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Abstract 

 

In a series of formal studies and less formal applications, Hong and Page offer a ‘diversity 

trumps ability’ result on the basis of a computational experiment accompanied by a mathematical 

theorem as explanatory background (Hong & Page 2004, 2009; Page 2007, 2011).  “[W]e find 

that a random collection of agents drawn from a large set of limited-ability agents typically 

outperforms a collection of the very best agents from that same set” (2004, p. 16386). The result 

has been extremely influential as an epistemic justification for diversity policy initiatives.  Here 

we show that the ‘diversity trumps ability’ result is tied to the particular random landscape used 

in Hong and Page’s simulation.  We argue against interpreting results on that random landscape 

in terms of ‘ability’ or ‘expertise.’  These concepts are better modeled on smother and more 

realistic landscapes, but keeping other parameters the same those are landscapes on which it is 

groups of the best performing that do better.  Smoother landscapes seem to vindicate both the 

concept and the value of expertise. 

Change in other parameters, however, also vindicates diversity.  With an increase in the 

pool of available heuristics, diverse groups again do better.  Group dynamics makes a difference 

as well; simultaneous ‘tournament’ deliberation in a group in place of the ‘relay’ deliberation in 

Hong and Page’s original model further emphasizes an advantage for diversity.  ‘Tournament’ 
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dynamics particularly shows the advantage of mixed groups that include both experts and non-

experts. 

As a whole, our modeling results suggest that relative to problem characteristics and 

conceptual resources, the wisdom of crowds and the wisdom of the few each have a place.  We 

regard ours as a step toward attempting to calibrate their relative virtues in different modelled 

contexts of intellectual exploration.   

 

Introduction 

Expertise has taken some pretty hard knocks.   

Empirical work by James Shanteau and his collaborators shows that there are remarkably 

low rates of agreement among supposed expert stockbrokers, polygraphers, and livestock judges.  

Alarmingly, in clinical psychology and medical pathology the work also shows remarkably low 

rates of agreement between the same expert at different times (Shanteau 2000, 2002; Shanteau, 

Weiss, Thomas & Pounds 2002, 2003; Weiss & Shanteau 2014).  

Decades of work by Philip Tetlock finds a strong case for radical skepticism regarding 

expert political opinion.  “When we pit experts against minimalist performance benchmarks—

dilettantes, dart-throwing chimps, and assorted extrapolation algorithms—we find few signs that 

expertise translates into greater ability to make either ‘well-calibrated’ or ‘discriminating’ 

forecasts” (Tetlock 2005, 20).  Within the data, however, Tetlock also finds evidence that one 

reasoning style does better than another: ‘foxes,’ self-critically following many leads, do 

measurably better than ‘hedgehogs,’ attempting to expand a single idea to cover new cases (67-

120). 
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This empirical work seems to support the popular idea that there is a ‘wisdom of crowds.’ 

That work combines anecdotes regarding the surprising accuracy of majority or mean group 

outcomes (Who Wants to be a Millionaire? and Galton’s ox) with a simple statistical 

explanation.  When some members of a population know the answer to a multiple-choice 

question or can give an accurate estimate on some amount, and when all error or other input is 

random, the random input will tend to cancel out.  In a group verdict, the wisdom of the few 

knowledgeable members of the crowd can then shine through in the majority vote or the estimate 

mean (Surowiecki 2004).  Interestingly, the wisdom of those few members will shine out without 

any independent ability on our part to identify who in the crowd those ‘experts’ are.   

There is also formal work beyond the simple statistical argument that argues for 

important epistemic advantages of group, as opposed to individual, decision.  The Condorcet 

Jury theorem shows that a majority decision by individuals with a mean probability of a correct 

decision > .5 has a higher probability of being correct than does the decision of an individual 

with that mean probability (Condorcet 1785/1995; Anderson 2006; Landemore 2013).  Our focus 

here will be on the more recent Hong-Page model, in which agents use different heuristics in 

order to explore a hilly epistemic landscape.  Hong and Page present that model as demonstrating 

a ‘diversity trumps ability’ result: under plausible conditions a group of individuals with 

randomly diverse heuristics can be expected to achieve better epistemic results than a group of 

the ‘best’ individuals—those with heuristics that score best individually.  Diversity trumps 

ability: “a randomly selected collection of problem solvers outperforms a collection of the best 

individual problem solvers” (Page 2007, p. 162).  

