
PATRICK GRIM

THE UNDECIDABILITY OF THE SPATIALIZED PRISONER’S
DILEMMA

ABSTRACT. In the spatialized Prisoner’s Dilemma, players compete against their
immediate neighbors and adopt a neighbor’s strategy should it prove locally supe-
rior. Fields of strategies evolve in the manner of cellular automata (Nowak and
May, 1993; Mar and St. Denis, 1993a,b; Grim 1995, 1996). Often a question arises
as to what the eventual outcome of an initial spatial configuration of strategies will
be: Will a single strategy prove triumphant in the sense of progressively conquer-
ing more and more territory without opposition, or will an equilibrium of some
small number of strategies emerge? Here it is shown, for finite configurations of
Prisoner’s Dilemma strategies embedded in a given infinite background, that such
questions are formally undecidable: there is no algorithm or effective procedure
which, given a specification of a finite configuration, will in all cases tell us whether
that configuration will or will not result in progressive conquest by a single strat-
egy when embedded in the given field. The proof introduces undecidability into
decision theory in three steps: by (1) outlining a class of abstract machines with
familiar undecidability results, by (2) modelling these machines within a particu-
lar family of cellular automata, carrying over undecidability results for these, and
finally by (3) showing that spatial configurations of Prisoner’s Dilemma strategies
will take the form of such cellular automata.

KEY WORDS: Undecidability, Prisoner’s Dilemma, cellular automata, game the-
ory, decision theory, computability.

1. INTRODUCTION

Each of the two players in the Prisoner’s Dilemma has an option to
cooperate or defect, with a standard payoff matrix awarding a reward
R of 3 points to each player for mutual cooperation, a penalty payoff
P of 1 point for mutual defection, a temptation T of 5 points for a
player who defects while his opponent cooperates, and the sucker’s
payoff S of 0 points to a player who cooperates while his opponent
defects. Technically any P;R; T and S satisfying T > R > P > S
and R > 1

2(S + T) characterize a Prisoner’s Dilemma, but the
particular values mentioned have become traditional and will be
used throughout.

Theory and Decision 42: 53–80, 1997.
c
 1997 Kluwer Academic Publishers. Printed in the Netherlands.

54 PATRICK GRIM

In the iterated Prisoner’s Dilemma choices of cooperation and
defection are repeated against the same opponent. Here general
strategies emerge: AllD, for example, which defects regardless of
the other’s play, AllC, which cooperates regardless, ‘grim’ strate-
gies which revert to constant defection once crossed, and tit for tat
(TFT), which begins by cooperating, cooperates in answer to a coop-
eration on the other side, and defects following a defection (Axelrod,
1984). In what follows, for the sake of clarity and generalizability,
infinitely iterated games will be used (Nowak, 1990; Nowak and
Sigmund, 1989, 1992, 1993). In cases in which the pattern of play
between players P1 and P2 becomes periodic the payoff for P1 from
an infinite game can be calculated as the average of P1’s gains over
the series of responses which is periodically repeated. The value
calculated for an infinite game is the limit towards which iterated
games of increasing length coverage; initial moves before periodic-
ity is established can be ignored. It should be clear that the central
results of later sections will also hold for finite games of sufficient
length.

The iterated Prisoner’s Dilemma has become a standard model for
the emergence of cooperation within a community of egoistic agents,
frequently cited for implications in both sociology and biology. What
will be at issue here is a spatialization of this familiar model, in
which a spatial array of players with different strategies is envisaged
interacting with their immediate neighbors. This is precisely the
kind of model obtained if competing strategies are instantiated as
an array of cellular automata (Wolfram, 1984, 1986; Toffoli and
Margolus, 1987; Demongeot, Golès, and Tchuente, 1985; Gutowitz,
1990; Nowak and May 1992, 1993; Mar and St. Denis, 1993a,b;
Grim 1995, 1996). Each cell of such an array is envisaged as playing
against each of eight neighbors and obtaining a local score. Each cell
then surveys its neighbors. If none has a higher score, it retains its
original strategy. If it has a neighbor or neighbors with higher local
scores, on the other hand, it converts to the most successful strategy.
The result is a model in which success is in all cases computed
against local competitors, with reproduction proceeding locally as
well – both features, it can be argued, which constitute a measure of
realism with regard to either biological or sociological application
(Grim 1995, 1996).

UNDECIDABILITY OF SPATIALIZED PRISONER’S DILEMMA 55

Figure 1. Conquest by TFT in a random array of 8 simple strategies.

Figure 1 shows progressive stages in the evolution of such an
array. The field is a 64 � 64 cell torus or wraparound array, started
on a random distribution of just eight simple strategies. The strategies
used here are those specifiable in terms of (i) an initial cooperation
or defection, (p) a specified response to cooperation by an opponent
on the previous move, and (q) a specified response to an opponent’s
defection on the previous move. Envisaged as ordered triples hi; p; qi
the eight strategies are the following:

h0; 0; 0i AllD

h0; 0; 1i Suspicious Tat for Tit

h0; 1; 0i Suspicious Tit for Tat

h0; 1; 1i

h1; 0; 0i C-then-allD

56 PATRICK GRIM

h1; 0; 1i

h1; 1; 0i TFT

h1; 1; 1i AllC

As indicated above, each player in the array is pitted in an infinite
game with each of its neighboring strategies and amasses a total score
from these local competitions. Each player then compares its score
with that of its neighbors; if any has a higher score it adopts the most
successful strategy in sight (or is replaced by the most successful
strategy, depending on one’s point of view). Should two or more
neighbors be tied for the highest score, one is chosen randomly.

The evolution in Figure 1 is typical for such an array, shown here
for generations 1, 3, 6, and 12. AllD and C-then-AllD seem the early
winners (shown using 50% gray and white, respectively). But as
these threaten to take over, clusters of TFT, shown in black, thrive
in their environment. In the end it is TFT which conquers all other
strategies in order to occupy the screen alone; by the twenty-second
generation the screen is entirely black. This is, of course, a nice
vindication of TFT’s robustness in a spatial context, parallel to the
classic Axelrod results in non-spatial contexts (Axelrod, 1984; Mar
and St. Denis, 1993a,b; Grim, 1995, 1996).

