
1 Introduction: The Philosophical
Background 

Philosophers have long been interested in meaning,
but we believe they have often been hampered by the
limits of their investigatory techniques. We think that
modeling work on language and communication
across a range of other disciplines, on the other hand,
has sometimes been hampered by limited conceptual
models for meaning.

Philosophers have typically relied on armchair
reflection and linguistic intuition alone in developing
theories of meaning, a source amplified only recently
to include wider data from linguistics (Larson &
Segal, 1995). One of our aims here is to offer

computational modeling as an important addition to
the toolkit for serious philosophy of language.

The story is more complicated regarding limita-
tions of modeling work across various disciplines due
to limited conceptual models for meaning. We offer a
very rough sketch of alternative philosophical positions
regarding meaning, both as a way of characterizing
trends in contemporary research and to make clear the
approach that motivates our work here.1

What is it for a sound or a gesture to have a mean-
ing? The classical approach has been to take meaning
to be a relation. A sound or gesture is meaningful
because it stands in a particular relation to something,
and the thing to which it stands in the proper relation
is taken to be its meaning. The question for any
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relational theory of meaning, then, is precisely what
the crucial relation is and what it is a relation to.

One time-worn philosophical response is in terms
of “reference,” taken as a relation to things in the
world. Words have meanings because they have refer-
ents, and the meaning of a word is the thing to which
it refers. In various forms such a theory of meaning
can be found in Augustine (ca 400/1992), in Mill
(1884) and in Russell (1921, 1940).

A second philosophical response is to consider
meaning as a relation between a sound or gesture and
the images, ideas, or internal representations it is used
to express. On such a view the meaning of the word
is that thing in the head it is used to convey.
Communication becomes an attempt to transfer the
contents of my head into yours, or to make the contents
of your head match mine. An ideational theory of
this sort can be found in Aristotle (ca 330 BC/1971),
Hobbes (1651/1997), and Locke (1689/1979), with a
more sophisticated contemporary echo in Fodor (1975). 

A third approach is to consider meaning as a rela-
tion neither to things in the world nor to the contents
of heads but to some third form of object, removed
from the world and yet nonpsychological. Here a
primary representative is Frege (1879/1967). 

It is our impression that relational theories of mean-
ing are alive and well across the various disciplines
involved in contemporary modeling regarding commu-
nication and language. The relational theory relied on is
generally either referential or ideational; we take it as a
sure sign that the theory in play is ideational when the
measure of “identity of meaning” or “successful com-
munication” is correspondence between individuals’
representation maps or signal matrices. A referential
theory, in which the meaning of a term is taken to be the
object or situation it applies to, is more or less explicit
in Batali (1995), Oliphant and Batali (1997), and
MacLennan and Burghardt (1994). An ideational the-
ory, in which communication involves a match of inter-
nal representations, is a clear theme in Levin (1995) and
Parisi (1997); if activation levels of hidden nodes are
taken as internal representations, Hutchins and
Hazlehurst (1995) belong here as well. In modeling
studies for language outside the immediate range of this
article we also find an ideational theory explicit in
Livingstone and Fyfe (1999), Nowak, Krakauer, and
Dress (1999), Nowak, Plotkin, and Krakauer (1999),
Nowak and Krakauer (1999), Livingstone (2000), and
Nowak, Plotkin, and Jansen (2000).

Relational theories are not the only games in town,
however. Much current philosophical work follows the
intuition that variations on a Tarskian theory of truth
can do much of the work traditionally expected of a
theory of meaning (Davidson, 1967; Larson and Segal,
1995; Quine, 1960). Also of prime importance since
the later Wittgenstein (1953) is a class of theories that
emphasize not meaning as something a word somehow
has but communication as something that members of
a community do. Wittgenstein is a notoriously difficult
man to interpret, but one clear theme is an insistence
that meaning is to be understood not by looking for
“meanings” either in the world or in the head but by
understanding the role of words and gestures in the
action of agents within a community.

The emphasis on language as something used,
and on significance as a property of use, continues in
Austin (1962), Searle (1969), and Grice (1957, 1989).
In Austin and Searle performative utterances such as
“I promise” take center stage, with the view that at
least large aspects of meaning are to be understood by
understanding an agent’s actions with words. In Grice
the key to meaning is the complicated pattern of intent
and perceived intent on the part of speaker and
listener.

We share with this last philosophical approach the
conviction that a grasp of meaning will come not by
looking for the right relation to the right kind of object
but by attention to the coordinated interaction of
agents in a community. In practical terms, the measure
of communication will be functional coordination
alone, rather than an attempt to find matches between
internal representations or referential matrices. The
understanding of meaning that we seek may thus come
with an understanding of the development of patterns
of functional communication within a community, but
without our ever being able to identify a particular
relation as the “meaning” relation or a particular
object—concrete, ideational, or abstract—as the
“meaning” of a particular term.2 In applying tools
of formal modeling within such an approach to mean-
ing our most immediate philosophical precursors
are Lewis (1969) and Skyrms (1996). Although the
modeling literature may be dominated by relational
views of meaning, this more dynamical approach also
has its representatives: We note with satisfaction some
comments in that direction in Hutchins and Hazlehurst
(1995) and fairly explicit statements in Steels (1996,
1998). 
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Here an analogy may be helpful. We think that
current misconceptions regarding meaning and the
road to a more adequate understanding may parallel
earlier misconceptions regarding another topic—
biological life—and the road to a more adequate
understanding there. 

There was a time when life was thought of as
some kind of component, quality, or even fluid that
live bodies had and that dead bodies lacked. This is
the picture that appears in the Biblical tradition of a
“breath of life,” for example. As recently as Mary
Shelley’s Frankenstein (1831/1992), life is portrayed
as something that a live individual has and a dead
individual lacks; to build a living being from dead
parts one must somehow add the missing spark of
life. 

We now have a wonderful biological grasp of the
phenomena of life, elegantly summarized, for example,
in Dawkins’ “replicators” (1976). But in our contem-
porary understanding, life is not at all the kind of thing
that Shelley would have looked for. We understand life
not as a magic component within individuals at a
particular time but as a functional feature that charac-
terizes a historical community of organisms evolving
over time. Our understanding of life is also an under-
standing of something that may be continuous and a
matter of degree: The question of precisely when in a
history of evolving replicators the first creature counts
as “alive” is quite likely the wrong question.

Our conviction here, and the underlying philo-
sophical motivation for the model we want to pre-
sent, is that the same may be true of meaning. What
we seek is a better understanding of the phenomena
of meaning, which may come without any particular
relation definable as the “meaning relation” and
even without identifiable “meanings.” The proper
way to understand meaning may be on the analogy
of our current understanding of life: not as an all-
or-nothing relation tying word to thing or idea, but
as a complex continuum of properties characteristic
of coordinated behavior within a community—a
community of communicators—developing over
time. 

2 Modeling Background

Despite the complexity of this philosophical back-
ground, the model we have to offer is a very simple

one. We consider a large cellular automata array of
individuals that gain points by “feeding” and lose
points when hit by a “predator.” The cells themselves
do not move and thus have a fixed set of immediate
neighbors in the array. Food sources and predators
migrate in a random walk across the array, without
being consumed or satiated. Thus a food source
remains to continue its random walk even when a cell
“feeds” on it, and a predator continues its walk
whether or not a cell has been victimized. When a food
source lands on an individual whose mouth is open,
that individual “feeds” and gains points. When a
predator lands on an individual that is not hiding, that
individual is “hurt” and loses points. Both mouth
opening and hiding, however, exact an energy cost.

