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ABSTRACT. The addition of “actually” operators to modal languages allows us to capture
important inferential behaviours which cannot be adequately captured in logics formu-
lated in simpler languages. Previous work on modal logics containing “actually” operators
has concentrated entirely upon extension&®5 and has employed a particular model-
theoretic treatment of them. This paper proves completeness and decidability results for
a range of normal and nonnormal but quasi-normal propositional modal logics containing
“actually” operators, the weakest of which are conservative extensialsusing a novel
generalisation of the standard semantics.
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0. INTRODUCTION

The main aim of this paper is to present and sketch proofs of the results
declared in its title. Section 1 motivates the introduction of “actually” op-
erators. “Actually” operators are identified in a way which does not rely
upon contentious views about the meaning of “actually”. This contrasts
with a standard account of what such operators are, in ways explained in
Section 2. More generally, Section 2 briefly discusses previous work on
“actually” operators and describes how the results derived here differ from
previous results in the literature.

Section 3 sketches completeness proofs for a bunch of propositional
modal logics containing “actually” operators, using a novel semantics. The
logics are conservative extensionskof KD, KT, KTB, KT4 andKT5.!

Each of the logics has an important property: eachnisrmally sound
precisely if the logic which it conservatively extends is. (The notion of
informal soundness is introduced in Section 1.) Section 4 sketches proofs
that the logics discussed in Section 3 are decidable.

Section 5 sketches completeness and decidability proofs for another
batch of propositional modal logics containing “actually” operators. The
logics are nonnormal extensions of those discussed in Section 3. The logics
are not informally sound, but they do have another important property:
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each isnformally safeprecisely if the logic which it extends is informally
safe. (The notion of informal safety is introduced in Section 2.) The sixth
and final section briefly indicates how to derive some further completeness
results for the logics discussed in Sections 3-5, and presents some results
concerning further logics with “actually” operators.

1. “ACTUALLY” OPERATORS WHAT THEY ARE, AND WHY WE NEED
THEM

Given a formal languagé, aninterpretation of/ is a way of using/’s wif

to express propositions, by assigning meaningg'sexpressions and se-
mantic significance to the ways of constructing wff frdrs expressions. It
may be stipulated that interpretationsJfomust respect certain constraints.
Normally, for instance, interpretations of formal languages containing &
must interpret it as meaning “_ and".

Suppose thab is a modal logic containing the classical propositional
calculus, formulated in the standard modal propositional langiiage/e
stipulate that interpretations df must interpret= as meaning “it is not
the case that _", & as meaning “_and’, v as meaning “_or..”, [J as
meaning “it is necessary that _" adas meaning “it is possible that _".

Suppose that if the sequegt, ..., ¢, = ¢ is provable inS, then for
any interpretation of., the propositions assigned ¢g, ..., ¢, entail the
proposition assigned tg. (Forn = 0, the consequent is equated witls
being assigned only necessary truths.) T8éninformally sound

Good modal logics — at least one variety — are ones which are informally
sound. Interpretations of provable sequents of informally sound logics re-
sult only in valid arguments. If one identifies an ordinary modal argument
as expressed by an interpreted provable sequent of an informally sound
modal logic, one can straightaway conclude that it is valid; just the sort of
thing that we want modal logics for.

For instance, assume thatyp + O(p Vv ¢) is provable inS. We can
interpretp as meaning “2+ 2 = 4” andg as meaning “2+ 2 = 5". Ss
informal soundness implies that the proposition thereby assignétpto
entails the proposition assignedt{p Vv ¢). The argument “necessarily,
24 2 = 4; so necessarily, eitherH22 = 4 or 24+ 2 = 5" is therefore valid.

How can we prove that a modal logic is informally sound? Before
considering one way of doing so, some supplementary notions must be
introduced. Alogic is a set of sequents whose wff are formulated in a
single language, the language of the logic. A sequent.., ¢, - ¢ is
provable in logicS (¢4, . .., ¢, Fs ) precisely ifgq, ..., ¢, - ¥ € S A
wff ¢ is atheorem ofs (ks v) justin casepy, ..., ¢, Fs ¢, forn = 0. An
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axiomatisationA consists of the following: first, a set of axioms; second,
a set of rules which apply to some formulae to yield a formula, labelled as
A’s universal rulesand finally, a set of rules which apply to some formulae
to yield a formula, labelled ag’s admissible rules

A sequentypq, ..., ¢, = ¢ is provable usingA just in case there is a
finite sequence of wff in which each formula is either an axiomAadr
one of¢q, ..., ¢, or follows from earlier formulae in the sequence by an
application of one ofi’s universal rules. An axiomatisatiof axiomatises
the logic containing precisely those sequegis. .., ¢, = ¥ such that:

Q) ¢4, ..., ¢, F ¥ is provable usingi; or (2) there are some wif; such
that, form = 0, ¢4, ..., ¢, = ¥ is provable usingi, andy results from
they;s by an application of one of’s admissible rules.

Suppose that logi& is axiomatised in such a way that each of the
axioms is interpretable only as expressing necessary truths. (The axioms
areinformally sound Suppose that each of the axiomatisation’s universal
rules meets the following condition: if the rule applieto. . ., ¢, to give
Y, each interpretation df assigns t@,, ..., ¢, propositions which entail
the proposition assigned b. (The universal rules aiiaeformally sound).
Finally, suppose that each of axiomatisation’s admissible rules meets the
following condition: if ¢, ..., ¢, Fs ¥;, forn = 0, and the rule applies
to they;s to giveyr, each interpretation of assigns a necessary truth to
Y. (The admissible rules aiaformally sound Then a simple inductive
argument shows th&is informally sound.

We want modal logics to be informally sound. But we also want them to
reflect the distinctive inferential properties of modal locutions. Preserving
informal soundness while capturing additional inferential behaviours tends
to require the introduction of axioms and vocabulary and the imposition of
constraints upon interpretations.

For instance, suppose that “water” rigidly designates whatever stuff is
actually C. And suppose that,B might not have been C. Consider some
possible scenario in which@ is not C. Then in the envisaged possible
circumstances, if bD is the stuff which is actually C, it would not have
been the case that water was C. On the assumption #@id-actually C,
therefore, it follows that water might not have been C.

The following argument can, with a little violence to the English lan-
guage, be extracted from the above:

(A) It might have been that if kD is actually C, then water would not
have been C; but 40 is actually C; so water might not have been C.

Suppose that our resources are limited.tdHow should we formalise
(A)?
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(A)'s first premiss appears to consist of a conditional within the scope
of the initial “possibly _". We might regard that appearance as misleading.
For instance, we might paraphrase (A)’s first premiss using 5OHs
actually C, then water might not have been C”, and then formalise it using
p — Oq. That strategy will, however, lead to tears if followed elsewhere.

