Vauentiy - The Craig Interpolation Theorem
GORANKO  for Propositional Logics
with Strong Negation

Abstract. This paper deals with propositional calculi with strong negation (N-
-logics) in which the Craig interpolation theorem holds. N-logics are defined to be
axiomatic strengthenings of the intuitionistic calculus enriched with a unary connec-
tive called strong negation. There exists continuum of N-logics, but the Craig inter-
polation theorem holds only in 14 of them.

A propositional calculus with strong negation is an extension of the
intuitionistic propositional calculus by an additional logical connective ~
called “strong negation”. It formalizes in a way the following idea:
usually for the refutation of a given assertion there exist two ways:
reductio ad absurdum and construction of a counter-example. From
a constructivist’s point of view these two ways are not equivalent; the
weak and strong negation of the above calculus correspond to them.

The smallest such logic I, called the constructive logic with strong
negation was formulated independently by Nelson [12] and Markov [2]
and studied by them as well as by Vorobiev [3], [4], [6], Rasiowa [6],
{73, 8], [9], Vakarelov [10], [11] and others. The strong negation in
this logic has constructive properties, which do not hold for the intui-
tionistic negation: from f + ~ (4 ~B) it follows that either I+ ~ A or
I+ ~ B, and in the corresponing predicate logic the derivability of
~ VzA(2) implies the derivability of ~ A(z) for a certain term =.

An algebraic semantics for the propositional calculus with strong
negation, introduced by Rasiowa [7], is based on a special kind of dis-
tributive lattices, named N-lattices (algebras of Nelson, quasi-pseudo-
-Boolean algebras). Vakarelov in [11] gives a construction of the so-called
special N-lattices, with the help of which a number of problems, related
to the extensions of constructive logic with strong negation (called in
this paper N-logics) and N-lattices can be attacked successfully, reducting
them to analogous problems for the superintuitionistic logics and pseudo-
-Boolean algebras, respectively. Thus, for example, Sendlewski in [13]
announces the complete list of the critical varieties of N-lattices {called
here N-varieties).

In the present paper all N-logics, in which the Craig interpolation
theorem holds, are found. This property, as in a number of other cases,
proves to be equivalent to the amalgamation property of the correspon-
ding N-varieties. All logics, which are of interest to us, are divided into
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two classes, the truth of the Craig interpolation theorem (CIT) in each
of them proves to be equivalent to the truth of the CIT in the.correspon-
ding superintuitionistic fragments. Thus, the problem is reduced to the
analogous problem in the domain of superintuitionistic logics, which was
solved by Maximova [1]. It turns out, that in the continuum of consistent
N-logics, the CIT holds only in 14 of them.

§0. Propositional calculi with strong mnegation. N-logics and N-lattices

0.1. By recursion we define a set of formulae For of the langnage 5;,
which is an extension to the language of intuitionistic propositional eal-
culus %, containing logical signs n, U, -, 7] and a set of propositional
variables @, = {p,, p,, ...} by adding a new, one-argument logical sign ~
which will be called streng negation. By for we shall denote the subset
of For, containing the formulae ifi which the sign ~ does not enter.

Some abbreviations: 4 = B=5(A—->B)n(~B—+ ~A); A«-BS(B—
—-A)n(A—-B), A<Bs(A=>B)n(B=>4); 05]1.

The set of axioms of the Vorobiev’s calculus is 4 = A4,UV, where 4,
is a set of axioms for the intuitionistic propositional calculus and V is
the system of Vorobiev’s axioms:

(v1) ~ A—~(A—-B)

(vy) ~(A—-B)—An~B
(vs) ~(A4AnB)—>~AU~B
(Va) ~(AUB)>~An~B
(Vs) ~ 144

(VG) ~ ~A«A

Rules of inference: modus ponens and substitution. An inference {proof}
and provable (derivable) formula (theorem) are defined as usual.

We shall call any set I < For, coptaining 4 and closed with respect
to the rules of inference, a logic with strong negation (N-logic).

The smallest logic with strong negation I bears the name: “a con-
structive logics with strong negation?”.

NoTE. Since ~A—(A—->0)eland (4—-0)—"Jd el,then [+ ~ A~
—"]4, which explains the name “strong negation”. The converse impli-
cation, as we shall see below, is equivalent to AU~A and added to T
gives an N-logic which coincides in essence with the classical logie.

The Craig interpolation theorem (CIT) in a logic L reads: If A +B € L,
then there exists a formula O, containing only variables, which enter
simultaneously A and B, such that 4—-C e L and (—B e L.

The main aim of this paper is to deseribe all N-logics in which the
CIT holds.
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Nork. The same question can be put as to the truth of the CIT
relatively to the so-called strong implication = but, as we shall see below,
it is solved trivially.

0.2, We recall the definition of an N-lattice (see [8]): An algebraic
system 4 = (4, Y, N, -, ~, 7|, 1) is called an N-lattice if:

(R, - the relation <,wherea < b denotes a—b =1, is a quasi-ordering
on A,

{R,)  the system (4, U, N, ~, 1) is a quasi-Boolean algebra, i.e. & dis-
tributive lattice with 1, in which the following identities hold:
{(qy) ~~a=a and (g,) ~(aVb) = ~an~b

) a<biff a==b =1 (¢ < b denote anb = a)

)y ifec<aand ¢ <b, then ¢ <anbd

) ifa<cand b< ¢ then aUb < ¢

5) ~(a—b) < an~b ’

)

)

)

)

™y

~bna < ~(a—b)

a <~ "la

~ Tja <a

Ry) an~a <b

Ry eanb <c¢ iff a <b—c
Ry Tla=a—->~1

We define the relation ~: a ~ b iff ¢« <b and b < a. N-lattices can be
defined only by identities (see [6]), i.e. the class of N-lattices is a variety.

Some elementary facts in N-lattices, which we shall use are the follo-
wing:

1. ~1 =0; ~a< Ta; 0 a.

2. if # <y, then a—»z <a—>y; if x<y, then a—>x < a—y.
3. if a< b, then 71b< Tla; if a ~ b, then b = Ta.

4, e =1 iff ¢ ~ 0.

5. anTla ~ 0; an~a =~ 0.

5. Tla->a ~ T 1a; a—>e~va = T a; a—>" @ = 7 6.

1. a < ~"Ta< e T ~a; 6 ] ~a.

3. 1 le< Ta; 7171 e &~ e,

Additional information about N-lattices can be found in [6].

NoTe. Since from a <b and b < a it does not follow that a = b,
{4, v, n, -, 7],1) iz not a pseudo-Boolean algebra.

Examples of N-lattices:

a. Let (By, n, U, =, 7|) be a two-element Boolean algebra. Set ~a <
e in B, and obtain a two-element N-lattice B,.
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b. In the linearly ordered set ¢y, = {0, 6,1} (0 < 6 < 1) define opera-
tions ~, 7| and — by the tables:

m‘~w"]m- [-—> 0'51
011 10 111]1
5 61 51|11
oo, |1ofsi

In this way a three-element N-lattice €5 = (Cy, N, U, =, 7], ~, 1) is
obtained.

