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ABSTRACT. Predicates are term-to-sentence devices, and operators are sentence-to- 
sentence devices. What Kaplan and Montague's Paradox of the Knower demonstrates is 
that necessity and other modatities cannot be treated as predicates, consistent with 
arithmetic; they must be treated as operators instead. Such is the current wisdom. 

A number of previous pieces have challenged such a view by showing that a predicative 
treatment of modalities need not raise the Paradox of the Knower. This paper attempts 
to challenge the current wisdom in another way as well: to show that mere appeal to 
modal operators in the sense of sentence-to-sentence devices is insufficient to escape the 
Paradox of the Knower. A family of systems is outlined in which closed formulae can 
encode other formulae and in which the diagonal lemma and Paradox of the Knower are 
thereby demonstrable for operators in this sense. 

P r e d i c a t e s  a r e  t e r m - t o - s e n t e n c e  dev i ce s :  f u n c t i o n s  t h a t  t a k e  t h e  t e r m s  

o f  a l a n g u a g e  as i n p u t  a n d  r e n d e r  s e n t e n c e s  (o r  o p e n  f o r m u l a e )  as 

o u t p u t .  S e n t e n t i a l  o p e r a t o r s  o r  c o n n e c t i v e s ,  o n  t h e  o t h e r  h a n d ,  a r e  

s e n t e n c e - t o - s e n t e n c e  dev i ce s :  t h e y  t a k e  s e n t e n c e s  (o r  o p e n  f o r m u l a e )  

as i n p u t  a n d  r e n d e r  s e n t e n c e s  (o r  o p e n  f o r m u l a e )  as o u t p u t .  Such  at  

l eas t  is t h e  c u r r e n t  w i s d o m .  Q u i n e ' s  ' N e c '  is i n t e n d e d  as a p r e d i c a t e .  

T h e  f a m i l i a r  ' [2 '  o f  m o d a l  log ic ,  in c o n t r a s t ,  is an  o p e r a t o r .  2 

A n o t h e r  c l a i m  tha t  a p p e a r s  as p a r t  o f  t h e  c u r r e n t  w i s d o m  is this:  t ha t  

w h a t  K a p l a n  a n d  M o n t a g u e ' s  P a r a d o x  o f  t h e  K n o w e r  d e m o n s t r a t e s  is 

t h a t  n e c e s s i t y  a n d  o t h e r  m o d a l i t i e s  c a n n o t  b e  t r e a t e d  as p r e d i c a t e s ,  

c o n s i s t e n t  w i t h  a r i t h m e t i c .  T h e y  m u s t  b e  t r e a t e d  as s e n t e n t i a l  o p e r a t o r s ,  

i n s t e a d .  3 I n  M o n t a g u e ' s  w o r d s ,  

if necessity is to be treated syntactically, that is, as a predicate of sentences, . ,  then 
virtuaIly all of modal logic, even the weak system $1, must be sacrificed. 

This is not to say that the Lewis systems have no natural interpretation. Indeed, if 
necessity is regarded as a sentential operator, then perfectly natural model-theoretic 
interpretations may be found. (Montague [1963]/1974, p. 294) 

In  P u t n a m ' s  w o r d s ,  

there is no paradox associated with the notion of necessity as long as we take the '[]' as 
a statement connective (in the degenerative sense of 'unary connective') and not - in 
spite of Quine's urging - as a predicate of sentences. . .  (Putnam [1967]/1983, p. 308) 4 
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A number of results indicate that this current wisdom regarding 
predicates, operators, and the Paradox of the Knower is at least seri- 
ously incomplete. Brian Skyrms (1978), Tyler Burge (1978, 1984), C. 
Anthony Anderson (1983), and J. des Rivi6res and H. Levesque (1986) 
have pointed out that not all treatments of necessity and similar modali- 
ties as predicates wilt fall victim to the Knower. Limit the expressive 
power of such predicates in certain ways, in particular, and they will 
mimic the behavior of standard operators enough to escape the Paradox 
of the Knower. 5 

In what follows I want to sketch some results which suggest that 
the current wisdom is incomplete in another respect as well. Just as 
predicative treatments of modality don't necessarily fall victim to the 
Paradox of the Knower, sentential operators don't necessarily escape 
it. In systems with certain expanded expressive resources, in particular, 
the diagonal lemma and the Paradox of the Knower will not be limited 
to predicates: they will be demonstrable for sentential operators as 
well. 

In Sections 1-3, I introduce a family of systems around a conveniently 
simple example Q+.  Relative consistency is demonstrated for Q+ in 
Section 4. In Section 5, I offer a form of the diagonal lemma for such 
systems, and in Section 6 construct the Paradox of the Knower in terms 
of operators. Some generalizations are offered in conclusion. 

Here a reservation regarding terminology should be noted, however. 
As indicated above, the work of Skyrms through des Rivi6res and 
Levesque relies on the construction of systems in which certain predi- 
cates behave enough like standard operators to escape the Paradox of 
the Knower. The core of the work that follows is the construction of 
systems in which certain sentential operators have enough of the charac- 
ter of predicates to fall victim to the Paradox of the Knower. But it 
might then be charged that des Rivi6res and Levesque's 'predicates' 
are merely operators in disguise, or that nay 'operators' are really 
predicates. 