Consider the sentence “there might have been something which, if it
actually exists, would not have been self-identical”. The best formalisation
of that sentence, using the strategy just moote@dis(Ex — Ox # x).

But that sentence is necessarily false, while the sentence which it for-
malises is true, expressing the claim that there might have existed some-
thing which does not actually exist. Accordingly, | suggest that we trust
(A)’s appearance.

So the only half-decent formalisation i$(p — ¢), p F {g. That
has, however, a glaring fault; no logic in which the above sequent is prov-
able is informally sound. For instance, the sequent can be interpreted as
expressing the following invalid argument:

(B) It might have been that if there were 9 planets, some number would
not have been self-identical; but there are 9 planets; so possibly, some
number is not self-identical.

Identifying the difference between (A) and (B) is easy: the antecedent
of (A)’s first premiss is in the indicative, whereas the antecedent of (B)'s
first premiss is not. A brief reflection on the standard strategy for formal-
ising ordinary arguments in languages likesuggests that any differences
owed to that difference will not easily be capturedin

That standard strategy involves treating nonindicative moods as result-
ing from the application of a modal operator to a proposition expressible
asthe proposition thatP, where P is a sentence whose main verb is in
the indicative mood. (An analogous strategy is used in tense logic, where
tenses are regarded as resulting from the application of a tense operator to
a proposition expressible using only present tenses.) For instang®, “H
might have been C” would standardly be formalised usipg wherep is
interpreted as expressing the proposittbat H,O is C. But how are we
then to reflect the difference between, say,CHmight have been C” and
“it might have been that yO is actually C"? We — surely! — cannot.

We have a choice: we can either turn a blind eye to arguments like (A),
or we must enrichL. Suppose we plump for the latter and add an unary
operatorA to L. The resulting language BA.2 A is to be interpreted as
expressing an operator having the following effect: when attachddAto
formula¢, the proposition assigned ¢is not to be read as operated upon
by any modal operator within whose scopé falls.* When expressing the
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proposition assigned tbA-sentence)r in which A¢ occurs, the main verb
of the sentence expressing the proposition assign@dnust always be
kept in the indicative mood, evenfe is in the scope of a modal operafor.

For instance, suppose that we are formalisingOHnight have been
C” and “it might have been that 4D is actually C". The first would be
formalised using} p, wherep is assigned the proposition that® is C;
that proposition is then operated upon by the operator standardly assigned
to ¢. But the second would be formalised usig p, wherep is assigned
the same proposition; the application of the operator assignégtevents
the operator assigned o from applying to that proposition. Or suppose
that p is assigned the proposition that there are no tangerines. Then the
proposition assigned td(p — (QAp) is the proposition that necessarily,
if there were no tangerines then it might have been that there actrally
no tangerines.

The inferential behaviour reflected by (A)’s validity is easily captured
in axiomatisations formulated ihA. They need only include as axioms
all instances of the following schemg(A¢ — ) — (A¢p — Ov).
Each such axiom is informally sound. What other axioms invohdnmay
axiomatisations safely include? Each instance of the following schemata
is unproblematic—=A¢ < A—¢; A(p — ) — (AP — AY); A(¢p <
Ad).

And suppose that for any interpretationlofi, the proposition assigned
to ¢ is necessary. Then for any interpretationiof, it is necessary that the
proposition assigned t¢ is actually trué The following is therefore an
informally sound admissible rule when added to informally sound axioms
and universal rules: ip is a theorem, so is 4

What, then, are “actually” operators, and why do we need them? An
operatorO is an “actually” operator ifO is to be interpreted in the same
way asA above. One reason why we need them is because we cannot
satisfactorily reflect specific logical behaviours in logics formulated in
without sacrificing informal soundness.

2. BRIEF DISCUSSION OF SOME PREVIOUS WORK ORNACTUALLY "
OPERATORS

“Actually” operators have been around for a whike.number of writers
have proved completeness theorems for propositional extensidfi§5of
containing theni. The decidability of certain such logics has also been
proved® Hazen has derived completeness results for first-order extensions
of KT5 which contain “actually” operators and Hodes has proved results
about the expressive powers of first-order languages in which such op-
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erators are given a certain model-theoretic treatridrdo not know of
completeness and decidability results for any propositional modal logics
containing “actually” operators not extendiKg 5.

“Actually” operators are not always identified as in Sectiom Istan-
dard approach invokes a controversial interpretation of “actually” and sad-
dles “actually” operators with a related model-theoretic treatment. For in-
stance, Davies and Humberstone write:

In [Crossley and Humberstone [2]] reasons are given for enriching the conventional lan-
guage of modal logic with an operatoA™ (read “actually”) whose function is to effect
(loosely speaking) a reference to a single world (within a model) designated as the actual
world .10

Why treat “actually” operators in the way suggested? The idea is, pre-
sumably, that doing so reflects the function of “actually” within natural
language: those sentences to which it applies are to be evaluated with
respect tothe actual world The standard treatment of “actually” oper-
ators thus assumes a contentious treatment of “actually” as it figures in
natural languagé' The way of identifying them suggested in Section 1 is
therefore preferable.

| have a more selfish reason for taking issue with the above account of
“actually” operators: the semantical treatment of such operators employed
below does not treat them in the same way. The divergence is in some
ways unimportant, however. As Section 6 shows, the treatment used below
makes it straightforward to prove completeness results for more standard
semantical systems. There are two advantages to the treatment used here:
it makes for straightforward completeness proofs and, more importantly,
for simple decidability proofs?

The standard treatment has had an unfortunate side-effect. It has led
writers to advocate axioms which are not clearly informally sound. For in-
stance, Crossley and Humberstone haye— [JAp as an axiont® Why
do they take it as axiomatic? Because it falls straight out of the standard
treatment of “actually” operators remarked above:

[The validity of (Ap — CAp)] arises from the fact that it is one and the same world that
counts as the actual world, for every world in the model. So if something is true in that
world it is certainly going to be true in every other world that it is true in that wéfid.

| do not advocate the standard account of “actually” operators, so the
above argument is not available to me. Each axiom of the fp¢dy —
) — (Ap — Oy) appears, however, to be informally sound; yet each
instance ofA¢p — [0A¢ is provable in any logic extending a normal modal
logic formulated inL A having each instance ¢f(A¢ — ¢) — (A¢p —
Q) as atheorem (see Lemma 3 below).
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There is a division in the literature between those whose logics have
all instances ofp <~ A¢ as theorems and those whose logics do not. For
instance, Crossley and Humberstone favour logics of the latter'RiBdt
Hazen describes their reasons as “conceptually w&ak”.