Although this is a standard result for a random configuration of
these eight strategies, however, it should be noted that conquest by
TFT is not inevitable. Figure 2 shows the evolution of an array with
the same initial proportions of these eight strategies but in which TFT
does not invade to conquest. In the evolution of this second array
AllD and C-then-AllD retain their dominance, quickly establishing
an equilibrium with each other and with occasional individual islands
of TFT and suspicious TFT. Figure 2 shows generations 1, 2, 3 and 5;
from this point on equilibrium is established and there is no further
change.

There is often a question, with regard to arrays of strategies in
the spatialized prisoner’s dilemma, whether one strategy or another
will grow to conquest (TFT as opposed to AllD, say) or whether
some equilibrium between different strategies will remain (Grim,
1995, 1996). With genuinely infinite arrays in mind, rather than
merely computer-convenient tori, the question might be posed as
follows: Given a particular initial configuration, will a single strategy
S eventually dominate any arbitrarily chosen finite area of the array?

UNDECIDABILITY OF SPATIALIZED PRISONER’S DILEMMA 57

Figure 2. Evolution to equilibrium dominated by AllD and C-then-AllD in an
array of the same strategies in same proportions.

It is clear from the simple examples above that the answer to such
a question may depend not merely on the strategies represented or
on their proportions but will be sensitive to the initial conditions of
their spatial arrangement as well.

Let us suppose a standard infinite background B in which arbi-
trary finite configurations of strategies are embedded. B might be a
uniform field consisting of a single strategy, for example, though that
background actually used below will be somewhat more complicat-
ed. Some finite configurations dropped into our chosen background
B may result in progressive conquest by a single strategy, ever grow-
ing outward like ripples in an infinite pool. Some may not, pulsing
periodically instead or locked in a perpetual equilibrium. The main
question at issue here is the following:

58 PATRICK GRIM

Q1. For any chosen infinite background B within a spatialized Pris-
oner’s Dilemma, is there an algorithm which will tell us in every case
whether or not an embedded finite array of strategies will result in
progressive conquest by a single strategy?

The work that follows answers Q1 decisively in the negative: there is
in principle no such algorithm. In that sense the spatialized Prisoner’s
Dilemma is formally undecidable.1

The central strategy of the proof is simple: to show that any of
a given class of abstract machines can be modelled by finite arrays
of strategies in a chosen background B, and that a relative of the
halting problem will hold for such machines. The details of the
proof require significantly more work. In Section 2 specifications
are laid down for the abstract machines at issue – close relatives
of both Turing machines and Minsky register machines – together
with a discussion of computational universality for such machines
and an undecidability result akin to the Halting problem. Section 3
demonstrates that any such machines, wired to an auxiliary ‘strategy
bomb’, can be embedded or instantiated within a relevant species
of competitive cellular automata. This family of cellular automata
allows instantiation of the details of such machines by way of fairly
direct simulations of wires and logic gates. Finally, in Section 4,
a set of Prisoner’s Dilemma strategies is exhibited the behavior of
which within a spatialized Prisoner’s Dilemma will model precise-
ly the behavior of the cellular automata of Section 3. My attempt
throughout has been to keep the discussion as informally accessible
as possible.

In brief, then, the structure of the proof is as follows. If abstract
machines can be instantiated as cellular automata arrays of the sort
to be outlined in Section 2, then were there a Q1 algorithm which
told us whether or not arbitrary arrangements of Prisoner’s Dilemma
strategies would result in progressive conquest by a single strat-
egy, there would also be an algorithm which told us in all cases
whether arrangements consisting of machine-arrays begun on their
own encodings as input would or would not result in conquest. This
algorithm would itself be computable by an abstract machine instan-
tiable as a machine-array. We consider a slight variation in which
we wire a ‘strategy bomb’ to its output so as to assure that the whole

UNDECIDABILITY OF SPATIALIZED PRISONER’S DILEMMA 59

array will result in conquest by a chosen strategy just in case the
encoding fed it is of a machine-array which will not result in con-
quest when fed its own encoding. The supposition of a configuration
corresponding to such a machine-array started on its own encoding,
however, gives us a contradiction. If such a configuration would
result in progressive conquest by a single strategy, it wouldn’t. If it
wouldn’t, it would.

The contradiction tells us that there can be no machine of the sort
envisaged, and so there can be no algorithm of the sort envisaged.
The last step is to show that arrangements of specifiable Prisoner’s
Dilemma strategies will operate precisely like the machine-arrays
indicated. Since there can be no algorithm which tells us the evolu-
tion of the latter in every case, there will be no algorithm which tells
us the evolution of former in every case: the spatialized Prisoner’s
Dilemma is undecidable.

Should this be considered a result in computation theory, or in
decision theory? The answer, I believe, is ‘both’. Major tools of
the proof include standard results from computation theory – it is a
family of ‘looped’ but otherwise fairly traditional abstract machines
the embedding of which lies at the core of the proof, and the main
‘trick’ of the proof is a similarly slight variation on the Halting prob-
lem. The phenomena ultimately shown to fall victim to classical
undecidability, however, are quite clearly phenomena of decision
theory: the behavior of abstract arrays of players following specifi-
able strategies in the iterated Prisoner’s Dilemma. In that sense the
argument that follows suffices to show that formal limitative results
of the sort familiar in logic and computation theory can be produced
quite readily and quite vividly in at least spatialized models within
decision theory as well.

Over the past twenty years the iterated Prisoner’s Dilemma has
been put to work as a primary model within economics, sociology,
and theoretical biology. It has been employed for such applications
both because of its crystalline simplicity and because it seems intu-
itively to capture certain tensions between competing rewards of
egoistic and altruistic behavior, and it seems safe to say that some of
our simplest models of ourselves as social and biological organisms
are today written in the decision-theoretic terms of the Prisoner’s
Dilemma. What the results at issue here suggest, however, is that

60 PATRICK GRIM

the model is not nearly as simple as it might seem – that it is com-
plex enough, at least in infinite spatialized forms, to instantiate both
universal computability and classical undecidability. In that sense
classical undecidability shows up in close proximity to even some
of our simplest attempts to understand ourselves as biological and
social organisms.