There is, I think, something to be said for this way of characterizing 
both previous work and that which follows. It should be noted, how- 
ever, that such an approach would still demand that we sacrifice a part 
of the common wisdom. If des Rivi6res and Levesque's predicates are 
to be written off as operators or my operators are to be written off as 
predicates, it's clear that the distinction between predicates and oper- 
ators can't be as clear or clean as the common wisdom seems to suppose. 
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In particular, predicates and operators can't be said simply to be term- 
to-sentence and sentence-to-sentence devices, respectively. 

More fundamentally, what the work that follows seems to indicate 
is that the essential difference between systems which fall victim to the 
Paradox of the Knower and those which avoid it is not simply the 
syntactical form of functions such as 'Nec' and 'D'.  The essential differ- 
ence is, rather, the expressive power that systems at issue allow such 
functions, whatever their syntactical form. 

1. S Y S T E M S  A T  I S S U E :  I N I T I A L  S P E C I F I C A T I O N S  

In what follows I want to consider standard systems broadened to 
include (1) a restricted form of propositional quantification and identity, 
and (2) additional axiomatic machinery for certain expanded powers of 
representation. The particular restrictions on propositional quantifi- 
cation and identity at issue and the purpose and form of the additional 
axiomatic machinery will be specified below. 

Here it's convenient to start with a particularly simple example, 
Q + ,  built on the foundation of system Q of Robinson arithmetic. It 
should be noted, however, that a broad range of systems are at issue 
and that basic results do not ultimately depend on the use of systems 
of number theory in particular. With minor variations noted at certain 
points, all basic results will hold, for example, for systems dealing 
entirely with sentential matters. 

In order to construct the sample system Q+ we start with the standard 
symbolism and grammar for Q. To the logical symbols of Q we add 
propositional variables p~, P2, P3 . . . . .  To the non-logical symbols we 
add a two-place propositional operator C), which will eventually be 
used to express diagonalization. To the standard grammar for Q we 
add the following: 

Let a propositional expression be any closed formula or any proposi- 
tional variable, and only these. 

(GI) 
(G2) 
(G3) 

(G4) 

If el and e2 are propositional expressions, (e~ = e2) is a wff. 

If el and ea are propositional expressions, O (el, e2) is a wff. 

If P is a wff and p is a propositional variable, then Vp(P) is 
a wff. 

There are no other wffs. 6 
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I envisage the standard axioms and rule for Q in the following form: 

For any wffs P, Q, and R, any individual variables x and y, and any 
term t: 

I. Propositional schemata 
(A1) (P ---> (Q ---> P)). 
(A2) ((P ---, (Q ---> R)) ---> ((P ~ Q) -+ (P --~ R))). 
(A3) ( ( ~  Q ~  - P )  ~ ( P ~  Q)). 

II. Schemata for first-order quantification 
(A4) (Vx(P) ---> P(t/x)), where P(t/x) is the result of substituting 

in P term t for all free occurrences of x, and where t is a 
term free for x in P, 

(A5) (P ~ Vx(P)), where x does not occur free in P. 
(A6) (Vx(P -+ Q) --> (Vx(P) ~ Vx(Q))). 
(A7) Vx(P), where P is an axiom from (A1)-(A7),  inclusive. 

III. Schemata for first-order identity 
(AS) Vx(x = x). 
(A9) All closures of: ((x = y) ~ (P ~ Q)), where Q is just like 

P except that at one or more places where x occurs free 
in P, y occurs free in Q. 

IV. Schemata for arithmetic 
(alO) VxVy((x' = y ' )  ---> (x = y)). 
( A l l )  Vx- (0  = x'), 
(A12) Vx( - (x = 0)---> 3y(x = y')). 
(A13) Vx(x + 0 = x). 
(A14) VxVy(x + y')  = (x + y)'). 
(A15) Vx(x. 0 = 0). 
(A16) VxVy(x. y' = (x. y) + x). 

RMP (modus ponens): Q may be inferred from (P --+ Q) and P. 

The axioms and rule for Q+  can then be specified as follows. We 
take all of the above as applicable to wffs of Q + ,  except that (A7) 
must be modified to read: 

(A7') Vx(P), where P is an axiom from (A1)-(A7')  or (A17)- 
(A20), inclusive. 7 

We now add: 

For any wffs P, Q, and R, any individual variables x and y, any 
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propositional variables p and q, any term t, and any propositional 
expression e: 

V. Schemata for propositional quantification 
(A17) (Vp(P) ~ P(e/p)), where P(e/p) is the result of substitut- 

ing in P a propositional expression e for all free occur- 
rences of p, where e is free for p in p.8 

(A18) (P ~ Vp(P)), where p does not occur free in P. 
(A19) (Vp(P ~ Q) ~ (Vp(P) -~ Vp(Q))). 
(A20) Vp(P), where P is an axiom from (A1)-(A7') or (A17)- 

(A20), inclusive. 

