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Abstract 
Environmental variability has been proposed as an 
important mechanism in behavioral psychology, in ecology 
and evolution, and in cultural anthropology.  Here we 
demonstrate its importance in simulational studies as well.  
In earlier work we have shown the emergence of 
communication in a spatialized environment of wandering 
food sources and predators, using a variety of mechanisms 
for strategy change: imitation  (Grim, Kokalis, Tafti & Kilb 
2000), localized genetic algorithm (Grim, Kokalis, Tafti & 
Kilb 2001), and partial training of neural nets on the 
behavior of successful neighbors (Grim, St. Denis & 
Kokalis 2002).  Here we focus on environmental 
variability, comparing results for all of these mechanisms 
in a range of different environments: (a) environments with 
constant resources, (b) environments with random 
resources around the same mean, and (c) sine-wave 
variable environments with cycles of ‘boom and bust’.  
Communication, it turns out, is strongly favored by 
environmental variability on  the pattern of ‘boom and 
bust’. 

Introduction 

Sometimes the same idea appears persistently across a 
range of very different disciplines.  Environmental 
variability seems to be such an idea.   
    In behavioral psychology, environmental variability has 
long been established as an important factor in operant 
conditioning.  Intermittent schedules of reinforcement 
prove far more effective than constant reinforcement, with  
variable-ratio schedules producing the highest number of 
responses  per time period and establishing behavior most 
resistant to extinction (Honig & Staddon 1966, Nye 1992).   
    In ecology and evolution, rates of environmental 
fluctuation have been proposed as a major factor in inter-
species dynamics (Chesson and Huntly 1997).  It has 
recently been proposed that Pleistocene climatic 
fluctuations are responsible for the evolution of larger 
brained mammals in general and higher primates in 
particular, with suggested links to social learning (Opdyke 
1995, Potts 1996, Boyd & Richerson 2000).  
    In cultural anthropology, variable environments appear 
to play a major role in the transition from foraging 
cultures to incipient agriculture (Reynolds 1986).  
    It is tempting to think that these appeals to 
environmental variability may have something in 
common.  Perhaps there is some central mechanism of 

variability and selection which, in different forms, is 
responsible for the way that individuals learn, the way that 
species evolve, and the way that cultures develop.  The 
results we offer here indicate that an important role for 
environmental variation shows up even in simple 
computer simulations.  

The Basic Model 
We work throughout with an initially randomized 64 x 64 
two-dimensional cellular automata array of 4,096 
individuals carrying different behavioral strategies (Figure 
1).  All action and reproduction are local: individuals 
interact only with their eight immediate neighbors.    
 

Figure 1  Randomized array of strategies 
 
 Our individuals alter their behavior in terms of what is 
happening immediately around them, but they do not 
move.  In the simple models offered here, it is food sources 
that move, migrating in a random walk across the array.  
If a food source lands on an individual with its mouth 
open, that individual ‘feeds’ and gains points.  Our food 
sources are not consumed, however; like a cloud of 
plankton or a school of fish, they continue their random 
walk, offering nourishment for the next individual down 
the line. 
 On any given round, an individual’s strategy may 
dictate that it opens its mouth or does not, where mouth-
opening carries a particular cost in energy.  Its strategy 
also dictates whether or not it makes a sound on that 
round, heard by itself and its immediate neighbors.  
Sound-making also carries a cost in energy. 
 For even these simple individuals in this simple 
environment, there are forms of behavior that would seem 
to qualify as elementary forms of signaling or 

 



communication.  Imagine a community of individuals that 
share the following strategy:    
 
 They make a sound when they are successfully fed. 
 They react to hearing a sound from their neighbors by  
   opening their mouths.     
 
 When an individual in such a community feeds, it 
makes a sound.  Its immediate neighbors, which share the 
same strategy, open their mouths in response.  Since the 
food source continues its random walk, it will then fall on 
an open mouth on the next round.  The result, in a 
community sharing such a strategy, is a chain reaction in 
which the food source is successfully exploited on each 
round (Figure 2).  We term individuals with such a 
strategy ‘Communicators’. 
 

 
 
Figure 2  Migration of a food source across an array of 
Communicators.  Gray shading indicates an open mouth, * 
the range of a sound made.   

