
N(~) 1= A = 1. 

PROOF. Let A = A (ru ... , Yn) and (au b1), ... , (an, bn) E N(23). Then 
A (a}1 bl)' ... , (an' bn») = (A (all ... , an), *) which is provable by direct 
induction. Therefore, from Proposition 10 it follows that if 23 1= A = 1 
then N(~) 1= A = 1. Oonversely, let NUB) 1= A = 1 and al) ... , an E23. 
Then(au lal), ... ,(aM lan) EN(~)andA(al' la l ), ... , (an' lan ») = 1, 
i.e. (A(a ll ... , an), *) = (1,0). Hence A (all ... , an) = 1 and, therefore, 
'8I=A=1. • 

LEMMA 12. Let % be an N-lattice and A Efo1'. Then % 1= A = 1 
if! P(%) 1= A = 1. 

PROOF. Let A = A(ru ... , rn), au ... , an E%. It can be proved by 
trivial induction that IA(au ... , an)1 = A(lall, ... , lan!), from which the 
lemma easily follows. • 

Lemmas 11 and 12 imply 

THEOREM 13. Let % be an N-lattice and A E for. Then % 1= A = 1 
iff N(P(%») 1= A = 1. 

Set s% = N (p (%») for any N-lattice. 

OOROLLARY ] 4. Let 91: be a special N-variety and % E 91:. Then s% E 91:. 

THEOREM 15. An N-lattice % is isomorphic to a special N-lattice iff 
there exists an element <5, such that 6 = ,-...,(j, i.e. ifj (£0 is isomorphically 
embedded into %. 

PROOF. Note that (£0 = N(23o). Let % r-.J N(23) for some PBA ~. 
Then (j 1=; (0,0) is the required element - as such it is unique in the 
special N-lattices: let (a, b) = ",,(a, b) = (b, a), then a = band anb = O. 
Hence a = b = O. 

It follows from the representation theorem that it is unique in any 
N-lattice in which it exists. 

5 - Studla Loglca 
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Now, let such an element (j exist in .H. Note the following: if .Ho 
is a subalgebra of the special N-lattice N(!B) and .Ho satisfies the condi. 
tions: 1°. (O,O)E%o and 2°. n(.Ho) =5B, then.Ho = NUB): let a,bE5B 
and anb = 0. Then a ~ b. There exist elements il, b E!B such that (a, ii) E 

E%o and (b,5) e.Ho. Then, (a, ii)U(O, 0) = (a, 0) E%o and ,(b, b) 
= (lb, b) E .Ho; hence (a, O)n( lb, b) = (a, b) e .Ho, and thus.Ho = NUB). 

Now, let us examine the image h(.H) of the embedding h: .H -+8%. 
It follows from the uniqueness of b that h(o) = (0,0); n(h(%» =P(.;V) 
since fot any a eP(.H) (Ial, \ """a I) Eh(%).Henceh(%) = N(P(%» = 8%, 
i.e. % ~ 8%. • 

1.4. We shall call an N-Iogic special (the term superintuitionistic 
N-logic is more informative, but longer) if it can be axiomatized by a set 
of axioms A = Al uV where A1 is a set of tautologies of some superin­
tuitionistic logic and V is the system of Vorobiev's axioms. 

Obviously, L is a special N-Iogic iff varL is a special N-val'iety. 
Let L be a superintuitionistic logic .. The Logic L, generated from L 

by adding Vorobiev's axioms will be caned an N-logic generated by L, i.e. 
L =L+V. 

I.Jet L be an N-logic. We shall call the superintuitionistic logic I(L), 
containing the formulae, derivable in L, which the sign """ does not enter 
a superintuitionistic fragment of L, i.e. I(L) = Lnfor. 

-----Obviously, L is a special N-logic iff L = I(L). In the general case 
----' 
I(L) s; L. 

Some notations: Let ll1 be a class of PBA. Then 

N(ll1) ~ {% /3m: Ell(: % r--J N(m:)}. 

Let m be a class of N-Iattices. Then 

p(m) ~ {1ll/3.;V e m: m: ::::: P(%)}, sm ~ N (p(m»). 

LEMMA 16. Let III be a PBA. Then the map '1': P(N(m:»)-+Ill, where 
y(l(a, b)l) ~ a, is an isomorphism of PBA. 

PROOF. It can be verified directly that 'I' is homomorphism; 'I' is 
a bijection: 
- injection: if a l = a2 then (au bI ) R::! (a 2 , b2 ); 

surjection: for any a E Ill: (a, la) E N(m:). • 

LEMMA 17. Let L be an N -logic and va1'L = m. Then: 
1. varl(L) = var(p(m» , 
2. if L is a special N-logic then: 

a. N(varl(L» s; varL, 
b. p(m) -is a variety, 
c. 91: = var(s91:). 
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PROOF. 1. varI(L) and var(p(m)) are defined (by Lemma 12) by one 
and the same set of identities {A = ItA E I(L)}. 

2.a. Let mE varI(L). Then in N(m) the identities {A = l/A E I(L)uV} 

hold, i.e. N(IJ!) E varI(L) = varL. 
b. m is a special N-variety. Let IJ! E varI(L). Then N(m) E rvarL =!n 

f--7\[( "-'P(N(~O) EP(m), i.e. var(p(m)) = varI(L) s; p(m) s; VaT(p(m)). 
c. sm s; in - by Corollary 14. Conversely, 91 s; Va1'(Sm) since for any 

% E 91: % c...,. s% E sm. • 

THEOREM 18 (completeness theorem for special N-logics). Let L be 
a special N-logic, varL = m and A E For. The following conditions are 
eqnivaZent : 

1. A eL, 
2. m 1= A = 1, 
3. sm 1= A = 1. 

PROOF. 1~2 - trivially. 