Here two additional notes are perhaps in order.
The general strategy outlined above follows that of J.H. Conway’s

proof of universal computability and undecidability for the game of
Life (Berlekamp, Conway, and Guy, 1982). Conway quite deliberate-
ly selected the rules of Life so as to produce such a result, however,
and the appearance of a similar result for any given decision-theoretic
model is by no means trivial. In the work below the complexities of
(a) instantiating a Turing- or Minsky-like machine within a cellular
automata, and (b) defining that cellular automata in terms of Pris-
oner’s Dilemma strategies are in something of a balance. Complica-
tions introduced here in (b) allow instantiation of abstract machines
at issue in terms of wire and gates in a manner significantly simpler
than Conway’s.

The question used to exhibit undecidability throughout is Q1,
phrased in terms of whether a single strategy will dominate to con-
quest. It should be noted, however, that this is only an example of
a broader class of questions regarding the behavior of arrays which
can be addressed in much the same way. Given the basic method of
proof other properties of arrays can be shown to be similarly unde-
cidable: whether TFT will ever be completely extinguished in an
array, for example, or whether good in the guise of a certain level of
generosity will eventually triumph.

2. A SPECIFICATION OF ABSTRACT MACHINES AT ISSUE

As outlined above, the core of the proof is a class of abstract
machines, eventually to be instantiated within a spatialized Pris-
oner’s Dilemma, and for which classical undecidability results can
be demonstrated.

Each of the abstract machines at issue will consist of two basic
components: (1) a finite computational unit and (2) an infinitely
expandable tape loop. In Figure 3, block A represents the compu-

UNDECIDABILITY OF SPATIALIZED PRISONER’S DILEMMA 61

Figure 3. Abstract machine with tape loop.

tational unit. All else in the diagram represents the mechanism of
the tape loop, which in the standard manner of Turing machines
will serve both as an input device and an infinite external memory.
The only difference between particular machines within the abstract
family at issue lies in the contents of their computational unit A.
The basic structure of the tape loop is a constant from machine to
machine, and thus machines at issue will eventually be enumerable
in terms of encodings for the contents of their computational units.

We can specify that a close-up of the computational unit A for any
machine at issue will reveal a finite contents composed entirely of
wires along which individual electrons pulse at a regularly clocked
rate. These wires are able to turn corners and to cross each other
either with interaction or without. Within the tangle of wires are
recognizable diodes, allowing electron motion in one direction but
not another along a wire and perhaps used in the construction of
‘or’ and ‘not’ gates. It has long been clear that these elements form
a complete base for Boolean functions of any number of variables
(Minsky, 1967; Dewdney, 1993).

Each machine requires a tape loop, for which various specifica-
tions are possible.

A close-up of one version of the standard tape loop attached
to each machine is shown in Figure 4. Here an encoded input is
envisaged entering from the right as a finite series of spaced electron
pulses along the wire, marked with a particular coding for beginning
b and end e. At the first branch the coded series moves straight
ahead, with a diode blocking similar travel northward. The series
enters a counter marked C1, which is triggered by the beginning
code b to start a 100-unit ‘clock’. If the end of the encoded message
e arrives before the clock has ticked off its 100 pulses, C1 returns to

62 PATRICK GRIM

Figure 4. Tape loop details.

its starting position. If not, a single pulse is sent by a southerly route
to signal block S1 and C1 then returns to its starting position.

The circuitous waffles through which the message is travelling to
the left of C1 are, we might stipulate, 150 clock units long, and are
arranged in such a way that a message sent from C1 can arrive at
S1 before the beginning of the message series arrives at the juncture
just above S1. On receiving an impulse from C1, S1 starts a constant
pulse of, say, 150 electrons at the standard clocked interval and then
resets. Marked as & in Figure 4 is an ‘and’ gate. Thus if our series of
signals is less than 100 units long, it will travel through the waffles,
north to the upper wire and to the right, on and into the computational
unit at A. It will also continue its travel to the left, but in that direction
is lost harmlessly into the infinite ether.

What if the encoded message is more than 100 units long? In that
case S1 will not be triggered, and the encoding will not cycle north at
S1. It will continue instead to a counter C2, which at the beginning
signal b starts a clock of 200 pulses. If the end signal e arrives before
200 pulses, a signal is sent to S2 which begins a regular series of 250
pulses. If the message series is greater than 100 units but less than
200, then, it will cycle back at the second juncture.

The tape structure continues infinitely to the left with waffle units
increasing by any regular interval and the clocks of C and S modules
increasing accordingly. For illustration we have chosen additive units
of 100, but increasing powers of 10 would do as well. The purpose of
the whole should be clear: any finite message will trigger a recycling
loop large enough to accommodate itself. Because C and S modules
are reset every time, the loop is ready for a new message of any finite
length emerging from the computational unit and recycling around

UNDECIDABILITY OF SPATIALIZED PRISONER’S DILEMMA 63

Figure 5. Tape loop with simpler components.

again. Ends of the infinite loop close off to accommodate the current
length of the signal.

C and S modules can clearly be conceived of as simple finite
computational units, themselves composed of wires and standard
gates. In each case the crucial element, beyond a beginning- and
ending-detector, is a simple loop serving either as a clock or as a
pulse-generator of a certain duration.

As indicated, other forms of such a tape loop are possible within
the general structure of the proof. Figure 5 shows a significantly
simpler form which operates with factory-identical units: a beginning
detector B, an end detector E, a ‘repeater’ R and a signal box. The
repeater simply generates a stream of pulses when triggered and
until reset. The signal box outputs a single pulse if an input from E
has been received at x and one from B has not, resetting on a signal
at r. Given these elements the progressively longer clock devices
above can be replaced simply by increasing wire lengths between
b and e detectors as the tape structure extends infinitely to the left.
For present purposes, however, what is important is not the specific
design chosen for a standard tape loop but the simple fact that such a
loop can be constructed in any of a variety of ways using only wires
(including infinite wires) and simple ‘or’ and ‘not’ gates.