Construe “actually” as validating arguments sharing the form of (A)
above. Then no logic having each instancepot> A¢ as a theorem is
informally sound. For instance, any such logic will have> Ap as a the-
orem. If that theorem can be interpreted as expressing something which is
not necessary, the logic is informally unsound. Suppose, for contradiction,
that the theorem expresses a necessary truth, however interpreted. Then,
for instance, no matter what, there would have been tangerines precisely if
there are actually tangerines.

Now, it might have been that if there had been tangerines, some apple
would not have been self-identicdl So, by the assumption of the preced-
ing paragraph, it might have been that if there are actually tangerines, some
apple would not have been self-identical. But there are actually tangerines.
So some apple might not have been self-identical (we are, remember, read-
ing “actually” so that it validates arguments like (A)). Absurdigy«> Ap
therefore does not express a necessary truth on all interpretitions.

If we are after informal soundness, our loyalties should be with Cross-
ley and Humberstone. And what else could we want? Consider the follow-
ing argument: “these are the good times; so these are actually the good
times”. We know that if the premiss of that argument is actually true, so is
its conclusion. Arguments having that feature saife

One thing which we might want of a logic is that its interpreted provable
sequents express only safe arguments. That is, we might want our logics to
beinformally safe'® If informal safety is what we are after, the provability
of all instances ofp <> A¢ is not a problem. Accordingly, those who
desire informal safety rather than informal soundness should join Hazen.

Should we want informally safe or informally sound logics? There is
surely no right answer; different strokes for different folks. But even those
desiring only informal safety need “actually” operators. For instance, the
arguments in Section 1 show that we cannot, while avoiding informal un-
safety, prove the sequent bfwhich best formalises (A). We can, however,
provide a formalisation of (A) ir. A whose provability does not result in
informal unsafety; vizO(Ap — ¢q), Ap - Oq.

The next section proves completeness results for some propositional
modal logics containing “actually” operators. The logics share a certain
feature: they are conservative extensions of familiar propositional modal
logics and each one is informally sound precisely if the familiar logic
which it extends is.
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3. FIRST SET OF COMPLETENESS RESULTS

Below, 1 abbreviategp&—p). Given a logicS formulated inLA, S+ A

is the logic resulting when all instances of axiom schemata Ax1-Ax4, the
universal rule MP and the admissible rules RN and RA are added to an
axiomatisation ofs:

Ax1l: A(¢p < Ag),

AX2: —mAp < A,

AX3: A(p — ) — (Ap — AY),
Axd: Ap — [O(Ad — ¥) — QY]
MP: ¢ is provable fromyp and¢ — ¥,
RA:if ¢ is a theorem, so id¢,

RN: if ¢ is a theorem, so i8l¢p.

As pointed out in Section 2, each instance of Ax1-4 is informally sound.
Throughout the rest of this paper, it is assumed S$at one ofK, KD,

KT, KTB, KT4 or KT5.2° Those logics are informally sound only if MP
and RN aré&! So if Sis informally soundS + A is too.

Also, S has—_L among its theorems. And, by truth-functional logic,
if Fsiadp = ¥, Fsia(@1& ... &Y & ... &p,) — 6, thenl—3+A (D1& ...
&p& ... &¢,) — 0 (this fact is often needed below for proving the con-
sistency of various sets of wff; see, for instance, Theorem 2).

LEMMA L. Fgoq—AL.
LEMMA 2. Fs,4 Ag < AAS.

LEMMA 3. kg4 Ap — [A¢.?2

Proof.l-s; 4 O—A¢p — O(Ap — L). By Ax4, by Ap — (O—Ap —
OL1). SobgiaAp — (O-L — —O—A¢). But by RN,Fs, 4 O—L. So
Foia Ap = =0—Ap, i.e.lsia Ap — A. O

A sequenceM = (W, w*, R, @, P) is an @Kripke modeliff it meets the
following conditions:

@1: W is a set. The members & areM'’s indices

@2: w* € W. (w* is M’s distinguished inde)

@3: R is asubset of¥ x W. (R is M’s accessibility relatior)

@4: @ maps eacts € W onto ay € W such that (i) @y) = y; and (ii)
if wRz, then @w) =@(z).

@5: P maps each propositional variabteonto a subset ofV.
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(Notice that{@(w) : w € W} may have more than one member.) A se-
quenceM = (W, w*, R, P) is asub@Kripke modseff it meets conditions
@1-@3, and® maps each sentence letteand formulad¢ onto a subset
of W.If M = (W, w*, R, @, P) is an @Kripke model, the sub@Kripke
modelM’ = (W, w*, R, P’) is based onM if P’ extendsP.

Given an @Kripke modeM = (W, w*, R, @, P), the definition of ¢
is true atindexw in M" — (M, w) E ¢ —is as follows:

P1: For each propositional variabteof LA, (M, w) E 7 iff w € P ().

P2: For each wff=¢ of LA, (M, w) E —¢ iff not-(M, w) F ¢.

P3: For each wff¢& ) of LA, (M, w) E (&) iff (M, w) E ¢ and
(M, w) E .

P4: For each wffd¢ of LA, (M, w) E O¢ iff for every w’ such that
wRw', (M, w') E ¢.

P5: For each wiffA¢ of LA, (M, w) F A¢ iff (M, @(w)) F ¢.

The definition of truth at an index in a sub@Kripke moddl =
(W, w*, R, P’) is given by P1-P4, and the condition thé, w) F A¢
iff w e P'(A¢). ¢ is true in (sub)@Kripke modeM — M £ ¢ — iff
(M, w*) E ¢. And ¢ is valid in classC of (sub)@Kripke models € E ¢
—iffforeveryM € C, M E ¢.

Where “M” ranges over the class of @Kripke models, the following
soundness results are easily verified:

Fxiagponlyif {M: M= M}E ¢.

Fkpia @ onlyif {M : M’s accessibility relation is serigF ¢.

FrTa ¢ Only if {M : M’s accessibility relation is reflexiye= ¢.
Fkrera® only if {M : M’s accessibility relation is reflexive and
symmetri¢ £ ¢.

Frrasa @ oOnly if {M : M’s accessibility relation is reflexive and
transitive F ¢.

Fkrsia @ only if {M : M’s accessibility relation is an equivalence
relationt F ¢.

If the converses of the above soundness results hold, the logicorre
pletefor the relevant classes of models.

Where ‘M” ranges over the class of sub@Kripke models based on
some @Kripke model, the following familiar soundness and completeness
results also hold for the vario&?3

bk @ iff (M : M = M} E ¢.
Fkp ¢ iff {M : M’s accessibility relation is serigk ¢.
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kT ¢ iff {M : M’s accessibility relation is reflexiye= ¢.