Each of our individuals can also make one of two
arbitrary sounds, heard only by itself and the eight
cells touching it. In response to hearing such a sound,
an individual might open its mouth, hide, do both or
neither. But sound making, like mouth opening and
hiding, exacts an energy cost.

Given this basic environment, one can envisage a
community of “communicators” that make sound 1
when fed, for example, and open their mouths when
they hear sound 1 from themselves or any immediate
neighbor. Since food sources migrate from cell to cell,
such a pattern of behavior instantiated across a com-
munity would increase chances of feeding. A commu-
nity of “communicators” might also make sound 2
when hurt and hide when they hear sound 2.

The individuals in our array are simple neural net-
works. The inputs to each net include whether the indi-
vidual is fed on the current round, whether it is hurt,
and any sounds heard from itself or any immediate
neighbors. The net’s outputs dictate whether the indi-
vidual opens its mouth on the next round, whether it
hides, and whether it makes either of two sounds.
All rewards are in terms of food captured and preda-
tors avoided; there is no reward for communication
per se.

Suppose we start with an array of neural nets with
entirely randomized weights. Periodically, we have
each of our individuals do a partial training on a sam-
pling of the behavior of that neighbor that has amassed
the most points. Changes in weights within individual
nets follow standard learning algorithms, but learning
is unsupervised in the traditional sense. There is no
central supervisor or universal set of targets: Learning
proceeds purely locally, as individual nets do a partial



training on the responses of those immediate neighbors
that have proven most successful at a given time.

In such a context, might communities of “commu-
nicators” emerge? With purely individual gains at
issue, could a network of neural nets in this individual-
ized environment nonetheless learn to communicate? 

There are individual features that this model shares
with particular predecessors. But there are also sharp
contrasts with earlier models, and no previous model
has all the characteristics we take to be important. 

Most neural net models involving language have
been models of idealized individuals. We, on the
contrary, take communication to involve dynamic
behavioral coordination across a community. We thus
follow the general strategy of MacLennan and
Burghardt (1994) and Hutchins and Hazlehurst
(1995), emphasizing the community rather than the
individual in building a model of language develop-
ment. Steels’ (1998) outline of this shared perspective
is particularly eloquent: Language may be 

a mass phenomenon actualised by the different agents
interacting with each other. No single individual has a
complete view of the language nor does anyone control the
language. In this sense, language is like a cloud of birds
which attains and keeps its coherence based on individual
rules enacted by each bird. (p. 384)

Another essential aspect of the model offered here
is spatialization, carried over from our own previous
work in both cooperation and simpler models for com-
munication (Grim, 1995, 1996; Grim, Kokalis, Tafti, &
Kilb, 2000, 2001; Grim, Mar, & St. Denis, 1998).
Our community is modeled as a two-dimensional
torroidal or “wraparound” cellular automata array.
Each individual interacts with its immediate neigh-
bors, but no individual interacts with all members
of the community as a whole. Our individuals are
capable of making arbitrary sounds, but these are
heard only by themselves and their immediate neigh-
bors. Communication thus proceeds purely locally,
regarding food sources and predators that migrate
through the local area. Fitness is measured purely
locally, and learning proceeds purely locally as well:
Individuals do a partial training, using standard algo-
rithms, on that immediate neighbor that has proven
most successful. Spatialization of this thorough-going
sort has appeared only rarely in earlier modeling of
communication. The tasks employed in Cangelosi and

Parisi (1998), MacLennan and Burghardt (1994), and
Wagner (2000) are in some sense conceived spatially,
but both communication and reproduction proceed
globally in each case across random selections from
the population as a whole. Saunders and Pollack
(1996) use a model in which a cooperative task and
communication decay are conceived spatially, but in
which new strategies arise by mutation using a fitness
algorithm applied globally across the population
as a whole. In Werner and Dyer (1991), blind “males”
and signaling “females” find each other spatially,
but random relocation of offspring results in an
algorithm identical to a global breeding of those above
a success threshold on a given task. Aside from our
own previous work, the work of Ackley and Littman
(1994) is perhaps the most consistently spatialized
model to date, with local communication and repro-
duction limited at least to breeding those individuals
in a “quad” with the highest fitness rating. Theirs is
also a model complicated with a blizzard of further
interacting factors, however, including reproductive
“festivals” and a peculiar wind-driven strategy
diffusion.

We consider the individualistic reward structure of
the model we offer here both more natural and more
easily generalizable than many of its predecessors. In
many previous models both “senders” and “receivers”
are simultaneously rewarded in each case of “successful
communication,” rather than rewards tracking natural
benefits that can be expected to accrue to the receiver
alone. An assumption of mutual benefit from commu-
nicative exchanges is explicitly made in the early theo-
retical outline offered by Lewis (1969). MacLennan
(1991) offers a model in which both “senders” and
“receivers” are both rewarded, with communicative
strategies then perfected through the application of a
genetic algorithm. As Ackley and Littman (1994) note,
the result is an artificial environment “where ‘truthful
speech’ by a speaker and ‘right action’ by a listener
cause food to rain down on both” (p. 40). 

The work of MacLennan and Burghardt (1994),
further developed in Wagner (2000), uses a genetic
algorithm to modify a population of finite-state
machines. Here again the structure is one in which
both “sender” and “receiver” mutually benefit from
“successful communication.” In these studies a
structure of symmetrical rewards is given a more plau-
sible motivation, however: Their work is explicitly
limited to communication regarding cooperative
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activities in particular, motivated by a story of
communication for cooperation in bringing down a
large animal. This also limits the model’s generaliz-
ability to communication in general, however. The
same pattern of rewarding communicative “matches”
per se, rather than tracking the individual benefit that
may or may not be gained from information commu-
nicated, reappears in the genetic algorithm work of
Levin (1995).

Within neural net models in particular, symmetri-
cal rewards for “successful communication” charac-
terize the work of Werner and Dyer (1991), Saunders
and Pollack (1996), and Hutchins and Hazlehurst
(1995). In Werner and Dyer, using a genetic algorithm
over (nonlearning) neural nets, the topic is outlined as
commmunication that facilitates reproduction by
allowing “males” and “females” to find each other
more rapidly, and thus benefits both sides of the
“communication” symmetrically. Saunders and
Pollack (1996), using mutation on (nonlearning)
neural nets, employ a cooperative task in which each
of two or three individuals is symmetrically rewarded
if they manage jointly to consume an entire food
supply. As do we, Hutchins and Hazlehurst (1995)
study a community of interacting neural nets that
change through learning rather than by mechanisms of
mutation or genetic recombination, but their model is
in other regards a puzzling one. Their 5 to 15 nets are
“autoassociators,” training up individually on input
configurations (12 “phases of the moon”) as their
target outputs. But the hidden layers of their nets are
also labeled “verbal input/output,” and these hidden
layers are trained directly on the hidden layers of other
members drawn randomly from the population.
Although Wagner (2000) criticizes the study on the
grounds that “the meanings in their simulation have no
connection to actions of the agents or states of a world
in which the agents can take part—the meanings are
arbitrary patterns chosen to study how a population of
signalers can arrive at a consensus in their signaling”
(p. 153), it is clear that Hutchins and Hazlehurst are in
fact assuming a joint task that a common lexicon will
facilitate. The target “phases of the moon” appear in
the earlier Hutchins and Hazlehurst (1991) work
correlated with tides, and the motivating story is one in
which California Indians find it valuable to move the
whole band to the beach to gather shellfish when and
only when the tides are favorable. In the model itself it
is thus a common lexicon per se that is trained toward,

but this might have a connection to action where a
cooperative task is at stake. Here as in the models of
MacLennan and Burghardt (1994) and Wagner (2000),
however, the model is then unsuitable for generaliza-
tion to an environment in which individual receipt of
information can be expected to be beneficial but the
sending of information need not be.