VI. Schemata for propositional identity 
(A21) Vp(p = p). 
(A22) All closures of: ((p = q ) ~  (P--* Q))9 where Q is just 

like P except that at one or more places where p occurs 
free in P, q occurs free in Q. 

Here the character of restrictions on propositional quantification and 
identity should be clear: by (A17), only propositional variables and 
closed formulae are permitted in instantiation for propositional vari- 
ables. Thus Q+ is to this point an extension of Q with propositional 
quantification and identity, instantiation for propositional variables 
being restricted to closed formulae and propositional variables. In gen- 
eral we will consider systems broadened to include propositional quanti- 
fication and identity restricted in this sense. 

In order to complete Q+,  we must also include axiomatic machinery 
for certain expanded powers of representation. Let me first sketch a 
notion of functions of formulae and a general strategy for representing 
effectively calculable functions of formulae within a system such as 
Q +. I will then introduce the particular function of formulae that is to 
be represented within Q +. 

2. R E P R E S E N T I N G  F U N C T I O N S  O F  F O R M U L A E  

Recursive functions of numbers, representable in Q, are of course 
familiar.l° Here we introduce a similar notion of functions of formulae 
- in particular, functions of closed formulae (henceforth also 'c-formu- 
lae'), which take closed formulae as arguments as values. We will 
be concerned in particular with effectively calculable functions of c- 
formulae. 
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We will say that an n-place function f of c-formulae is represented in 
a system T if there is a formula D ( p 1 , . . .  ,p,,  Pn+i) such that for any 
closed formulae cl . . . .  , ca, c, if f ( c l , . . .  , c,) = c, then 

}-TVpn + I ( D ( c l , . . . ,  cn, p~+ 1) - - p , + l  = c). 11 

In what follows only one-place functions of c-formulae will in fact be 
used. 

We can now introduce a general strategy for building axiomatic 
machinery in order  to represent such functions within certain systems. 

We assume a system with at least the syntax, axioms, and rule so far 
outlined for Q +, and suppose an effectively calculable one-place func- 
tion f of c4ormulae we wish to represent.  We also assume some parti- 
cular G6del numbering for all formulae of the system. To each closed 
formula c~, as argument f_or f ,  and each ca, as value, will thus correspond 
G6del  numbers cl and c2. 

Consider now a procedure that starts with a number  c~, decodes it 
as a formula c~, calculates our function f for cl as argument, giving us 
a formula ca, and encodes ca as a number  ca. Since G6det  encoding 
and decoding are effective and f has been assumed effectively calcu- 
lable, this whole procedure will be effective as well. 

Given Church's thesis, then, there will be a recursive function f '  of 
numbers such that f '  (cl)  = ca will hold just in case f (c l )  = ca for our 
chosen f.12 All recursive functions of numbers are represented in Q 
and are represented by the same formulae in any extension of Q.13 
There  will then be a formula D of Q and so of the system at issue such 
that for any cl and ca, if f '  (cl) = c 2 ,  then 

~- Vx(D(cl,  x) = x = c2), 

where el and cz are numerals within the system for cl and ca, respec- 
tively. 

In order  to represent our chosen function of formulae f within such 
a system, let us add as axioms all instances of the following schema: 

Vp(O(cl ,  p) -- p = c2) ~- Vx(D(cl, x) --- x = ez). 

The left halves of instances of this schema may be thought of as proposi- 
tional quantifications over closed formulae; the right halves as individ- 
ual quantifications over their corresponding G6del numbers. Intuitively 
the strategy as a whole might then be thought of as 'reading off '  (or 
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'reading up') representation of an effectively calculable function of c- 
formulae from representation of a corresponding numerical function. 

For any c-formulae cl and c2, if f (c l )  = cz, the following will now be 
a theorem of our system: 

Vp(©(cl ,  p) -= p = c2), 

and thus our chosen function f will be represented. Although we have 
confined ourselves here to a one-place function f ,  the same strategy 
will clearly serve for any n-place function of c-formulae. 

On the basis so far outlined, we might choose to introduce axiomatic 
machinery for representation of any effectively calculable function of 
closed formulae. In building the particular system Q +, I want to intro- 
duce just one such function. 

Although we have here used the familiar number-theoretic capacities 
of our basic system Q in order  to introduce representation of functions 
of closed formulae, it should be noted that it is the latter that is 
important for the results that follow. Despite our use of Q +  as a 
convenient example throughout,  those results are thus not tied directly 
to number theory; they will hold as well for systems in which effectively 
calculable functions of closed formulae are represented directly rather 
than by way of representation of numerical functions. For these, of 
course, a simpler axiomatization directly in terms of © would be pos- 
sible. 

3. C O U N T E R - F O R M U L A E  A N D  D I A O O N A L I Z A T I O N  

We continue to consider as an example a system with the syntax and 
axioms so far outlined for Q+ .  By G6del  numbering, of course, all 
formulae of such a system can be recoverably encoded as numerals. 
For  a broad range of systems, however,  it is also the case that all 
formulae can be recoverably encoded as closed formulae. 