2f--73 - sm s; m from Corollary 14. 
3f--72 follows from the representation theorem. f 

THEOREM 19 (separability). Let L be a snperintnitionistic N-logic. The 
follo~ving conditions are eq~tivalent for any A E for: 

1. A EL, 
2. A EL. 

PROOF. 2f--71 L s; L; 
1f--72 - assume that A ~ L. Then A is refused in some PBA mE 

E varL. By Lemma 11 A is refused in N (m) E var L, i.e. A ~ L. • 

1.5. Let A (r li ... , 1'n) e For and Ql1"" qn be the first n variables 
from Wo different from ru".,rn • 

Define by recursion on A a formula AO(?,u .. " rn' qll "., qn) Efor: 

1. AEwoU{l}:Ao~A 

2. (A 1 *A 2)O ~A~*A~ for * E {n, U, -+}; (jA1)O ~ jA~ 
3. AQ '"'" A 1 : by recursion on AI: . 

a'. ('-"lt~O, a".(,.......ri )o=qo i=l, ... ,n 
b. (,-., (A' uA"W ~ (,-., A')On (,-., A")O, 
c. (,-., (A' nA")}O ~ (,-., AI)OU (i"'oJ A")O, 
d. (."",(A'-+A"))O ~A'On(,....,A")O, 
e. (,-., jAI)O ~ (,..., i"'oJ A')O ~ Alo. 

By induction on .Lt the following can be proved: 
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LEMJl.U 20. Let N(~) be a special N-lattice, A (t'l1 ••• , rn) eFo1' and 
(a H bI), ... , (an, bn) eN(~). Then A((a l , bI)' ... , (an, bn») = (AO{a1, ... , 
an, bu ... , bn), (......,A)O(au ... , an, bu ... , bn»)· 

We define a map rp: For -'7fo1'. Let A (1'u ... ,1',.) eFor. 
Then: 

rp(A) (ru ... , rn' !Iu ... , !In) ~ I (1'1nql) n ... n -, (r nnQn)-'7 

-'7 A ° (1' 1l ... , l' n' !Il, ... , qn), 

where !Ill ... , qn are the first n variables from c[Jo which do not enter A 

LEMJl.U 21. Let ~ be a PBA and A (1'1' ... , "n) E For. Then ~ F rp(A) = 
= 1 iff N (~) F A = 1. 

PROOF. 1) Let N(~) non FA = 1, i.e. there exist (au bI ), ... , (an, bn) E 

EN(~) such that A((a1 , bl)' ... , (an' bn») =1=1, i.e. AO(all ... , an' bu ... , 
bn) =1= 1. Then, since -, (a1 nb1 ) n ... n -, (an nbn) = 1 it follows that 
!p(A)(au ... ,an,bu ... ,bn) =1=1, i.e. ~nonF!p(A) =1. 

2) Let N(~) FA = 1. Assume that ~ non F rp(A) = 1. Then, there 
exist all ... , an' bll ... , bn such that x = l(alnbl)n ... nl(a'nnbn) 

~ AO(all ... , an' bll .. " bn). Let V = {y E~ I x:(; y}, m ~~/V. Then x/V 
=1/V, AO(all ... ,an,bu ... ,bn)/V =l=I/V. Hence ai ~(ai/V, bdV)E 

EN(~),i = 1, ... ,n,a,ndA(a I"", an) =1= 1. Setci ~ I(ainbi), i =1, ... , 
n. x:(; Cif---'TCi E V, i = 1, ... , n. Set ai = cin(ci-'7ai), hi ~ ci n(ci -'7bi ), 

i = 1, ... , n. ai/V = ci /Vn(ci !V-'7ai /V) = ai/V and analogously bi!V 
= bi! V. Moreover, ain hi = cinainbi = O. And so Pi ~ (ail bi) E N(~), 
i = 1, ... , n, fmd A 0 (all ... , an) bu ... , bn }/ V = A 0 (au ... , an, bll ... , bn ) IV 
=1= 1/ V. Hence, A 0 (all .... , an, hu ... , bn ) =1= 1 and, therefore, A (PI' ... , 
fJn) =1= 1. So N (~) non F A = 1 :.--. a contradiction. _ 

LEJYIMA 22. For any s1,tperintuitionistic logic L: L = I(L). 

PROOF. L£I(L); Let ~Eva1'L. Then N(~)EvarL, where 
~:::::: P(N(~») EP(varL) £ varI(L). And so varL £ varI(L); therefore 
I(L) £ L. • 

THEOREM 23, Let L be a special N-logic and A E For. Then A EL 
iff rp(A) El (L). 

PROOF. 1) Let A ~ L. Then there exists a special N-Iattice N(~), 
~ E varI (L), such that N(~) non FA = 1 and therefore m: non F !ptA) = 1, 
i.e. !ptA) 1= I(L). 

2) Let !ptA) 1= I(L). Then there exists ~ E vad(L) such that m: non l= 
rp(A) = 1. Hence, N(~) non l= A = 1, but N(m:) E varL and therefore 
A 1=L. • 
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COROLLARY 24. Let L be a superintuitionistic logic, complete with 
respect to a class K of PBAs. Then L is complete with respect to the class 
N(K). 

PROOF. K s varLf-+N(K) s varL. Let A 6 For and N(K) 1= A = 1. 
Then K 1= l]J(A) = 1. Hence l]J(A) E Lf-+A EL. 11 

COROLLARY 25. If L is a decidable s1tperintuitionistic logic then L 
is a decidable N-Iogic. 

COROLLARY 26. Let m and ~ be PBAs, '!( 6 var(~). Then N(m) E 

6 var(N(~»). . 

PROOF. Lot A E For and NUS) 1= A = 1. Then ~ l= l]J(A) = 1 f-+ m l= 
l= l]J(A) = 1 and therefore N (m) 1= A = 1. 11 

COROLLARY 27. Let ~ and ~ be PBAs and var(~) = var(~). Then 
var(N(~») = var(N(~»). 

THEOREM 28. An N-variety, generated f1'om a special N-lattice, is 
a special N -variety. 