 
    In previous work, using both this model and a more 
complex variation incorporating predators, we have shown 
that simple forms of communication can emerge from 
initially randomized arrays using any of several 
mechanisms for strategy change.  In our earliest studies we 
use strategy change by simple imitation.  After 100 
centuries of gain and loss, each cell surveys its immediate 
neighbors in order to see if any had garnered a higher 
score.  If so, it adopts the strategy of its most successful 
neighbor (Grim, Kokalis, Tafti, and Kilb 2000).  In later 
studies we use strategy change by local genetic algorithm.  
Here the strategy of a less successful cell is replaced with a 
hybrid , created by genetic algorithm from its strategy and 
that of its most successful neighbor (Grim, Kokalis, Tafti, 
and Kilb 2001).   Most recently, we have instantiated 
strategies in the weights of simple neural nets, and have 
used strategy change by partial training on the behavior of 
more successful neighbors (Grim, St. Denis, and Kokalis 
2002).  Using any of these mechanisms, we have been able 
to show that communities of Communicators will emerge 
and grow.  Figure 3 shows a typical emergence of two 
forms of Communicators—here with signals for both food 
and predators—in an array of randomized neural nets over 
300 generations.   
    In this background research,  however,  we use an 
environment of constant resources: although our food 
sources migrate in a random walk across the array, the 
total number of food sources remains constant from 
generation to generation.  Here we focus instead on the 
role of a variable environment.  Is change in the 
environment a factor of importance in the emergence of 
communication?  Does the pattern of change matter?  The 

results that follow indicate that a variable environment 
does indeed have a major impact on the emergence of 
communication, even in computer simulations as simple 
as those explored here.  The pattern of variability, it turns 
out, is also crucial.   
 

    

    

   
 
Figure 3  Emergence of two dialects of Communicators, 
shown in solid black and white, in a randomized array of 
neural nets with partial training on successful neighbors.   

Comparison Agents: Imitators, Localized Genetic 
Algorithms, and Neural Nets 

Here, for the sake of simplicity, our environments contain 
wandering food sources but no predators. The behavioral 
repertoire of our individuals is similarly limited: they can 
open their mouths or not, and can make a single sound 
heard by their immediate neighbors or can remain silent.  
Mouth opening carries an energy cost of .95 points, with 
an energy cost of .05 points for sounding.   
 We code the behavior of these simple individuals in 
terms of four-tuples <f, ~f, s, ~s>.  Variable f dictates 
whether an individual makes a sound or not when it is fed, 
~f whether it makes a sound when it is not fed, s dictates 
whether it opens its mouth when it hears a sound from 



itself or an immediate neighbor, and ~s whether it opens 
its mouth when it hears no such sound.   
 This gives us only sixteen possible strategies, of which 
four are of particular note.  Those cells that carry strategy 
<1,0,1,0> are our ‘Communicators’.  They  make a sound 
when fed, and open their mouths when they hear a sound.  
A hypothetical community of Communicators will 
therefore behave as illustrated in Figure 2.  Strategy 
<0,0,1,0> is a ‘free rider’; it opens its mouth when it hears 
a sound, benefiting from a signal from a Communicator 
neighbor, but does not signal reciprocally when fed.  The 
null strategy <0,0,0,0> does nothing—it never opens its 
mouth and never makes a sound—and so pays no energy 
costs.  ‘All Eat’ <0,0,1,1> keeps its mouth open 
constantly,  
harvesting any food that comes by but never making a 
sound.   
 It should be noted that we use ‘imperfect’ worlds 
throughout.  All cells follow their programmed strategies 
subject to a 5% measure of error.  Nowak and Sigmund 
(1990) argue that a measure of stochastic ‘noise’ makes 
for a more realistic model of cooperation.  In previous 
work we have outlined its importance for the emergence of 
communication as well (Grim, Kokalis, Tafti and Kilb, 
2000). 
 Although our sample space of behaviors is the same 
across our studies, those behaviors are instantiated in 
different ways—as coded behaviors or as operating neural 
nets.  This allows us to compare strategy change by 
imitation, by localized genetic algorithm, and by local 
training of neural nets side by side.  
 In one series of runs our individuals carry behaviors 
coded as series of binary digits, and follow an imitation 
algorithm for strategy change.  After 100 rounds of food 
gathering, point gain and energy loss, each cell surveys its 
immediate neighbors and sees if any has garnered a higher 
score.  If so, it adopts the neighbor’s strategy in place of its 
own.   
 In a second series of runs we use the same coding for 
behaviors, but employ a localized genetic algorithm for 
strategy change.  After 100 rounds, should a cell have a 
more successful neighbor, its strategy is replaced with a 
genetic algorithm hybrid formed from its current strategy 
and that of its most successful neighbor.  We use two-point 
crossover, choosing one of the offspring at random to 
replace the parent.  It should be noted that ours is a 
localized genetic algorithm.  All genetic recombination is 
local: cells with locally successful neighbors change their 
strategies to local hybrid recombinations. 
    In a third series of runs we generate the same sample 
space of behaviors using very simple neural nets (Figure 
4).  For simplicity, we use bipolar inputs with weights and 
biases  ‘chunked’ at one-unit intervals between -3.5 and 
+3.5.  If the sum at the output node exceeds a threshold of 
0, the output is treated as +1, and the individual opens its 
mouth, for example.  If less than or equal to 0, the output 
is treated as -1, and the individual keeps its mouth closed.   