The need for a model of how communication
regarding nonshared tasks might originate is noted
explicitly by Ackley and Littman (1994), Noble and
Cliff (1996), Parisi (1997), Cangelosi and Parisi
(1998), Dyer (1995), and Batali (1995). Batali
writes:

While it is of clear benefit for the members of a population
to be able to make use of information made available to
others, it is not as obvious that any benefit accrues to the
sender of informative signals. A good strategy, in fact,
might be for an individual to exploit signals sent by others,
but to send no informative signals itself. Thus there is a
puzzle as to how coordinated systems of signal production
and response could have evolved. (p. 2)

In an overview of various approaches, Parisi (1997) is
still more explicit:

In the food and danger simulations the organism acts only as
a receiver of signals and it evolves an ability to respond
appropriately to these signals. It is interesting to ask, however,
where these signals come from… Why should the second
individual bother to generate signals in the presence of the
first individual? The evolutionary “goal” of the first individ-
ual is quite clear. Individuals who respond to the signal
“food” (“danger”) by approaching (avoiding) the object they
currently perceive are more likely to reproduce than individ-
uals who do not do so. Hence, the evolutionary emergence of
an ability to understand these signals… But why should indi-
viduals who perceive food or danger objects in the presence
of another individual develop a tendency to respond by emit-
ting the signal “food” or “danger”? (p. 129)

The model we offer here shows the emergence of
a system of communication within a large community
of neural nets using a structure of rewards that fits pre-
cisely the outline called for in Batali (1995) and Parisi
(1997). Here individuals learn to communicate in
an environment in which they benefit only from
individual capture of food and avoidance of predators,
and indeed in which there is an assigned cost for
generating signals.
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3 Preliminary Proto-Nets

We structured our work as a series of progressively
more developed models. Following that same pattern
makes explanation simpler as well.

In those models with which we begin, the sample
space of individuals is so small as to seem uninterest-
ing and their structure is so simple that they are only
a limiting case of neural networks: We term these
simpler forms mere “proto-nets.” The phenomenon of
learning to communicate is nonetheless visible in even
these proto-nets, and it is this basic phenomenon that
we follow through the development of more complex
models.

Our first array is a 64 × 64 torroidal or “wrap-
around” cellular automata grid, composed of a full
4,096 individuals but using 200 food sources alone
rather than (as later) both food sources and predators.
On each round, each food source moves at random to
one of 9 cells: that which it currently occupies or one
of its 8 immediate neighbors. We think of these as food
sources rather than individual food items because they
continue their random walk without at any point being
consumed or exhausted.

Our simple individuals have a behavior range that
includes only opening their mouths on a given round
or failing to do so; here there is no provision for hid-
ing. If an individual has its mouth open on a round that
a food item lands on it, it gains a point for “feeding.”
Any time it has its mouth open, it pays an “energy tax”
of 0.05 points. Thus an individual feeding gains 0.95
points, and an individual with its mouth open when no
food is present loses 0.05. In this first simple format
our individuals are also capable only of making one
sound, heard by their immediate 8 neighbors and
themselves. Making a sound also carries an “energy
tax” of 0.05 points.

The simplest aspect of this simple setup, however,
is the proto-nets that structure the behavior of our indi-
viduals. In our initial runs each individual has the ele-
mentary neural structure shown in Figure 1. On each
round, an individual has either heard a sound or it has
not. This is coded as a bipolar +1 or −1. On each
round, it has successfully fed on that round or has not,
once again coded as a bipolar +1 or −1. Individuals’
neural structures involve just two weights w1 and
w2, each of which carries one of the following

values: −3.5, −2.5, −1.5, −0.5, +0.5, +1.5, +2.5, +3.5.
The bipolar input is multiplied by this weight on each
side and matched against a threshold of 0. If the
weighted input is greater than 0 on the left side, the
output is treated as +1 and the individual opens its
mouth on the current round. If it is less than or equal
to 0, the output is treated as −1 and the individual
keeps its mouth closed.3 If the weighted input is
greater than 0 on the right side, the individual makes a
sound heard by itself and its immediate neighbors on
the next round.

We also add noise to this basic pattern for individ-
ual action. Because of lessons learned in earlier work
regarding the necessity of “imperfect worlds” in such
a model of communication (Grim et al., 2000), we
add an element of randomness: In a random 5% of
all cases individuals will open their mouths whatever
their input and weight assignments. 

Our proto-nets are so simple as to lack not only
hidden nodes but any branches with multiple inputs or
outputs. Another element of simplicity is the fact that
our weight values are at discrete 1.0 intervals.
“Chunked” or “discrete” values of this type appear in
earlier models with no learning algorithm (Werner &
Dyer, 1991) but can also be used where the learning
algorithm is a particularly simple one (Fausett, 1994;
Plagianakos & Vrahatis, 1999).

With only two weights in the discrete intervals
listed there are 64 possible weight combinations, but
only four distinct behavioral strategies. An individual
may either open its mouth when it hears a sound
or open its mouth when it does not: There is no
provision for never opening its mouth, for example, or
for constantly holding it open. The same applies to

Figure 1 The elementry structure of our simplest proto-
nets, showing inputs, outputs, and weights (w).
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sound making on the right side of the structure. Our
four possible behaviors are thus the following:

Behavior 1. Opens its mouth on hearing no sound,
makes a sound when not fed; w1 < 0 and
w2 < 0

Behavior 2. Opens its mouth on hearing no sound,
makes a sound when fed; w1 < 0 and
w2 ≥ 0

Behavior 3. Opens its mouth on hearing a sound,
makes a sound when not fed; w1 ≥ 0 and
w2 < 0

Behavior 4. Opens its mouth on hearing a sound, makes
a sound when fed; w1 ≥ 0 and w2 ≥ 0

We begin with a 64 × 64 array of individuals with
randomized weights. After 100 rounds of food migra-
tion and individuals opening mouths and making
sounds in terms of their randomized weights, some cells
will have accumulated more points over all by capturing
food and avoiding unnecessary mouth openings.

At this stage, and after each “century” of 100
rounds, each individual looks to see if it has an imme-
diate neighbor with a higher score. If it does not, it
maintains its current strategy. If it does have a more
successful neighbor, it “trains up” on that neighbor
using a simple version of the delta rule with a learning
rate of 1 (Fausett, 1994, p. 62ff.). In the case of a tie—
two immediate neighbors with identical scores supe-
rior to that of a central cell—one neighbor is chosen
randomly. A single training episode consists of pick-
ing a random pair of inputs for both the central cell
and its most successful neighbor. If the outputs are the
same, there is no change in the weights of the central

cell. If the outputs are not the same, the relevant
weight is nudged one unit in the direction that would
have given it the appropriate answer. If a cell’s
response is positive for an input of −1 where its target
neighbor’s is negative, its weight w1 is moved one
unit in the negative direction: from +2.5 to +1.5, for
example. If a cell’s response is negative for an input
of −1 where its target neighbor’s is positive, its weight
w1 is moved one unit in the positive direction, perhaps
from −1.5 to −0.5. The target response of the more
successful neighbor, like our inputs, is recorded as a
bipolar −1 or +1, allowing us to calculate the weight
change for the central cell simply as wnew = wold +
(target × input). The ends of our value scale are treated
as absolute, however: No weight value is allowed to
exceed +3.5 or fall below −3.5.