These results have been taken to have profound implications for social policy.  Beyond 

arguments from a social justice perspective, the results suggest that an organization is 
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epistemically better off by recruiting a diverse set of candidates instead of just selecting the best 

individual performers.  The work has been presented to NASA, cited by the USGS, is one of four 

works cited in support of positive expected institutional effects of UCLA’s (2014) proposed 

diversity requirement, and has been appealed in support of promoting diversity in the armed 

forces in a brief submitted to the Supreme Court in the most recent case to adjudicate the issue 

(Fisher v. University of Texas, Austin, 2016).  These results have also been taken to apply to the 

value of epistemic diversity in scientific communities (Bright, 2016; Martini, 2014; Stegenga, 

2016; Thompson, 2013).   

Here we show that the reported epistemic superiority of random groups depends crucially 

on the character of the epistemic landscape being explored.  On random landscapes, using 

heuristic sets like those in their original work, the Hong-Page result is confirmed: groups of 

random heuristics systematically do better. We argue against interpreting these basic results in 

terms of ‘ability’ or ‘expertise,’ however, since high performance of a heuristic on one random 

landscape has little correlation with high performance on any other.  We also demonstrate, using 

other parameters as in the original, that the benefits of diversity disappear with only slightly 

‘smoother’ or less random epistemic landscapes.   

With smoother landscapes high performance on one landscape is much better correlated 

with high performance on another, better supporting an interpretation in terms of ‘expertise.’  

But on those smoother landscapes, using Hong and Page’s heuristic pool, it is groups of ‘experts’ 

that do better than groups of random heuristics.  Where something more like expertise becomes 

recognizable, these results suggest, it is expertise that trumps diversity. 

It turns out that the scope of heuristics available for landscape exploration is equally 

important, however.  In the Hong-page model, heuristics for all individuals are composed of 
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numbers drawn from a set of a given size.  For a specific landscape smoothness, groups of best-

performing individuals outperform random groups for a heuristic set of a given size.  But if the 

size of that heuristic pool is increased, something like a Hong-Page result is vindicated in that a 

‘diversity trumps ability’ result returns.  Given a large enough pool of heuristic possibilities, 

groups of random agents again outperform groups of the individually best-performing.   

In a first section we offer a replication of the Hong-Page result.  In a second section we 

argue against interpretation of the original results in terms of ‘ability’ or ‘expertise.’  The third 

section outlines the central concept of ‘smoothness’ in epistemic landscapes.  Keeping other 

parameters the same, we demonstrate that the Hong-Page ‘diversity trumps ability’ result 

disappears on smoother and arguably more realistic landscapes: here ‘ability trumps diversity’ 

instead.  The virtues of diversity reemerge, however, when the heuristic pool is widened.  

Section four offers parameter sweeps across landscape smoothness and the size of the heuristic 

pool to demonstrate the relative areas of strength for diverse groups and groups of the best 

performing.  In section five we emphasize another parameter: the pattern of group dynamics in 

navigating a landscape.  Here results again favor diversity in a sense, but the real winners appear 

to be mixed groups, which are composed of both experts and random agents.  Consideration of 

the effect of group size appears in section six. 

What the results suggest is a lesson regarding the relative virtues of both expertise and 

diversity within particular exploratory contexts.  The greater value of expertise is vindicated 

within specific conceptual constraints, using a specific group dynamic, and relative to a specific 

range of epistemic landscapes.  The greater value of diversity is vindicated within a different 

range of group dynamics, epistemic landscapes, and conceptual resources.  Thus the wisdom of 

crowds and the wisdom of the few each have a place.  We regard the current work as an 
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important next step in attempting to calibrate their relative virtues in different contexts of 

intellectual exploration.   