PROOF. Let in = var(N(~)). Let L = L(~) and % be Lindenbaum 
algebra of logic L. Since var(P(%» = varI(L) = varL = var(~) then 
var(s%) = var(N(~») = in. Besides, var(s%) = var(.;V): %c .... s.;V, var(.;V) 
s var(s%) and conversely: since Va1'(';v) is a special N-variety then 
8% E var (%)f-+var (s.;V) s var(%}. And so in = var(';v)f-+varL is a special 
N-variety. 11 

COROLLARY 29. If % is a special N-lattice, then L (%) is a special 
N-logic. 

§2. Normal N-Iattices and normal N-Iogics 

2.1. 

LEMMA 30. In any N-lattice the following identities are equivalent: 
1. I(X~~X) = 1 
2. II(XU"""X} = 1 
3. I~X R:j IIX. 

PROOF. 1~2: in any N-Iattice I(XU""""X) = X~~X: 

I(XU,,-,X) = Ixnl'""'x = (x->-,-....,x)n(,,-,x->-,,-,......,x) = x~'""'x. 
2->-3: Ixn I ""XR:jO f-+ Ixn I"""'X -< 0, i.e. I "-'x -< IIX and 

from '-""X -< IX it follows that IIX -< I"""'X f-+ IIX R:j I,....,X. 
3->-2: I",-,xnlx-< 0, i.e. I,,-,xnlx = I(XU,-""X) R:jOf-+II(XU 

u~x) = 1. 11 

DEFINITIONS. We shall call an N-lattice.;V normal if % l= I (x~ ,.....,x) = 

= 1. An N-logic L+ will be called normal if it can be obtained from a special 
N-Iogic L by adding the axiom I(p~""p). 



302 V. Goranko 

LEMMA 31. In any PBA m: the following conditions are equivalent: 
1. la = llb, 
2. anb = 0 and lan Ib = 0 
for a, bE m:. 

PROOF. 11-+ 2: b::S; lib = la 1-+ bna = 0; la = Ilbl-+ lan 
nib = O. 

21-+1: anb = 0 1-+ a::S; Ib 1-+ lib::S; ia; ian ib = ° -+ ia::S; iib .• 

LEMli'lA 32. Let % = N(Sll) be a special N-lattice. Then N+(m:) ~ 
~ {( aI' a2 ) lal , a2 Em: & ia l = iia2 } is a s~tbalgebra of % (we denote 
N+(m:),s;; %). 

PROOF. 

1. (O,l)EN+(m:), (l,O)EN+(m:); 
2. (al , a2 ) E N+ (m:) 1-+ i (aI' a2 ) = ( ial , al ) E N+ (m:) ; 
3. (au a2 ) E N+ (m:) 1-+ '""-'( a u a2) = (a 2 , all = N+ (m:) since 

la2 = iiia2 = iia l · 

Let (au a 2 ) and (bu b2) EN+(m:). Then: 
4. (al1 a2)n(bl1 b2) = (alnbu a2 ub 2) EN+(m:): 

ii(a2 ub 2) = i(ia2 nib2 ) = i(iia1 niib1) = 
= ili(alnb1) = i(aInb1)· 

5. (au a2)y(bu b2) = '""-'('""-'(al1 a2 )n'""-'(bu b2)) EN+(m:). 
6. (au a2 )-+(bu b2 ) = (al-+b u at nb2 ) EN+(m:): 

ii(aI nb2 ) = iia1 niib2 = ilalnibl = i(ia1ubl); 
ial UbI ,s;; at -+b1 1-+ i (al -+b1 ) ::s; i (ial UbI) and conversely: 
iia1nib1n(al-+bl),s;; iialnial = 0 1-+ iia1nib1 = 
= i (a1-+bl)· • 

Let % be an N-lattice. Denote rI% = N+ (P(%)). 

THEOREM 33. Let L+ be a normal N-logic and m: E varI(L). Then 
N+ {2l) E varL+. 

PROOF. N+ (m:) ::s; N (m:) 1-+ N+ (m:) E val'L. It remains to prove that 
N+(lll) 1= i(x-<-+'""-'x) = 1, which is equivalent to N+(m:) 1= i(xu,....."x) ~ O. 
Let (au a2) EN+(m:). Then i((au a 2)u,.....,,(aU a2 )) = (i(aIua2), a1 ua2)= 
= (ia1 nia2 ,a1 ua2 ) = (O,a1 ua2) ~o .• 

THEOREM 34 (representation theorem fot' normal N-lattices). If % 
is a normal N-lattice then % is isomorphically embedable into n%. 

PROOF. h: a-+(Ial, l,....."aD is the embedding of % into s.,11 . "Ve shall 
prove that h(%) £ n%: 

lilal = liial = li",-,ai = il,....."al, i.e. (Ial, I,....,al) En%. • 
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LEMMA 35. Let III be a PBA. The smallest sub algebra of the N-lattice 
N(Ill), the projection of which coincides with Ill, is No('ll) generatecI from the 
set Illo = {Cia, a)ja E'!C}. 

PROOF. Let % be this smallest subalgebra. For any a E'!C there 
exists b El!( such that (a, b) E%. Then "I(a, b) = ("la, a) E%, Le. 
No(lll) ~ %. IlII 

LEJI,DIA 36. Let III be a PBA. Then No(lll) = N+(Ill). 

PROOF. For any a E Ill: ("la, a) E N+ (m) ~ No ('!C) ~ N+ (m). Let 
(a, b) E N+ (I!(). ("lb, b) E No(m), i.e. ("I "la, b) E No ('!C). Besides, (a, "la), 
("la, a) ENo(m). Then ("I"la, b)n((a, "la)u("la, a)) = ("I"lan(au"la), 
b) = (a, b) E No (Ill). Therefore N+ (m) ~ No('!C). 11 

THEOREM 37. Let % be a normal N-lattice. Then the embedding 
h: .AI c-+n% is an isomorphism, i.e. % ~ n%. 