The messages encoded on our tape loop have been specified above
merely as a series of clocked pulses along a wire, marked with a
beginning and an end. Here as before there are various alternatives.
For the sake of concreteness, however, it may be useful to specify
encoding in a particular form:

The beginning signal, let us suppose, consists of two contigu-
ous 1’s; the ending signal consists of three. Between beginning

64 PATRICK GRIM

and end are a series of spaces to be treated as registers, separat-
ed by dividers which also serve as addresses. The first register space
appears immediately following the beginning signal, and requires
no further address. The second register space is marked by an ini-
tial address of 1111 (using one more 1 than our ending signal), the
third by 11111, and so forth. As a whole the message than takes the
following form:

11 . . . 1111 . . . 11111 111

Contents of the registers fill the blanks marked with ellipses, and
may be envisaged in monadic notation. One way to disambiguate
register contents from their addresses is to begin and end them with
0’s, inserting 0’s between any digits within them as well. A content
register of ‘5’ would thus become 01010101010. ‘0’ would become
000. A complete message using only three registers, containing num-
bers 5, 0, and 1, respectively, would then appear as follows:

1101010101010111100011111010111

Here again specifics are unimportant, of course; all that is required is
an unambiguous way of encoding a beginning signal, an end signal,
register addresses and their contents.

Given some appropriate convention for message encoding, a tape
loop of the form outlined constitutes an infinitely expandable exter-
nal memory for the computational center at A. The tape might be
thought of as containing an infinitely expandable number of mem-
ory registers, each of which can hold an arbitrarily large integer.
Minsky long ago demonstrated that such a memory, together with
the arbitrary Boolean power of a finite computation center com-
posed of wires, ‘or’, and ‘not’ gates, is sufficient for computational
universality (Minsky, 1967).

If we envisage the first two registers of the tape as containing
‘position’ and ‘state’ numbers, with all others containing simply 0
or 1, operations on the tape might alternatively be thought of as
corresponding to those of a ‘semi-infinite’ Turing machine, with a
tape infinite in only one direction. As is well known, any Turing-
computable function is also computable by such a variation (Minsky,
1967; Boolos and Jeffrey, 1989; Dewdney, 1993). The tape contents
of a semi-infinite Turing machine tape at any point will correspond

UNDECIDABILITY OF SPATIALIZED PRISONER’S DILEMMA 65

directly to the contents of the message beyond the second register,
with a message series lengthened whenever needed by the addition
of new register addresses. Changes in position and state in the stan-
dard Turing machine will correspond to changes in the position- and
state-numbers of such a message. Given these conventions the quin-
tuplets of any Turing machine table can be rewritten fairly directly
as programmed instructions within the wired computational unit.

Corresponding to any Turing machine, then, will be an abstract
machine of the sort outlined. Any Turing-computable function will
be computable as well by a wired computation center attached to an
infinitely expandable tape loop.2

With a parallel to Turing machines, of course, comes a parallel
to the Halting Problem. An abbreviated form of the problem is as
follows (Berlekamp, Conway, and Guy, 1982):

A Turing machine, and thus an abstract machine of the sort at
issue here, can be constructed for the express purpose of investi-
gating any specified, and arbitrarily hard, arithmetical question. We
might construct such a machine to search for counter-examples to
Goldbach’s conjecture, for example, designing it to indicate that it
has found a counter-example either by printing a particular message
on the tape or by some auxiliary signal – sending a single pulse down
a designated signal wire, for example.

Is there an algorithm which will tell us, for any machine of the
type at issue, whether it will or will not eventually send a pulse
down its signal wire? No. If there were such an algorithm, it would
effectively tell us whether arbitrary difficult arithmetical problems
have solutions. But as Conway notes, “mathematical logicians have
proved that there’s no technique which guarantees to tell when arbi-
trary arithmetical problems have solutions” (p. 847). There can thus
be no algorithm which predicts in each case the behavior of our
abstract machines.

In somewhat deeper detail, and avoiding the appeal to authority,
undecidability for our family of abstract machines can be shown as
follows:

Let us conceive of all machines at issue built with a special signal
loop at the northeasternmost corner – a loop at the end of a wire down
which a pulse may or may not eventually proceed. Some machines,
started with particular input messages on their tapes, will eventually

66 PATRICK GRIM

send a pulse down that wire. Some will not. Machines at issue differ
only in the finite contents of their computational centers, and can be
though of as enumerated or indexed accordingly.

There can be no machine which will send a pulse to its signal loop
just in case it is fed the number of a machine which will not send a
signal to its loop if started on its own index number. For suppose that
there were such a machine, and suppose it were fed its own number.
It would then send a pulse to its signal loop just in case it would
never send a pulse to its signal loop. By contradiction there can be
no such machine.

It follows that there can be no machine which will indicate by
such a signal whether or not a numbered machine started on a given
message will eventually send a pulse to its signal loop. For given
that machine, we could construct the machine proved impossible
above by arranging signal loops appropriately and attaching an initial
message duplicator.

Since any algorithm can be instantiated as a machine of the type at
issue, the ‘Signalling’ Problem – as analogue to the ‘Halting’ Prob-
lem – proves undecidable. There is no effective procedure which will
predict in general the signalling behavior of the abstract machines at
issue.

None of this should be too surprising: the undecidability of the
Halting Problem has simply been carried over to a species of abstract
machines which might be envisaged either as wired variants of
Turing machines or as loop-memoried forms of Minsky register
machines. Details are interesting, perhaps, but the general result
uncontroversial. The promised application of such a result to deci-
sion theory demands showing in addition that the abstract machines
at issue can be embedded within competitive cellular automata which
will in turn model the spatialized Prisoner’s dilemma.

3. INSTANTIATING ABSTRACT MACHINES BY WAY OF ‘WIRES’
WITHIN COMPETITIVE CELLULAR AUTOMATA

The cellular automata to be used here will instantiate the abstract
machines specified in terms of ‘wires’ and logical gates constructed
from them.

UNDECIDABILITY OF SPATIALIZED PRISONER’S DILEMMA 67

Figure 6. ‘Or’ gate in Silverman’s wireworld, incorporating two diodes.