In general we assign the rth element cr of a chosen enumeration of 
c-formulae to the rth element fr of a chosen enumerat ion of all formulae 
as the latter's counter-formula.14 Given any pair of such enumerations, 
each formula will be recoverably encoded as a closed formula much as 
it is more standardly encoded as a G6del  number  within standard 
systems, is 

For  our sample system Q + ,  we will assume as given a particular c- 
formula encoding of this type as well as a particular G6del numbering. 
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For the moment we will indicate the counter-formula of a formula fj 
as cj. At  a later stage an alternative symbolism proves more perspicu- 
ous; there we will indicate a counter-formula by double overlining, such 
that A will stand in for the counter-formula of A. 

For a formula fj and its counter-formula q,  let us specify the c- 
diagonalization of fj as the expression: 

3p (p = q & fj). 

Informally, if fj contains just the propositional variable p free, the c- 
diagonalization of f~ will be a sentence that 'says that '  fj holds of its 
own counter-formula q. 

Consider now a function diag ° of closed formulae such that if the c- 
diagonalization of a formula fj is a formula fk, diag°(q) = Ck. We will 
refer to diag c for fairly obvious reasons as a c-diagonalization function 
on c-formulae. 

Clearly diag c is effectively calculable, as are G6del encoding and 
decoding. Following the reasoning of the preceding section, then, there 
will be an effectively calculable numerical function d such that for any 
c-formulae cl and c2 and corresponding G6del numbers c~ and 
c2, d (c-~) = c-~ will hold just in case diagC(cO = c2.16 By Church's thesis, 
d will be recursive, and so will be represented in Q and by the same 
formula in any extension of Q. 

For some formula D of Q and of the system at issue, then, for any 
c~ and c2 such that d(c~) = c2, the following will be a theorem: 

Vx(D(cl, x) -- x = c2). 

In order to represent diag c, given syntax and axioms so far specified 
for Q + ,  we add all instances of the following axiom schema: 

VII. Schema for representing diag c 
(A23) Vp(© (ci, p) -= p = c2) = Vx(D(cl, x) ~ x = c2). 

This final axiom schema completes the specification for Q + ,  which 
can now be characterized as an extension of Q: (1) with propositional 
quantification and identity, instantiation for propositional variables re- 
stricted to closed formulae and propositional variables; and (2) in which 
a c-diagonalization function on c-formulae is represented. 

Though specified so as to incorporate all machinery necessary for the 
proofs that follow, Q +  is merely intended as an example from a broader 
family of systems. As noted above, the number-theoretical capacities 
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we have used to introduce certain features of Q+ are not strictly 
necessary; (A23) might be replaced with a simpler schema for diagonal- 
ization dealing directly in terms of c-formulae and ©, for example. In 
general, we will be concerned with a range of systems for which the 
two conditions above hold. 

4. CONSISTENCY 

One of the advantages of Q+ 's  simplicity is that it affords us a fairly 
simple relative consistency proof: if Q is consistent, so is Q+.  

Here the basic strategy is to introduce a 'dump' translation ' ~ ' which 
takes wffs of Q +  into wffs of Q. ' 4 '  converts wffs of Q+  to those of 
Q essentially by dumping formulae with propositional quantification, 
identity, and O down to formulae with simple individual quantification, 
identity, and formula D of Q. For the sake of brevity I omit details. 

Using such a translation it can be shown that: 
(1) For any P E WFFQ+, if P is an axiom of Q+,  then % $ (P); 

(2) For each P, Q, @ WFFQ÷, if ~-0 ~, (P--~ Q) and % $ (P), 
then % $ (Q), 

and thus 

(3) For any P E WFFQ+, if %+ P, then % ~ (P). 

Contradictory wffs of Q + become contradictory wffs of Q under ~ $ ' 
Were Q+ inconsistent, therefore, Q would be as well. I7 

Consider now a system Q + A, which is essentially Q+ with syntax 
broadened to include a one-place operator 'A' on closed formulae and 
propositional variables. We modify the grammar specified for Q+  
above by deleting our previous (G4) and adding: 

(G4) If el is a propositional expression, A(el) is a wff. 

(G5) There are no other wffs. 

(At)- (A23)  can then be rewritten for wffs of Q + A. 
Let diag ~ here be a c-diagonalization function of c-formulae for this 

system. Given a particutar_G6del numbering, let d be a numerical 
function such that d(cl) = c2 just in case diagC(cl) = c2. Let D'  be a 
formula that represents this d in Q and its extensions, and replace the 
'D' of (A23) with this 'D".  This completes our specification for Q + A. 



418 P A T R I C K  G R I M  

Q + A, like Q+,  will be provably consistent relative to Q. One form 
of the proof, in two steps, is as follows. 

We introduce a slight variation on Q +, system Q +' ,  in which all is 
as in Q+  except that formula D'  of Q rather than formula D appears 
in (A23). Q + '  will be provably consistent relative to Q using a variant 
on ' $ '  which uses D' in place of D. 

