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Abstract 

    Talk of ‘robustness’ remains vague, despite the fact 
that it is clearly an important parameter in evaluating 
models in general and game-theoretic results in 
particular.  Here we want to make it a bit less vague by 
offering a graphic measure for a particular kind of 
robustness— ‘matrix robustness’— using a three-
dimensional display of the universe of 2 x 2 game 
theory.  In a display of this form, familiar games such 
as the Prisoner’s Dilemma, Stag Hunt, Chicken and 
Deadlock appear as volumes, making comparison easy 
regarding the extent of different game-theoretic effects.  
We illustrate such a comparison in robustness between 
the triumph of Tit for Tat in a spatialized environment 
(Grim 1995, Grim, Mar, and St. Denis 1998) and a 
spatialized modeling of the Contact Hypothesis 
regarding prejudice reduction (Grim, et. al 2005a, 
2005b).  The geometrical representation of relative 
robustness also offers a possibility for links between 
geometrical theorems and results regarding robustness 
in game theory.   

Robustness in Game Theory 
 
Though robustness has long been recognized as an 
important parameter for evaluating game-theoretic results, 
talk of ‘robustness’ generally remains vague.   

Tit for Tat (TFT) is widely respected as a ‘robust’ 
strategy in the iterated Prisoner’s Dilemma.  TFT appears 
as the winner among significantly different groups of 
submitted strategies in Robert Axelrod’s two round-robin 
computer tournaments.  It appears again as the winner in 
the significantly different biological replication model 
constructed by Axelrod and William Hamilton (Axelrod 
1984).  TFT is the winner yet again in a spatialized 
cellular automata instantiation of the iterated Prisoner’s 
Dilemma using the basic reactive strategies (Grim 1995; 
Grim, Mar & St. Denis 1998).  Axelrod asks “… does 
[TFT] do well in a wide variety of environments?  That is 

to say, is it robust?” (Axelrod 1984, 48).  These results 
seem to indicate that the answer is ‘yes’. 

TFT’s success in a wide variety of different models 
raises one’s confidence that TFT is tagging something 
important for a wide range of competitive interactions.  
The question of how robust this history shows TFT to be, 
however, has no precise answer, nor does such a history 
offer any precise way of comparing the robustness of the 
TFT effect with others.    
 Our attempt is to make at least some talk of robustness 
graphic and more precise.  We introduce a formal measure 
for robustness across one of the standard parameters in 
game theory: the payoff matrix.  This does not and cannot 
offer a measure of robustness for all aspects of interest—
robustness across differences in updating algorithms, for 
example.  What the measure does show, however, 
graphically and immediately, is the comparative 
robustness of game-theoretic effects across changes in 
payoff matrix. 
 In recent work, Robert Axelrod and Ross Hammond 
demonstrate robustness of a game-theoretic result 
regarding ethnocentrism by showing that the result 
remains when important parameters of the model are 
either doubled or halved (Axelrod  & Hammond 2003, 
13).  We applaud this as a move in precisely the right 
direction: toward a more formal measure of an intuitively 
important evaluational criterion for models.  
Unfortunately, however, the specific ‘doubling and 
halving’ measure that Axelrod and Hammond propose is 
sensitive to the initial choice of parameters.   A measure 
designed to assure us that a result is robust is itself still 
fragile with respect to the base model chosen. 
 The approach we outline here removes this difficulty, at 
least for the parameter of payoff matrix, by offering a 
standard measure of robustness in terms of the universe of 
game theory as a whole.1   

The Cube Universe of 2 x 2 Game Theory 
                                                        
1 Source code available upon request. 



 
The overwhelming bulk of work in applied game theory is 
in two-person game theory.  The overwhelming bulk of 
applied work in two-person game theory, moreover, has 
concentrated on one game in particular: the Prisoner’s 
Dilemma.  Over the past 25 years, furthermore, the vast 
majority of game-theoretic work on cooperation, altruism, 
and generosity has concentrated on one very particular set 
of matrix values (or close relatives): the standard matrix 
for the Prisoner’s Dilemma shown in Table 1.  Axelrod 
notes that the two person Prisoner’s Dilemma has become 
“the E. coli of social psychology” (Axelrod 1984, 28).  It is 
clear that this particular payoff matrix is the standard 
laboratory strain.   