 

 

 

I.  The Hong-Page Result 

Hong and Page offer several variations on a formal model of discussion within a group of 

individuals (Hong & Page 2004, 2007; Page 2007, 2011).  In computationally implemented 

simulations, agents use heuristics to explore an epistemic landscape.  The ‘diversity trumps 

ability’ result is that epistemic outcomes for groups of individuals with a heterogeneous group of 

heuristics will consistently exceed those for groups composed solely of individuals with 

heuristics that gain the highest individual scores.  Though accompanied by a mathematical 

theorem intended to offer partial understanding, the main result appears in simulation rather than 

in formal proof.  The same will be true of our work here.   

We begin with a version of the model that is close to Hong and Page’s original.  

Epistemic exploration is along a linear terrain of 2000 points that forms a loop; 10 points to the 

right of 1995 is point 5, for example.  For each of the 2000 points of the terrain random integer 

between 1 and 100 is assigned; higher points are interpreted as better answers to a question.   

Individual agents are assigned a heuristic, modeled as an ordered set of k numbers, each 

of which is a number between 1 and l.  We begin, again following the Hong and Page original, 

with ordered sets of 3 numbers (k =3) between 1 and 12 (l =12).  With those in hand, respecting 

order but avoiding duplication, we have 1320 agents defined by distinct heuristics.   
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Individuals use their heuristics as follows.  An agent starts at, say, point 112 of the 2000-

point terrain, which carries a value of 80.  The agent then applies the first digit of its heuristic: 

Does the point that many steps to the right offer a higher value?  If not, it stays put.  If so, it 

moves to that point.  In either case it then applies the second digit of its heuristic.  Does that offer 

a point with a higher value?  Once the third digit has been tried it returns to the first.  An 

individual stops only when none of its digits can reach a higher point—its local maximum 

applying the cycled heuristic from the initial point 112.  In exploring the terrain in this way, each 

of our 1320 agents can be scored by the highest value it reaches starting at each of the 2000 

points.  The average of those is an individual’s score.  Our 9 ‘best’ individuals will be those with 

the 9 highest scores. 

To model discussion within a group, Hong and Page employ a sequential “relay” among, 

say, a group of 9 participants.  Starting from a given point, the first agent uses her heuristic to 

find the highest point within her reach.  Once she has found her maximum she passes the “baton” 

of that highest point to the next agent as a starting point.  He then searches for a higher maximum 

by employing his heuristics until his search is exhausted, at which point the baton is passed to the 

third agent, and so forth, until all nine agents have exhausted their searches. At that point the 

baton is again passed back to the first agent on the list. The final decision for the group will be a 

local maximum from which none of the heuristics can find a higher point.  The discussion can be 

thought of as a conversational relay, proceeding in orderly fashion around a circular table. The 

average score for the group will be the average over all of our 2000 starting points. 

What Hong and Page compare are the results of a modeled discussion of this form for (a) 

a group composed of the ‘best’ individuals—those with the highest individual scores—and (b) 
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random individuals drawn from the heuristics pool at large.  The ‘Diversity Trumps Ability’ 

result is the fact that the random group consistently does better.   

In our reproduction of the Hong-Page result we use groups of 9—random and ‘best’—

taking the average value across the 2000 points for each group.  With random values between 1 

and 100 for each of the 2000 points, the average maximum on the 2000-point terrain for the 

group of the 9 best individuals over 1000 runs was 92.53, with a median of 92.67.  The mean 

average for a group of 9 random individuals was 94.82, with a median of 94.83.  Across 1000 

runs a higher score was achieved by random agents in 97.6% of all cases.  

Thompson (2014) challenges both the intrinsic interest of the mathematical theorem that 

Hong and Page offer and its relevance to their conclusions.  What the theorem shows is that 

given strict conditions regarding group and population size and specific definitions of problem 

difficulty and group diversity, ‘diversity trumps ability’ with probability 1.  In both Page and 

Hong’s simulation and our replication the strict conditions required for the theorem are 

significantly relaxed.  Even here, however, where probability falls below 1, the results above 

show the central result to be extremely robust.  Within the simulation parameters specified, the 

epistemic success of a collection of random heuristics proves consistently superior to that of a 

collection of those which individually score the best.   