We also introduce a further translation ',lj/' that takes wffs of Q + A 
into wffs of Q + '  by everywhere replacing 'A(el) '  for propositional 
expressions el with '(el = el)'.~s It can now be shown that: 

(1) For any P E WFFQ+Za, if P is an axiom of Q + A, @(p) is 
an axiom of Q +';  

(2) For each P ,Q ,  EWFFQ+~, if k Q + , ~ ( P ~ Q )  and 
~-Q+,@(P), then ~-o+"~(Q); 

and thus: 

(3) For any P E  WFFo+zx, if ~-a+z~ (P) then ko+,,lJ,(P). 

Contradictory wffs of Q + A become contradictory wffs of Q +'  under 
'qJ,', and thus if Q+ '  is consistent so is Q + A. 

If Q is consistent, then so is Q + A. 

5 .  T H E  D I A G O N A L  L E M M A  

The diagonal lemma is of course familiar in the following form for 
systems S in which a numerical diagonalization is representable: 19 

For any formula B(y) of the language of S containing just the variable 
y free, there is a sentence G such that 

ksG : B ( 6 ) ,  

where G is the G6del number of G. 
For systems at issue here, the diagonal lemma is also demonstrable 

in a 'higher' form. For systems with propositional quantification and 
identity, instantiation for propositional variables restricted to closed 
formulae and propositional variables: 

Let T be a theory in which a c-diagonalization function of c-formulae 
is represented. Then for any formula B(q) of the language of T, 
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containing just the propositional variable q free, there is a sentence 
fk such that 

~-T fk ~ B(Ck), 

where Ck is the counter-formula of fk. 
The proof is as follows. Let 'diag °' name our c-diagonalization func- 

tion of c-formulae in T, and let O(p, q) represent that function. Then 
for any closed formulae cj and ck, if diag~(g) = Ck, 

~-T Vq(O(cj, q) -- q = Ck). 

Let formula fi be: 3q(©(p, q) & B(q)). fj is a formula of T with just 
the propositional variable p free. Its counter-formula will be g. 

Let fk be: 3p(p = q & 3q(©(p, q) & B(q)). fk'S counter-formula will 
be Ck. 

Since fk is logically equivalent to 3q(O(cj, q) & B(q)), we will have 

~-Tfk --= 3q(©(g ,  q) & B(q)). 

Since fk is the c-diagonalization of fj, 

diag ~ (q) = Ck. 

SO: ~-TVq(©(q, q) --= q = Ck), by the representability of diag9 
So: ~-T fk --= 3q(q = Ck & B(q)). 
SO: F" T fk ~ B(Ck) .20 
Here we should also perhaps note a form of Tarski's theorem. We 

will term * a counter-formula truth operator for T if for every sentence 
fi of the language of T, 

F-T fi ---= *Ci. 

If a system T meeting the specifications above is consistent, it can 
contain no counter-formula truth operator. For using ' - * '  as 'B' in 
the diagonal lemma, for some sentence fa: 

~-Tfa ~- ~'~g Ca. 

But then: F-T fa ~ *ca. 
And so: ~-T * G  -~ ~ ' ~ C a .  
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6. T H E  P A R A D O X  O F  T H E  K N O W E R  

Consider a system: (1) with propositional quantification and identity, 
instantiation for propositional variables restricted to closed formulae 
and propositional variables; (2) in which a c-diagonalization function 
of c-formula is represented; and (3) the syntax of which includes a one- 
place operator 'A'  on closed formulae. Q + A, for which a relative 
consistency proof was sketched in Section 4, can serve as a simple 
example. 

Here  the argument is more perspicuous if we shift symbolism slightly. 
Instead of using 'cj' to indicate the counter-formula of a formula fj, as 
above, we will use double overlining to indicate counter-formulae; 
will stand in for the counter-formula of a formula A. 

Within a system of the sort specified, 'A(A) '  is intended, perhaps, 
as 'the formula with counter-formula A is necessary', ' . . .  is in principle 
knowable' ,  ' . . .  is known by God' ,  or the like. On any of these readings 
it is tempting to add the following schemata: 

(1) A(~.) -+ A; 
(2) A(~);  
(3) I (A,  t~)--+. A(A)  ~ A(t~),  

where T is some convenient tautology and 'I(x, y)' represents the deduc- 
ibility relation for the system at issue. (For systems other than systems 
of number theory, (3) can be replaced with a schema giving us A(A) --+ 
A(t~) as an axiom whenever B is deducible f rom A.)  21 

With such apparently innocuous additions, however - and despite 
the fact that 'A'  is here a sentential operator in the sense of a sentence- 
to-sentence device - our system becomes inconsistent. 

The proof is as follows. From the diagonal lemma, with ' - A ( q ) '  
for 'B(q) ' ,  we have for some sentence S: 

k s -  (,). 