B, and ¢, are the unique (up to the isomorphism) two- and three-ele-
ment N-lattices, respectively.

0.3. The reader can find in [6] a detailed information about the
filter theory in N-lattices. Here, we briefly review some definitions and
facts, that will be needed later.

Let &/ = (4, U, n, -, ~, T1,1) be an N-lattice. A non-empty set
V < A is called a special filter of the first kind (s.f.f.k.) if:

1) aeV and be V imply anbe V,
(2) aeVand a <b imply beV.

THEOREM 1. If Ker(h) is a kernel of an isomorphism of N-lattices,
h: Ny—>AN 4y, then Ker(h) is & s.f.fk.. h(a) = h(b) is equivalent to a<b €
e Ker(h); the relation =, where a =0b if and only if a<-be Ker(h), is
a congruence in A, at that A [ = ~ AN, [6]

THEOREM 2, Let v be a 5. f. f. k. in a N-laitice A". Then the relation = _,
denoting a < beV is a congruence in N'. A |V is an N-lattice. The map-
ping b: /' — N[V, where h(a) = |a|is an epimorphism and Ker (h)=V.[6]

0.4. Rasiowa in [7] shows that the Lindenbaum algebra for [ is an
N-lattice. This gives us the possiblity of examining the algebraic semantics
for the N-logics.

In the usmal way we define a valuation of the variables and formulae
from For in an N-lattice, the truth of a formula for a given valuation,
and the validity of a formula in a given N-lattice, and in a class of N-lat-
tices.

To any N-logic I there corresponds a variety of N-lattices warlL,
defined by the set of identities {4 =1 | A € L}. Conversely, to any class
of N-lattices K there corresponds an N-logic L = {4 | K F A = 1}. There-
fore, varL = var(K) — a variety generated by the class K.

NoTE. The formula (pn~p)=(qU~q) is derivable in I (it is valid
in all N-lattices). Therefore, if in an N-logic L the CIT holds relatively
to =, then in L either (pn~p)=0 or 1=(qU~ygq) is derivable. In
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both cases L} pU~p. Hence, as we shall see further, I coincides with
the biggest consistent N-logic C, functionally equivalent to classical
propositional logie, in which the CIT really holds.

§1. Special N-lattices and special N-logics

1.1. Let us recall the following construction of Vakarelov [11]: Let
B =(B,n, U, > 1,0,1) be a pseudo-Boolean algebra (PBA), ie.
dlstrlbutlve lattlce with 0 and 1 in which:

1. for any @, a, beB: ena<b iff x<<a—>b
2. e = a—0.

Nore. We shall deal simultaneously with two different algebraic
systems — pseudo-Boolean algebras and N-lattices, but we shall use
dentical signs for the corresponding operations in them for simplicity.
This will not lead to confusion, since we shall always know which algebraic
system we are dealing with.

Set N(B) < {(ay, az)[a,, 0, € B & a0, = 0},

(To) 1=(1,0), 0=(0,1)

(1) (@1, a3)U(by, by) = (a1Uby, az0by)
(Ta) (@1, a3)(by, by) = (aynby, a3 Ub,)
(ry) (ay, B2)—=>(by, by) = (@3—>by, a;nby)
(ry) @1y @y) = (T ay, ay)

(T5) ~(0y, @3) = (@, a,)

It can be proved directly, that:
(@yy @s) < (byy by) HE @y < byj (ay, @2) < (b1, by) 1 @, < by and b, <

ProOPOSITION 3. For any PBA B the system
N(B) = (N(B), U, 0y =, ~, 7], 1)
i8 an N-lattice.
ProoF. Without difficulties (R,)-(R,;) may be proved. m
Also, the following can be shown directly.

ProPOSITION 4. Let A—>B be a homomorphism of PBAs. Then hy:
N (U)—>N (B), where by (e, b)) = (h(a), k(b)) is a homomorphism of N-lat-
tices.

We shall call N-lattices of the type N(B) special N-lattices over
PBA B.

Nore. In [11] Vakarelov gives the following intuitive interpretation
of the special N-lattices: PBA B can be congidered as Lindenbaum al-
gebra of an intuitionistic theory or, more simply, as a set of assertions.
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Let a, and a, be assertion. We say that a, is a counter-example of a,
if a,na, = 0. Then, the set of all pairs (a,, a,), where a,,a, ¢ B and a,
is a counter-example of a,, is just N (B). The definitions (ry)-(r;) provide
constructions of counter-examples of a,Ub,, a,nb,, a,—b,, a, and Ta,
if we have already constructed counter-examples of a, and b,.

1.2.

ProposITION 5. Let B = (B, n, U, =, "1, 1) be a PBA and N (B) =
= (N(B), n, U, =, ~, 7], 1) be the corresponding special N-lattice. Then
the map =n: N(B)—>B, where n((a, b)) S a, is a lattice homomorphism,
such that m(a—f) = m(a)—>=(f) and =(Tle) = T#{a).

ProoF. A direct examination of the preservation of the operations.
1] =

We shall call the map = a projector and = (N (B)) — a projection of
N (B) into B.

PROPOSITION 6. ~ is a congruence in N-lattices with respect to the
operations N, Y, —. [11]

Let &/ = (&N, VU, Ny, -, ~, 7],1) be an N-lattice. In the set P(N) =
= N/~ we define:

(t) 0 =10, 151

(t:) la|Vb] = |aUb]
(t2) lalnb] = |anbd]
(ts) |a|—|b] = |a—b]
(t) “llal = 1 Tal.

Proposition 5 implies the correctness of the definitions (t,)-(t,).

ProrositioN 7. The system P(A) = (P(4), n, U, =, "1, 1) is a PBA.
(117

PROPOSITION 8. The map h: & —N (P(N)), where h(a) = (|al, | ~al),
is a monomorphism of N-lattices. [11]

This proposition implies directly:

THEOREM 9 (representation theorem). Any N-lattice is isomorphically
embedable into a special N-lattice.

1.3. We shall call a variety of N-lattices (N-variety) special if it is

~

possible to define it (as a subvariety of the variety of all N-lattices N)
by a system of additional identities, which only terms from for enter.
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NoTE. Any identity in an N-lattice can be written down in the
form A =1 since the identity A = B (4, B e For) is equivalent to
A<=B =1.

We shall further denote zero- and one-element of both pseudo-Boolean
algebras and N-lattices accordingly by 0 and 1 and this will not lead to
confusion.

ProprosITION 10. Let N(B) be a special N-lattice over the PBA B and
(a,b) e N(B). Then (a,b) =1 iff a = 1.

The proof follows directly from the definition.

LevwMA 11. Let B be a PBA and Aefor. Then BEA =1 iff
N®B)EA =1.