The background of this approach is two-dimensional cellular
automata developed by Brian Silverman to simulate the travel of
electrons on a wire (Silverman, 1987; Dewdney, 1990). This ‘wire-
world’ allowed for wire turnings and crossings, the creation of
diodes, ‘and’, ‘or’, and ‘not’ gates. With these can be construct-
ed the cellular automaton equivalent of any finite computer.

‘Wireworld’ operated in terms of just four cellular states: back-
ground, wire, electron head and electron tail. Silverman’s rules
were simple. During each tick of the automata clock electron heads
became electron tails and electron tails became wire cells. Wire cells
became electron heads just in case they were bordered by one or two
electron heads, and background cells never changed. An ‘or’ gate
from Silverman’s wireworld, incorporating two diodes, is shown in
Figure 6.

Because wireworld can be used to simulate the operation of arbi-
trary finite computers, and because the infinite tape mechanism of
Section 2 can itself be simulated using infinite wires, an easy unde-
cidability result is possible regarding wireworld. Consider any enu-
meration of finite arrays which might serve as our computational
units (or computational units with initial inputs), again thought of as
having an upper signalling ‘loop’. In wireworld a signal once sent
to such a loop continues to circulate there. Is there any algorithm
which will tell us whether or not an arbitrary array with Silverman’s
rules will end up with a signal in its upper loop if embedded in the
background of an infinitely expandable tape-loop? By a slight vari-
ation on the Signalling Problem of Section 2 the answer is clearly
‘no’; the evolution of wireworld displays is formally undecidable.

In what follows it is a significantly more complicated relative of
wireworld that will be at issue. The general idea remains the same,
however: to model within cellular automata the movement of elec-
trons on wires in such a way as to allow the construction of a complete

68 PATRICK GRIM

Boolean base of operation gates. Beyond that things become more
complex. Within Silverman’s rules, change in a particular cell could
be calculated merely by noting the states of its immediate neighbors
and by counting the number of those which are electron heads. In the
‘competitive’ automata at issue here cells will be thought of as gain-
ing particular scores in competition with their immediate neighbors,
thereby amassing a total score in their immediate neighborhood. In
a second conceptual step they then compare their score with that of
their immediate neighbors and change to a neighboring state should
there be one with a higher total score.

More specifically, the competitive automata rules are the follow-
ing. Four player strategies are instantiated as cells: wire, background,
electron head and tail. Each of these players is thought of as compet-
ing against other players of the same or different type, with standard
scores for such competitions: wires standardly get a score of 3 in
competition with electron tails, for example. At each tick of the clock,
each player within an array competes against each of its 8 neighbors
and adds its total score. Each player then surveys its neighbors and
converts to the strategy of a neighboring player should there be one
which achieved a higher local score. A wire might thus become an
electron head because a neighboring electron head had a higher total
score, for example, or an electron tail might become a wire cell.
Should a cell be bordered by two with equal higher scores, one is
chosen randomly.

Can standard wires, crossings, and Boolean gates be modelled in
this more competitive wireworld? The answer is ‘yes’, although com-
putation is necessarily more complicated throughout and although a
somewhat different design is required for standard gates.

For convenience the four strategies will be labelled yellow (back-
ground), blue (wire), red (electron head), and pink (electron tail),
though for printing purposes our illustrations will use shades of gray
(0%, 15%, 88%, and 56%, respectively). The following numerical
scores, arrived at by simple but excruciating experimentation, will
then give us the basis needed for a wire-like simulation. ‘bb’ encodes

UNDECIDABILITY OF SPATIALIZED PRISONER’S DILEMMA 69

the score of blue against itself, ‘br’ the score of blue against red, etc:

bb = 2:412 rb = 2:485
br = 2:534 rr = 2:412
by = 2:472 ry = 2:472
bp = 3:000 rp = 2:542

pb = 2:583 yb = 0:868
pr = 2:567 yr = 0:868
py = 2:472 yy = 2:667
pp = 2:412 yp = 0:868

Though simpler scores are possible here, those listed offer a partic-
ularly smooth connection with the work of the following section.

Consider the not-so-simple phenomenon of a simple blue wire
maintained on a yellow field. At each tick of the clock, each cell
of the display competes against its eight immediate neighbors. In
order for a blue cell to remain blue, no immediate neighbor can have
a higher score. In order for its yellow neighbors to remain yellow,
however, they must be in contact with a yellow cell the total score
of which is greater than the score of their blue neighbor. Given the
scores above, a blue surrounded by two blues and 6 yellows has a
score higher than a yellow in contact with 5 yellows and 3 blues, but
less than the score of a yellow surrounded by 8 yellows. At each tick
of the clock the blue cells of our wire dominate their neighbors, but
are counter-balanced by the high score of yellow against yellow and
the proximity of a yellow surrounded by 8 yellow neighbors. A blue
wire is thus tenuously balanced between extinction and explosion
within a yellow field. A similar trick is used for red and pink cells
on a wire.

Travel of an electron along a wire – a red and pink pair on a strip
of blue against yellow – is achieved by awarding a red bordering a
blue a higher total score in context, a pink bordering a red a higher
score than its neighboring red, and a blue bordering a pink a higher
score still. The result is the one-cell-per-clock tick simulation of
movement illustrated in Figure 7.

Construction of a set of scores adequate for a basic set of gates
calls for careful adjustment for turning both solid and nicked corners,
and a sensitivity of blue squares to red finely tuned enough to allow

70 PATRICK GRIM

Figure 7. Electron moving along wire in array of competitive automata.

Figure 8. Diode in operation: electrons pass left to right but self-extinguish right
to left

Figure 9. Wire crossing, allowing electron travel either south to north or west to
east

both for branching and for the ‘kill’ function used in diodes and
other basic operations. A diode in operation from each direction is
shown in Figure 8, allowing electron travel left to right but blocking
it by self-extinction right to left.

The complications of wire-crossing are illustrated in Figure 9.
Here an electron can travel south to north without propagating east

UNDECIDABILITY OF SPATIALIZED PRISONER’S DILEMMA 71

Figure 10. ‘Or’ and ‘not’ gates

or west or can travel west to east without propagating north or south.
Travelling north, as illustrated, the electron will divide at the first
branch with copies proceeding through each of two diodes. At the
central cross it will propagate in all three directions. That copy
moving west, however, will be killed at the first diode. That moving
right will be extinguished by a kill from the doppelgänger which split
off earlier. That moving north will continue, with a twin generated
to the left at the upper kill site disabled at a later diode.