Fkre ¢ iff {M : M’s accessibility relation is reflexive and symme}ric
E .

FwTa ¢ iff {M : M’s accessibility relation is reflexive and transitjve
E .

Fwrs ¢ iff {M : M’s accessibility relation is an equivalence relation

E¢.

Throughout the rest of this sectioW, is the set of all maximab + A-
consistent sets of wff. Becau§et+ A contains the classical propositional
calculus, the usual results about maximal consistent sets of wff apply. For
instance, Lindenbaum’s lemma applies; that i$; i anS+ A-consistent
set of wff, there is a maximab + A-consistent setv of wff such that
I' Cw.

THEOREM 1. Foranyw € W, there is a uniquey € W such that for all
¢, ¢ € yiff Ap € w. Also, for allg, Ag € y iff Ap € w.

Proof. By w’s maximality and Lemma 17A1 € w. So byw's con-
sistency,AL ¢ w. It is then easy to show thal = {¢ : Ap € w}
is S + A-consistent. But Ax2 andv’s maximality obviously entaill™’s
maximality. And anyy in W meeting the above conditions would have to
haveI’ as a subset; sb is unique in meeting those conditions. To prove
the second part of the theorem, note thes maximality and Lemma 2
entail thatA¢ € w iff AA¢ € w, which completes the proof. O

For allw, y € W, the relationR is defined thuswRy iff {¢ : ¢ € w} C
y.

LEMMA 4. Forw,y e W, if wRy, then for allp, Ap € wiff Ap € y.
Proof. The left-to-right direction follows immediately frorm’s maxi-
mality, Lemma 3 and the fact thatRy. For the other direction, suppose
that Ap € y andA¢ ¢ w. Then, byw’s maximality, ~A¢ € w and so
A—-¢ € w. But by Lemma 3 anav’'s maximality, [ JA—¢ € w. And so, as
wRy, A—¢ € y. Buttherefore, by’s maximality,—~A¢ € y, contradicting
y's consistency. O

THEOREM 2. For w € W, if =[Oy € w, then there exists € W such
that—y € y andwRy.

Proof.LetT" = {¢ : ¢ € w} U {—y}. Suppose thal is S + A-
inconsistent; that, for instance, therellg € w such that-s, 4 ¢ — V.
Thents, 4 (¢ — ¥). Sots, 4 ¢ — Oy, But then, byw’s maximality,
Oy e w. Contradiction! Sd" is S+ A-consistent. There is therefore a
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y € W such thaf" C y. Butitis obvious that if ¢ € w, then¢ € y; and
sow Ry, which completes the proof. O

For eachw € W, let @(w) be the uniquey € W satisfying the conditions
of Theorem 1. Note thatfan € W, ¢ € @(w) iff Ap € wiff Ap € @(w)
(the last follows by the second part of Theorem 1). So @(® = @(w).
And note that by Lemma 4, i, y € W andwRy, @(w) = @(y). Define
P thus: for eachL A-propositional variabler, P(z) = {w : w € W and
7 € w}. And suppose thab* € W. ThenM = (W, w*, R, @, P) is an
@Kripke model; it is ars + A canonical @Kripke model

THEOREM 3. Forw € W, ¢ € w iff (M, w) E ¢.

Proof. Proceeds by induction on the complexity ¢f The cases in
which ¢ is either a propositional variable or has a main connective which
is truth-functional are trivial. The case whefeas (I is easy, given Theo-
rem 2. The case whetgis Ay is also easyAyr € w iff (see the proof of
Theorem 1) € @(w) iff (by inductive hypothesis) ¥, @(w)) E  iff
(M, w) E AY. O

It was noted earlier that all of the usual results involving maximal consis-
tent sets apply tdV. In particular, the following holdg:s, 4 ¢ iff for any
we W,¢ € w.Wherew € W, letM,, = (W, w, R, @, P). The following
is easily verified, using Theorem @:€ w iff M,, F ¢. Soks, 4 ¢ iff for
anyw € W, M, E ¢. Thatists ¢ iff {M,,: w e W}E ¢.

If Sis KD, it is easily verified that for any,,, R is serial. IfSis
KT, then for anyM,,, R is reflexive. If S is KTB, then for anyM,,, R
is symmetric and reflexive. B is KT4, then for anyM,,, R is transitive
and reflexive. Finally, ifSis KT5, then for anyM,,, R is an equivalence
relation.

The remarks in the last two paragraphs lead immediately to:

THE FIRST SET OF COMPLETENESS RESULTRr eachS + A, the
converse of the soundness result stated earlier in this section holds.

The following lemma can be used to show that e8eh A conservatively
extendsSin relation to theA-free wiff of LA; that is, if¢ does not contain
A (¢ is awff of bothL andLA), s, 4 ¢ iff g ¢:2*

LEMMA 5. Suppose thatVf is an @Kripke model and that/’ is a
sub@Kripke model based ovi. Then for anyg which is a wif of both
LandLA, and foranyw € W, (M, w) E ¢ iff (M, w) E ¢.
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Proof. A trivial induction on the length ap. 0

The interesting parts of the conservative extension results follow from the
soundness results for tiget+ A, Lemma 5 and the completeness results for
theS.

4. FIRST SET OF DECIDABILITY RESULTS

The following proofs employ the technique afini-canonical models
which is essentially equivalent to the use of filtratiGhs he technique
provides a way of showing that ea8l+ A has the finite model property
— that is, for each of the logics there is a class of finite (@Kripke) mod-
els for which the logic is sound and complete. As e&ch A is finitely
axiomatisable, it follows that eac®+ A is decidable®

Given a set of wif ®:

(1) su®) = {y : there is some < & such thaty is a well-formed
subformula ofp},

2) ~(®) = {—¢ : ¢ € D},

(3) A(®) = {Ad : ¢ € D},

(4) ®* = sub(®) U =(sub(®)) U A(sub(®)) U A(=(sub(®))). (If ® is
finite, so is®*.)

A setT" of wff is A®-maximal iff (i) T € &*; (i) if ¢ € sub(®), either

¢ € T or—¢p e T, (iii) if ¢ € sub(®), eitherA¢p € T" or A—¢p € T.
Assume thal™ is A®-maximal andS + A-consistent. The following facts
are easily proven: i € sub(®), ¢ € T iff =¢p & T; if p& ¢ € sub(d),
p&y e Tiff ¢ e T andy € T'; and ifp, ¥ € ®*, Fsp ¢ — ¥ and

¢ € T', thenyr € TI". The first two of those facts are used in proving the
trivial parts of Theorem 10 below; the final one is used at a number of
points in the following.