Now: 

kA(g) ---> S by (1) 
kA(g) --+ - A ( g )  by (*) 
k-A(g) 
kS by (*) 
k S --+ (T -+ S) for any T 
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I-T --> S 
T~-S 

kI(T, S) --~. ~(~)  -~ A(g) by (3) 
A(g) 

by (2) 

The fourth and last lines give us a contradiction. 
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7 .  S O M E  C O N C L U D I N G  O B S E R V A T I O N S  

The diagonal lemma and the Paradox of the Knower, then, are not 
merely a matter for predicates - they will hold for certain sentential 
operators within certain systems as well. 

How far do these results extend, and what do they ultimately have 
to tell us? Here let me offer a few brief observations 

Our basic results above have been outlined using as examples Q+ 
and Q + A: forms of system Q of Robinson arithmetic extended to 
include: (1) propositional variables in the context of operators O and 
A as well as = ; (2) in which axioms for propositional identity and 
propositional quantification and instantiation for propositional variables 
are restricted to closed formulae and propositional variables; and (3) 
in which a c-diagonalization function of c-formulae is represented. 

It is clear from the basic structure of the argument above, however, 
that these results can be generalized. As indicated throughout, the 
number-theoretic capabilities of our basic systems are not strictly neces- 
sary; basic results at issue will hold for systems in which a diagonali- 
zation function of closed formulae is represented directly, for example. 

In Q+ and Q + z5 it is the closed formulae of the system as a whole 
that serve as encoding counter-formuIae. There is, however, nothing 
sacrosanct about using all of these; any of various less inclusive classes 
of closed formulae would do as well. In initially exploring some of the 
territory above, for example, systems closely related to Q+ and Q + A 
were used which took as counter-formulae closed formulae exclusively 
of Q. 

In general, any denumerably infinite subset of the dosed formulae 
of such a system can serve the function of encoding. Propositional 
quantification must of course extend to that class of closed formulae, 
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in the manner  of Q + and Q + A, and a counter-formula diagonalization 
function in terms of that encoding must be represented. Given these, 
however, we will have essentially all the basic elements required to 
give us an operator  form of the diagonal lemma and the Paradox of 
the Knower. 22 

It is also important  to note some major limitations of these results, 
however. 

In terms of the Paradox of the Knower,  what we have shown with 
regard to systems such as Q +  is that inclusion of an operator  A with 
the following schemata - where A is the counter-formula for A on any 
of various encodings - can be expected to lead to contradiction: 

A(A) ~ A 
A(~) 
I(A, B) -->. A(A) -o A(I~). 

We have not shown, however,  that inclusion of a more familiar A 
operator  with these schemata will lead to contradiction in such a system: 

A (A) --~ A 
A(T) 
I(A, B) ----~. A(A) ~ A(B). 

Indeed the latter need not give us a contradiction. Where A and B are 
restricted to closed formulae, at least - as the grammar of Q + A 
would demand - an operator  with these schemata can be consistently 
incorporated in an extension of Q + A just as it can be consistently 
incorporated in simpler extensions of Q.23 

An operator  A(A) which functions directly on a non-encoded formula 
A can thus be consistently included where an operator  A ( ~ )  on a 
counter-formula encoding A cannot. This holds, moreover ,  despite the 
fact that A(A) and A ( ~ )  are both sentential operators in the sense of 
taking sentences as both argument and value, input and output,  and 
despite the fact that it is tempting to read the two operators and, thus, 
the two sets of schemata above as in some informal sense 'saying' the 
same thing. 24 

What generalizations can we draw regarding predicates and operators 
in the diagonal lemma and the Paradox of the Knower? 

If in line with current wisdom we take predicates to be simply term-to- 
sentence devices and take operators to be simply sentence-to-sentence 
devices, at least, the diagonal lemma and the Paradox of the Knower 
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will not be restricted to predicates: they will appear in full strength for 
certain operators in certain systems as well. 

Whether a sentence-generating function takes terms or sentences as 
arguments, then - whether it functions as a predicate or sentential 
operator in this sense - is not what ultimately determines whether it 
will give us a form of the diagonal lemma and the Paradox of the 
Knower. What does ultimately make such a difference seems to be 
rather the expressive capacity afforded a function of either type within 
a given system. 

In standard systems of arithmetic, for example, predicative sentences 
can 'reach around' so as to self-apply in a certain sense (or so as to 
apply to more complex formulae). Less metaphorically put: among the 
terms to which a predicate P can apply in such a system is a term x 
which encodes the sentence Px itself (or which encodes some more 
complex formula in which Px is embedded). This is of course the core 
of the diagonal lemma and, hence, the Paradox of the Knower in its 
standard form: the fact that for a given predicate P there will be a 
sentence F with a term-encoding t) such that f-F ~ P(F). By means 
of G6del number term-encoding and within the bounds of material 
equivalence predicative sentences are given an expressive range that 
extends in effect to self-application. 

Standard operator sentences in standard systems, in contrast, are 
expressively impoverished in precisely this regard: they cannot 'reach 
around' to self-apply or to apply to more complex formulae. The range 
of sentences to which a non-trivial operator A can apply on a given 
occasion does not extend as far as a sentence A expressing that appli- 
cation A(A) itself. The expressive range of standard operators in famil- 
iar systems is thus simply smaller than that afforded predicates in 
standard systems by means of encoding and representation of certain 
functions. 