Despite the simplicity of our initial proto-nets,
there is one behavioral strategy among our four that
would clearly count as an elementary form of signal-
ing or communication. A community of strategies fol-
lowing behavior 4 above would make a sound when
they successfully fed, and that sound would be heard
by themselves and their immediate neighbors. Those
cells would open their mouths in response to hearing
the sound, thereby increasing their chances of feeding
on the following round (Figure 2). The question is
whether communities of “communicators” of this
simple type will emerge by learning in our spatialized
environment. 

Such communities do indeed emerge. A typical
progression is shown in the successive frames of
Figure 3, starting from an array of cells with randomized
weights and proceeding to a field dominated by “com-
municators” that eventually occupy the whole.

Figure 2 Migration of a single food source across a hypothetical array of communicators. In the left frame, a food
source dot lands on an open mouth, indicated by gray shading. That central individual makes a sound * heard by itself
and its immediate neighbors, which in the second frame open their mouths in response. One of them feeds success-
fully, making a sound heard by itself and its immediate neighbors, which are shown opening their mouths in the third
frame. The result in a community of communicators is a chain reaction of efficient feeding.
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Figure 3 Learning to communicate in a field of four simple neural structures. Centuries 1–6 shown, with communica-
tors in white and other strategies in shades of gray. Visual display of open mouths and sounding patterns omitted.



For this simple model the progression to
dominance by communicators is surprisingly fast.
Figure 3 shows the first 6 centuries of a progression
using four trainings (each using a single pair of ran-
dom inputs) each century. Figure 4 graphs behavioral
strategies in terms of percentages of the total popula-
tion over 15 centuries, using only a single training
each century.

For a slightly more complicated model, we enrich
our proto-nets with an added bias on each side, equiv-
alent here to a settable threshold (Figure 5). Biases
take the same weight range as w1 and w2, but are
treated as having a constant +1 as input. The input −1
or +1 is multiplied by the weight and added to the bias;
if this sum is greater than 0, the output is treated as +1
for an open mouth or a sound made.

With biases added, each individual can be coded
in terms of four weights, each between −3.5 and +3.5
at 1.0 intervals. This gives us 4,096 numerically dis-
tinct strategies and enlarges the number of possible
behaviors to 16. An individual may never open its
mouth, may open it only when it does not hear a
sound, only when it does hear a sound, or may always
keep it open. It may make a sound only when not fed,
only when fed, it may always make a sound, or it may
never make a sound. The primary players among the
16 strategies in this model turn out to be behaviors
9–11:

Behavior   9. Opens mouth only when hears sound,
never makes sound

Behavior 10. Opens mouth only when hears sound,
makes sound only when not fed

Behavior 11. Opens mouth only when hears sound,
makes sound only when fed

Here as before we begin with a 64 × 64 torroidal
array, randomizing weights and biases. Points for
feeding and penalties for opening mouths and for
making sounds are as before. Every “century” of 100
rounds, individual cells train up in some determined
number of runs on their most successful neighbor. For
a response on a training run that differs from that of its
more successful neighbor, the weights of a central cell
are shifted one place toward what would have given it
the correct response on that run, with biases shifted
similarly. Within the limits of our value scale, wnew =
wold + (target × input) and biasnew = biasold + target.

In this slightly more complicated model it is
clearly behavior 11 that is the “communicator,”
responding to a heard sound by opening its mouth and
making a sound only when fed. Will communities of
this particular behavioral strategy develop through
learning?

Figure 6 uses percentage of population to show
conquest by communication over 65 centuries with
a single training each century. For two trainings con-
quest by communicators may take 40 centuries,
whereas for four trainings conquest can occur in as
few as 22 centuries, but the overall pattern is otherwise
similar. In each case those behavioral strategies other
than communicators that do the best are variants that
benefit from receipt of information from communica-
tors but follow some different pattern of sounding in
return. The second highest curve in each case is that of
behavior 10, which opens its mouth only when it hears
a sound, as do communicators, but makes a sound only
when not fed. The third highest curve in each case is
that of behavior 9, which opens its mouth when it hears
a sound but never itself makes any sound in return.

4 Learning to Communicate
in an Array of Perceptrons 

In the spatialized environment of the preceding
section, communities of communicators arise through
the learning mechanisms of a simple version of the
delta rule. There our neural structures are so simple as
to qualify only as limiting cases of neural networks,
however, and the sample space from which commu-
nicative strategies emerge is correspondingly small.

Here we offer a more developed form of the
model, in which the environment is enriched to con-
tain the threat of predators as well as the promise of
food sources. The behavioral repertoire of each cell is
wider as well: on a given round each individual (1) can
open its mouth, gaining points if food lands on it, and
(2) can hide, which will keep it from losing points if a
predator lands on it. Opening one’s mouth and hiding
each carry an energy expenditure of 0.05 points. An
individual can also avoid energy expenditure by occu-
pying a neutral stance in which it neither opens its
mouth nor hides, gaining no points if food is present
but still open to harm from predators. Our neutral
structure is such that it is also possible for a cell to
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both hide and have its mouth open on a given turn,
gaining the advantage of each but incurring a double
energy expenditure.

In this model each individual has two arbitrary
sounds it can make, heard by its immediate neighbors
and itself, and it can react in different ways to sounds
heard. Making a sound also carries an energy expendi-
ture of 0.05 points.

Here our individuals employ full neural nets,
though with no hidden layers: The behavior of each
individual is generated by a two-layer perceptron. We
begin with neural nets using fixed thresholds and
without biases, as shown in Figure 7. Each of the
4,096 individuals in our 64 × 64 array is now coded in
terms of eight weights, each of which takes a value
between −3.5 and +3.5 at 1.0 intervals as before. The
basic neural component of our nets is shown in
Figure 8. The structure of this “quadrant” is repeated
four times in the complete structure shown in Figure 7,
with two quadrants sharing inputs in each of two
“lobes.”

We use a bipolar coding for inputs, so that “hear
sound 1” takes a value of +1 if the individual hears
sound 1 from any immediate neighbor or itself on the
previous round. It takes a value of −1 if the individual
does not hear sound 1. Each input is multiplied by the
weight shown on arrows from it, and the weighted
inputs are then summed at the output node. If that total
is greater than 0, we take our output to be +1, and the
individual opens its mouth, for example; if the
weighted total is less than or equal to 0, we take our
output to be −1, and the individual keeps its mouth
closed. Here as throughout an element of “noise” is
also built in: in a random 5% of cases each individual
will open its mouth regardless of weights and inputs.
On the other side of the lobe, individuals also hide in
a random 5% of cases.

There are four possible sets of inputs for each
quadrant: (−1, −1), (−1, +1), (+1, −1), and (+1, +1). In
principle, the output in each case might be either −1 or
+1, giving us the standard 16 Boolean functions. But
not all net architectures can represent all 16 Booleans,

Figure 4 Learning to communicate in a field of four simple proto-nets, with one training each century. Percentages of
the population for each behavior over 15 centuries.



Grim, St. Denis, & Kokalis Learning to Communicate 55

and it is well known that perceptrons are limited in this
regard (Minsky & Papert, 1990). For the current struc-
ture, with bipolar inputs, two weights, and a simple 0
threshold, there are in fact only eight outputs possible
for each quadrant. An individual’s structure may be
such that it opens its mouth, for example, under any of
the following input specifications:

Only when both sounds are heard
When only sound 2 is heard
When sound 2 or both sounds are heard
When only sound 1 is heard
When sound 1 or both sounds are heard
Only when neither sound is heard
Precisely when sound 1 is not heard
Precisely when sound 2 is not heard

With eight behavioral possibilities for each of the four
quadrants of the network, we have a space of 4,096
possible behavioral strategies.