PROOF. Since n (h(%)) = P(%) then by Lemma 35 No(P(%)) ~ h(%), 
and by Theorem 34 and Lemma 36 h(%) ~ n% = No(P(%)), Le. h(%) = 
=n%. 11 

Thus, every normal N-lattice has the form N+ ('!C) for some PBA m . 
. Acn N-variety will be normal if the corresponding N-logic is normal. 
Let K be a class of PBA7. Denote N+ (K) ~ {% j3'!C E K: %~ N+ (m)}. 
The following lemma is proved just as Lemma 14: 

LEMJI,IA 38, Let III be a PBA, A E for. Then, \U f A = 1 iff N+ (m) 1= 

fA = 1. 
Let L be a special N-logic. By L+ we denote the normal N-logic, 

generated by L. 

LE.MMA 39. If L+ is a normal N-logic then varL+ = N+ (varI(L)). 

PROOF. By Theorem 33, N+(varI(L)) ~ varL+, Conversely, let % E 
E varL+, Then, by Lemma 38 and since % ~ n%, it follows that P(%) E 
E varI(L) ~ n% E N+ (varI(L)), i.e. varL+ ~ N+ (varI(L)}. 11 

THEOREM: 40 (separability). Let L be a superintuitionistic logic and 
A E for. Then the following conditions are eqttivalent: 

1. A E L+ 
2. A EL 

PROOF. 2 ~1 - trivially. 
1 ~ 2: Let A ~ L. Then there exi.sts '2l E va1'L such that 

III non: A = 1 ~ N+ (Ill) non fA = 1, but N+ (Ill) E N+ (va1'L) = varL+~ 

~ArtL+. El 
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2.2. We define a map 1jJ: For~for. Let A (ru ... , rn) E For and qu ... , 
qn be the first n variables from (/>0' which do not appear in A. We set 

1jJ(A)(rll ... , rn, qll"" qn) ~("lrl~--rlql)n ... n("lrn~"l"lqn)--'l-
--'l-AO(rl , ... , rn, qll ... , qn)' 

LEMMA 41. Let m: be a PBA, A E For. Then N+ (m) FA = 1 iff 
m F 1jJ(A} = 1. 

PROOF. 1) Let m: F 1jJ(A) = 1 and (aI' bl)' ... , (an, bn) EN+(m). Then 
("lal~ "l"lbl)n ... n ("lan~ "l"lbn) =1, and since 1jJ(A)(a], ... , aM bll ... , 
bn) =1 then AO(all ... ,an,bl, ... ,bn} =1. Hence A(al,b]), ... , 
(an, bn}) = 1. 

2) Let N+ (m:) FA = 1. Assume that m non F 1jJ(A) = 1, i.e. there 
exist aI' ... , an' bl , ... , bn E m: such that x = ("lal~ "l"lb1)n ... n( "lan-
~ "l"lbn) ~ AO(all ... , aM bl , ... , bn}. Let V = {y Em: ! x~ y} and h: 2l--+ 
--'l-\}!!V ~m be the canonic isomorphism. In m: "lail V = "l"lbi/V for 
i = 1, ... .z.. n and A O(al , ... , an, bll ... , bn)1 V #: 1. By Lemma 36 N+ (m:) 

and N+ (m:) are algebras generated correspondingly from the sets m:(/) 
-- --

= {("la, a) / a em:} and mo = {("la/V, a!V) I a!V Em:}. 

The map hN: N+(m:)--'l-N+(m), defined with hN(a, b») = (h(a), h(b»), 
is homomorphism of N-Iattices (Proposition 4), h is a surjective map: 

m:o--'l-io; thus hN is an epimorphism. But (ail V, bi / V) eN+ (m) for i = 1, .. " 
n and A O(all V, ... , an! V, bI ! V, ... , bnl V) #: 1, i.e. A (al ! V, bI ! V), ... , 
(an! V, bnl V») #: 1. Hence H+ (m:) non F A = 1 - a contradiction. _ 

The following corollaries can be proved analogously to the correspon­
ding assertions from §1 : 

OOROLLARY 42. If L+ is a normal N-logic and A e For then A E L+ 
iff 1jJ(A) E I(L). 

OOROLLARY 43. If L is a superintuitionistic logic, complete with 
respect to a class of PBAs K, then the N-logic L+ is complete with 'respect 
to the class N+ (K). 

OOROLLARY 44. If L is a decidable 8uperintuitionistic logic then L+ 
is a decidable N-logic. 

OOROLLARY 45. Let m: and ~ be PBAs and m E var(~). Then N+ (m) e 
E var (N+ (~»). 

OOROLLARY 46. Let m and ~ be PBAs and var(m:) = var(~). Then 
var(N+(2l») = var(N+(~»). 

THEOREM 47. Every N-logic L containing the formula I(P~"""'P) it; 
a normal N-logic. 



The Oraig interpolation theorem ... 305 

,--' ----
PROOF. vVe shall prove that L = I(L)+: I(L)+ 9 L; vice versa: -it is sufficient to prove that varI(L)+ 9 varL. Let N+(m:) eN+ (varI(L)) = 

= varI(L)+ and .;V be Lindenbaum algebra for L. Then var(P(.;V)) = 
= varI(L) - by Lemma 12. Hence, m: Evar(P(.;V)) and by Oorollary 45 

,--' 

N+(m:) Evar(n%) = var(%) = varL, i.e. varI(L)+ 9 varL. _ 

OOROLLARY 48. Every N-variety, in which the identity i(x~"""'x) = 1 
holds, is a normal N -variety. 

OOROLLARY 49. Every normal N-lattice generates a normal N-variety 
(and correspondingly a normal N-logic). 

§3. Notes on the lattice of the N-Iogics 

3.1. 
LEMMA 50. The following identities are equiva~ent in any N-lattice: 

1. X(")rvX = 0; 2. x(")ix = 0; 3. ix -< "-'x; 4. ,X = "-'Xi 

5. ix(") i,....,x = 0; 6. x = 'Ix; 7. i"""x -< x; 8. '''"'x = X. 