 

II. Interpreting Hong-Page 

The model is extremely suggestive, and has been offered as support for a number of strong 

conclusions.  In both their original work and in later applications Hong and Page allude to 

diversity as a value in affirmative action (Hong & Page 2004, Page 2007).  They also draw 

conclusions regarding business and research teams: “When selecting a problem-solving team 
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from a diverse population of intelligent agents, a team of randomly selected agents outperforms a 

team comprised of the best-performing agents” (Hong & Page 2004).  It is to their credit, we 

think, that Page and Hong tend not to use the term ‘experts.’  In reviews and applications of their 

work, however, it is probably natural that their results are taken as part of the larger case against 

expertise (Landemore 2013, Gunn 2014, Weymark 2014).  The Princeton University Press’s 

blurb on the back of the book characterizes Page’s The Difference as revealing “how groups that 

display a range of perspectives outperform groups of like-minded experts.”  Elizabeth Anderson 

characterizes Hong-Page as showing “that diverse collections of nonexperts do a better job than 

experts in solving many problems,” supporting the claim that “democracy, which allows 

everyone to have a hand in collective problem solving is epistemically superior to technocracy, 

or rule by experts” (Anderson 2006, 12).   

Page and Hong’s most careful statement of the central result refers simply to ‘best-

performing’ agents.  There is good reason to resist interpreting those agents as either ‘experts’ or 

as individuals with the highest ‘ability.’  In their computational experiment, as outlined above, 

the landscape on which these are the ‘best-performing individuals’ is a purely random landscape.  

Because of that, different landscapes produce ‘best-performing individuals’ with very different 

heuristics.  An individual with a set of heuristics that is ‘best-performing’ on one random 

landscape is very likely to do extremely poorly on another.   

Table 1 shows the top 9 heuristic sets in a model runs on different random landscapes.  

The first thing that leaps out is the redundancy of heuristic numbers across the ‘best-performing’ 

within each individual landscape.  On the first landscape, for example, the numbers 4 and 12 

appears in every one of the ‘best-performing’ heuristic sets.  The redundancy of the ‘best-

performing’ is a major part of Hong and Page’s own analysis of both formal results and social 
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implications: why hire 5 individuals with the same background if you will just hear the same 

message five times? 
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# Heuristic Sets for the ‘Best-Performing’ Agents 

1 
(12 4 5)   (12 2 4)   (12 5 4)   (12 4 2)   (5 12 4)   (4 12 2)    (6 12 4)   (4 5 12)    (12 4 6) 

2 
(5 7 6)    (10 8 7)   (8 7 10)   (7 10 8)    (7 5 6)    (7 8 10)   (11 10 8)   (5 6 7)   (10 11 8) 

3 
(1 10 3)    (1 6 2)    (1 3 10)   (3 1 10)    (6 2 1)    (10 3 1)    (10 1 3)   (1 10 6)   (7 5 3) 

4 
 (11 4 1)   (12 2 8)  (11 2 12)  (4 11 1)   (11 1 4)   (4 1 11)   (12 11 2)   (5 8 2)     (8 12 2) 

5 
(6 1 2)     (3 6 1)     (6 1 3)     (1 2 7)     (3 6 2)    (1 3 6)     (2 6 7)    (7 1 2)    (1 2 6) 

6 
(4 8 7)     (3 4 8)     (4 8 3)     (7 4 8)    (4 3 8)     (1 8 7)     (3 8 4)    (3 8 7)    (8 7 2) 

7 
(3 12 1)   (1 3 12)   (12 1 3)   (3 1 12)   (8 3 12)   (11 12 8)   (1 8 12)   (12 1 8)   (12 3 1) 

8 
(2 6 11)   (11 2 6)   (6 11 2)   (11 6 2)   (6 2 11)   (9 6 11)    (2 11 6)   (11 9 6)   (11 6 9) 