                 Player A 
                         cooperate         defect 

 
                                           

                cooperate           
 Player B                    

  
  defect 

 
 
 

Table 1.  Standard Prisoner’s Dilemma matrix, left gains 
to player B, right gains to A 

 
 We can find no body of theory that justifies the primary 
role that these particular values have played.  The notion 
seems widespread, moreover, that results established using 
just these particular values can be taken as results for the 
Prisoner’s Dilemma in general; only a few pieces of work 
have explicitly highlighted variance of applicational 
results across different matrices which fit the requirements 
of the Prisoner’s Dilemma (Nowak & May 1993; Lindgren 
& Nordahl 1994; Braynen 2004).   
 Only slightly more justification has been given for 
obsessive concentration on the Prisoner’s Dilemma. 
William Poundstone writes that “The prisoner’s dilemma 
is apt to turn up anywhere a conflict of interests exists” 
(Poundstone 1992, 9).  Brian Skyrms, on the other hand, 
has recently argued that exclusive concentration on the 
Prisoner’s Dilemma is a mistake.  Skyrms argues that Stag 
Hunt should be a focal point for social contract theory, 
particularly with an eye to game dynamics.  Many 
situations that may appear to be Prisoner’s Dilemmas, he 
argues, are rather Stag Hunts in disguise (Skyrms 2004).   
 The universe of 2 x 2 game theory extends far beyond 
the particular values of the standard matrix in Figure 1, of 
course, and far beyond the inequalities definitional of the 
Prisoner’s Dilemma.  For different inequalities between 
our values CC, CD, DC, and DD, we get different games: 
     
 
 
 
 

     
    DC > CC > DD > CD          Prisoner’s Dilemma 
       CC > (CD + DC) /2 
    DC > DD > CC > CD          Deadlock  
 DC > CC > CD > DD          Chicken 
 CC > DC > DD > CD          Stag Hunt 
 
The full universe of 2 x 2 game theory extends beyond 
these named games as well, including all sets of four 
possible values for CC, DC, CD, and DD.   
 The robustness measure we propose consists of a map of 
this larger universe of game theory. In such a map, the fact 
that a particular game-theoretic effect holds at a particular 
set of matrix values can be represented by plotting a 
particular point in the universe of game theory.  One can 
thus imagine clouds of points representing the various 
matrices at which a particular game-theoretic effect 
appears.  An effect that is robust across changes in matrix 
values will occupy a large volume of the game-theoretic 
universe.  A ‘fragile’ result, on the other hand, will be 
restricted to particular points or to a small area.  Such a 
map would give us important comparative results as well.  
One result or effect A could clearly be said to be more 
robust than another result B if the volume of matrix values 
for which B holds is included as a sub-volume within the 
more extensive volume of effect A.  
 How are we to envisage the universe of 2 x 2 game 
theory?  Because our matrices are written in terms of four 
basic parameters— CD, CC, DD, and DC— the first 
inclination is to envisage such a universe as a hyperspace 
in 4 dimensions.  That thought is intimidating, however, 
simply because of the difficulties of envisaging and 
conceptually manipulating results in four-dimensional 
space.  What we propose instead is a manageable three-
dimensional image of the universe of game theory.  The 
key is that 2 x 2 games are defined in relative rather than 
absolute terms.   
    We lose nothing in mapping the universe of game 
theory if we envisage it in terms of three of our dimensions 
relative to a fourth.  We can, for example, set CC at a 
constant value of 50 across our comparisons.  Values for 
our variables CD, DC, and DD can be envisaged as values 
relative to that CC, extending for convenience from 0 to 
100.  (A complete picture of the universe would extend 
these values indefinitely in one direction.)   Within such a 
framework, for example, a set of  values  DC > DD > CC 
> CD  of 5  > 3 > 1 > 0 can be ‘normalized’ to a CC of 50, 
giving us 83 1/3 > 50 > 16 2/3 > 0, or approximately 83 > 
50 > 17 > 0.      
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Figure 1.  The single most studied point in game theory: 
The Prisoner’s Dilemma with values 5 > 3 > 1 > 0.  

 
 Within this universe of game theory, Figure 1 shows the 
single most studied point: the Prisoner’s Dilemma with 
the standard values of  5 > 3 > 1 > 0.  A ball represents 
this single point.  Figure 2 shows the range of the 
Prisoner’s Dilemma, strictly defined with the constraint 
that CC > [DC + CD] / 2.  The volumes corresponding to 
Stag Hunt, Chicken, and Deadlock are shown in Figures 3, 
4, and 5.   
 