PROOF. \Vithout difficulties, by the scheme: 

1~ 24--6 

"'I . J 
71( Jl3-'4~8 • 

The theorem of replacement relatively <? (directly proved by the com­
pleteness theorem for N-Iogics) and by the identities 4: and 6 it follows, 
that each N-Iogic containing any of the formulae corresponding to the 
identities 1 - 8, is essentially the classical logic. We shall denote this 
logic by C. 

C is complete with respect to the two-element N-Iattice mo and, since 
mo is isomorphically embedable in any non-degenerate N-Iattice, then 
the following is true: 

PROPOSITION 51. Every consi8tent N-logic is contained in C. 

3.2. The intersection of all maximal s.f.f.k. in a given N-Iattice .;V 
is called a radical of % and is denoted by Rad.A/" 

An N-bttice is semi-simple if Rad.A/' = {I}. 

LEMIvlA 52. For any N-lattice % the following conditions are equi­
valent: 
1. % i8 semi-8imple, 
2. %!=aUia=l, 
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3. .IV 1= a--+b = iavb, 
4. .IV 1= (a--+b)--+a = a, 
5. any prime s.f.f.k. in .IV is maximal. [15] 

THEOREM 53. Any semi-simple N-lattice .IV is isomorphic to a sub­
algebra of a Oartesian prod~tct ITtET[t, where T is a set of indices and for 
any t ET: [t ~ [0' [15] 

Let 0 be a classical logic. N-logic 0 is called a classical logic with 
strong negation and the elements of varO - classical N-Iattices. By 
Corollary 24 it follows that 0 is complete with respect to [0 r-.J N(~o). 

As Vakarelov shows in [11] the logic 0 is functionally equivalent 
to the three-valued logic of Lukasiewicz. 

By Lemma 52 it follows that varO consists of all semi-simple N-Iattices. 
o is the biggest special N-Iogic. 

PROPOSITION 54. The logic 0 is maximal in the class of the consistent 
N-logics, different from C. 

PROOF. Let 0 £; L $ C. Then varL £; varO; L non f- p v "'p, and 
therefore there exists .IV E varL such that .IV non 1= xv "'x = 1. By 
Theorem 53 .IV ~ ITtET[t, VtET : [t:::: [0' Let {neh:T be the projecting 
epimorphism ne: % -"'[t, t ET. For any t ET: ne (%) :s;:; [t. If for any 
t 6 T ne(.IV):::;;; ~o, then % 1= xv,......x = 1. Hence, there exists to eT such 
that ne (.IV) :::: [0' i.e. [0 is homomorphic image of the N-Iattice .IV by o ~ ~_ 

nt • Therefore, [0 E varL t---+ varO = va1'([o) £; varL,......".L £; 0, Le. L = O. • o 

3.3. 

LEMUA 55. Let the farm1,tla A (ru ... , r n)QAl--+A2 be not derivable in i. 
Then there exist a special N-lattice N(m) and elements (au bl)' ... , (an, bn) 6 
EN (m) for which A1 = 1, A2 i= 1. 

PROOF. A r! it---+<p(l) r! I t---+ <p(A) is refuted for some elements aI' ... , 
an' hI! ... , hn of some PBA mo, i.e. x = i(a1nh1)n ... n-,(annhn)n 
nA~(al1 ... , an) ~ A~(au ... , hn). Let V = {y Emo / x:::;;; y}. Then, in mo/v: 

, • 0 x/v = 1. Hence, ai/VnhJ'V = 0 for 1, = 1, ... , nand A1(al/V, ... , an/V, 
bI ! V, ... , hnf V) = 1, A~(aI/ V, ... , an/ V, bI / V, ... , bn/ V) i= 1, i.e. A] ((aI/V, 
bI/V), ... , (an/V, hn/V») = 1, Aa((aI/V, bI/V), ... , (an/V, bn/V») i= 1. • 

NOTE. 0 (and therefore every special N-logic) is not a normal N-Iogic 
because [0 non 1= i(x<---tr-.Jx) = 1 since i(r5<---t,-...;o) = O. 

THEOREM 56. Every N-logic L such that L!$ 0 is normal. 

PROOF. We may assume L consistent, i.e. L 5; C, since, otherwise, 
the assertion is trivial. 
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Let -,i (rI' ... , rn) e L "C. Then 1.80 f: A = 1, but [0 non 1= A = 1, i.e. 
there exist elements aI' ... , an E [0' at least one of which is (j, such that 
A (au ... , an) =F 1. We substitute ai in A (r 11 ... , r n) for all variables r i for 
which ai =F o. We obtain a formula B (qll ... , qk) e L "C such that B ((), ... , 
0) =F 1. Formula Bl = B-?I((ql~,....,ql)n ... n(qk~,.....qk)) is derivable 
in 1: if we assume the opposite, then B =Bn((ql~,...,ql)n ... n(qkB 
~,....."qIJ)-?O is not derivable in 1 eiLher. Therefore, it is refused in a special 
N-lattice for some elements (all bI)' ... , (ak , bk). By Lemma 55 it can 
be assumed that (B n((ql~",q1) n ... n (qk~,....,qk)) ((a1, bl ), ... , (ak' bk )) = 
= 1, i.e. B((al1 bI)' ... , (ak , bk )) = 1 and ai~bi = 1, i = 1, ... , le, i.e. 
a. = bi = 0, i = 1, .. " k (ail bi) = (0, 0) = (), i = 1, ... , le. Hence, 
B ((j, ... , 0) = 1 - contradiction. And so B] E 1 s; L l--* 1(( qI ~ """ql) (\ 
n ... n(qk~"""qk)) EL. Thus, identifying q1, ... , qk with p we obtain 
L f- I(P~"""P). • 

3.4. Let La = {O, a, I} be the three-element PBA. "Ve denote 
1)0 = {(O, 1), (0, a), (a,O), (1, O)}. 1)0,s;; N(L3 ), more exactly 1)0 r-.J 

N+(Ls)f--+1)o f: I(x~"""x) = 1. 

LE~![lYIA 57. Every consistent N-logic, different from C is contained 

either in C or in L (!lo). 