LEMMA 6. If @ is a consistent set of wff, then eith&tJ {A¢} is consis-
tent or® U {A—¢} is consistent.

Proof. If both are inconsistent then there afg ..., ¢, € ® such that
Fsia (1& ... &¢,) — —AP and Fsia (1&...&¢,) — —A—¢. But
Fopa (mAP&—A—¢) — L. O

THEOREM 4. Suppose thatb is finite. IfA € ®* and A is S+ A-
consistent, then there is atd-maximal andS + A-consistent sef such
thatA C T.
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Proof. As @ is finite, sulyd)’s members can be listed as, ..., ¢,.
Let Ao = A. Then, givenA;, defineA;,; using the following conditions:
if A; U{¢;11} is consistentA;;1 = A; U {¢;;1}; otherwiseA;;; =
A; U {—=¢;;1}. (It is easily shown that ifA; U {¢;1} iS not consistent,
then A; U {—¢;,1} is.) Next, fori > n, if A; U {A¢;,1} iS consistent,
A1 = A; U {A¢;;1); otherwiseA; 1 = A; U {A—¢; 1}. (Lemma 6
justifies that definition.) The final set in the serids,,_1, is clearly A®-
maximal andS + A-consistent; and\ = Ag € A,,_3, which completes
the proof. O

Throughout the rest of this sectiah is a finite set of wff, andWs, 44 is
the set of allA®-maximalS + A-consistent sets of wff. Note théits, 1o
is therefore finite.

THEOREM 5. For anyw € Ws, 40, there is some € Ws, 4o Such that
forany¢ e sub(®@)U-sub(®), ¢ € yiff Ap € w. Also, foranyp, Ap € w
iff Ap € y.

Proof.LetT’ = {¢ : Ap € w}U{A¢ : Ap € w} (= aUpB). Suppose that
there isp; € a andA¢, € B such that-s, 4 (p1& A¢o) — L. Itis easily
shown, using Lemma 2, that is thereforeéS+ A-inconsistent, contrary to
hypothesis. S@ is S+ A-consistent.

Now, suppose thap € sul(®) and thatp ¢ I'. Either A¢p € w or
A—¢ € w. So clearlyA—¢ € w; therefore,—~¢ € I'. Next, suppose that
¢ € sub(®) and thatd¢ ¢ I'. ThenA¢p ¢ w. SOA—¢ € w. And hence
A—¢ € I'. T is thereforeA ®-maximal as well a§ + A-consistent.

Suppose thap € I'. Suppose thap € sub(®). ThenA—¢ ¢ w, by
I''s S+ A-consistency. So, by's A®-maximality, A¢ € w. Suppose that
¢ = =y € =(subh(®)). ThenAy ¢ w, by I'’'s S+ A-consistency. So
A=y = A¢p € w. As itis obvious that ifA¢ € w, ¢ € I', we get that for
any¢ € sub(®) U =(sub(®)), ¢ € T iff Ap € w.

Finally, we need to show that for agy A¢ € w iff A¢p € I". Only the
right-to-left direction is nontrivial. So suppose thép < I'. Then either
Ap € w, or AAp € w. Butin the latter cased¢ € sulb(®); and by
Lemma 2,A¢ € w, completing the proof. O

For allw, y € Ws, 40, define ‘Ry”, “ Ry, “ R3" and “Ry4" thus: wRyy iff
(@) {¢ : ¢ € w} € y, and (D){Ad : Ap € y} C w; wRyy iff (a)
{¢p:0p ew} Sy, (b){¢: g €y} Cw, and (c){A¢ : Ap € y} C w;
wRzy iff (@) {H¢ : O¢ € w} C y, and (b){A¢ : Ap € y} C w; andw R,y
iff (@) (¢ : O¢ € w} = {O¢ : O¢ € v}, and (b){A¢ : Ap € y} C w.

LEMMA7. Forall w,y € Ws;49 andi = 1,2, 3 or 4, if wR;y then for
any¢, Ag € wiff Ap € y.
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Proof. The right-to-left part is trivial. Suppose thaty € w. Then
¢ € sub(®)U—-sub(®). Suppose thap < sul(P). Then byy's Ad-
maximality, eitherA¢ € y or A—¢ € y. But if the latter holds, then both
A¢p € wandA—¢ € w. The other case is essentially the same. O

THEOREM 6. LetS = K, KD or KT. Then forw € Wsy a0, if "0y €
w, then there is some € Ws, 40 such thatwR,y and—yr € w.

Proof. LetT" = {¢ : ¢ € w} U {A¢ : Ap € w} U {—y}. Then
' € &*(=0y € w; so—-y € ®*; henceldy € sub(®); therefore
= € =(sub(®)) C d*). Itis easily shown thal’s S + A-inconsistency
would entail theS+ A-inconsistency ofv. I' is thusS+ A-consistent. But
by Theorem 4, there ismpe Wsy a0 Such thal™ C y. Clearly, if (¢ € w,
¢ € y. Suppose thal¢p € y. Theng € sub(®) U —sul(P). Suppose
that¢y € sub(®). Then eitherd¢ € w or A—¢ € w. Butif A—¢ € w,
A—¢ € T' C vy, entailing theS + A-inconsistency ofy. So A¢p € w.
The case where € —sul(®) is essentially the same. SoR;y, which
completes the proof. O

THEOREM 7. For w € Wkts a0, If =¥ € w, then there is some
vy € WkTB 149 SUCh thatw R,y and—y € w.

Proof.LetT’ = {¢ : O¢p € wjU{=O¢ : =¢ € w and—=¢ €
w}U{A¢ : Ap € w}U {—y}. ' C ®*. Suppose that is AP-maximal
KTB + A-consistent and thdt C y. We show thatwR,y. If ¢ € w,
¢ € y. Suppose thailp € y. ThenO¢ € sub(®); so eitherllp € w
or =¢ € w. In the former casep € w, asKTB + A includesKT. So
suppose that(J¢p € w and¢p ¢ w. Then—¢ € w, as¢ € sul(P). But
then—[¢ € ' C y, entailingy’s inconsistency. S¢ € w.

To conclude the proof, we must show tHais KTB + A-consistent;
Theorem 4 and the preceding do the rest. To this end, suppose that
FiTB +4 (91& —¢2& Agz) — v, whereldg, € w, =2 € w, =¢2 € w
andA¢z € w. Thentgrg 4 AOp1 & O0-Cg& C1Ap3) — . But we then
easily get thaiw is KTB + A-inconsistent. S@ is KTB + A-consistent,
which completes the proof. O

THEOREM 8. For w € Wkt4a140, if =0y € w, then there is someg <
WkTa+40 Such thatw Ry and—yr € w.