We initially populate our array with neural nets
carrying eight random weights. One hundred food
sources and 200 predators drift in a random walk
across the array, without at any point being consumed
or satiated. The reason for using twice as many preda-
tors as food items is detailed in Grim et al. (2001).
A bit of reflection on the dynamics of feeding and pre-
dation built into the model shows an important and
perhaps surprising difference between the two. 

In an array composed entirely of “communica-
tors,” a chain reaction can be expected in terms of food
signals and successful feeding. One communicator
signals that it has been fed, with the result that its
neighbors open their mouths on the next round. The
wandering food item then lands on one of neighbors
(or the original cell), and that cell in turn makes a
sound that signals its neighbors to open their mouths.
As illustrated in Figure 2, one can watch a wandering

food item cross an array of communicators, hitting an
open mouth every time.

The dynamics of a “hurt” alarm, on the other
hand, are very different. Among even perfect commu-
nicators, a cell signals an alarm only when hurt—that
is, when a predator is on it and it is not hiding. If suc-
cessful, that “alarm” will alert a cell’s neighbors to
hide, and thus the predator will find no victim on the
next round. Precisely because the predator then finds
no victim, there will be no alarm sounded, and thus on
the following round even a fellow communicator may
be hit by the predator. Here one sees not the chain
reaction of successful feeding on every round but an
alternating pattern of successful avoidance of preda-
tion every second round.

An important difference between the dynamics of
feeding and predation is thus built into the structure of
the model. With a gain for feeding equal to a loss for
predation, and with equal numbers of food sources and
predators, that difference in dynamics means that
emergence of communication regarding food will be
strongly favored over communication regarding preda-
tors. This is indeed what we found in earlier genetic
models (Grim et al., 2000). One way of compensating
for the difference, in order to study emergence of com-
munication regarding both food and predators, is to
build in losses from predation that are unequal to gains
from feeding. Another is to have an alarm signal that
indicates the presence of a predator whether or not one
is “hurt.” A third alternative, which we have chosen
here, is simply to proportion food sources and preda-
tors accordingly.

Although very rare, it is possible for a food source
and a predator to occupy the same space at the same
time. Whenever a cell has its mouth open and a food
source lands on it, it feeds and gains 1 point. Whenever
a predator lands on a cell that is not hiding, that cell
is “hurt” and loses 1 point. Over the course of 100
rounds, our individuals total their points as before.
They then scan their 8 immediate neighbors to see
if any has garnered a higher score. If so, they do a
partial training on the behavior of their highest-scoring
neighbor.

Here again we use the simple variation of the delta
rule as our training algorithm. For a set of four random
inputs, the cell compares its outputs with those of its
higher-scoring neighbor. At any point at which these
differ, it nudges each of the responsible weights one
unit positively or negatively. Within the limits of our

Figure 5 Proto-nets with biases.
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value scale, wnew = wold + (target × input). Where
outputs are the same for a cell and its target for a given
set of inputs, no change is made.

In the current model, we use a training run of four
random sets of inputs with no provision against dupli-
cation. If a cell has a neighbor with a higher score, in
other words, it compares its behavior with that of its
neighbor over four random sets of inputs, changing
weights where there is a difference. Training will thus
clearly be partial: Only four sets of inputs are sampled,
rather than the full 16 possible, and indeed the same
set may be sampled repeatedly. The learning algorithm
is applied using each set of inputs only once, more-
over, leaving no guarantee that each weight is shifted
enough to make the behavioral difference that would
be observable in a complete training. The idea of
partial training was quite deliberately built into our
model to allow numerical combinations and behav-
ioral strategies to emerge from training that might not
previously have existed in either teacher or learner,
thereby allowing a wider exploration of the sample

space of possible strategies. In all but one of the runs
illustrated below, for example, none of what we will
term “perfect communicators” appear in our initial
randomizations; those strategies are “discovered” by
the mechanics of partial training.4

From Figure 7 it is clear that the neural architec-
ture used here divides into two distinct halves: a right
half that reacts to being fed or hurt by making sounds,
and a left half that reacts to sounds heard by opening
its mouth or hiding. No feed-forward connection goes
from hearing sounds, for example, directly to making
sounds. With an eye to keeping variables as few as
possible in a population of thousands of individuals,
we found no need to complicate the model by connec-
tions between the two sides. 

This “two-lobe” configuration of communication
seems to have been reinvented or rediscovered
repeatedly in the history of the literature. Many note
an intrinsic distinction between the kinds of action
represented here by (1) making sounds and (2) mouth
opening or hiding in response to sounds heard.

Figure 6 Learning to communicate in a field of 16 proto-nets, one training each century. Percentages of population
shown over 65 centuries.
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MacLennan (1991) similarly distinguishes “emissions”
from “actions,” for example, and Oliphant and Batali
(1997) distinguish “transmission behavior” from
“reception behavior.” It also seems natural to embody
that distinction in the neural architecture of the indi-
viduals modeled: Werner and Dyer (1991) separate
precisely these two functions between two different
sexes, Cangelosi and Parisi (1998) note that the archi-
tecture of their neural nets uses two separate sets of
connection weights for the two kinds of action, and
Nowak notes that his active matrix for signal sending
and his passive matrix for signal reading can be treated
as completely independent (Nowak, Plotkin and
Krakauer, 1999; Nowak, Plotkin, and Jansen, 2000). It
is clear that such a structure builds in no presumption
that individuals will treat signals as bi directional in
the sense of De Saussure (1916/1983): that a signal
will be read in the same way that it is sent. If bidirec-
tionality nonetheless emerges, as indeed it does in our
communities of “communicators,” it will be as a con-
sequence not of a structural constraint but of learning
in an environment (see also Oliphant & Batali, 1997).

We start with an array of neural nets with ran-
domized weights. Of our 4,096 behavioral strategies,

only two count as “perfect communicators.” One of
these generates a sound 1 when fed and a sound 2
when hurt, responding symmetrically to sound 1 by
opening its mouth and to sound 2 by hiding. The
behavior of the other “perfect communicator” is the
same with the role of sounds 1 and 2 reversed. With a
sample space of 4,096 behavioral strategies and a
learning algorithm in which individual cells do a par-
tial training on their most successful neighbor, will
communities of these communicators emerge?

The answer is yes. Figure 9 shows a typical run of
200 centuries with a clear emergence of our two per-
fect communicators. Given our limited number of
strategies, there were a small number of perfect com-
municators in this initial randomization. When re-run
with an initial randomization that eliminated all per-
fect communicators, however, the long-range results
were essentially identical. 

As noted, each of the four quadrants of the neural
nets used here can generate a behavior corresponding
to only 8 of the 16 possible Boolean functions. We
can complicate our networks by the addition of
biases, however, giving them the structure for each
quadrant shown in Figure 10. With that addition our
quadrants will be able to represent 14 of the 16
Booleans. The 2 Booleans that cannot be captured
within such a structure are exclusive “or” (Xor) and
the biconditional. Such a net has no way of giving an
output just in case (Xor) either sound 1 is heard or
sound 2 is heard, but not both, for example, or just in
case (biconditional) either both are heard or neither
is heard. For present purposes these unrepresented
Boolean connectives are at the periphery of functions
that might plausibly be selected by the environmental
pressures in the model, however, and the failure to
capture them seems a minor limitation. We leave fur-
ther pursuit of the full range of the Booleans to the
following section.

Figure 7 Neural structure of initial perceptrons.