‘Or’ and ‘not’ gates are shown in Figure 10. In the operation
of the negation loop a timing convention is assumed for signals
sent along a wire; for purposes of illustration 30 ‘ticks’ between
consecutive signals have been assumed. The purpose of a negation
‘inverter’ is to convert a series of spaced signals – 1011001100, say
– to their negative image: 0100110011. The ‘not’ gate achieves this
by generating impulses in its lower loop in synch with the signal
rate and sending these out to a ‘kill’ gate. If an impulse representing
a ‘1’ arrives a the ‘kill’ gate from the left, it and the impulse from
the lower loop mutually annihilate. No pulse is therefore sent out
to the right, and the incoming ‘1’ has effectively been converted to
a ‘0’. If no impulse arrives from the left at the proper time, on the
other hand, signalling a ‘0’, the pulse generated from the lower loop
travels out to the right undisturbed as a signalled ‘1’. This achieves
the desired result.3

Any finite arrangement of wires and standard gates can thus
be simulated within the competitive cellular automata outlined. It
should also be clear that these components will suffice for the con-
struction in an infinite field of the infinite tape-loop of Section 2.
Undecidability results outlined above will therefore carry over as
undecidability results regarding our arrays of competitive players.

Here undecidability can also be made somewhat more graphic.
Let us first add two additional players, green and fuchsia, to our

72 PATRICK GRIM

Figure 11. Explosion of strategy bomb.

original set of four. Scores for these, in supplement to our table
above, are as follows:

bf = 2:412 rf = 2:485
bg = 0:857 rg = 0:857

pf = 2:583 yf = 0:868
pg = 0:857 yg = 0:857

fb = 2:412 gb = 4:428
fr = 2:534 gr = 4:428
fp = 3:000 gp = 4:428
fy = 2:472 gy = 4:428
ff = 2:412 gg = 2:667
fg = 2:472 gf = 0:868

What these two new strategies allow us is the construction of
a ‘strategy bomb’: a device which will keep hostage and harmless
a small patch of green unless a pulse is sent down a particular
wire. Given a pulse down that wire, on the other hand, green will

UNDECIDABILITY OF SPATIALIZED PRISONER’S DILEMMA 73

be released to expand without obstacle ever outward, progressively
conquering all strategies in its path. Such a bomb is shown in Figure
11 using a central block of nine green cells surrounded by a protective
border of fuchsia. Left alone it remains harmless. A single pulse
down its feed wire, however, releases an all-invading cloud of green.

Consider arbitrary finite arrangements of these six players or
strategies, embedded in a standard infinite field which contains the
cellular equivalent of a tape loop. Is there an algorithm which will
tell us in each case whether such a finite arrangement so embedded
will result in a progressive conquest by green or not?

No. As noted above, an abstract machine of the type at issue can be
constructed to look for a solution to any arbitrarily hard arithmetical
problem. Any such machine, starting on any given input, can be
instantiated as a finite array of our chosen strategies, embedded
in the background at issue. Such an array can be varied slightly
by wiring its relevant signal to the strategy bomb above. Thus to
arbitrarily difficult arithmetical problems will correspond arrays of
our chosen strategies which will or will not result in a progressive
conquest by green depending on whether the problem at issue has a
solution. Were there an algorithm which sorted such arrangements
into those which would result in conquest and those which would not,
it would give us as well an algorithm suitable for deciding whether
arbitrarily difficult arithmetical problems have solutions. Since there
can be no algorithm of the latter sort, there can be no algorithm of
the former sort either: there can be no algorithm which will tell us
in every case whether a finite cellular arrangement embedded in the
standard background will or will not result in a progressive conquest
by green.

In more traditional detail the proof is as follows:
As outlined above, any abstract machine at issue can be embedded

as a finite arrangement of strategies within a standard background
corresponding to a tape loop. In each case the arrangement can be
configured so as to feed a relevant output signal to a strategy bomb.
Any machine configuration, so wired, can be encoded, either directly
or via the abstract machine embedded.

There can, to begin with, be no algorithm which decides, for arbi-
trary machine configuration encodings, whether the array composed
of that machine configuration started on its own encoding as input

74 PATRICK GRIM

will result in conquest by green or not. If there were, that algorithm
could be computed by some abstract machine of the type outlined
in Section 2. That machine could in turn be instantiated as a cellular
array with its signal appropriately wired to a strategy green invasion.
That machine configuration would in turn be assigned an encoding.

Consider the array composed of that machine configuration begun
on its own encoding as input. Were that array not to result in conquest
by green, the core machine would give a negative answer, igniting
the strategy bomb which would result in precisely the conquest at
issue. Were the array to result in conquest, on the other hand, the
instantiated machine would never send the signal required for any
such conquest to take place. The array at issue would thus result in
conquest by green just in case it would not. The contradiction shows
us that there can be no such array, and thus can be no machine and
no algorithm of this first type.

It follows that there can be no algorithm which decides in all
cases, for configurations specified in terms of machine configuration
encodings and inputs, whether the result will be unlimited conquest
by green or not. If there were, that algorithm would be computable
by an abstract machine from which the machine configuration above
could be obtained by a careful wiring of a strategy bomb to the
proper output and addition of an input duplicator (for the machine
arrays at issue here, achievable simply by a branching wire). Since
there can be no machine and no algorithm of the first type, there can
be no machine and no algorithm of this more general second type
either.

There can, finally, be no algorithm which decides, for an arbi-
trary finite configuration of the specified strategies, whether it will
result in unlimited expansion by green or not when embedded in
the standard background specified. Since specification in terms of
machine configuration and input will be effectively translatable into
any standard encoding for finite configurations, this final algorithm
would offer a decision procedure which told us, for any machine
configuration and input, whether its configuration would result in
unlimited expansion by green or not. By the argument above there
can be no such algorithm, and thus there can be no algorithm of this
final sort either: there can be no algorithm which will tell us in every

UNDECIDABILITY OF SPATIALIZED PRISONER’S DILEMMA 75

case whether a finite cellular arrangement embedded in the standard
background will or will not result in a progressive conquest by green.