Proof.LetI" = {{0¢ : O¢p € wl}U{A¢ : Ap € w}. The rest of the proof
proceeds along similar lines to that of Theorem 7. O

THEOREM 9. For w € Wkts140, if =0y € w, then there is someg <
Wkts 440 Such thatw R4y and—yr € w.
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Proof.LetT" = {(¢ : O¢ € w}U{=0¢ : =0¢p € w}U{A¢p : Ap € w}.
The rest of the proof proceeds along similar lines to that of Theorem 7.

Forw € Ws 0, let @(w) = {¢p : Ap € w}U {A¢p : Ap € w}. By the
second part of Theorem 6, @(@)) = @(w). Also, by Lemma 7, for
i =123or4,ifwR;y, then @w) = @(y). For eachL A-propaositional
variabler, let Ps(r) = {w : w € Wsp andz € w}. Wherei = 1,
let S = K,KD or KT; wherei = 2, letS = KTB; wherei = 3, let
S = KT4; and wherei = 4, letS = KT5. Wherew € Ws 40, let
M;o(w) = (Wsipe, w, R, @, Ps). M;(w) is an @Kripke model.

THEOREM 10. For w,y € Wsya0, if ¢ € sub(®) U —~(sub(®)), then
¢ € yiff (Mio(w),y) F ¢.

Proof. The cases where is a propositional variable or has a truth-
functional main connective are trivial. The cases whgre= [y are
easy, given Theorems 6-9. Finally, the case where Ay is simple:
Ay e yiff Ay e @(y) (by the proof of the second part of Theorem 5)
iff ¢ € @(y) (by the proof of the first part of Theorem 5) iff (by inductive

hypothesis) ¥ (w), @(y)) F ¥ iff (M;o(w), y) F Ay, O

Suppose not-s, 4 ¢. Then{—¢} is anS + A-consistent set of wff. By
Theorem 4, there is @ € Ws; 4(—) Such that-¢ € w. By Theorem 10,
(Mi—gy(w), w) E —¢, and soM; 4 (w) E —¢. It is easily verified that
whereS = KD or KT, R; is respectively serial and reflexive; whe$e=
KTB, R; is reflexive and symmetric; whefe= KT4, R; is reflexive and
transitive; and wher& = KT5, R4 is an equivalence relation. But each
M;—4y(w) is finite. By the soundness results stated in Section 3, therefore,
the variousS + A have the finite model property, which gives:

THE FIRST SET OF DECIDABILITY RESULTSK + A, KD + A, KT +
A,KTB 4+ A,KT4 + A andKT5 + A are all decidable

5. SECOND GROUP OF COMLETENESS AND DECIDABILITY RESULTS

By the first set of decidability results, we can axiomatise a logic by taking
all of S+ A’s theorems plus all instances of the following axiom schema
AXA’ as axioms, and having MP as the sole (universal) rule:

AXA’: ¢ < Ag.

Call the logic thereby axiomatise8+4 A[A’].2” While none of the various
S+ A[A’] is informally sound, for reasons explained in Section 2, each



72 DOMINIC GREGORY

instance of AxAis informally safe. Informal soundness implies informal
safety; so ifS+ A is informally soundS + A[A’] is informally safe. In
the rest of this sectionW’ is understood to be the set of maxing&H-
A[A’]-consistent sets of wiff.

THEOREM 11. Suppose that/ = (W, w*, R, @, P) isanS+ A canon-
ical @Kripke model. Then for any € W, @(w) € W’. And for anyw’ €
W', there isw € W such thatw’ = @(w). Thatis{@(w) : w € W} = W'.

Proof. Forw € W, @w) = {¢ : Ap € w} (see Section 3). By
the proof of Theorem 14¢ € @(w) iff Ap € w; sO¢p € @(w) iff
A¢p € @(w). But by Theorem 1, @) is maximal. Therefore, for any
¢, (¢ < Ap) € @(w). Each instance of AxAis therefore in @w), as
also are all ofS + A’s theorems; so all o6 + A[A']'s theorems are in
@(w). @(w)'s S+ A[A’]-consistency is then easily proved, usingu@'s
maximality. So @w) € W'.

For the second part, suppose thdte W'. Thenw’ € W. LetT" =
{A¢ : ¢ € wr}. T's S+ A-consistency is easily proved. By Lindenbaum’s
lemma, there is thereforeua € W such thal" C w. Suppose thatl¢ € w
but¢ ¢ w'. By the maximality ofw’, —¢ € w’. SoA—¢ € I', and hence
A—¢ € w.Butthenw is S+ A-inconsistent, which is absurd. But as clearly
w' C {¢: Ap € w}, we get that @w) = w’, completing the proof. O

LetM = (W, w*, R, @, P) be anS+ A canonical @Kripke model. Define
“M FE ¢"thus: M E' ¢ iff forany w € W, (M, @(w)) E ¢. Then
Theorems 3 and 11 entail thate w’, for all w’ € W', iff M F ¢. And as
Fsiapan @ iff forany w’ e W/, ¢ € w’, we get:

LEMMA 8. For any ¢, Fsiaaq ¢ iff M ' ¢, whereM is an S + A-
canonical @Kripke model.

LetM = (W, w*, R, @, P) be anS+ A canonical @Kripke model. Where

w € W, any @Kripke modelM’ = (W, @(w), R, @, P) is acentred
@Kripke model based oM. Lemma 8 entails thats, 414/ ¢ iff for each
centred @Kripke moded’ based onM, M’ = ¢. Notice that if M is a
serial @Kripke model, theM’ is a serial centred @Kripke model; M

is a reflexive @Kripke model}t’ is a reflexive centred @Kripke model;
and so on. Given the observations about the accessibility relati@s i
canonical models made prior to the first set of completeness results, that
leads immediately to:

THE SECOND SET OF COMPLETENESS RESULTKS+ A[A'] is com-
plete for the class of centred @Kripke modedd) + A[A’] is complete
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for the class of serial centred @Kripke modeist + A[A’] is complete

for the class of reflexive centred @Kripke mod&3B + A[A'] is com-
plete for the class of symmetric and reflexive centred @Kripke models;
KT4 + A[A’] is complete for the class of transitive and reflexive centred
@Kripke models; an&T5 + A[A'] is complete for the class of centred
@Kripke models whose accessibility relation is an equivalence relation.

It is easy to verify that the converse of each of the above completeness
results holds; that is, that each of the above logics is sound for the relevant
class of centred @Kripke mode.