PROOF. Let L s; C, L =F C. Then, in the Lindenbaum algebra for 
L - % L' there exists an element a such that a U ,....", a =F 1. If for the ele­
ment a, a = ,...", a is true then {O, a, I} ~ (£:01---7(£:0 ,s;; % L 1---7 L s; C. If a =F ,....,.,a 
then we set f3 "=7 aUro-<a. Then it is directly proved that {O, {J, '""-'{J, I} c:::::: 

~ 1)0' i.e. !lo<=-+% L l--*L s; L(!lo). II!l 

NOTE. Since 1)0 =N+(L3) and L(Ls) =I+(IPUIIP)+ 
+ (p U (p-?(qu 'Iq»)) then L(!lo) =1 + ('IpuIIP) + (pu(p-?(qulq))) + 
+I(P~"""P)· 

THEOREM 58. If an N-logic L 9 C and in L the CIT holds then L 
is (I, special N-logic. 

PROOF. L s; Cl--*L non I- (Po~,......po)->-O (*). Let % be the Lin 
denbaum algebra of L; % consists of the classes of equivalent formulae 
from For, with regards to the relation ,s;;, where A,s;; B iff L I- .t1 ='?B. 
Thus % = {IAI I A E For}. 

We set ljJ = {IAI E % I L I- (Po~"""'Po)-?A}. This definition is correct 
and rp is a s.f.f.k. in %. Let ..;11'0 "=7 % frp. All identities, which hold in the 
N-lattice %, also hold in %0' Vice versa, let./Vo F B(ql! •.. , qn) = 1. We 
can consider, that the formula B is written down with variables, different 
from Pu. By the theorem of replacement with respect to ~ it follows that 
B(lqli, ... , [qnl) = [B(ql' ... , qn)[· And so [B(qu ... , qn)! E rp, i.e. L I- (PoB 
+-?""Po)-?B(qu ... , qn)· Then, in accordance with CIT (any closed for-
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mu1a is strongly equivalent in 1 to 0 or 1) two cases are possible: either 
L I- (POH"""'PO)0-0 or L f-l0-B(qu ... , qn). Since (*) only the second 
possibility remains, i.e. L f- B(ql' ... , qn), thus % F B(qu ... , qn) = 1. And 
so % F B = 1 iff %0 F B = 1 for any BE For, therefore var(%o) = var(%) 
= varL. Eut in ';vo: IPOHr-.Jpol/lP = 1, i.e. IPol/lP R::! '""IPolllP and since 
in a,ny N-Iattice a R::! "" a implies a = f"<o.J a then in %0 there exists an ele­
ment ~ = f"<o.J~. Hence, by Theorem 15 there exists a PEA ~ such that 
';vo ~ N(~) and, by Oorollary 29, L = L(.lVo) is a special N-Iogic. • 

§4. Craig interpolation theorem in N-Iogics and N-varieties 
with amalgamation property 

4.1. Let K be a class of N-Iattices. K has an amalgamation property 
if for any %0' % l' .IV 2 e K the following condition holds: 

(A) For any pair of monomorphisms il: ';vO-+';vl and i 2: .;VO ....... .AI"2; 
there exist an N-Iattice JV' eK and monomorphisms 8 1 : %C""';v, 

8 2 : .AI" 2 0-.;V s nch that 8 1 0 i l = 820 i2 • 

The triple (.IV, 8 U 8 2) will be called a common extension of %1 and 
.AI" 2 over .AI" o. 

In [14] Ozelakowski proved the equivalence of the Oraig interpolation 
theorem in a large class of logics, the N-Iogics included, with the amal­
gamation property of the corresponding varieties of algebras. 

Introducing the definitions of interpolation principles for equalities 
and inequalities and the over-amalgamation property of the class K, 
fully analogous to those corresponding to PEA, formulated by Maximova 
in [1] (taking into consideration, that the corresponding relation in N-Iat­
tices -< is a quasi-ordering) the corresponding proof from [1] can be 
translated without difficulties and the following, more general theorem 
is proved: 

THEOREM 59. For any N-logic L the following conditions are equi­
valent: 
1) 
2) 
3) 
4) 
5) 
6) 

in L the OIT holds, 
in vaT L the interpolation principle of inequalities holds, 
in varL the interpolation principle of equalities holds, 
varL has the over-amalgamation property, 
var L has the amalgamation property, 
in varL the condition (A) holds for any fully connected N-lattices 

The proof of this theorem will not be presented here, because in this 
paper we shall only use the 1H5 equivalence. 
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4.2. Let K be a class of algebras of an arbitrary signature. We shall 
denote the category with a set of objects, obtained from K, identifying 
the isomorphical algebras and a set of morphisms obtained from the set 
of homomorphisms of K - HomK, identifying the corresponding pairs 
of homomorphisms g and h, for which the diagrams 

A ~B 
g {, t h 

Ai ~ B] 

arc commutative, by K*. Although we shall deal with concrete algebras 
and morphisms, we shall always keep these identifications in mind. 

,Ve shall denote by K: the subcategory of K* with the same set of 
objects and a set of morphisms, obtained from the set of monomorphisms 
of K - J1[onK, by the same identification as above. 

The following lemma is directly proved: 

LEMMA 60. Let.!V1 and .!V2 be N-lattices and h: .!Vc r.!V2 be a homo­
(epi-, mono-)morphism of N-lattices. Then h: P(JV1)--+P(JV2 ) where h(\al) 
~ Ih(a)! is a homo-(epi-, mono-)morphism of PBAs. 

THEORE1If 61. Let IDl be a class of PBAs. Then: 
1) IDl* ~ N(9Ji)*, 
2) 9Ji* ~ N+ (9]1)*, 
where ~ is a categoric isomorphism. 