4. THE UNDECIDABILITY OF THE SPATIALIZED PRISONER’S
DILEMMA

The final step of the proof is to show that the undecidability discussed
for a class of formal machines in Section 2 and carried over to a
particular form of cellular automata in Section 3 is ultimately an
undecidability within decision theory as well: the undecidability of
the spatialized Prisoner’s Dilemma.

This is in fact an easy step to show, though significantly less
easy to construct. What is required is simply a set of Prisoner’s
Dilemma strategies with payoffs against each other in infinite games
corresponding to the competition scores used in constructing the
competitive cellular automata in Section 3. Given such payoffs the
strategies at issue will behave precisely like the blue, yellow, red,
pink, fuchsia and green cells outlined above.

Though other sets are possible, the following Prisoner’s Dilemma
strategies do the trick. The general idea of this particular construction
is to have each strategy begin with a set series of cooperations
and defections which in effect constitute a code for that strategy
alone. The behavior of each strategy is then geared to the code of
its opponent, allowing a great deal of flexibility in fine tuning the
scores required. As noted in introduction, it is infinite games that are
at issue, and thus the average score over a repeated period of play
that is of importance. Scoring during the short initial coding can thus
be effectively ignored. Since finite games of increasing length will
progressively swamp any initial scoring in precisely the same way,
results will hold for finite games of sufficient length as well.

Strategy b: Start with 000. Then:
If opponent started 000, play 11111111111100000, repeat.
If opponent started 001, play 010101 . . . 01

| {z }
followed by 011, repeat.

100 plays
If opponent started 010, play 111111111100, repeat.
If opponent started 011, play 1000000000

| {z }
followed by 000000, repeat.

10 times
If opponent started 100, play 11111111111100000, repeat.
If opponent started 101, play 1111111, repeat.

76 PATRICK GRIM

Strategy r: Start with 001. Then:
If opponent started 000, play 101010 . . . 10

| {z }
followed by 111, repeat.

100 plays
If opponent started 001, play 11111111111100000, repeat.
If opponent started 010, play 010101 . . . 01

| {z }
followed by 111 . . . 111

| {z }
and 111, repeat.

180 plays 20 plays
If opponent started 011, play 1000000000

| {z }
followed by 000000, repeat.

10 times
If opponent started 100, play 101010 . . . 10

| {z }
followed by 111, repeat.

100 plays
If opponent started 101, play 1111111, repeat.

Strategy p: Start with 010. Then:
If opponent started 000, play 111111111101, repeat.
If opponent started 001, play 101010 . . . 10

| {z }
followed by 111 . . . 111

| {z }
and 011, repeat.

180 plays 20 plays
If opponent started 010, play 11111111111100000, repeat.
If opponent started 011, play 1000000000

| {z }
followed by 000000, repeat.

10 times
If opponent started 100, play 111111111101, repeat.
If opponent started 101, play 1111111, repeat.

Strategy y: Start with 011. Then:
If opponent started 000, 001, 010, or 100, play 1111000000

| {z }
, followed by 111100, repeat.

10 times
If opponent started 011, play 111111111100, repeat.
If opponent started 101, play 1111111, repeat.

Strategy f: Start with 100. Then:
If opponent started 000, play 11111111111100000, repeat.
If opponent started 001, play 010101 . . . 01

| {z }
, followed by 011, repeat.

100 plays
If opponent started 010, play 111111111100, repeat.
If opponent started 001, play 010101 . . . 01

| {z }
, followed by 000000, repeat.

10 times
If opponent started 100, play 11111111111100000, repeat.
If opponent started 101, play 1000000000

| {z }
followed by 000000, repeat.

10 times

Strategy g: Start with 101. Then:
If opponent starts 000, 001, 010, or 011, play 0000011, repeat.
If opponent starts 100, play 1111000000

| {z }
followed by 111100, repeat.

10 times
If opponent starts 101, play 111111111100, repeat.

An example of strategies in operation and their relation to the
scores used in section 3 is perhaps not out of order. In an infinite

UNDECIDABILITY OF SPATIALIZED PRISONER’S DILEMMA 77

game the strategies specified for b and y above generate the following
patterns of play:

b : 000 1000000000
| {z }

000000 1000000000
| {z }

000000 . . .

10 times 10 times
y : 011 1111000000

| {z }
111100 1111000000

| {z }
111100 . . .

10 times 10 times

The longer a finite game with these patterns the closer b’s score
will approach its average over the repeated period: 262=106 =
2:47169811. The longer a finite game the closer y’s score will
approach 0.867924528. Scores in an infinite game, on the other
hand, are simply taken as these limits. Rounded off, these give us
precisely the scores used for by and yb in Section 3.

The strategy specifications above are constructed so as to give the
same kind of match to the scores used in Section 3 for all strategies
involved. Given those scores, as the work of Section 3 shows, the
evolution of arrays of competitive cellular automata proves formally
undecidable. Because the strategies above generate precisely these
scores, spatial arrays of Prisoner’s Dilemma strategies will prove
undecidable as well.

5. CONCLUSION

The proof outlined carries classical undecidability results into deci-
sion theory through the medium of cellular automata. Undecidability
for the abstract machines of Section 1 – close relatives of both Turing
machines and Minsky register machines – is firmly based in famil-
iar results from computation theory. The strategy of embedding or
instantiating abstract machines within cellular automata arrays, fol-
lowing the general lines of Conway’s undecidability proof for the
game of Life, is employed here in terms of simpler wires and gates
and for a quite different family of competitive automata. The latter is
crucial for the present application. It is because the spatialized Pris-
oner’s Dilemma will be instantiated as precisely that kind of cellular
automata that classical undecidability will carry over into decision
theory: the spatialized Prisoner’s Dilemma proves undecidable.