                      
Figure 4  Simple neural nets 

 
For our neural nets, strategy change is by partial training 
on successful neighbors.  With bipolar coding and within 
the limits of our value scale, using ‘target’ for the 
neighbor’s output, we can calculate the delta rule as 
simply wnew = wold + (target x input) and biasnew = biasold + 
target. 
 Though their behavior ranges are identical, our agents 
instantiate three very different forms of updating 
mechanisms.  What we want to compare is their behavior 
across a range of different environments.   
 
 

Environmental Variability and the Emergence of 
Communication 

 
1.  Communication in a Constant Environment 

 
Our constant environment contains exactly 50 food 
sources each generation, but we use the gain allotted for 
successful feeding as an independent variable: tests are run 
with gains from 1 to 140 points for each successful 
feeding.  We plot  what strategy an array evolves to—
Communicators or otherwise—and in what number of 
generations.   
 Figure 5 shows results across our three modes of 
strategy change.  Runs are to 1500 generations, with the 
height of each bar indicating how many generations were 
required to fixation on a single strategy.  Should no single 
strategy occupy the entire array by 1500 generations, the 
bar tops out, showing the strategy dominant in the array at 
that point.    
    It is immediately obvious, and somewhat surprising, 
how large the window for communication is in each of 
these cases.  Communicators dominate the array from the  
 
Imitation in a Constant Environment 

 



Localized Genetic Algorithm in a Constant Environment 

 
Neural Nets in a Constant Environment 

Figure 5  Conquest by All Eat at gains of 90 and above 
using strategy change by imitation, by localized genetic 
algorithm, and by partial neural net training on successful 
neighbors. 
 
case in which each successful feeding is worth 10 points to 
the case in which it is worth 9 times as much.  But it is 
also clear  that communication has an upper terminus: 
above a gain of 100 points it is a strategy of All Eat proves 
dominant. 
  

2.  Communication in a Random Environment 
 
    In a second series of studies we assigned a random 
number of food sources between 0 and 100 each 
generation.  The average number of food sources remained 
at 50, but the particular number of food sources on any 
generation might be anywhere between 0 and 100.  The 
amount of gain allotted for successful feeding was again 
our independent variable: tests were run with gains for 
each successful feeding from 1 to 140 points for each 
successful feeding.  Figure 6 shows results in a random 
environment for strategy change by imitation, localized 
genetic algorithm, and neural nets.    
 With any of our mechanisms of strategy change, it turns 
out, results in a randomized environment show at most a 
slight gain in the upper limit for Communicators.  In all 

cases All Eat continues to prove dominant above a gain of 
90 or 100. 
 
Imitation in a Random Environment 

 
Localized Genetic Algorithm in a Random Environment 

 
Neural Nets in a Random Environment 

 
Figure 6  Window for communication in an environment 
of randomized food sources with a mean of 50.  Conquest 
by All Eat in each case at the upper end. 