PROOF. 1) We define a map !F: 9J?*--+N(IDl)*: 
a) for any 'If. E9Ji: !F('lf.) 0::;;: N('lf.), 
b) for any hEHom('lt11 'lf.2): !F(h) O::;;:hNEHom(N('lf.]), N(IH2)), where 
hN((a, b)) = (h(a), h(b)). By Proposition 4, hN is a homomorphism. 
ff is a functor: 9Ji* --+N (WC)*: 

- $' (IdwJ = IdN(m) = Id9"(m); 
- let hE Hom('lf.l1 'If. 2), g E Hom('lt 2 , 'If.a). Then !F(goh)((a, b)) = 

= (goh(a), goh(b)) = !F(g)((h(a), h(b))) = !F(g)o$'(h) ((a, b)); !F(goh)= 
= !F(g)o.?(h). !F is a categoric isomorphism: 

!F: 9JC--+N(9Ji) is a bijection: 
surjection - obviously, 
injection - let N('lf.1 ) ~N('lt2). Then 'lt1 ~P(N(m:l)) ~P(N(IH2)) 

~ sr!2 o 

$': RomWc--+HomN(Wc) is a bijection: 

surjeetion - let hN EHom(N(m 1), N('lf.2 )). Then 

hN: P (N (m1)) --+P (N ('lt2)) 

211 (11 
m1 m2 

is a counter-image of hN: hN((lal, IbJ)) = (hN(lal) , hN(lbl)). 
injection - let JF(h) = JF(g) , h EHom(mll mz), g EHomUBo lBz). 
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Then !JF(h) EHom(N(l!(j), N(l!(z») , g;(g) EHom(N(1E 1 ), N(1J3 2»)I-+N(1!(1) 
~N(lEl) and N(~!2) "-' N(1E2)I-7\!!l "'-' 1E1 and I!(z r-J 1E2• Now !JF(h) (Cia, a») 
= (ih(a), h(a»), !JF(g)((ja, a») = (ju(a), g(a»)I-?(ih(a), h(a») = (jg(a), 
g(a»), thus h(a) = g(a) for any a El!(l' .And so g = h. 

2) 'We define a map !JF+: WC*-+N+(WC)*: 
a) for any I!( EWC: g;+ (~) "=7 N+ (I!() , 

b) for any hE Hom(l!(l' ~2): g+(h) !::; ht E Hom (N+ (I!(j), N+(1!(2»)' where 
ht((a, b») = (h(a), h(b») . .As in 1) it is proved that g;+ is a functor. !IF+ is 
a categoric. isomorphism: 

g;+: 9Ji-+N+ (WC) is a bijection: 
surjection - obviously, 
injection - let N+ (I!(l) :::: N+ (1!(2)' Then ~1 "'-' P (N+ (~l») 

:::: P (N+ (1!(2») ,....., ~2 
g;+: Homm-+HomN+(m) is a bijec.tion - analogously to 1). • 

COROLLARY 62. Let WC be a class of PB.As. Then: 

1) IDl: = N(9J1):; 
2) IDl: =N+(IDl);. 

PROOF. It suffices to prove that the restrictions of functors !JF and 
!IF+ (by the above theorem) of Monm are bijections correspondingly 
between Monm and MonN(m) and between Monm and MonN+(rrnp i.e. 
images and counter-images of the functors !IF and jil+ of monomorphisms 
are monomorphisms, too. 

a) Let hE Monm and !IF(h) = hN' hN((a, b») = hN((C, d»), Le. (h(a), 
h(b») = (h(c), h(d»). Then h(a) = h(c), h(b) = h(d)l-7a = c, b = dl-+(a, b) 
= (c, d)~hN E .L1fo'nN(m)' .Analogously, ht E ]lon' N+ (I!() , N+(IJ3»). 

b) Let v E Mon(N(m), N(lB») and y = jil-l(V) , y E Hom(~, 1J3). Let 
'ii(a1 ) = v(az). Then y( ja!) = v( jaz)l-7v(( ja11 0,1») = V(( ja2, a2»)l-?a1 

= azl-+V E Mon(~, lE) . .Analogously, if v+ E Mon (N+ (I!() , N+ (lB»), then 
y+ = (jil+)-l(V+) E ]lon(l!(, 1J3). .' 

THEOREM 63. Let K and S be classes of algebras of an arbitrary sig­
nature and K: = S;. Then K has amalgamation property iff S has amal­
go,mation property. 

PROOF. Let K have the amalgamation property and 

be a diagram in S;. 
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Let ff: S: ---i>-K: be a functor, effecting the isomorphism between S: and 
K:. Then 

is a diagram in K;, for which there exist ~ EK and Si E Mon(ff(mi)'~)' 
i = 1,2, such that the diagram 

s commutative. Then the diagram 

iis commutative, too. And so S has the amalgamation property, too. 
Vice versa analogousl~y. • 

OOROLLARY 64. Let 9J1 be a class of PBAs. Then: 

1) 9J1 has the amalgamation property iff N(9J1) has the amalgamation 
property. 

2) 9J1 has the amalgamation property iff N+ (9J1) has the amalgamation 
property. 

Hence, by Lemma 39 it follows directly: 

THEOREM 65. In an N-logic L+ the OIT holds iff it holds in I(L). 

4.3. We shall call a sub category Q of a category R a retract of R 
if there exists a functor g;: R ---i>-Q such that g; ~ Q = IdQ • g; will be 
called a retraction. 

THEOREM 66. Let K and S be classes of algebras of an arbitrary signa­
ture and K: be a retract of S:, with retraction g; the following condition, 
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holds: for any m: E S there exists em: E Mon(m:, ff(m:») such that for any 
" E Mon (m: , ~) the diagram 

I? 
Qi----~21 

EU 1 1[~ 

is commutative. Then the class K has the amalgamation property iff class S 
has the amalgamation property. 

PROOF. 1) Let S has the amalgamation property and 

be a diagram in K:. Then there exist m: e Sand 8i 6 Mon(~, ~), i = 1, 2, 
such that the diagram 

is commutative. Then the diagram 

111 
y~) 

~o a;'{-'li) 

~'ll.~1 
is commutative, too. And so, the class K has the amalgamation property too. 