Proor. Let A = A(ry,...,¥,) and (a4, by), ..., (a,, b,) € N(B). Then
A{(@1, b))y .ny (@, D,)) = (A(ay, ..., a,), *) which is provable by direct
induction. Therefore, from Proposition 10 it follows that if BEA =1
then N(B) F A4 =1. Conversely, let N(B)FA =1 and a,,...,8,€B.
Then{ay, 7lay), ..., (a4, "la,) € N(B)and 4 ((a17 T1@1) 5 ey (@ jan)) =1,
ie. (A(ay,...,0,), %) =(1,0). Hence A(ay,...,a,) =1 and, therefore,
BEA =1 n

LeEmvaA 12. Let & be an N-lattice and A efor. Then &/ FA =1
iff P(#)EA =1.

Proor. Let 4 = A(ry, ..., %)y Qy.eey 0, €A It can be proved by
trivial induction that [A(ae,, ..., a,)] = A(|layl, ..., |a,]), from which the
lemma easily follows. m

Lemmas 11 and 12 imply

THEOREM 13. Let A& be an N-lattice and A e for. Then /' EA =1
iff N(P(A))FA =1.

Set s4" = N (P(4)) for any N-lattice.

CoroLLARY 14. Let 9t be a special N-variety and & € N. Then sA e R.

THEOREM 15. An N-lattice A is isomorphic to a special N-lattice iff
there exists an element 8, such that 6 = ~93, i.e. iff €, is isomorphically
embedded into N

Proor. Note that ¢, = N(B,). Let &/ =~ N(B) for some PBA B.
Then 4§ = (0, 0) is the required element — as such it is unique in the
special N-lattices: let (a, ) = ~(a, b) = (b, a), then @ = b and anbd = 0.
Hence a =b = 0.

It follows from the representation theorem that it is unique in any
N-lattice in which it exists.

§ — Studia Logica
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Now, let such an element ¢ exist in A4". Note the following: if 4,
is a subalgebra of the special N-lattice N (B) and A", satisfies the condi-
tions: 1°. (0, 0) € &, and 2°. m(Ay) =B, then &y = N(B): let a,beB
and anb = 0. Then a < b. There exist elements a, b € B such that (a, d) e
eV, and (b,b) e Ny Then, (a,a)u(0,0) = (a,0) e, and (b, b)
= (71b, b) € #;; hence (a, 0)N( "1, b) = (a, b) € /', and thus &, = N (B).

Now, let us examine the image h(A4") of the embedding h: 4 s
It follows from the uniqueness of § that h(d) = (0, 0); =m(h(AH)) = P(AN)
since for any ¢ e P(A") (jal, | ~a|) € h(A"). Hence h(A") = N(P(A)) = sA,
e, /N esA. ®

1.4. We shall call an N-logic special (the term superintuitionistie
N-logic is more informative, but longer) if it can be axiomatized by a set
of axioms A = A,YV where A, is a set of tautologies of some superin-
tuitionistic logic and V is the system of Vorobiev’s axioms.

Obviously, L is a special N-logic iff varL is a special N-vatiety.

Let L be a superintuitionistic logic. The Logic I, generated from L
by adding Vorobiev’s axioms will be called an N-logic generated by L, i.e.
L=r+v.

Let L be an N-logic. We ghall call the superintuitionistic logic I(L),
containing the formulae, derivable in L, which the sign ~ does not enter
a superintuitionistic fragment of L, i.e. I(L) = Lnfor.

Obviously, L is a special N-logic iff L = f(T?) In the general case
I(L) < L.

Some notations: Let I be a class of PBA. Then
N = (¥ AN eM: & = N(N)}.

Let 9% be a class of N-lattices. Then
P s AN eN: A = P(N)}, sh = N(PHR)).

LeMMA 16. Let % be a PBA. Then the map v: P(N(U))->U, where
v(l(a, b)) = a, is an isomorphism of PBA.

Proor. It can be verified directly that » is homomorphism; v is
a bijection:
— injection: if a, = a, then (ay, b;) ~ (as, by);
— surjection: for any a e¥: (a, "Ja) e N(A). m

LemmA 17. Let L be an N-logic and varL = RN. Then:
1. varl (L) = var(P(N)),
2. if L is a special N-logic then:
a. N (varI(L)) < varL,
b. P(N) is a variety,
c. N = var(sR).
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Proor. 1. varI(L) and var(P(N)) are defined (by Lemma 12) by one
and the same set of identities {4 =1/4 e I(L)]}.
2.a. Let % € varI(L). Then in N () the identities {4 = 1/4 e I(L)UV}

bold, i.e. N () e varl(L) = varL.
b. N is a special N-variety. Let A e varI(L). Then N () e varL = N
A o~ P(N(A)) e P(R), i.e. var(P(N) = varI(L) = P(R) < var (P(N)).
e. st = N — by Corollary 14. Conversely, 3t < var(sh) since for any
N eT: NessH €SN, =B

THEOREM 18 (completeness theorem for special N-logics). Let L be
a special N-logic, varL = N and A € For. The following conditions are
equivalent:

1. 4elL,
2. REA =1,
3. S{EA =1,

ProOF. 12 — trivially.

2053 — 9t < N from Corollary 14.
32 follows from the representation theorem. &

THEOREM 19 (separability). Let L be a superintuitionistic N-logic. The
following conditions are equivalent for any A € for:

1. Ael,
2. A e L.

PROOF. 251 — L < L
1+>2 — assume that 4 ¢ L. Then A is refused in some PBA % e
evarL. By Lemma 11 A4 is refused in N(W)ewarLl, ie. A¢L. m

1.5. Let A(ry,...,7,) e For and ¢,...,q, be the first » variables
from @, different from ry,...,r

n*

Define by recursion on A a formula A°(ry,...,7,, @1, ... 4y) € for:
1. Aed,u{l}: A° s 4
2. (Ay#4,)0 5 AJx A} for » € {n, U, »}; (T14)° s 714}
3. AT ~ A,: by recursion on A;: ‘
a’. (~1)° %0, a”.(~r) =g, i =1,...,7
b. (~(4'vA") = N(~ A",
e. (~(A'nA") 5( ~A 0u(NA”),
a. [~ (A’—>A”))° '—A"’n( Ao,
e. (~T AN s(~~A s 470

By induction on A the following can be proved:
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LeMmA 20. Let N(U) be a special N-lattice, A (ry,...,r,) € For and
(@1, by)yeeny (@y, b,) e N(U).  Then A((an i)y ooy (@, bn)) = (Ao(aI, seey
a,, by ... b) (~A)(ag, ..., n,bl,...,bn)).

n? ‘?Yn
We define a map ¢: For — for. Let A(ry,...,r,) € For.
Then:

@A) (T1y ey Ty Qay ooy @) = THTOG) O oo AT (T, NG,) —

—>A0(7'1, e Tn? QI7 ey q'n)7
where ¢, ..., g, are the first n variables from @, which do not enter 4

LeMMA 21. Let U be a PBA and A(ry,...,7,) € For. Then A k p(4) =
—1iff NU)EA =1,

ProoF. 1)Let N(A) nonk A =1, i.e. there exist (a, b,), ..., (a,, b,) €

n!“n
e N(U) such that A4((ay,by), ..., (a,,b,)) #1, i.e. 4%a,,.. ,an,bl, ceey
b,) #1. Then, since TI(a;nb)n ... nT1(a,nb,) =1 it follows that
@A) Ayy eeey Opy byy ooy b,) #1, e, AUnonk p(d) =1.