Figure 8 The basic neural structure of each
quadrant.
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As a whole, our perceptrons use 12 weights,
including biases, and take the form shown in Figure 11.
With a total of 12 chunked weights, we can represent
14 of 16 Boolean functions in each quadrant and
enlarge our sample space from 4,096 to 38,416 behav-
ioral strategies. We code these behavioral strategies in
terms of outputs for different pairs of inputs. The
possible inputs at “hear sound 1” and “hear sound 2”
for the left “lobe” of our structure are (−1, −1), (−1, +1),
(+1, −1), and (+1, +1). Outputs for a given strategy will

be pairs representing the output values for “open
mouth” and “hide” for each of these pairs of inputs. We
might thus encode the left-lobe behavior of a given
strategy as a series of eight binary digits. The string
00 00 00 11, for example, represents a behavior that
outputs an open mouth or a hide only if both sounds
are heard, and then outputs both. The string
00 01 01 01 characterizes a cell that never opens its
mouth, but hides if it hears either sound or both. We
can use a similar pattern of behavioral coding for the
right lobe and thus encode the entire behavior of a net
with 16 binary digits. We will normally represent the
behavior for a complete net using a single separation
between the two lobes, as in 00110011 11001100.

Of the 38,416 behavioral strategies in our sample
space, there are still only two that qualify as “perfect
communicators.” Pattern 00011011 00011011 repre-
sents an individual that hides whenever it hears sound 2,
eats whenever it hears sound 1, makes sound 2 when-
ever it is hurt, and makes sound 1 whenever it is fed.
The “whenever” indicates that it will both hide and

Figure 9 Learning to communicate in a field of perceptrons: emergence of two forms of perfect communicators within
a sample space of 4,096 strategies. Four training runs each century, 200 centuries shown.

Figure 10 Perceptron quadrant with bias.
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open its mouth when it hears both sounds and will
make both sounds when both hurt and fed. The pattern
00100111 00100111 represents an individual with a
symmetrical behavior in which only the sound corre-
lations are changed: It reacts to sound 2 by opening its
mouth and responds to being fed by making sound 2,
reacts to sound 1 by hiding and responds to being hurt
by making sound 1. Will random arrays of perceptrons

in this larger sample space of strategies learn to form
communities of communicators?

Here again the answer is yes. Figure 12 shows an
emergence of communication in 300 centuries. Our
initial array contains no perfect communicators. One
appears in the 2nd century; the other appears in
the 7th, disappears in the 8th, and is rediscovered in
the 9th. As they proliferate, the two versions of perfect

Figure 12 Learning to communicate in a randomized array of perceptrons and a sample space of 38,416 behavioral
strategies. Three hundred centuries shown.

Figure 11 The complete perceptron architecture with biases.
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communicator form spatially distinct communities,
separated at their interface by a shifting border of
strategies attempting to negotiate between the two
language communities. Century 290 of this develop-
ment is shown in Figure 13.5

5 Learning to Communicate
using Backpropagation in an
Array of Neural Nets

It has long been known that a neural net of just two
layers is incapable of representing all of the Boolean
functions: We have noted the exclusive “or” and the
biconditional as exceptions. This crucial limitation
dulls the impact of the otherwise remarkable percep-
tron learning convergence theorem: that the simple
delta rule is adequate to train any perceptron, in a finite
number of steps, to any function it can represent
(Fausett, 1994; Minsky & Papert, 1990; Rosenblatt,
1959, 1962). Historically, this limitation posed a sig-
nificant stumbling block to the further development of
neural nets in the 1970s. It was known even then that
the addition of intermediate layers to perceptrons
would result in multiple-layer neural nets that could
model the full spectrum of Boolean functions, but the

simple delta rule was known to be inadequate for
training multiple-layer nets.

With the use of continuous and differentiable acti-
vation functions, however, multiple-layer neural nets
can be trained by backpropagation of errors using a
generalized delta function. This discovery signaled the
re-emergence of active research on neural nets in the
1980s (McClelland & Rumelhart, 1988). Here again
there is a convergence theorem: It can be shown that
any continuous mapping can be approximated to any
arbitrary accuracy by using backpropagation on a net
with some number of neurons in a single hidden layer
(Fausett, 1994; White, 1990). 

The most complicated neural nets we have to offer
here exploit backpropagation techniques to train to
the full range of Boolean functions of inputs. Each of
our nets is again divided into two “lobes,” with inputs
of two different sounds on the left side and outputs of
mouth opening or hiding, inputs of “fed” and “hurt” on
the right side with outputs of two different sounds
made. Each of these lobes is again divided into two
quadrants, but our quadrants are now structured as
neural nets with a single hidden node (Figure 14).

The feed-forward neural nets most commonly
illustrated in the literature have hierarchically uniform
levels—all inputs feed to a hidden layer, for example,
and only the hidden layer feeds to output. For reasons
of economy in the number of nodes and weights to be
carried in memory over a large array of neural nets, the
design of our nets is not hierarchically uniform. As is
clear from Figure 14, inputs feed through weights w1

and w4 directly to the output node as well as through
weights w2 and w3 to a hidden node. The output node

Figure 13 Communities of two perfect communicators at
century 290, shown in pure black and pure white. Other
strategies in shades or patterns of gray.

Figure 14 The quadrant structure of our backpropaga-
tion nets.
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receives signals both from inputs directly and through
weight w5 from the hidden node. 

At both the hidden node and the output node we
use a sigmoid activation function

graphed in Figure 15. In our sample quadrant, bipolar
inputs −1 or +1 from “hear sound 1” and “hear sound
2” are first multiplied by weights w2 and w3, initially
set between −3.5 and +3.5. At the hidden node, those
products are added to a constant bias b2 set initially in
the same range. The total is then treated as input to the
activation function above, generating an output some-
where between −1 and +1 that is sent down the line to
the output node.

The signal from the hidden node is multiplied by
weight w5, which is added at the output node to the
product of the initial inputs times weights w1 and w4.
Bias b1 is also added to the sum. Here again all initial
weights and biases are set between −3.5 and +3.5. This
output is again passed through our activation function,
with final output > 0 treated as a signal to open the
mouth, for example, and an output ≤ 0 as not opening
the mouth. With different weight settings, this simple
multilayered structure is adequate to represent all 16
Boolean functions. 

The training algorithm, appropriate to nets with
this structure,6 can be illustrated in terms of the single
quadrant in Figure 14. We operate our net feed-
forward to obtain a final output o of −1 or +1. We

calculate an output error information term δo = (t − o)
in terms of o and our target t. We apply δo directly
to calculate changes in weights w1 and w4 on lines
feeding straight from inputs. With a learning rate l set
at 0.02 throughout, ∆w1 = l × δo × is1, where is1 is the
input of sound 1, with a similar calculation for w4 and
b1. The weight change for w5 is calculated in terms of
the signal that was sent down the line from hidden to
output node in the feed-forward operation of the net:
∆w5 = l × δo × oh, where oh is output of the hidden unit.

Weight changes for w2 and w3 are calculated by
backpropagation. We calculate an error information
term δh = w5 × δo × f′ (ih), where f′ (ih) is the derivative
of our activation function applied to the sum of
weighted inputs at our hidden node. Changes in
weights w2 and w3 are then calculated in terms of δh

and our initial inputs: ∆w2 = l × δh × is1, with a similar
treatment for w3 and b2. Once all weight and bias
changes are calculated, they are simultaneously put
into play: wnew = wold + ∆w for each of our weights and
biases. 