9 
(8 7 2)     (8 2 7)     (2 7 8)     (8 6 7)    (6 8 7)     (7 6 4)     (6 7 8)    (7 8 6)     (2 8 7) 

10 
  (2 8 3)   (8 3 2)  (12 11 3)   (3 12 11)  (12 3 11)   (11 3 12)  (2 3 8)   (11 12 10)   (12 11 10) 

 

Table 1.  Heuristic sets for the ‘best-performing’ on 10 different random landscapes 

 

On a single random landscape, the ‘best-performing’ individuals will tend to have heavily 

overlapping heuristic sets: it will be the same numbers, or close to the same numbers, that do 

well in different orders.  But those particularly valuable heuristic numbers will be specific to a 

given random landscape.  Numbers 12 and 4 appear in all of the best-performing heuristics for 

the first landscape in Table 1, for example, but neither number appears in any of the best-

performing heuristics for the second or third landscapes.  Table 2 shows the percentage of cases 

in which each of our 12 numbers appears among the 3 heuristic numbers of the 9 ‘best 

performing’ agents on 100 random landscapes.  Here there appears to be no clear signature of 

‘ability’: each heuristic number shows roughly equal representation across the random 

landscapes as a whole.   

 

Percentage of ‘best-performing’ in which each heuristic value appears 

1 2 3 4 5 6 7 8 9 10 11 12 

22.7 21.1 19.2 22.3 22.2 24.7 28.3 23.4 31.6 24.3 31.4 28.3 

 

Table 2.  Percentage of cases in which each value appears among the 3 heuristic numbers 

of the 9 ‘best performers’ on 100 random landscapes. 
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Because ‘best-performance’ is so specific to a given random landscape, it seems dubious that 

‘best-performing’ agents qualify as ‘experts’ in the familiar sense.  Their success is the local 

success of a specific set of heuristics on what is essentially a specific pattern of noise. The ‘best-

performing’ on a specific landscape might therefore be better thought of as the ‘luckiest’ on the 

landscape: those that happen to have heuristic sets attuned to that specific case.  Genuine 

expertise and ability, where they exist, should be transferable.  An expert on livestock should be 

able to give us reliable results on various groups of livestock.  An individual with an ability to 

predict the weather should be able to predict the weather in various conditions and on various 

days.  ‘Best-performing’ in the Hong Page model, keyed to a single random landscape, is not 

transferable in that sense.   

 

Our replication of Hong and Page’s simulations shows that the formal result is secure on 

random landscapes.  Interpretation is another matter.   Because of the central role of a random 

landscape in that result, we suggest that ‘high-performance’ in that original not be interpreted in 

terms of agent ‘ability’ or ‘expertise,’ and advise that social and policy implications be handled 

with extreme care.  In the next two sections we explore variations on the model using landscapes 

for which interpretations in terms of transportable ‘expertise’ seems significantly more 

appropriate.  Those are also variations, however, in which the ‘diversity trumps ability’ result 

disappears.    

 

III.  Expertise over Diversity on Smoother Epistemic Landscapes   

 

What we explore here is how robust the Hong-Page results are, concentrating on one variation in 

the original model.  Hong and Page themselves emphasize a number of important conditions on 

their result.  These appear as strict conditions within their formal theorem, but also in a more 
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relaxed form in the context of simulation and in their discussion of model implications (Hong & 

Page 2004, Page 2007, 2011).  They assume that the pool of agents from which groups are 

selected must be diverse.  The groups themselves must be ‘good-sized.’  And, most importantly 

for our purposes, they assume that the problem to be solved must be difficult.   

Hong and Page’s original specification for a ‘difficult’ problem is that there be no 

individual problem solver who always finds the global maximum (Page 2007, p. 159).  Although 

our models count as difficult in that sense, we use a more nuanced measure for the character of 

problems: the ‘smoothness’ of the epistemic landscape at issue.   

One elementary way of ‘smoothing’ a random landscape would be the following.  Instead 

of assigning a random value to each of 2000 points, as above, we might assign a random value to 

a selection of the points—to just the even-numbered points, for example.  If we then fill in the 

landscape by putting mean of the even points’ values at the odd points, we have a landscape 

intuitively twice as smooth as our random original.  For a still smoother landscape, we assign 

random values to every third point, or every fifth, drawing roughly descending or ascending lines 

between the assigned points.   