The following lemma provides a neat characterisation of the theorems
belonging to the variouS + A[A]:

LEMMA9. For anyo, |_S+A[A’]¢ iff l_S+A Ag.

Proof.LetM = (W, w*, R, @, P) be anS+ A-canonical model. Then
Fsiapa ¢ iff (by Lemma 8)M E ¢ iff for every w € W, (M, w) F A¢,
iff (by Theorem 3)s, 4 A¢p. 0

Lemma 9 and the first set of decidability results also give:

THE SECOND SET OF DECIDABILITY RESULTX + A[A’], KD +
A[A], KT + A[A], KTB + A[A'], KT4 + A[A’] andKT5 + A[A] are
decidable.

Notice that Lemma 9, the fact th& + A conservatively extendS in
relation to theA-free wiff of LA, and the fairly easily proven fact that,
for any¢ which is a wif of bothL andL A, s, 4 ¢ iff Fs. 4 A¢, entail that
S+ A[A'] also conservatively exten®?®

6. SOME FINAL RESULTS AND REMARKS

1. Suppose thatr = (W, w*, R, @, P) is an @Kripke model. Then
let M~ be the @Kripke model resulting when one appropriately restricts
each element aff to those indices iV which areR-descendants of either
w* or @(w*) (counting bothw* and @w*) as degenerat®-descendants
of themselves). It is obvious tha¥f F ¢ iff M,« F ¢. But for any
w € W, eachR-descendany of w is such that @y) = @(w), and
@w) = @(@w)); so there is, as it were, a single actual worldMf).
Note also thatR is serial only if the restriction ok figuring in M, is
serial; R is reflexive only if the restriction oR figuring in M, is reflexive;
and so on.
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It follows that the variousS + A andS + A[A’] are complete for more
familiar classes of models than the classes of @Kripke models used above.
Consider, for instanceKT4 + A[A’]. Suppose thaM = (W, w*, R, @,

P) is a transitive and reflexive centred @Kripke model. Lstaandardised
@Kripke modebe one which contains a single actual world. Thidp-

is a standardised transitive and reflexive @Kripke model. Byt £ —¢

iff M E —¢. The second set of completeness proofs immediately entails
thatKT4 + A[A'] is complete for the class of standardised transitive and
reflexive @Kripke models.

The advantages in using the wider class of @Kripke models employed
above are, however, obvious. For instance, suppose that one is trying to
prove the completeness &T4 + A. One might hope to use canonical
models, as they provide a simple and elegant way of proving completeness
results elsewhere. But the set of all maximal dGt4 + A-consistent
sets of LA’s wff cannot form the basis of a standardised transitive and
reflexive @Kripke canonical model; for there may be maximalldmd +
A-consistent sets and y for which A¢p € w but —A¢ € y. Similar
remarks apply to the proofs of decidability.

2. Notice that none of the variost+ A studied above has each instance
of ¢ — A¢ as atheorem. (Each+ A[A'] which extendT obviously
has each instance as a theorem, and &&M[A’] having each instance
as a theorem obviously extend .) Let S+ AA* be the logic resulting
from the addition of each instance of the following axiom schema AxA
to the earlier axiomatisation &+ A:

AxA*. Up — Ag.

An @Kripke modelM = (W, w*, R, @, P) is asuper @Kripke model

iff for any w € W, wR@(w). Where “M” ranges over the class of super
@Kripke models, the following soundness and completeness results are
fairly easily proven:

Frians @ iff (M : M = M} E ¢.

FrTraax ¢ iff {M : M’s accessibility relation is reflexiye= ¢.

FrTe aax ¢ iff {M : M’s accessibility relation is reflexive and sym-
metric} F ¢.

FrTaraax @ iff {M : M’s accessibility relation is reflexive and transi-
tive} F ¢.

Frrsiaax @ iff {M : M’s accessibility relation is an equivalence rela-
tion} E ¢.
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Each of the above logics is finitely axiomatisable, has the finite model
property, and is thus decidabi.

Now consider the logic$ + {O¢ — O0"0¢ : n e Nat}.’! Where
“M" ranges over the class of sub@Kripke models based on some super
@Kripke model, the following soundness and completeness result$told:

'_K+{IZI¢>»IZIn<>¢:neNat}¢ iff {M:M=M}F o

FKT +{0¢—Onopmenay @ Iff {M : M's accessibility relation is reflexiye
E .

FKTB +{0p—DOnoemeNat @ iff {M : M’s accessibility relation is reflexive
and symmetrigE ¢.

FkT4+{0p—DnogneNay @ Iff {M : M’s accessibility relation is reflexive
and transitivg F ¢.

FkT5+{0p— DnogmeNay @ Iff {M : M’s accessibility relation is an equiv-
alence relatiohF ¢.

It follows thatS + AA* conservatively extendS + {(J¢p — [(1"0¢ : n €
Nat} in relation to theA-free wff of LA, by the soundness results for the
S + AA*, Lemma 5 and the completeness results for$he {0p —
0"O¢ : n € Nat}.33
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NOTES

1 More traditionally known a&, D, T, B, S4andS5

2 For the record, the class df's wff is defined thus: it is the smallest class WFF of
strings containing each propositional variablegfach string-¢, O¢, wherep € WFF;
and each stringp& y), wheregp, v € WFF. (L’s propositional variables ane, g, r, p1, ...)
(¢ v ) abbreviates-(—¢p&—v); (¢ — ) abbreviategs—¢ Vv ¥); (¢ < ) abbreviates
(¢ = ¥)&(¢» — ¥)); andO¢ abbreviates-[0—¢. When they do not matter, inner and
outer brackets are left out below. | also frequently commit the peccadillo of speaking as
if v, -, < and{ are symbols of. which are to be interpreted in the standard ways, for
ease of exposition.

3 For the record, the class dfA’s wif is defined thus: it is the smallest class WFF
of strings containing each propositional variableIgfeach string—¢, O¢, A¢ where
¢ € WFF; and each stringp& ), whereg, v € WFF.
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4 How to generalise this interpretation to the first-order case? The simplest strategy is to
regard open formulae as expressing singular propositions relative to an interpretation and
a variable assignment.

5 Humberstone [10] discusses the link between “actually” operators and the indicative
mood at length. He expresses his points using possible worlds semantics, but the underlying
themes are clearly the same as those discussed above. For instance, Humberstone writes
on p. 104 that “[The ‘actually’ operatot] functions .. as an inhibitor; semantically, it
protects what is in its scope by saying ‘There’s no free world-variable here’.”

6 There is some sleight of hand here. When “actually” is read as validating (A), the
inference from “necessarily” to “necessarily actuallyP” does not owe its validity to
the (false) principle “necessarilg iff necessarily actually?”. Rather, it comes from the
validity of “necessarilyP; therefore actuallyP” and “actually P; therefore necessarily
actually P". For more discussion of the latter inference, see Section 2; see also Lemma 3.