We wanted to assure ourselves that our net structure
was satisfactorily trainable to the full range of
Booleans. The convergence theorem for standard back-
propagation on multi-layered and hierarchically uni-
form neural nets shows that a neural net with a sufficient
number of nodes in a hidden layer can be trained to
approximate any continuous function to any arbitrary
accuracy (Fausett 1994; White 1990). Our nets are not
hierarchically uniform, however; they employ only a
single hidden node, and our training is to the Booleans
rather than a continuous function. Is the training algo-
rithm outlined here adequate to the task?

With minor qualification, the answer is yes. We
ran groups of 4,000 initial random sets of weights in
the interval between −3.5 and +3.5 for a quadrant of
our net. Training for each set of weights was to each of
the 16 Boolean functions, giving 64,000 training tests.
Trainings were measured in terms of “epochs,” sets of
all possible input configurations in a randomized order.
Our results showed successful training to require an
average of 16 epochs, though in a set of 64,000
training tests there were on average approximately 6
tests, or 0.01%, in which a particular weight set would
not train to a particular Boolean in less than 3,000
epochs.7 As those familiar with practical application of
neural nets are aware, some weight sets simply “don’t
train well.” The algorithm outlined did prove adequate

Figure 15 Activation function.

f (x) = − 1 equivalent to2
1 + exp (−x)

1 − exp (−x)
1 + exp (−x)
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for training in 99.99% of cases involving random
initial weight sets and arbitrary Booleans.

For the sake of simplicity we have outlined the
basic structure of our nets and our training algorithm
in terms of an isolated quadrant. Our nets as a whole
are four times as complicated, of course, with two
lobes of two quadrants each (Figure 16).

Each of our neural nets employs a total of 20
weights, plus eight biases, requiring a total of 28 vari-
able specifications for each net at a given time. In the
networks of previous sections, we used discrete values
for our weights: Weights could take on values only at
1.0 intervals between −3.5 and +3.5. For the simple
learning rule used this was a useful simplification.
Backpropagation, however, demands a continuous and
differentiable activation function and will not work
properly with these “chunked” approximations. Here,
therefore, our individual nets are specified at any time
in terms of 28 real values in the range between −3.5
and +3.5. Each quadrant is capable of 16 different out-
put patterns for a complete cycle of possible inputs,
and our sample space is expanded to 65,536 distinct
behavioral strategies.

Here as before we can code our behavioral strate-
gies in terms of binary strings. Pairs of digits such as
01 represent a lobe’s output for a single pair of inputs.
A coding 00 01 01 11 can thus be used to represent
output over all possible pairs of inputs to a lobe: (−1,
−1), (−1, +1), (+1, −1), and (+1, +1). A double set
01111000 00100011 serves to represent the behavior
of both lobes in a network as a whole.

Of the 65,536 behavioral strategies that can thus
be encoded, there are precisely two that qualify as
“perfect communicators.” The pattern 00011011
00011011 represents an individual that makes sound
1 whenever it is fed an reacts to sound 1 by opening its

mouth, makes sound 2 whenever it is hurt and reacts to
sound 2 by hiding. It will both hide and open its mouth
when it hears both sounds and will make both sounds
when both hurt and fed. Pattern 00100111 00100111
represents an individual with a symmetrical behavior in
which only the sound correlations are changed. This
second individual makes sound 2 when it is fed and
reacts to sound 2 by opening its mouth, makes sound 1
when hurt and reacts to sound 1 by hiding.

There are also variants on the pattern of perfect
communicators that differ by a single digit in their
encoding. Those that play the most significant role in
runs such as those below are “right-hand variants,”
which differ from one or the other of our perfect com-
municators in just one of the last two digits, applicable
only on those rare occasions when an individual is
both fed and hurt at the same time. Patterns 00011011
00011010 and 00011011 00011001 differ from a per-
fect communicator in that they each make just one
sound rather than two in the case that they are simul-
taneously fed and hurt. Patterns 00100111 00100110
and 00100111 00100101 vary from our other perfect
communicator in the same way. For our two “perfect
communicators” there are thus also four minimally
distinct “right-hand variants” out of our 65,536
behavioral strategies.

We initially randomize all 28 weights as real val-
ues between −3.5 and +3.5 for each of the neural nets
in our array. Other details of the model are as before:
numbers of food sources and predators, gains and
losses, energy costs, the stochastic noise of an imper-
fect world, and partial training on the highest-scoring
neighbor. What differs here is simply the structure of
the nets themselves, the full sample space of behav-
ioral strategies, and training by the backpropagation
algorithm outlined above.

Figure 16 The full architecture of our neural nets, showing inputs, outputs, hidden nodes (dots), weights, and biases.
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Full training by backpropagation normally
requires a large number of epochs, each consisting of
the complete training set in a randomized order.
Here, however, we use only a single training epoch.
At the end of each 100 rounds, individuals find any
neighbor with a better score and do a partial training
on that individual’s behavior. Training uses a com-
plete set of possible inputs for each quadrant, in ran-
dom order, and takes the more successful neighbor’s
behavioral output for each pair of inputs as target.
This cannot, of course, be expected to be a full train-
ing in the sense that would make behaviors match;
training using a single epoch will typically shift
weights only to some degree in a direction that
accords with the successful neighbor’s behavior.
Often the resulting behavior will match neither the
initial behavior of the “trainee” nor the full behavior
of its more successful neighbor. In the run outlined
below, for example, there are no perfect communica-
tors in the initial randomized array. One version of
perfect communicator (00100111 00100111) first

appears by partial training in the 2nd century; the
other is “discovered” in the 10th century.

Figure 17 shows a typical result with one epoch
of training over the course of 300 centuries. Rather
than plotting all 65,536 behavioral strategies, we have
simplified graphs by showing only those strategies that
at one point or another appeared among the top 20 in
the array. Here the two strategies that emerge from a
sample space of 65,536 are our two “perfect commu-
nicators.” Starting from a randomized configuration it
is also possible, however, for one or another “right-
hand variant” to play a significant role as well. 

Although one might expect the emergence of
perfect communicators to be progressively strength-
ened by increased numbers of trainings—using two
training epochs, four, or eight in place of just one, for
example—this turns out not to be the case. Figure 18
shows the result of using two training epochs instead
of one from the same initial randomization. With two
training epochs our “perfect communicators” again
emerge, this time accompanied by a single “right-hand

Figure 17 Emergence of perfect communication using backpropagation in an array of randomized neural nets. One
training epoch used, 300 centuries shown.
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variant,” but the progression as a whole seems much
less steady. Figure 19 shows the result of increasing
the number of training epochs to four. Here neither
perfect communicators nor right-hand variants
emerge, swamped by the rapid growth of what on
analysis seems a very imperfect strategy.

It is our impression that runs using increasing
numbers of training epochs show the negative impact
of intensive training. With increasing numbers of
training epochs, individuals will more exactly match
the behaviors of their successful neighbors; one con-
sequence of that more perfect learning is a less ade-
quate exploration of alternative behavioral strategies,
including strategies that might be represented by
neither a cell nor its immediate neighbors. In
Figure 19, for example, it appears that intensive train-
ing quickly fills the array with clones of a strategy that
simply happens to be somewhat more successful than
its neighbors early on, despite the fact that it is still a
very imperfect communicator. The imperfect learning
of merely partial training, in contrast, allows a

learning analogue to genetic mutation. With a single
training epoch, perfect communicators quickly
develop within a randomized array that initially con-
tains none. As Nowak, Plotkin, and Krakauer (1999)
note with regard to an otherwise very different model,
“language acquisition should be error-prone” (p. 153).