 
3.  Strong Emergence of Communication in a Sine-

wave Variable Environment 
 
An environment with a random number of food sources 
produces much the same effects as one with a constant 



number of food sources.  But what if we use an 
environment which, though variable, shows greater 
regularity in the variability of food resources?  What if 
there is a cycle of ‘boom and bust’, for example—will this 
make a difference in the emergence of communication?   
 The decision to test environments with ‘boom and bust’ 
cycles still leaves a great deal of latitude, since patterns of 
‘boom and bust’ may vary greatly.  We conceived of 
different patterns in terms of different intervals marked 
out on a regular sine wave oscillating between 0 and 100.  
With values of that wave taken at intervals of 2 (Sin+2), 
we get one pattern of numbers for our food sources.  With 
values taken at intervals of 3 (Sin+3), we get a different 
series (Figure 7). 
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Figure 7  Different patterns of variation in food items: 
[sin(x) + 1] * 50 for different incremental series x0, x1, ... 
xn.  In the Sin+2 series at top, xn+1 = xn + 2.  In the sin+3 
series below, xn+1 = xn + 3. 
 
What impact does a sine-wave variable environment have 
on the emergence of communication?  Figure 10 shows 
emergence of communication in an environment changing 
on the pattern of sin+2 for each of our three mechanisms 
of strategy change. 
     The surprising result is that a variable environment 
allows conquest by our Communicators all the way up.  
Unlike constant and random environments, increased 
gains in a variable environment on the pattern of sin+2 do 
not favor All Eat at any point within the scope of the 
graph. We have tried larger gains for successful feeding up 
to 500, beyond the scope of the graph; it is still the 
Communicators that succeed.   

 We have found the result to be sensitive to patterns of 
variability, of course, but it is by no means confined to the 
pattern of sin+2.  Resources following the pattern of sin+3 
show similar results.   
    Across all of our modes of strategy change, then, sine-
wave variable environments show a dramatic widening of 
the window of gain values in which Communicators 
appear and flourish.  Although the average number of food 
 
Imitation in a Sin+2 Variable Environment 

 
Localized  Genetic Algorithm in a Sin+2 Environment 

 
Neural Nets in a Sin+2 Environment 

 
Figure 10.  Triumph of Communicators at all gains above 
10 in a ‘boom and bust’ environment on the pattern of 
sin+2 ,  for all forms of strategy change. 



sources remains the same as in our constant and randomly 
variable environments, an environment of ‘boom and bust’  
strongly favors the emergence of communication.   
Although we have focused on simpler  studies here, more 
complicated environments involving both food sources and 
predators show a similar effect.    

 
Conclusion 

 
 In earlier studies we found that communities of 
Communicators can emerge from an initially randomized 
array of strategies in an environment of wandering food 
sources and predators.  Communication can emerge, 
moreover, using any of three different mechanisms of 
strategy change: imitation of successful neighbors, 
localized genetic algorithm with most successful 
neighbors, and partial neural net training on the behavior 
of most successful neighbors (Grim, Kokalis, Tafti, & Kilb 
2000, 2001; Grim, St. Denis, and K okalis 2002). 
 Here our attempt has been to expand those studies to 
questions of environmental variation: is communication 
about resources more favored in an environment in which 
the level of resources are variable than in which they are 
constant? 
 For an environment with randomly variable resources, 
the answer is ‘no’.  Random variation shows much the 
same effect as constant resources with the same average.  
In an environment with sine-wave variable resources, on 
the other hand—an environment of ‘boom and bust’ 
resource cycles—the answer is clearly ‘yes’.  It is thus not 
merely variability but the particular pattern of variability 
that is of importance;  communicative strategies are much 
more strongly favored in sine-wave variable environments.  
That effect holds whether the mechanism of strategy 
change at issue is one of imitation, localized genetic 
algorithm, or partial training on neural nets.   
 Environmental variability has been appealed to as an 
important explanatory factor in a range of different 
disciplines.  In ecology, environmental fluctuation has 
been seen as playing an important role in species diversity 
(Chesson and Huntly, 1997).  In cultural anthropology, 
cycles of boom and bust have been linked to the growth of 
agriculture (Reynolds 1986).  Pleistocene climatic 
fluctuations have recently been proposed as instrumental 
in the evolution of lager brained mammals and higher 
primates, with speculative links to social learning (Potts 
1996, Opdyke 1995, Boyd & Richerson 2000).  The 
impact of environmental variability on individual learning 
is perhaps most developed in decades of careful work on 
schedules of reinforcement (Nye 1992).  We take it as a 
suggestive fact, worthy of further investigation, that a 
clear impact of one form of environmental variation is 
evident even in simulations as simple as those we have 
outlined here. 
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