 
Figure 2.  Prisoner’s Dilemma  

 
 

  
 

Figure 3.  Stag Hunt 
 
 

 Figure 6 shows the complex of these named games as a 
whole.  Here it should be remembered that we are still 
portraying just a ‘chunk’ of the game-theoretic universe; a 
full array would show Deadlock, Chicken, and the 
Prisoner’s Dilemma extending in the direction of the DC 
and DD axes.  Fully rotating versions of these and later 
illustrations can be found at www.ptft.org/robustAlife. 

 
 

 
 

Figure 4.  Chicken 
 



 
Figure 5.  Deadlock 

 

 
 

Figure 6.  The complex of standard games 
 
 

The Robustness of TFT 
 
This graphical map of the universe of 2 x 2 game theory 
offers a measure of robustness across changes in game-
theoretic matrices.  Points in the graph represent game-
theoretic matrices; for a survey of matrix points, we can 
establish whether a particular game-theoretic result holds 
at those matrices.  Effects which are more robust with 
respect to matrix changes can generally be expected to be 
visible across a relatively larger volume of the game-
theoretic cube.  Comparatively less robust or more fragile 
effects will be confined to a smaller visible area.   Here we 
offer two examples of the application of the matrix 
robustness measure.   
 We will use the term “TFT effect” to refer to TFT’s 
domination over the other seven reactive strategies.  This 
effect, we have noted, has a reputation as a robust effect 
across different forms of competition.  Concentrating on 
spatialized conquest by TFT in particular, our question 

will be how robust the spatialized TFT effect is across 
changes in matrix values.  
 We use as our basis just the 8 reactive strategies in an 
iterated Prisoner’s Dilemma: those strategies whose 
behavior on a given round is determined entirely by the 
behavior of the opponent on the previous round.  Using 1 
for cooperation and 0 for defection, we can code these 8 
basic strategies as 3-tuples <i, c, d>, where i indicates a 
strategy’s initial play, c its response to cooperation on the 
other side, and d its response to defection: 
 

   <0,0,0>  All-Defect    
   <0,0,1>  Suspicious Perverse 
   <0,1,0>  Suspicious Tit for Tat 

           <0,1,1>  D-then-All-Cooperate 
           <1,0,0>  C-then-All-Defect 
           <1,0,1>  Perverse 
           <1,1,0>  Tit for Tat 
           <1,1,1>  All-Cooperate 

 
We begin with a randomization of these strategies across a 
64x64 cellular automata array.2  Each cell plays 200 
rounds of an iterated Prisoner’s Dilemma with its 8 
immediate neighbors, then totals its score.  If at the end of 
200 rounds a cell has a neighbor that has amassed a 
higher total score, it converts to the strategy of that 
neighbor.  If not, it retains its strategy.  Updating is 
synchronous.  In the case of a tie between highest-scoring 
neighbors, one is chosen at random (Grim, Mar, & St. 
Denis 1998). 
 Using the standard DC > CC > DD > CD values of 5 > 
3 > 1 > 0 of the Prisoner’s Dilemma, it is well known that 
dominance in such an array goes first to a pair of 
exploitative strategies: All-Defect (All-D) and C-then-All-
Defect (C-then-All-D).  Once a range of vulnerable 
strategies has been eliminated, however, clusters of TFT 
start to grow, eventually conquering the entire array 
(Figure 7).     
   What this shows is spatialized conquest by TFT for the 
specific matrix values of 5 > 3 > 1 > 0.  But how robust is 
that effect across changes in matrix values?   
 

 
 
 
 
 
 
 
 
 
 

                                                        
2 A change to the eight reactive strategies, or their 
configuration at the start of play would significantly alter 
the effect.  However, the robustness of effects within these 
different configurations or populations of strategies could 
be visualized on our graphic measure. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.  Conquest by TFT in a randomized environment 
of 8 reactive strategies.  TFT is represented in black, All-D 

in white.  
 
 In order to answer that question, we took results across 
8,000 spatialized competitions, using values for DD, CD, 
and DC between 0 and 20 and with CC normalized at a 
value of 10.  In each case we began with a randomization 
of the 8 reactive strategies across a 64 x 64 array, precisely 
as above.  Those matrix values at which TFT showed a 
greater than 90% occupation of the array after 100 
generations were counted as positive for the TFT effect.  
Those that showed a lower role for TFT were counted as 
negative.  
 

 

 
Figure 8.  Robustness of the spatialized TFT effect 

 
 When plotted, these points give us a clear indication of 
the robustness of the spatialized TFT effect across changes 
in matrix values (Figure 8).  We take this to be a robust 
effect, covering area of the Prisoner’s Dilemma, into parts 
of Chicken, and more.  A fully rotating image of the result 
can be found at www.ptft.org/paq/robustAlife. 
 