Some further support for such a hypothesis is pro-
vided by breaking from the completeness of regimented
epochs to train less rather than more. In a final variation
we train in terms of small numbers of randomized sets
of inputs, without any guarantee of covering all input
possibilities and indeed without any guarantee against
redundancy. Starting from the same initial configuration
as before, Figure 20 shows the result of using just two
randomized trainings of this sort in place of a training
epoch. With just two trainings development is some-
what slower than with the four trainings of a single
epoch in Figure 17, but here again it is our two perfect
communicators that clearly emerge.

The basic pattern we have tracked with simple
proto-nets and perceptrons in earlier sections appears

Figure 18 Two training epochs: a rockier development to perfect communication and one right-hand variant.
Three hundred centuries shown.
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here as well, instantiated in the more complete
behavioral range of richer neural nets trained using
backpropagation. The central lesson is the same
throughout: that simple learning routines are sufficient
for the emergence of communication in spatialized
arrays of randomized neural nets. This holds even
when the environment is one in which all gains from
communication reflect only individual advantage:
where there is no reward for communication per se and
indeed where there is a penalty for signaling. In a spa-
tialized environment of wandering food sources and
predators, randomized arrays of neural nets learn to
communicate. 

6 A Philosophical Conclusion

In previous work we have shown an evolution of com-
munication through mechanisms of imitation (Grim
et al., 2000) and by means of a spatialized genetic
algorithm (Grim et al., 2001). Here our conclusion is

that learning algorithms are also adequate for the
emergence of communication: that in spatialized
arrays of a range of different types of neural nets,
simple patterns of signaling emerge and dominate
using standard learning algorithms.

In this and earlier studies what we have seen is that
(1) basic capabilities for communication—the ability to
make and react to arbitrary sounds, for example,
together with (2) evolutionary pressure in terms of food
gains and predator losses and (3) a mode of strategy
change in some sense bootstrapping to the behavior of
locally successful neighbors, are together sufficient for
the emergence of communities that share a basic signal-
ing system. It does not seem to matter whether strategy
change is by pure imitation (Grim et al., 2000), genetic
recombination with code from successful neighbors
(Grim et al., 2001), or the learning algorithms explored
here using neural nets. In a spatialized environment, com-
munication emerges with any of these localized modes of
strategy change.8 The emergence of communication is
not picky about its methods.

Figure 19 Four training epochs: Swamped by quick cloning of imperfect strategies, no perfect communicators or right-
hand variants appear. Three hundred generations shown.
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Genetic algorithms are often conceived as analogues
for physical genetics, whereas the delta rule and
backpropagation are thought of as models for learning.
If thought of in these terms, the lesson seems to be that
simple patterns of communication can emerge either
by physical genetics or cultural learning. We are not
convinced, however, that the formal mechanism of
genetic algorithms need be thought of as applicable
solely to physical genetics. Codes in recombination
might be taken instead to represent cultural strategies
(“memes”) that are partially transmitted and combined
(Grim et al., 2001). Nor are we convinced that the
learning algorithms typical of neural nets must always
be thought of as analogues of cultural learning. In
some cases it might be better to view application of the
delta rule and backpropagation simply as techniques
for strategy change or for exploration of a space of
available strategies. Whether accomplished by means
of genetic algorithm or backpropagation on neural

nets, physical genetics or psychological learning, the
emergence of communication might properly be seen
as a general process facilitated by the environmental
pressures of a spatialized environment.

We suggest that the work above holds a potent
philosophical lesson regarding the nature of meaning.
In both the tradition of ideational theories of mean-
ing (Aristotle, ca 300 BC/1971; Fodor, 1975; Hobbes,
1651/ 1997; Locke, 1689/1979), and in much previous
modeling work (Hutchins & Hazlehurst, 1995; Parisi,
1997; Levin, 1995; Livingstone, 2000; Livingstone &
Fyfe, 1999; Nowak & Krakauer, 1999; Nowak,
Krakauer, & Dress, 1999; Nowak et al., 2000; Nowak,
Plotkin, & Krakauer, 1999), the “meaning” of a sound
or gesture is sketched in terms of a correspondence
between sound and some internal representation. That
picture of meaning is much less plausible here. In the
current model, learning proceeds throughout in terms
of weight shifting toward a match to the behavioral

Figure 20 Emergence of perfect communication using backpropagation in an array of randomized neural nets. Two
randomized trainings used, 300 centuries shown.
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strategy of a successful neighbor. When a community
of communicators emerges from an array of random-
ized neural nets, it is convergence to a behavioral
strategy that is crucial. 

In the model above, there is no guarantee that the
internal workings of behaviorally identical strategies
in two individuals are themselves identical. There
are in principle non-denumerably many neural config-
urations that may show the same behavioral strategy.
In training to match a neighboring “perfect communi-
cator,” a neural net may not only fail to match the
absolute values of its neighbor’s weights, but may not
even match its overall structure of relative weight bal-
ances. What arises in a community is a pattern of coor-
dinated behavior, but in evolving from an initially
randomized array of neural nets the coordinated
behavior need not be built on any uniform understruc-
ture in the nets themselves. There is thus no guarantee
of matching internal representations in any clear sense,
no guarantee of matching internal “meanings,” and no
need for internal matches in the origin and maintenance
of patterns of communication across a community. 

The basic philosophical lesson is a Wittgensteinian
one, here given a more formal instantiation and a
richer evolutionary background. “Meaning” in the pre-
sent model is essentially a coordination of cooperative
behavior in terms of sounds or gestures produced and
received. We take this to be an indication of the right
way to approach meaning both philosophically and
model-theoretically. “Meanings” are not to be taken to
be things, either objective things in the world or sub-
jective things in individual heads. Nor is meaning to be
read off in terms of some internal “mentalese” (Fodor,
1975). Meaning is less individual and less internal
than that, more cooperative and more historical. To
understand meaning is to understand the historical
coordination of a particular type of cooperative behav-
ior. Although we are no fans of his carefully crafted
obscurity, we think this is in accord with the general
Wittgensteinian lesson that “to imagine a language
means to imagine a way of life” (1953, p. 19).

Notes

1 For a more complete outline of rival philosophical
approaches see Ludlow (1997).

2 It is also possible, of course, that different aspects of
meaning may call for different approaches. There are clearly

compositional aspects of full-fledged languages, for
example, that a model as simple as ours will not be able to
capture.

3 In this simple model, in fact, neither weights nor outputs
can equal zero.

4 Where an initial randomization does happen to contain a
single cell for a “perfect communicator,” moreover, that
strategy is often extinguished in the second or third gener-
ation; a lone “perfect communicator” is not guaranteed
any particular advantage, and in many situations suffers a
significant disadvantage because of energy costs. In such
arrays perfect communication re-emerges at a later point
by partial training.

5 It is also possible for one of our two perfect communica-
tors to predominate simply because it appears first and
quickly occupies territory.

6 We are deeply indebted to Laurene Fausett for helpful cor-
respondence regarding training algorithms for nets of the
structure used here. Our simple net combines perceptron-
like connections (along weights w1 and w4) with crucial use
of a single hidden node; it will be noted that the training
algorithm also combines a perceptron-like training for w1,
w4, and w5 with full backpropagation to update w2 and w3.

7 Those Booleans to which training was not possible were in
all cases exclusive “or” or the biconditional. We also
explored nonstandard forms of backpropagation that did
prove adequate for training 100% of our initial weight sets
to each of the 16 Booleans. Final results were very similar
to those outlined.

8 Although we have some hypotheses, we cannot yet claim
to know precisely what it is about spatialization that favors
either cooperation (Grim, 1995, 1996) or the triumph of
communicators over parasitic variants here and in earlier
studies (Grim et al., 2000, 2001). A more analytic treat-
ment of spatialization remains for further work.
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