Here we construct smoother landscapes using a slightly more sophisticated version of the 

same idea.  We assign a random value to point 1.  For a smoothing factor of x, we pick a random 

integer between 1 and 2x, assigning a random value at that point.  Our assigned points thus 

average a distance of x without the artificiality of a fixed interval.  Points between those assigned 

are positioned roughly on a line of ascending or descending values between them.  Epistemic 

landscapes with smoothing factors of 0, 5, 10 and 20 are shown in Figure 1.   
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 Figure 1  Sample landscapes created with smoothing factors of 0, 5, 10 and 20. 

 

There is a sense in which landscapes become less difficult as they become smoother.  Hill-

climbing becomes a reliable strategy: unlike a purely random landscape, smoother landscapes 

offer extended slopes to climb.  In another sense, however, increasingly smooth landscapes pose 

increasingly difficult problems.  Peaks become increasingly far between relative to the limited 

reach of available numbers, and canyons between them become increasingly hard to cross.  

Problem difficulty is thus a complex notion: we take ‘smoothness’ as a measure of the character 

of a problem space, without trying to translate it directly as ‘difficulty.’   
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Figure 2.  Groups of 9 individuals using 3 Heuristics from a pool of 12.  ‘Diversity 

trumps ability’ only for landscape smoothness less than 4.  Differences in averages 

shown. 

 

How robust is the conclusion that ‘diversity trumps ability’ with increasing smoothness of a 

landscape?  Our agent heuristics consist of ordered sets of 3 numbers between 1 and 12, resulting 

in 1320 possibilities.  Over 100 runs, we take average values starting from each of 2000 points 

for (a) a relay group of 9 random individuals and (b) a relay group of the 9 individuals that 

perform best individually.  For landscape smoothness from 0 to 20, Figure 2 graphs the 

subtractive difference (best-performing group from random).   

What is notable is the cross-over point, indicating a reversal of the ‘diversity trumps 

ability’ claim.  Given the other assumptions carried over from the Hong and Page simulation, 

groups of 9 random individuals do better than 9 of the best-performing—‘diversity trumps 

ability’—only when landscape smoothness is less than 4.  At landscape smoothness 4 there is a 

cross-over.  Beyond that point ‘ability trumps diversity’: groups of the best-performing 

outperform the random group.  The advantage shown is small: at a smoothness factor of 6, for 
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example, the average performance over 100 runs is 0.760 and 0.756 for ‘best’ and random 

groups, respectively.  That small advantage of the best over the random is, however, clear and 

robust beyond the cross-over.1 

It can be argued that smoother landscapes are more realistic in leaving purely random 

data behind and, at least up to a point, in capturing the difficulties of heuristic ‘reach.’  The fact 

that groups of the ‘best’ outperform random groups on those smoother landscapes is thus 

arguably a mark of realism in favor of the value of expertise: ‘ability trumps diversity.’   

It is also on those landscapes that the transportability of ‘best-performing’ becomes 

evident, and thus interpreting ‘best-performing’ in terms of ‘ability’ or ‘expertise’ becomes more 

plausible than on the original Hong-Page landscape. One measure of whether a task admits of 

expertise is whether supposed experts consistently do well on repeated trials on different 

versions of the same task.  We therefore compared agents’ performance on pairs of landscapes of 

equal smoothness, repeating simulations 100 times at smoothness from 0 to 10 for all 1320 

different heuristics.  We then ran a Pearson correlation for each pair of trials and averaged the 

100 repetitions at each smoothness level (Table 3).   

From this data, one can further calculate what percent of the variance is explained by the 

individuals’ heuristics.  In essence, this value calculates the proportion of the performance in the 

second trial that can be predicted from the performance in the first trial (Figure 3).  