As noted in the introduction, J. des Rivi6res and H. Levesque (1986) 
manage to insulate certain predicates from the Paradox of the Knower 
by explicitly restricting their expressive appticational range to that of 
familiar operators. Here, in contrast, we have introduced the diagonal 
lemma and the Paradox of the Knower for certain operators by effec- 
tively extending their expressive applicational range: by considering 
systems in which formulae can serve an encoding function and in which 
certain functions of encoding formulae are represented. 

The general lesson to be drawn seems to be that it is the effective 
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expressive power  of  a system - whether that power  appears in the form 
of predicates or operators - that lies at the real heart of  the diagonal 
l emma and related results. 

NOTES 

1 I am deeply indebted to Robert F. Barnes and Evan W. Conyers, without whom these 
ideas might not have germinated and certainly would not have grown. Many of the results 
offered here evolved in the course of mutual discussion and correspondence. I am also 
grateful to an anonymous reviewer for Synthese for many very helpful suggestions. 

The current paper contains the technical results promised in Footnote 25 of Grim 
(1988) and Footnote 26, Chapter 3, of Grim (1991). 
2 As a representative statement of the current wisdom on predicates and operators, see 
for example Reinhardt (1980). Classic characterizations of the basic distinction between 
predicates on the one hand and sentential operators or connectives on the other appear 
in Church (1956, p. 36), and Anderson and Belnap (1975, p. 477). I will use the term 
'sentential operator' - or simply 'operator' - in preference to 'sentential connective' 
throughout. 
3 In a nutshell, the standard Paradox of the Knower is as follows. Start with any system 
adequate for arithmetic, such as system Q of Robinson arithmetic, and extend the syntax 
to include a predicate 'K'. For a sentence 'A' ,  'K(A)' is intended perhaps as 'the sentence 
with G6del number A is necessary', ' . . .  is in principle knowable', ' . . ,  is known by God',  
or the like. Richmond Thomason lists other plausible candidates for a predicate 'K': 
' . . .  is certain', ' . . .  can be demonstrated', ' . . .  follows from what I know', 'logic alone 
suffices to es tabl i sh . . . ' ,  and ' . . .  is trivial' (Thomason 1977, p. 350). With any of these 
readings it is tempting to add the following schemata to our system, where ' I (L y)' 
represents the deducibility relation for the system at issue: 

K(A) --> A 

K(K(A) ~ A) 

I(,~, t]) --->. K(£)  ~ K(t~). 

With that addition, however, our system becomes provably inconsistent. 
The original result appears in Kaplan and Montague ([1960]/1974). A particularly nice 

exposition appears in Anderson (1983). As indicated in Sections 6 and 7, it is possible 
to strengthen the Knower slightly: provable inconsistency results even if the second 
schema is replaced merely with K(T) for any simple tautology T. 
4 A clear outline of the current wisdom regarding predicates and operators in the Paradox 
of the Knower also appears in introductory sections of Asher and Kamp (1989). 
s Skyrms, Burge, and Anderson all limit the expressive power of a predicate (or series 
of predicates) by imposing hierarchical constraints. Des Rivi6res and Levesque introduce 
predicates the range of which is quite explicitly mapped off corresponding operators. 
6 This may seem a peculiar way to introduce a grammar for propositional quantification; 
it is not, for example, that employed in Bull (1969), Fine (1970, 1977), and Kaplan 
(1970), and the wffs of Q + may seem an amputated set in comparison with those systems. 
Here, however, my aim is to keep Q+ as simple as possible, and I bring in essentially 
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only what is required for later proofs. This grammar allows us the fairly simple relative 
consistency proof for Q +  sketched in Section 4. 

' 3 '  and '&'  will be used as standard abbreviations and conventions for parentheses will 
occasionally be relaxed. 

See also note 9, however. 
In a more standard form, of course, we might group axioms (A7')  and (A20) at the 

end. 
s e is free for p in P iff no free occurrences of p lie within the scope of any quantifier 
Vq, where q is a variable in e. Since a variable can. occur free in a propositional expression 
e only if e is a propositional variable, however,  we might say simply 'e is free for p in P 
iff no free occurrences of p lie within the scope of any quantifier Vq, where e is a variable 
q ' ,  

9 In our original (A9) construed as an axiom of Q, 'closure' was intended as first-order 
closure where a first-order closure of A E WFF o is ~Vx l . . .  Vxn(A)n E WFF o, where 
<xl, • • . ,  xn) is an arbitrary permutation of the free individual variables in A. In (A9), 
rewritten for Q + ,  and in (A22) let 'closure' be understood as what might be termed 
'general closure', where a general closure of A ~ WFFQ+ is Wc~l. .  ~ V0~k(A) n ~ wf fQ+,  