 

The Robustness of the Contact Hypothesis 
 
In this section, we offer another effect for comparison: a 
game-theoretic instantiation of the contact hypothesis. 
    Despite numerous theories in the social psychological 
literature regarding the nature and sources of prejudice, 
there is only one major theory of prejudice reduction: the 
contact hypothesis.   Under the right conditions, the 
contact hypothesis posits that prejudice between groups 
will be reduced with increased contact between members 
of the groups (Allport 1954; Pettigrew 1998).    
   A computational model for such a hypothesis would 
need to include at least the following features:  (i) distinct 
groups, (ii) behaviors which may or may not be depend 
upon the group affiliation of a cell or its neighbor, (iii) 
advantages and disadvantages resulting from these 
behaviors, (iv) an updating mechanism for behavior, and 
(v) configurations of greater and lesser contact. 
    In earlier work in Artificial Life IX we constructed a 
game-theoretic model of this type for the contact 
hypothesis (Grim et. al. 2004; 2005).  As in the case of the 
spatialized Prisoner’s Dilemma outlined above, cells play 
only with their eight contiguous neighbors.  After 200 
rounds of interaction, they adopt the strategy of their most 
successful neighbor.  Although we appropriate the 
standard payoff matrix and the standard eight reactive 
strategies, our model is novel in two respects.   (1) Each 
cell is defined not only by strategy, but also by color; each 
cell is either red or green, and a cell’s color never changes 
during play.  (2) One color-sensitive strategy, named 
Prejudicial Tit for Tat (PTFT), is added to the mix; it plays 
All Defect against cells of the other color and TFT against 
cells of its own color.      
    By varying how the cells are distributed— playing some 
games in an array that is segregated by color and other 
games in an array is integrated by color (Figure 9)— we 
are able to assess the success of PTFT in different 
environments.  The contact hypothesis is tested for a 
simulational environment by contrasting the success of the 
prejudicial strategy PTFT in a segregated array with its 
success in the integrated one.   



     
 

Figure 9.  Segregated (left) and mixed patterns of 
background color 

 
    The results show strong computational support for the 
contact hypothesis.  In the segregated array, PTFT and 
TFT are the only two strategies that remain after 
approximately 12 generations; each takes up roughly half 
the area (Figures 10, 11).  In the mixed array, on the other 
hand, TFT eventually takes over nearly the entire array 
(Figure 12).  What the results suggest is that social 
psychologists should player closer attention to elements of 
advantage and disadvantage analogous to the game-
theoretical mechanisms of such a model.3   
 
 

 
 

Figure 10.  Evolution of randomized strategies to shared 
dominance by TFT and PTFT in an array segregated by 

color.  A complete evolution can be seen at 
www.ptft.org/robustAlife. 

 
                                                        
3 For more on the philosophical implications of our model 
for the contact hypothesis see (Grim et al., 2004; 2005). 

 
Figure 11.  Percentages of the population for 9 strategies 
in an array segregated by color (20 generations shown). A 
single, typical run is displayed. 
 

 
Figure 12.  Percentages of the population for 9 strategies 
in an array randomized by color (20 generations shown). 

A single, typical run is displayed. 
 

    What is at issue here, however, is how robust the PTFT 
effect is across changes in matrix values.  How does it 
compare, in particular, with the spatialized take-over of 
TFT in the previous studies?   
    To investigate which matrices in the game-theoretic 
universe are ones where the PTFT effect occurs, we plot 
each point where both TFT takes over more than 90% of 
the space in a mixed array, and TFT and PTFT each take 
over more than 40% of the space in a segregated array.  
Figure 13 shows a graphic portrayal of the matrix 
robustness of the PTFT effect in these terms.   
 



 
 

Figure 13.  Robustness of the PTFT effect 
 
    With two effects in hand, our measure allows a graphic 
comparison in terms of matrix robustness.  TFT, we have 
noted, is well known as a generally robust strategy.  With 
regard to the specific measure of robustness across 
changes in matrix values, at least, the PTFT effect 
outlined here is at least almost as robust as the spatialized 
TFT effect. 
 

 
Conclusion 

 
Our attempt here has been to outline and illustrate a new 
measure for game-theoretic robustness across changes in 
matrix values.    
   A single measure adequate for all types of robustness is 
clearly too much to hope for.  What we would like to see is 
the development of a number of standardized measures, 
adequate for different forms of robustness.  Robustness, in 
all its senses, is a criterion of major importance across 
modeling quite generally— an importance that underlines 
the necessity of developing clear measures. 
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