2) Let N(UA) A =1. Assume that W nonk ¢(A) = 1. Then, there
exist @y, ..., a,, by, ...,bn such that » = "{(aynb)n ... n"|(a,nb,)
L A%Agy iy Opyybyy .oy b,) LtV ={yeUA o<y}, A 5 A/V. Then x|V
=1/V, A%a,,.. ,an,b voyb,)/V 21V, Hence o; = {a,/V, b;/V)e
eNMN),i=1,...,nand A (ay,...,q,) #*1.8ete¢ = "a;nb), i =1,...,
ne<ersegeV, i =1,...,n Sebt & =c¢n(e—>a), b, = cn(c;—b,),
t=1,...,m G|V =¢/VA(e/V>a,/V) =a/V and analogously b,V
=¥,/ V. Moreover, amb = 6,00 Nb; = 0. And 8o f; = (a;, b;) € N(N),
i =1y ..., and A%y, ...y 0y, b1~, n)/V = A%a,, .. ,an,b ...,bn)/V
#1/V. Hence, A°(d1,....,d,,,b1,... ,) # 1 and, therefore, A(p,,...,
B, #1. 8o NU)nonkEAd =1 — a contmdietion. [}

LevmmA 22. For any superintuitionistic logic L: L =1 (L.

Proor. L c I(L); Let AewvarL. Then N() eqarf}, where
N P(N (QI)) eP{varl) c varI(L). And so varL < varI(L); therefore

~

ILye L. =

THEOREM 23. Let L be a special N-logic and A e For., Then A e L
iffe(d) e I(L).

Proor. 1) Let A ¢ L. Then there exists a special N-lattice N (),
A e varl (L), such that N () nonkF A = 1 and therefore W nonk ¢(4) =1,
ie. p(A) ¢ I(L). _

2) Let @(A) ¢ I(L). Then there exists A e varl(L) such that U nonk
g(A) =1. Hence, N{N)nonk A =1, but N(¥) evarL and therefore
A¢L =
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CoroLLARY 24. Let L be a superintuitionistic logic, complete with

respect to a class K of PBAs. Then L is complete with respect to the class
N(K).

Proor. K < varLi>N(K) < varL. Let A e For and N(K) F 4 =1.
Then Kk ¢(4) =1. Hence p(d)eli>Adcl. =

COoROLLARY 25. If L is a decidable superintuitionistic logic then L
i8 a decidable N-logic.

CoroLLARY 26. Let % and B be PBAs, A cvar(B). Then N(A)e
& var (N (B)).

Proor. Let Aelor and N(B)kFA =1. Then BEe(d) =1—>UE
Fgp(d) =1 and therefore N(U) A4 =1. =

CorOLLARY 27. Let W and B be PBAs and var(N) = var(B). Then
var (N (%)) = var (N (B)).

THEOREM 28. An N-variety, generated from a special N-latlice, is
a special N-variety.

PrOOF. Let M = var(N (). Let L = L(A) and A be Lindenbaum
algebra of logic L. Since war(P(4)) = varl(L) = varl, = var() then
var(sA4”) = var (N (A)) = N. Besides, var(s4") = var(AN): N <=8, var (N}
< var(s#) and conversely: since ver(4") is a special N-variety then
SN € var (N )—var(sA) < var(N). And so N = var (A )—>varL is a special
N-variety. m

COROLLARY 29. If A 8 a special N-lattice, then L(AN") is a special
N-logic.

§2. Normal N-lattices and normal N-logics
2.1.

LevMMA 30. In any N-lattice the following identities are equivalent:
1. Noer~az) =1
2. T Hou~z) =1
3. T~z ~ T
ProoF. 1e2: in any N-lattice TJ(zu~z) = x> ~a:
Noum~a) = T1on T~ = (8 ~8) N (~E >~ ~T) = T~
2>3: TN ~2a0> TlznT |~z <0, ie. T~z < 7|7 and
from ~x < T it follows that 7| < T~z T 2 &~ " |~.
32 Tl~oznT o< 0, le. TT~znTl@ = (@U~Z) &~ 0> ] Hau
UNW) = 1. B
DEFINITIONS. We shall call an N-lattice /" normal if 4" k 7] (z ~x) =

= 1. An N-logic L* will be called normal if it can be obtained from a special
N-logic L by adding the axiom ~[(pe>~p).
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Levmma 31. In any PBA U the following conditions are equivalent:
1. Tla = T171d,
2, anb =0 and TlanTb =0
for a, b .

Proor. 1+>2:0< 717 = Tlar>bna =0; Tla = "> "lan
NTb =0.

2>1:anb =0 a{ 7= T Ta; TlanTh =0 > e 7|7 1b. &

LEMMA 32. Let & = N(N) be a special N-lattice. Then NT(A) s

s {(ay, ay)[ay, a, €N &  Tlay = T Ta} is a subalgebra of & (we denote
NF) < A).

PROQF.
1. (0,1) e N*(¥), (1,0)eN*t(W); .
2. (@1, a5) € NT(A) > TNy, a5) = (Tay, ay) e NT(A);

3. (a1, @s) € NT(U) > ~(aq, ay) = (a5, @;) = N*(A) since
Tay = 171 @, = 17 ay.
Let (ay, a,) and (by, by) € N*(A). Then:

4. (@yy @) N (byy by) = (a;0byy a,Uby) € N ():
1 HasVby) = T1(Tlazn b)) = "1 T 17 lainT171hy) =
= "]7]7(@3nby) = TT(a;nb,).

5. (@ry @3)U(by, by) = N(N(ala @) N ~(by, bz)) e N*(U).

6. (@15 @3) > (byy by) = (8;>by, a;0by) € NT(A):
1N a1nby) = "1 1an T T by = 1T e Ty = T1( Ty Uby);
Ta, Uby < ay—>by > T|(a,—>by) < T1(Tle,Ub,) and conversely:
a0 By (@ b)) < TTTlan Tl = 0 > T TlayATby =
= Tl(a;—~>by).

Let 4 be an N-lattice. Denote nA” = NT(P(A")).

THEOREM 33. Let LT be a normal N-logic and U ewvarI(L). Then
N7 evarL™.

ProoF. NT(A) < N(A) — NT(A) e varL. Tt remains to prove that
NT() k 7)(z>~x) = 1, which is equivalent to NT(A) F TJ{(zu~2z) ~ 0.
Let (a;, ay) € N*(). Then TJ((a1, a)U~(ay, ay)) = (TT(a,Uay), a;Va,)=
= (Tla1n"ay, a;Vay) = (0, a,Va;) ~0. =

THEOREM 34 (representation theorem for normal N-lattices). If &
is a normal N-lattice then A is isomorphically embedable into n.A .