where (cq . . . . .  CXk) is an arbitrary permutation of the free individual and propositional 
variables in A. This is a point important for the relative consistency proof I outline for 
Q+  in Section 4, and I am grateful to Evan W. Conyers for calling it to my attention. 
10 See, for example, Boolos and Jeffrey (1982, Chap. 14). 
11 Here  and throughout I follow Boolos and Jeffrey's format for defining representation. 
See Boolos and Jeffrey (1982, p. 158). 
12 For any number n which is not the G6del number of a c-formula we can let f '  (n) = 
v, where v is chosen so as not to be the GOdel number of any c-formuIa. This will obviate 

any need to deal with partial functions. 
1B See Boolos and Jeffrey (1982, p. 174). 
~4 Here  I use c~, cii, c i~ i , . . . ,  cr in order  to avoid confusion with c~, c2, c 3 , . . . ,  %, as 
employed in outlines of  representation elsewhere in the paper. Throughout the paper c~, 
c~, c3, . . . .  cn are used as variables for any c-formula, c~, c~i, ciii . . . .  , c~, in contrast, are 
to be envisaged as particular c-formulae indexed by their order  of  appearance in a given 
enumeration. In the following few paragraphs I use j and k as index variables, c /and  Ck 
are thus to be thought of as the jth and kth c-formulae of  our enumeration, respectively. 

As a formula, of  course, any closed formula ej of our enumeratio~ of c-formulae will 
also appear as some f~  in our enumeration of all formulae. In fact, such an m will be 
effectively determinable from j; m will equal g(j) for some recursive function g. 
15 Here  and throughout I have confined myself to closed formutae as counter- or encoding 
formulae. Use of closed and open formulae of a particular level is perhaps technically 
possible as well, but leads to at least interpretational complications. I have chosen to 
avoid these difficulties here. 
16 We can treat d as a total function by the mechanism of Note 12. 
17 Relative consistency proofs with this basic form but for simpler and more familiar 
systems appear in Church (1956) and Hunter  (1971). Similar proofs are also possible for 
systems richer than Q + in various ways. 
18 It would not suffice to replace '~(e~) '  with simply 'e~' here, since 'A(p) '  is a wff of 
Q + z~ but 'p '  is not a wff of Q + ' .  
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19 See, for example, Boolos and Jeffrey (1982, p. 173). 
2o Robert F. Barnes has suggested a proof for this form of the diagonal lemma assuming 
rewesentation not of a c-diagonalization function of c-formulae diag ° but of an instanti- 
ation function of c-formulae INST,  thereby avoiding formulae with free variables. Axio- 
matic machinery for representation of I N S T  can be introduced by essentially the same 
strategy outlined in Section 2. 

Suppose [] represents INST:  

~-TVp(N (ce, cg, p) ------ p = ch) 
whenever fh is the result of instantiating the outer propositional quamifier 
of f~ with %. 

Let fj be: VqVp(N(q, q, p ) ~  B(p)). 
Let fk be: Vp(® (q, q, p) ~ B(p)) 
Then: 

t-T fk--~ (N (Cj, Cj, Ck) --~ B(Ck)) 
~'T [] (% q, ck) -+ (fk ~ B(ck)) 
~T Vp(p = Ck -+ [] (Cj, cj, p)) 
~'T Ck = Ck "-"> [ ]  (Cj, Cj, Ck) 

~'TC k = C k 

~r [] (q, % Ck) 
eTfk--' B(ck) (*) 
t-T V p ( •  (q, q, p) ~ p = Ck) 
~T Vp(p = Ck ~ ((B(ck) ~ B(p))) 
FT Vp(N (% q, p) --+ (B(Ck) --+ B(p))) 
kx Vp(B(ck) -+ (• (% % p) -+ B(p))) 
?T B(Ck) --+ Vp(N (q, % p) --* B(p)), (**) 

i.e., t-x B(ck) --~ fk 
~-Tfk =--B(Ck) by (*), (**). 

2~ Here assumed schemata are in fact of a form weaker than those standardly introduced 
for the Knower, which would demand for (2) not simply &(T) for some convenient 

tautology T but the more complex and embedded A(A(~)--~ A) in particular (see for 
example Anderson (1983), Kaplan and Montague ([1960]/1974), and Grim (1991)). One 
lesson of the form of the proof below, due to Robert F. Barnes, is that this stronger 
assumption is not strictly necessary. 
22 See also Note 15. 
23 On the assumption that these are consistent, of course. 

With regard to consistently adding schemata for the Knower to a system such as 
Q, Montague appeals to "perfectly natural model-theoretic interpretations" (Montague 
[1963]/1974, p. 294). Evan W. Conyers has shown me an elegantly simple syntactical 
proof that if Q is consistent, so is an extension Qs with the standard Knower schemata. 
Conyers's proof uses an 'eraser function' which systematically purges formulae of the 
operator &. 

A similar eraser function wilt translate Q + s, an extension of Q+ in which these 
schemata appear restricted to closed formulae A and B, into Q+.  We have shown that 
Q+ is consistent if Q is, so Q + s will be consistent if Q is. 
z4 tt is tempting to read 'A(A) '  in the first schemata as ' the formula with counter4ormula 
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is necessary', for example, and to read 'zS(A)' in the second set as 'formula A is 
necessary', making it appear that the only difference between the two cases is how 
formula A happens to be referred to. 
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