78 PATRICK GRIM

None of this, of course, indicates that modelling in terms of the
Prisoner’s Dilemma is in any way doomed or hopeless, any more
than standard undecidability results regarding formalized arithmetic
indicate that ordinary arithmetic is doomed or hopeless. What the
present results do show is that there will be classes of questions
regarding the behavior of our models – at least ideal models both
spatial and infinite – for which no algorithm or effective procedure
will be capable of supplying an answer in all cases.

The Prisoner’s Dilemma is of interest precisely because it has
seemed so promising as a model – promising both because of its
abstract simplicity and because of its intuitive application to ques-
tions of egoism and altruism within economics, sociology, and theo-
retical biology. One thing undecidability means from the modeler’s
perspective is that idealized forms of that model are significantly
more complex than may at first appear. The standard matrix for the
Prisoner’s Dilemma may give one the impression that all that is at
issue is a small handful of numerical comparisons. In the idealized
infinite case and once strategy interaction is taken into account, how-
ever, the model becomes precisely as complex as standard paradigms
from computation theory, exhibiting the same forms of undecidabil-
ity for precisely the same reasons.

ACKNOWLEDGEMENTS

I owe a great debt to Gary Mar and Paul St. Denis for sharing their
work on the Prisoner’s Dilemma in cellular automata and for the core
of programming employed here. I am grateful to Paul St. Denis and
Tobias Müller for fruitful discussion, and to an anonymous reviewer
for very helpful comments.

NOTES

1 A related NP-Completeness result for finite arrays is sketched in Grim 1994b.
2 A form of the proof is also possible using a two-register Minsky machine

which dispenses with the infinite structure required here for the tape loop. This
makes the result more graphic in some ways, in that only a uniform infinite
background B of a single strategy is required. Major complications are required in
the outline of relevant Prisoner’s Dilemma strategies, however. See Grim 1994a.

UNDECIDABILITY OF SPATIALIZED PRISONER’S DILEMMA 79

3 A diskette with programs in Trubasic for these components, unprotected so
as to facilitate further research, is available from the author on request.

REFERENCES

Axelrod, R.: 1984, The Evolution of Cooperation, Basic Books, New York.
Berlekamp, E., Conway, J., and Guy, R.: 1982, Winning Ways for your Mathemat-

ical Plays, Vol. II, Academic Press, London.
Boolos, G., and Jeffrey, R.: 1989, Computability and Logic, Third Edition, Cam-

bridge Univ. Press, New York.
Demongeot, J., Golès, E., and Tchuente, M. (Eds.): 1985, Dynamical Systems

and Cellular Automata, Academic Press, New York. Dewdney, A.K.: 1990,
‘The cellular automata programs that create wireworld, rugworld and other
diversions’, Computer Recreations, Scientific American 262(1), 146–149.

Dewdney, A.K.: 1993, The (New) Turing Omnibus, Computer Science Press, New
York.

Grim, P.: 1994a, ‘Computation and Undecidability in the Spatialized Prisoner’s
Dilemma,’ Research Report No. 94-02, Group for Logic and Formal Semantics,
Dept. of Philosophy, Suny at Stony Brook.

Grim, P.: 1994b ‘An NP-Complete Question Regarding the Spatialized Prisoner’s
Dilemma,’ Research Report No. 94-03, Group for Logic and Formal Semantics,
Dept. of Philosophy, SUNY at Stony Brook.

Grim, P.: 1995, ‘The Greater Generosity of the Spatialized Prisoner’s Dilemma’,
Journal of Theoretical Biology 173, 353–359.

Grim, P.: 1996, ‘Spatialization and greater generosity in the stochastic Prisoner’s
Dilemma’, BioSystems 37, 3–17.

Gutowitz, H. (Ed.): 1990, Cellular Automata: Theory and Experiment, North-
Holland, New York.

Mar, G., and St. Denis, P.: 1993a, ‘The Evolution of Dynamical Meta-Strategies
in the Prisoner’s Dilemma’, International Conference on Game Theory, SUNY
at Stony Brook, July 1993, and research report No. 93-01, Group for Logic and
Formal Semantics, Dept. of Philosophy, SUNY at Stony Brook.

Mar, G., and St. Denis, P.: 1993b, ‘Chaos in Cooperation: Two-Dimensional
Prisoner’s Dilemmas in Infinite-Valued Logic,’ research report No. 93-02, Group
for Logic and Formal Semantics, Dept. of Philosophy, SUNY at Stony Brook,
and International Journal of Bifurcation and Chaos 4 (1994), 943–958.

Minsky, M.: 1967, Computation: Finite and Infinite Machines, Prentice-Hall,
Englewood Cliffs, N.J.

Nowak, M.: 1990, ‘Stochastic Strategies in the Prisoner’s Dilemma,’ Theoretical
Population Biology 38, 93–112.

Nowak, M., and May, R.: 1992, ‘Evolutionary games and spatial chaos’, Nature
359, 826–829.

Nowak, M., and May, R.: 1993, ‘The Spatial Dimensions of Evolution’, Interna-
tional Journal of Bifurcation and Chaos 3(1), 35–78.

Nowak, M., and Sigmund, K.: 1989, ‘Game-Dynamical Aspects of the Prisoner’s
Dilemma’, Applied Mathematics and Computation 30, 191–213.

Nowak, M., and Sigmund, K.: 1992, ‘Tit for tat in heterogeneous populations’,
Nature 355, 250–252.

80 PATRICK GRIM

Nowak, M., and Sigmund, K.: 1993, ‘A strategy of win-stay, lose-shift that out-
performs tit-for-tat in the Prisoner’s Dilemma game’, Nature 364, 56–58.

Silverman, Brian.: 1987, The Phantom Fish Tank: An Ecology of Mind, Logo
Computer Systems, Montreal.

Toffoli, T., and Margolus, N.: 1987, Cellular Automata Machines: A New Envi-
ronment for Modelling, MIT Press, Cambridge, Mass.

Wolfram, S.: 1984, ‘Cellular automata as models of complexity’, Nature 311,
419–424.

Wolfram, S.: 1986, Theory and Applications of Cellular Automata, World Scien-
tific, Philadelphia.

Group for Logic & Formal Semantics,
Department of Philosophy,
SUNY at Stony Brook,
Stony Brook, NY 11794, U.S.A.
pgrim@ccmail.sunysb.edu