Proor., h: a—{|a|,|~a]) is the embedding of A" into sA4". We shall
prove that h(A) < nAt:

el = |T17a) = | ~al = Tli~al, ie. (lal, |~a) ent.
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LEMMA 35. Let W be a PBA. The smallest subalgebra of the N-lattice
N(N), the projection of which coincides with W, is N (W) generated from the
set Uy = {( T, @)ja e A},

ProoF. Let 4 be this smallest subalgebra. For any ¢ e there
exists b €W such that (a,bd) e 4. Then “J{a,b) =("la,a)es, ie.
N, = A

LeMuMA 36. Let A be a PBA. Then Ny (U) = NT(A).

ProoP. For any aeW: (Tla, a) e NT(A) > Ny(A) = NT(A). Let
(a,b) e NT(H). (T1h, b) € No(W), i.e. (71704, b) € Ny(A). Besides, (a, a),
(Tla, @) e No(A). Then (717 Na, b)n((a, Tla)u( e, a)) = (T lan(aU Ta),
b) = (a, b) € No(A). Therefore Nt (UA) = No(A). =

THEOREM 37. Let A be a wnormal N-lattice. Then the embedding
h: A esnA s an isomorphism, i.6. A = nA.

Proo¥. Since x (h(A)) = P(A4") then by Lemma 35 Ny (P(A4) S h(A),
and by Theorem 34 and Lemma 36 h(A") S n A" = No(P(A)), l.e. h(AH) =
= nA. [}

Thus, every normal N-lattice has the form Nt () for some PBA .
An N-variety will be normal if the corresponding N-logic is normal.
Let K be a class of PBAT. Denote NT(K) = {# /I e K: & ~ NT ()}
The following lemma is proved just as Liemma 14:

LemmA 38, Let % be a PBA, A efor. Then, W E A =1 iff NT(A) k
FA=1.

Let L be a gpecial N-logic. By LT we denote the normal N-logic,
generated by L.

Lemma 39. If Lt is a normal N-logic then varL™ = Nt (varI(L)).

Proor. By Theorem 33, N+(vm‘I(L)) < varL®. Conversely, let A4 e
e varL™. Then, by Lemma 38 and since 4" =~ nA4", it follows that P(A4") €
evarl (L) +> nA" e N* (varI (L)), i.e. varL™ = N* (varI(L)).

THEOREM 40 (separebility). Let L be a superiniuitionistic logic and
A e for. Then the following conditions are equivaleni:

1. A4elLt
2. AelL

PROOF. 2+1 — trivially.

1+—~2: Let A¢L.  Then there exists A ecwvarL such that
Anon kA =1>N"A) non kA =1, but N*(A) e N* (varL) = varL*—
—A ¢ L+,
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2.2. We define a map y: For—>for. Let A(ry,...,r,) € For and ¢y, ...,
¢, be the first n variables from @;, which do not appear in 4. We set

V’(A)(ha "'7rn7 gl?"" q'n) [;(_I,rlH_l_lgl)n'“ n(_I,r7z(_>-—l_lgfrr,)”>
A0y iy Ty 1y oins Bn)

LeMMA 41. Let A be o« PBA, A e For. Then NT(N) kA =1 iff
WAEpd) =1.

Proor. 1) Let Ak p(4) =1 and (ay, by), ..., (a,, b,) € NT(A). Then
(Tlag>"1"1b) e 0 (Ta, <> 7171h,) =1, and since w(A) (ay, ooy @py byyenes

b,) =1 then A%ay,...,a,,by,...,b,) =1. Hence A((ay,bd), ...,
(@ bn)) = 1.

2) Let N*(A) kA =1. Assume that U non F ¢(4) =1, i.e. there
exist a,, ..., 84,, by, ..., b, €A sueh that @ = (T, "] )N ... n(Ta,+

«7171b,) { A%@gy iy @yybyy .y by). Let V={yeW o<y} and h: A~
—A/V =N be the canonic isomorphism. In € Tla;| V. = 71715,/ V for
¢=1,...,n and A%as, ..., ay, b1,...,,)/V 1. By Lemma 36 N* (%)
and Nt (A) are algebras generated correspondingly from the sets A,
={(Tla,a) /a e} and Yo = {(T1a/V,a/V) |a/V U}

The map hy: N*(A)—>N+ (), defined with hN(a b)) = (k(a), h(b)),
is homommphlsm of N-lattices (Proposition 4), » is a sur]ectlve map:
Ay—>A,; thus ky is an epimorphism. But (a;/V, b,/ V) e N+ () for ¢ = 1,

n and A%a,/V,...,a,]/V, b;]V,..., b,/ V) ;.e1, ie. A((a)V, bl/V),...
(@, V,b,/V)) # 1. Hence N*(A) non k A =1 — a contradiction. m

The following corollaries can be proved analogously to the correspon-
ding assertions from §1:

COROLLARY 42. If L% is a normal N-logic and A € For then A € L™
iff v(4) e I(L).

CororLARY 43. If L is a superintuitionistic logic, complete wilk
respect to a class of PBAs K, then the N-logic L™ is complete with respect
to the class Nt (K).

COROLLARY 44. If L is a decidable superintuitionistic logic then L+
18 a decidable N-logic.

COROLLARY 45. Let A and B be PBAs and U € var(B). Then Nt (W) e
e var (N+(B)).

CorROLLARY 46. Let A and B be PBAs and var (W) = var(B). Then
var (N () = var (N (B)).

THEOREM 47. Ewery N-logic L containing the formula ~|(p<>~p) is
a normal N-logic.
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P s —

ProoF. We shall prove that L = I(L)": I(L)* = L; vice versa:

it iy sufficient to prove that varI(L)* < varL. Let N* () e N* (varI (L)) =
=oarl(L)* and 4 be Lindenbaum algebra for L. Then var(P(A")) =
= varl(L) — by Lemma 12. Hence, % € var (P(4)) and by Corollary 45
N+ () evar(nA) = var (AN) = varL, ie. varl (L) < varL. ®

CoOROLLARY 48. Every N-variety, in which the identity ~|{vo ~w) =1
holds, is a mormal N-variety.

COROLLARY 49. FHvery normal N-lattice generates a normal N-variety
(and correspondingly a normal N-logic).

§3. Notes on the lattice of the N-logics
3.1,
LevmMA 50. The following identities are equivalent in any N-lattice:

1. 2n~e =0; 2. 20"l =0; 3. v <X ~2; 4. Tlv = ~uz;
b, Tz~ =0; 6. 2= T|"jr; 7. Tl~r<z; 8. T|~w=ua.

Proor. Without difficulties, by the scheme:

1€ 2« 6
S
v
7 € 3 ey [, G § =

The theorem of replacement relatively <> (directly proved by the com-
pleteness theorem for N-logies) and by the identities 4 and 6 it follows,
that each N-logic containing any of the formulae corresponding to the
identities 1 —8, is essentially the classical logic. We shall denote this
logic by C.