7 See, for instance, [2] and [6].

8 See[2].

9 see respectively Hazen [7] and Hodes [8]. Hazen [6] presents results related to those
proved by Hodes.

10(3], p. 1. See also [6], p. 40.

11 For instance, Forbes takes issue with it: see his [4], p. 92.

12 The only decidability proofs which | have met with in the literature are those in Cross-
ley and Humberstone [2] for extensionskof5. Their proofs are much more complex than
those given below, and go via normal forms.

13 For instance, Melia [11] states thatf — A p) “is intuitively false” (p. 49). Forbes
[5] describes that wff as “unintuitive but valid” (p. 61).

1412], p. 17. They appear to pin some of the blamédis , which is unfair. Each instance
of Ap — A¢ is a theorem of all of the logics considered below, even the conservative
extensions oK.

15121, pp. 14-15.

16 (7], p. 502.

17 Reading the conditional as material implication and assuming that there might have
been no tangerines.

18 Why such a roundabout route to that conclusion? Because the sorts of arguments
usually used — for instance, th&tmay obviously hold in some possible world while not
holding in the actual world — employ just the kind of semantic assumptions that | am
foregoing. The argument in the text shows that one can rely upon uncontentious resources,
yet end up with the conclusions reached using those more theory laden means.

19 Note that informal soundness entails informal safety.

20| ot N be the schem&l(¢ — ¥) — (O¢ — Ov); let T be the schem@lp — ¢; let
B be the schemal(0¢p — ¢; let 4 be the schemalp — O0¢; and let5 be the schema
Q¢ — OO¢. ThenK is axiomatisable i A by taking each truth-functional tautology and
and each instance &f as axioms; having MP as the sole universal rule; and having RN
as the sole admissible rule. The other logics mentioned are axiomatisable by adding each
instance of the schemata whose name follol(5 th the logic’s name as an axiom to the
preceding axiomatisation ¢f.

21 The last of those two claims is not, strictly speaking, right: the vari#sA contain
additional theorems to those which the vari@sontain, so more is involved in claiming
that RN is informally sound in the context of the varidsig- A than is involved in making
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a similar claim about the variouS. Nonetheless, | take it that each Ax1-4 is not only
necessary, but necessarily necessary, and necessarily necessarily necessary, etc.; so that
RN will lead us to theorems interpretable as expressing nonnecessary propositions only if
there are already such theorems within the varfaus

22t is easy to show that each instance of Ax4 is a theorem of a normal modal logic
formulated inL A if each instance oA¢p — [JA¢ is a theorem of the logic.

23The class of sub@Kripke models based upon some @Kripke model is, in fact, the
class of sub@Kripke models. The above completeness results are easily proved by proving
similar completeness results relating to the class as latterly described. And those latter
results follow from similar completeness results for the counterparts db foemulated
in the A-free languagd., given the following: (1) a one-one mappirgfrom the proposi-
tional variables ofL onto the class of.A’s propositional variables and wff of the form
A¢ (this provides a way of moving back-and-forth between Kripke models.fand
sub@Kripke models fol.A); and (2) the fact, whereq, ..., n, are the propositional
variables occurring in the wff ¢, that any proof of in the counterpart o6 formulated in
L can be transformed into a proof8of the wff of L A which results when each occurrence
of ; in ¢ is replaced by an occurrence ffr;).

24 One logic is usually said to conservatively extend another iff the first is formulated in
an extension of the language of the second, but the logics coincide on the theorems from
the language of the second logic. ISEL.) be the obvious counterpart 8formulated inL.

Then asS conservatively extend3(L) in the standard sens8;+ A conservatively extends
S(L) in the standard sense. Similar remarks apply to all of the results below which are
described as “conservative extension” results.

25 5ee [9], Chapter 8.

26 For an explanation of why this entais+ A’s decidability, see [9], Chapter 8, or [1],
pp. 62—63.

27 The bracketing of A’ is to reflect the fact that these logics are not generated simply
by adding each instance of A%Ao the earlier axiomatisations &+ A. The notation is
owed to Segerberg: see [12], p. 177.

28 Each of theS + A[A’] is nonnormal, as RN fails in them all. Ea&+ A[A] is,
however,quasi-normal each one extends ([12], p. 172). Chapter 3 of Segerberg [12]
introduced the notion of quasi-normality (in the terms of his discussion, centred @Kripke
models are @Kripke models based upon frames containing a unique distinguished element
w satisfying the condition that @) = w).

29 For any @Kripke modeM = (W, w*, R, @, P), define @ thus: for anyw € W,

@ (w) = w*. To prove that for any wff of L andL A, g, 4 A¢ only if sy 4 ¢, note that
Lemma 5 and the fact that there is a sub@Kripke model based on\baitd (W, w*, R,

@', P) can be used to show that, for any wifof L andLA, M F ¢ iff (W, w*, R, @,

P) E ¢. And it is obvious thatW, w*, R, @, P) F ¢ iff (W,w*, R, @, P) F A¢.

It is then easy to show, using the soundness and completeness resultsSor thethat
Fsia Agonlyif g4 6.

30 Mini-canonical models can be used to prove that those logics have the finite model
property.

31 That is, the logics axiomatisable by adding, for each natural numbegich instance
of each schem@lp — 0" Q¢ to the earlier axiomatisations of the varidbis

32 The soundness parts of the above results are easy to prove. WhergW, w*, R, P)
is a sub@Kripke model, let ¢v) = {w’ : w’ is an R-descendant ofv or w is an R-
descendant ofv’}. The class of sub@Kripke models based upon some super @Kripke
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model is, in fact, the class of sub@Kripke models in which for each indethere is
an indexy such that for everyw’ € ch(w), w’'Ry. The completeness parts of the above
results are easily proved by proving similar completeness results relating to the class as
latterly described. And those latter results follow from similar completeness results for the
counterparts of th& + {Dp — [0"0O¢ : n € Nat} formulated in theA-free languagd.,
given the following: (1) a one-one mappingfrom the propositional variables df onto
the class ofL A’s propositional variables and wff of the foreg (this provides a way of
moving back-and-forth between Kripke models forand sub@Kripke models fatA);
and (2) the fact, where1, ..., m, are the propositional variables occurring in the wff
of L, that any proof ofs in the counterpart o6 formulated inL can be transformed into a
proof in S of the wff of L A which results when each occurrencengfin ¢ is replaced by
an occurrence of (r;).

33 owe the conjecture that this result might be provable to the anonymous referee.
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