2) Let K have the amalgamation property and 
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be a diagram in S:. Then there exist m E K and Si E Mon ($i (mi ) , ~), 
i = 1, 2, such that the diagram 

is commutative. Hence, the diagram 

is commutative too: 

81082l 0 VI = 81 0 S' (1'1) 0 82l = 82 0 S' (1'2) 0 82l = 82 0 82l 01'2' 
I 0 0 2 

And so, S has the amalgamation pro]Jerty too. • 

THEORE~l 61. Let m be a class of N-Zattices such that sm = N (p(m») £ 

£ m. Then in has the amalgamation property iff sm has the amalgamation 
property. 

PROOF. We define a map $i: m:-+sm:: 
a) for any % Em: S'(%) ~ s%, 

b) for any V E Mon(%lJ %2): S'(v) ~ V E Mon(s%lJ S%2)' where 
v ((la I , Ibl)) = (Iv(a)!, !v(b)\). 

It is directly proved that the definition is correct and v is a mono­
morphism and S' is a functor. S' is a retraction: 
1) let %0 = s% E silt ThenP(%o) ~ P(%)I--Jo-S'(%o) = s%o ~ s% = %0; 
2) let v E Mon(s%lls%2) and v((lal, Ibl)) = (lal, IP\). Then 

S'(v) ((ial, Ibl)) = S'(v)((!(lal, Ila!)l, l(1bl, !Ib!)!)) 
= (Iv((lal, lial»)I, Iv((lbl, Ilb!))I) = (Ial, I,BD 
= v ((la!, Ibl»). And so §'(v) = ')I. 

Now, let % Em. "Ve define 8,;j1': vV -+s%: s,;jI'(a) ~ (lal, l.....,al). 
S,;jI' E Mon(%, §'(%»). Let ')I E Mon(%l1 %2)' Then the diagram 

l? 
.N1 :-.A2 

Ex, j 
S;(v) 

lE~ 
~(.N1) +~(.N2) 

6 - Studia Logica 
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iscommutative: B%2ov(a) = (Iv(a)l, Iv(.......,a)1) = ff(v) ((Ial, I.......,al») = 

= ff(V)oB%l(a). 
And so, by Theorem 66 91 has the amalgamation property iff s91 has 

the amalgamation property. _ 

COROLLARY 68. If 91 is a class of N-lattices s,ttch that s91 s 91, 91 has 
the amalgamation property iff P(91) has the amalgamation property. 

PROOF. By Corollary 64 P (91) has the amalgamation property iff s91 
has the amalgamation property which, by Theorem 67, holds iff 91 has 
the amalgamation property. • 

Hence, it directly follows: 

THEOREM 69. A special N-variety 91 has the amalgamation property 
iff P(91} has the amalgamation property. 

THEOREM 70. In a special N-logic L the CIT holds iff it holds in I(L). 

4.4. As a consequence of the last theorems and Theorem 58 we can 
already show an example of a non-normal N-Iogic LO s {j which is not 
special, i.e. its additional axiomatization over i cannot be translated 
into the intutionistic language. 

Let O2 = B~+Bo = {O, a, {J, cu, I} be a PBA. As a distributive lattice 
it looks as follows: 

1 

«(>P 
o 

We set .;VO = {(O, 1),(0, a), (0, (0), (a, (J), ({J, a), (a, 0), (cu,O), (l,O)} 
o a b c .......,c .......,a ,...,b 1 

.;Vo is a subalgebra of N(02)' From the table 

p I pr>.......,p I PUlP 

° 0 1 

a ,...,c 1 
--

b b 1 
--

c b .......,b 

",a f"o,)C ",b 

",b b .......,b 

f"o,)C b r-Jb 
-- -

1 0 1 
-
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it is seen that in LO = L(JVO) the OIT does not hold: 
LO I- (pH,-.,p)-(quiq), but LO non I- (p+--t":"'p)_O and LO non I- 1-+ 
_(qu Iq). Besides, n(JVO) = O2 and in L(02) (as Ma·ximova proved in [1]) 
the OIT holds. 

Since LO is not a normal N-logic (.;Vo non 1= i(XH""""X) = 1) then, 
by Theorem 56, LO s 6. By Lemma 20 it follows that I(L (N(02))) = L(02)' 
Hence, by Theorem 70 (by Theorem 58 L(N(02)) is a special N-logic) 
in L(N(02)) the OITholds. If we assume that LO is a special N-logic, then 
LO = L(JVO) = L(sJVO) = L(N(02))' but as we have already seen, in 
L (N (0 2)) the OIT holds, while in LO this is not the case. Therefore, LO 
cannot be a special N-logic. 

4.5. In [11 Muimova proved, that there exist exactly 7 consistent 
superintuitionistic logics in which the OIT holds. They are obtained from 
the intuitionistic logic I with additional axioms as follows: 

L2 = 1-+ ipuiip 

L3 = I -+pu(p--l>-(quiq)) 

L4 = L3+(P-q)u(q_p)U(pHiq) 

L5 = L 3 -+ ipuiip 

L6 = 1+ (p_q)U(q_p) 

L7 = G = 1-+ P u ip· 

THEOREM 71. There exist exactly 14 consistent logics with strong 
negation in which the OIT holds and they are the following: 

and 

Li = Li -+ V, i = 1, ... , 7 (where V is the system of Vorobiev's 
axioms) 

Lt = Li+V-+i(pH,-.,p), i =1, ... ,7. 

PROOF. Let in a consistent N-logic L the OIT hold. If L s 6 then, 
by Theorem 58, L is a special N-logic. By Theorem 70, I(L) coincides 
with one of the logics LI-L7 and therefore, L is one of L1-L7. ~f L $ 6 
then, by Theorem 56, L is a normal N-logic. Hence, by Theorem 47, 

,--.-' ...-
L = I(L)+ and, by Lemma 25, I(L) = I (I(L)), therefore, by Theorem 65, 
L coincides with one of the logics Lt -Lt. • 
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The lattice of these N-logics is the following: 
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