€ is complete with respect to the two-element N-lattice B, and, since
B, is isomorphically embedable in any non-degenerate N-lattice, then
the following is true:

ProrosITION Bl. Hvery consistent N-logic is contained in C.

3.2. The intersection of all maximal s.f.f.k. in a given N-lattice 4
ig called a radical of # and is denoted by Rad,.
An N-lattice is semi-simple if Rad, = {1}.

Levma 52, For any N-lattice A the following conditions are equi-
valent:
1. N is semi-simple,
2. NEauTe =1,
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3. N Ea—b = Tlaub,
4, N E(a—>b)—a =a,
5. any prime s.f.f.k. in A is maximal. [15]

THEOREM 53. Any semi-simple N-lattice A 1s isomorphic to a sub-
algebra of a Cartesian product I1,..C,, where T is a set of indices and for
any tel: € = ,. [15]

Let C be a classical logie. N-logic ( is called a classical logic with
strong negation and the elements of war( — classical N-lattices. By
Corollary 24 it follows that ¢ is complete with respect to €, = N (B,).

As Vakarelov shows in [11] the logic ¢ is functionally equivalent
to the three-valued logic of Lukasiewicz.

By Lemma 52 it follows that var( consists of all semi-simple N-lattices.
¢ is the biggest special N-logic.

PrOPOSITION b4. The logic  is mawimal in the class of the consistent
N-logics, different from C.

PrROOF. Let (< L ¢ C. Then varL < var(; Lnont p U ~p, and
therefore there exists 4 evarL such that A4 non F U~z =1. By
Theorem 53 N =~ I;;€,, Vir: € =~ C,. Let {m},.; be the projecting
epimorphism m;: & —>C,, teT. For any tel: n(N) < C,. If for any
tel m(A)< By, then # FrU~ax = 1. Hence, there exists ¢, e T such
that m; (A7) = Gy, le. G, is homomorphic image of the N-lattice A4 by

Therefore, €, € varLi—> varC = var(Cy) < varL—~L< (,ie. L=(. m

3.3.

LEMMA 35, Let the formula A(ry, ..., 7,)8A;—~A, be not derivable in I.
Then there exist a special N-lattice N (W) and elements (ay, by), ..., (ay, b,) €
e N(UN) for which A, =1, A, # 1.

ProoF. A ¢Ir>(d)¢Ir>p(A) is refuted for some elements ay, ...,
@y byy ooy b, of some PBA U, ie. o= "|(a;nb)n ... nTT(a,nb,)N
NAN @y, ooy a,) L AN Ay, ..., b,). Let V = {y e Wy [ # < y}. Then, in A,/ V:
|V =1. Hence, a;/Vnb,/V =0 for i =1,...,n and 4%(a;/V,...,a,/V,
by Vy .oy by V) =1, Ag‘(al/v7 ey @[V by [ Vy iy b, [ V) £ 1 del Ay (a4 )V,
Bl V), ves (@] Vs Bal V) =1, Au((aa] V, by[ V), ey (a,]V, B,]V)) #1. m

Nore. ( (and therefore every special N-logic) is not a normal N-logic
because ¢, non k T](z>~z) =1 since "|{d>~3J) = 0.

THEOREM 56. Ewvery N-logic L such that L' ¢ is normal.

Proor. We may assume L consistent, i.e. I = C, since, otherwise,
the asgertion is trivial.
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Let A(ry,...,7,) e LNG. Then Bk A =1, but Cynon F A =1, ie.
there exist elements a,, ..., a, € €, at least one of which is 4§, such that
Alay, ..., a,) # 1. We substitute a; in A (v, ..., r,) for all variables #; for
which @, # 6. We obtain a formula B(q,, ..., ¢;) € L\( such that B(4, ...,
8) # 1. Formula By = B->"1{(gs>~g)N ... n(gee>~g,)) is derivable
in I: if we assume the opposite, then B = Bn((quNQI)n (g e
—~q,)) >0 is not derivable in I either. Therefore, it is refused in a special
N-lattice for some elements (ay, by), ..., (@, by). By Liemma 55 it can
be assumed that (Bn((q,HNQ,)n o @G ~q)) ((ag,b1)5 0y (a5 b)) =
=1, Le. B{(ay,b)),...y(ay, b)) =1 and aeob, =1,i=1,..., % ie.
g, =b, =0, i =1,..., k& (a;,8)=(0,0)=96, ¢ =1,..., k. Hence,
B(é,...,8) =1 — contradiction. And so B,el < L1—>_]((q]<—>~q1)n
AL 0(ger~qp)) € L. Thus, identifying ¢y,...,q, with p we obtain
LF"lpeo~p). =

3.4. Let L; ={0,a,1} be the three-element PBA. We denote
Dy = {(0,1),(0,a), (a,0), (1,0} Dy< N(L,), more exactly D, =
NHL) Dy E (e ~z) = 1.

LevMA 57. Hvery consistent N-logic, different from C is contained
either in G or in L(Dy).

Proor. Let L < C, L # €. Then, in the Lindenbaum algebra for
L — &, there exists an element a such that au~a # 1. If for the ele-
ment e, a = ~aistrue then {0, a,1} ~Ci—=C < N, >Lc{.Ifa # ~a
then we set f = aU~a. Then it i directly proved that {0, f, ~f, 1} =~
== Dy, L.e. Dycr M >L = L(D,). =

Note. Since D, = N7 (L;) and L(L) =I+(Tpuv™17Ip)+
+[pu(p—~(guTIg)) then L(Dy) =I+(T1pu™17Ip) +{pulp—~(gug))+
+ " Hpeo~p).

THEOREM 58. If an N-logic L < 0 and in L the CIT holds then L
18 @ special N-logic.

Proor. L < (L nont (pee>~py)—0 (%). Let 4 be the Lin
denbaum algebra of L; 4 consists of the classes of equivalent formulae
from For, with regards to the relation <, where A < B iff L+ A =B.
Thus & = {|A| | A e For}.

We set @ = {|A|eN" | L}t (py>~p,)—A}. This definition ig correct
and @ is a s.f.Lk. in 4. Let A, = A7 /®. All identities, which hold in the
N-lattice 47, also hold in 4. Vice versa, let &5 FE B(gyy ..., ¢, = 1. We
can consider, that the formula B is written down with variables, different
from p,. By the theorem of replacement with respect to < it follows that
B(igsly ooy 10a]) = [B(g1y +oy @)l And 50 [B(gyy o, @)l € D, ie. L F (poes
o ~p)>B(g1y ...y ¢,). Then, in accordance with CIT (any closed for-
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mula is strongly equivalent in I to 0 or 1) two cases are possible: either
Lt (pyes~pe)—0 or Lt+1->B(gq,...,¢,). Since (%) only the second
possibility remains, i.e. L + B(qy, ..., ¢,), thus & F B(qy, ..., ¢q,) = 1. And
soA kB =1iff /' kB = 1for any B e For, therefore var (A, = var (A)
= varL. But in A4'g: |pe>~pel/P =1, Le. [p,|/P ~ ~|p,/P and since
in any N-lattice a ~ ~a implies a = ~ a then in 4", there exists an ele-
ment 6 = ~4. Hence, by Theorem 15 there exists a PBA 9 such that
N = N () and, by Corollary 29, L = L(./,) is a special N-logic. m

§4. Craig interpolation theorem in N-logics and N-varieties
with amalgamation property

4.1. Let K be a class of N-lattices. K has an amalgamation property
if for any A4y, 4"y, &', e K the following condition holds:

(A) For any pair of monomorphisms ¢,: & y—>A" and 431 & >N,
there exist an N-lattice 4" € K and monomorphisms e;: Ay —A",
gyt N y—>A such that €04, = £,0%,.

The triple (A", &, &) Will be called a common extension of .4, and
Ny over A .

In [14] Czelakowski proved the equivalence of the Craig interpolation
theorem in a large class of logics, the N-logics included, with the amal-
gamation property of the corresponding varieties of algebras.

Introducing the definitions of interpolation principles for equalities
and inequalities and the over-amalgamation property of the class K,
fully analogous to those corresponding to PBA, formulated by Maximova
in [1] (taking into consideration, that the corresponding relation in N-lat-
tices < is a quasi-ordering) the corresponding proof from [1] can be
translated without difficulties and the following, more general theorem
is proved:

THEOREM 539. For any N-logic L the following conditions are equi-
valent:
1) in L the CIT holds,

2) in varl, the interpolation principle of inequalities holds,

3) in varL the interpolation principle of equalities holds,

4) varL, has the over-amalgamation property,

b) varL, has the amalgamation property,

6) in varL the condition (A) holds for any fully connected N-lattices
Hoy Ny Hae

The proof of this theorem will not be presented here, because in this
paper we shall only use the 15 equivalence.
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4.2. Let K be a class of algebras of an arbitrary signature. We shall
denote the category with a set of objects, obtained from K, identifying
the isomorphical algebras and a set of morphisms obtained from the set
of homomorphisms of K — Homg, identifying the corresponding pairs
of homomorphisms g and k&, for which the diagrams

A ~B
g 4 + R
4, = B,
are commutative, by K*, Although we shall deal with concrete algebras
and morphisms, we shall always keep these identifications in mind.
We shall denote by K} the subcategory of K* with the same set of
objects and a set of morphisms, obtained from the set of monomorphisms
of K — Mong, by the same identification as above.
The following lemma is directly proved:

LeviMA 60. Let &'y and A", be N-lattices and h: A'y—AN ", be a homo-
{epi-, mono-)morphism of N-lattices. Then h: P (N 1) —P(AN'y) where h(|al)
s |h{a)l is a homo-(epi-, mono-)morphism of PBAs.

THEOREM 61. Let It be a class of PBAs. Then:

1 Mx =~ N (M)~
2) M= == N+ (IM)*,

where =~ 18 a categoric isomorphism.

Proor. 1) We define a map £: M*—N(M)*:

a) for any A eP: F(A) s N (),
b} for any heHom(¥;,W): F(h) = hy € Hom (N (%), N(¥,)), where
hy{(@, b)) = (h(a), h(b)). By Proposition 4, hy is a homomorphism.
& is a tunctor: IN* N (P)*:

— Fldy) = ldyqyy = Ld g3

— let heHom(Uy, W), geHom(¥y,WAs). Then F(goh){{a, b)) =
= (goh(@), goh(b)) = #(g)((h(a), h(D))) = F(g)o F (k) ((a, b)}; F(goh) =
F(g)oF (h). F is a categoric isomorphism:

F: M—N (M) is a bijection:

surjection — obviously,
injection — let N(,) 2« N(%,). Then A, = P(N(U,)) == P (N (2y))
=~ U,.

— F: Homg—~Homyg, is a bijection:

surjection — let hy e Hom (N (U), N(%,)). Then

Fiy: P (J\EI?QII))»P (l\; ﬁ%))
911 QIIZ

is a counter-image of hy: hy((lal, b)) = (hy(lal), Ey(Ib]).
injection — let F(h) = £(g), h e Hom(Uy, Ay), g € Hom(B,, B,)-
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Then # (k) € Hom(N (%), N (), #(g9) e Hom (N (B,), N(B,))->N (3L,
=~ N(B,) and N () == N(By)>U; =~ B, and A, =~ B,. Now F(h){( ", a))
= (TTh(a), k(a)), F(9)((Ta, a)) = (Tlg(a), g(a))> Th(a), k(a)) =(g(a),
g(a)), thus hla) = g(a) for any ae¥,. And so g =r.
2) We define a map F: PN (M)*:

a) for any A eP: FH(A) s N1 (A),
b) foranyh e Hom(Uy, Ws): F*(h) = h € Hom (N (A,), N+ (U,)), where
h((a, b)) = (h(a), h(b)}. As in 1) it is proved that #* is a functor. F is
a categoric isomorphism:
— FT:M->NT(M) is a bijection:

surjection — obviously,

injection — let Nt (%)
gP(N-F(QIz)) %Q«[z
— &*: Homgp—~Homy+ip i3 a bijection — analogously to 1). m

= Nt (Up). Then U, = P(N*(U,))

CoROLLARY 62. Let MM be a class of PBAs. Then:
1) W, = N (M)
2) M, = N (M),

Proor. It suffices to prove that the restrictions of functors # and
F* (by the above theorem) of Mong are bijections correspondingly
between Mong and Monya, and between Mong and Mony+gy, i.e.
images and counter-images of the functors # and #* of monomorphisms
are monomorphisms, too.

a) Let h e Mong and F(h) = hy, hy((a, b)) = hy((c, d)), i.e. (h(a),
(b)) = (h(c), h(d)). Then h(a) = h(c), h(b) = h({d}>a =¢, b = dr>(a, b)
= (¢, d)=>hy € Mon . Analogously, b € Mon' N* (), N+ (B)).

b) Let » e Mon(N(), N(B)) and » = F~'(»), » e Hom(U, B). Let
7(a;) = v(a,). Then »(7a,) = 17(_1%)“‘*"’(( a1, @) = »(( T4, az))""h
= a7 € Mon (%, B). Analogously, if »* e Mon(N* (), N*(B)), then
7T = (F) ') e Hon (U, B). w

THEOREM 63. Let K and S be classes of algebras of an arbitrary sig-
nature and K, = 8;. Then K has amalgamation property iff S has amal-
gamation property.

Proor. Let K have the amalgamation property and

vy Uy
U,
\Vz* A

be a diagram in $.
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Let #: S;—K, be a functor, effecting the isomorphism between S, and
K}. Then

/-‘F(V/'ur Fluq
\?(92)\3 Fi2)

is a diagram in K, for which there exist B € K and ¢, € Mon(# (%,), B},
¢ =1, 2, such that the diagram

1
Fu g
0}1)2)\5 ﬁ;uz]/el"

8 commutative, Then the diagram

1

u Fg)

/ 1 1
\ \9'“1(23)
1(32)

iis commutativé, too. And so S has the amalgamation property, too.
Vice versa analogously. ®

COROLLARY 64. Let I be a class of PBAs. Then:

1) MM has the amalgamation property iff N(IM) has the amalgamation

property.
2) M has the amalgamation property iff N* (M) has the amalgamation

property.
Hence, by Lemma 39 it follows directly:
THEOREM 65. In an N-logic L* the CIT holds iff it holds in I(L).

4.3. We shall call a subcategory @ of a uategory R a retract of B
if there exists a functor #: R—Q such that & @ = Idy. # will be
called a retraction.

THEOREM 66. Let K and S be classes of algebras of an arbitrary signa-
ture and K}, be a retract of S, with retraction & the following condition
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holds: for any el there exists ey € Mon (U, F(U)) such that for any
v € Mon(A,B) the diagram

p
Y ————aq
€y £y

F) F(B)

e—re
-F{v)

18 commutative. Then the class K has the amalgamation property iff class S
has the amalgamation property.

Proor. 1) Let S has the amalgamation property and
Uy
o
Uy
be a diagram in K. Then there exist % ¢S and ¢ & Mon(%;, A), ¢ =1, 2,
such that the diagram

T,
I

is commutative. Then the diagram

y% Fl&)
Uy FU)

ig commutative, too. And so, the class K has the amalgamation property too.
2) Let K have the amalgamation property and

/V’Lh
_—
o~

U,
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be a diagram in §). Then there exist 8 eK and sie]["[on (#(%,), B),
¢ =1, 2, such that the diagram

3’(%] E1
fmo)/] \3
3’"\?2’\9(212) /527

is commutative. Hence, the diagram

s Eof
y 1 1
Ag \fB
\Vg\ 4

U,

e

8

is commutative too:
€10y OV = £0F (1) = 8,0 F (v,) 08y, = €30 &g, O V3.
And so, S has the amalgamation property tco. m

TaroREM 67. Let N be a class of N-laitices such that st = N (P(M)) =
< N. Then N has the amalgamation property iff sN has the amalgamation
property.

PrOOF. We define a map #: N, —sN:

a) for any & ef: F(AN) ss4,
b) for any v e Mon(AN 'y, Ny): F(v) =7 e Mon(sAh 'y, sA ), Where

5((lal, B) = (w(@)l, W(H)).

It is directly proved that the definition is correct and ¥ is a mono-
morphism and & is a functor. & is a retraction:

1) let &y = sA € sN. Then P(AN ) =2 P(N)W>F (Ny) = SNy 22 SN = N3
2) let v e Mon(sA"y, s.475) and v((|al, (b)) = (lal, |f1). Then

Z () ((lal, 1)) = Z @)(((al, | 7Tal, 1051, 17BI)

= (w((al, [TTaD}l, (o], 1 776D)) = (lal, 161)

= v((lal, |b])). And so F(») = .

Now, let &/ eN. We define g1 & >4 g4-(a) = (lal, | ~al).
ey € Mon (AN, F(AN)). Let v e Mon(ANy, #,). Then the diagram

174

5 g
EJV? E.)Vé
Fwy) — s

6 — Studla Logica
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is commutative: e, 07(a) = (pp(a)l, P(~a)l) = F(¥)((lal, |~al)) =
= ﬁ(‘l’)o&_yl(a/).

And so, by Theorem 66 9 has the amalgamation property iff s)t has
the amalgamation property. =

CoBROLLARY 68. If M is a class of N-lattices such that st < N, N has
the amalgamation property iff P(MN) has the amalgamation property.

Proor. By Corollary 64 P(M) has the amalgamation property iff si
has the amalgamation property which, by Theorem 67, holds iff 9% has
the amalgamation property. =

Hence, it directly follows:

THEOREM 69. A special N-variety N has the amalgamation property
iff P(MN) has the amalgamation property.

THEOREM 70. In a special N-logic L the CIT holds iff it holds in I(L).

4.4. As a consequence of the last theorems and Theorem 58 we can
already show an example of a non-normal N-logic L° < ¢ which is not
gpecial, i.e. its additional axiomatization over | cannot be translated
into the intutionistic language.

Let 0, = B} +B, = {0, a, 8, w, 1} be a PBA. As a distributive lattice
it looks as follows:

1

@
«{ >
0
We set A7 = {(0,1), (0, a), (0, ), (a,f), (8, a), (a,0), (0,0), (1,0)}
0 a b ¢ ~C ~a, ~b 1

A7 is a subalgebra of N (0,). From the table
\

p | po~p | pup

0 o | 1

a ~C

b b 1

¢ ~b
~a ~C ~b
~b b ~b
~C b ~b

1 0 1
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it is seen that in L% = L (A% the CIT does not hold:

Lok (pesr~p)—(qUTIg), but L°nont (per~p)—0 and L'nont 1
—(quU T1g). Besides, (A% = (yand in L(0,) (as Maximova proved in [1])
the CIT holds.

Since L° is not a normal N-logic (A0 non F ~](w«>~ax) = 1) then,
by Theorem 56, L® = {. By Lemma 20 it follows that I(L (N(OZ))) = L(0,).
Hence, by Theorem 70 (by Theorem 58 L{N(C,)) is a special N-logic)
in L(N(Cz)} the CIT helds. If we assume that L° is a special N-logie, then
L = L(A°) = L(sA°) = L(N(0,)), but as we have already seen, in
L(N(0,)} the CIT holds, while in L° this is not the case. Therefore, L°
cannot be a special N-logic.

4.3. In [1] Maximova proved, that there exist exactly 7 consistent
superintuitionistic logics in which the CIT holds. They are obtained from
the intuitionistic logic I with additional axioms as follows:

L, =1
Ly =I+"1pVU™ 1 1p

Ly = I+pu{p->(quTg)

Ly = Ly +(p>9)V(g=p)U(peT19)
Ly = Ly +"1pVU 17 Ip

L =I+(p—>9v(g—p)

Ly =0 =1+pUTp.

THEOREM T1. There ewist exactly 14 consistent logics with sirong
negation in which the CIT Tholds and they are the following:

L, =IL;+V, i=1,...,7 (where V is the system of Vorobiev’s
axioms)

and
L = L4V +"1(per~p), 4 =1,...,7.

PrOOF. Let in a consistent N-logic L the CIT hold. If L < § then,
by Thecrem 58, L is a special N-logic. By Theorem 70, I(L) coincides
with one of the logics L;-L, and therefore, L is one of L-L,. If L& G
then, by Theorem 56, L is a normal N-logic. Hence, by Theorem 47,

L =I(L)* and, by Lemma 25, I(L) = I(I_(z)), therefore, by Theorem 65,
L coincides with one of the logies Li-L¥. m
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The lattice of these N-logics is the following:

[;=c
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