  

                                                 
1 To this point we are considering the ‘relay’ group dynamic reported in the Hong-Page simulation: a first agent 

reaches his local maximum, a second agent attempts to go farther from there, and so forth.  That dynamic might also 

be modified to a simultaneous ‘tournament,’ in which all agents report their local maxima and each tries to then go 

from the highest reported by any.  Hong and Page report qualitatively similar results for the simultaneous 

‘tournament’ variation.  We find a similar cross-over in favor of groups of the best-performing using a simultaneous 

‘tournament’ dynamic, though the smoothness factor at which the cross-over occurs is slightly higher.  Further and 

important differences between the two dynamics are outlined in section V.   
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SF Correlation  SF Correlation  SF Correlation 
0 0.1575  7 0.9772  14 0.9674 

1 0.8866  8 0.9807  15 0.9694 

2 0.9645  9 0.9778  16 0.9631 

3 0.9785  10 0.9744  17 0.9615 

4 0.9830  11 0.9734  18 0.9600 

5 0.9814  12 0.9706  19 0.9591 

6 0.9793  13 0.9700  20 0.9549 

 

Table 3. Average over 100 repetitions of Pearson correlations for all heuristics on pairs of 

landscapes of the same smoothing factor 

 

 
Figure 3.  Percentage of variance on two landscapes of the same smoothness explained by 

individual heuristics. 

 

There is a clear and sudden jump in the transportability of individual performance on one 

landscape to another of the same smoothness as smoothness increases from 0 to 1 and 2.  It is 

only here, we propose, that one can properly speak of a heuristic as representing ‘ability’ or 

‘expertise.’  On that proposal, the ‘ability’ or ‘expertise’ that is trumped by diversity in the 

original Hong-Page simulation is not true ‘ability’ or ‘expertise.’  At roughly (though not 
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exactly) that point at which we can more plausibly speak of transportable ability or expertise 

across landscapes, it is no longer true that diverse groups are better performing.  It is roughly 

(though not exactly) where expertise in this sense emerges that groups of ‘experts’ start to 

outperform groups of random heuristics.   

Table 2 shows the percentage of cases in which each of our 12 numbers appears among 

the 3 heuristic numbers of the 9 ‘best performing’ agents on 100 landscapes.  Here there appears 

to be no clear signature of ‘ability’: each heuristic number shows roughly equal representation 

across the random landscapes as a whole.   

We can also say something about what that expertise consists in.  Table 4 expands Table 

2 to show the percentage of cases in which each of our 12 numbers appears among the 3 heuristic 

numbers of the 9 ‘best performing’ agents on 100 landscapes with different smoothing factors.  

Where a random landscape of smoothness 0 shows no particular preference for any specific 

digits among the ‘best-performing,’ a preference immediately emerges at smoothing factor 1: the 

number 1 appears among all of the best 9 heuristics in all 100 cases.  Extreme numbers at the 

other end, particular 12, approach the importance of 1 as the smoothing factor increases, as do 

middle numbers in the region of 7.  The number 2 disappears entirely at smoothing factor 1, on 

the other hand, joined by the number 3 at smoothing factor 2.  Neither 2, 3, nor 4 appear among 

the best heuristics at smoothing factor 3.  In all these cases, unlike the random landscape, it is 

clear that there are certain patterns of heuristics—the ‘expert sets’—that tend to do best quite 

generally across landscapes of a particular smoothness. 
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  Heuristic Number 

  1 2 3 4 5 6 7 8 9 10 11 12 
S

m
o

o
th

in
g

 F
ac

to
r 0 22.7 21.1 19.2 22.3 22.2 24.7 28.3 23.4 31.6 24.3 31.4 28.3 

1 100 0 3.8 23.4 20.4 17.0 21.4 19.9 19.3 22.4 20.6 31.4 

2 100 0 0 0.2 10.3 32.7 35.7 19.6 3.7 11.1 24.4 62.3 

3 100 0 0 0 1.7 21.0 46.4 26.8 4.1 0.4 13.8 85.8 

4 99.4 0.5 0 0.5 7.8 23.4 33.8 27.7 6.6 0.1 3.9 96.1 

5 98.7 1.4 1.7 5.8 14.2 21.6 26.8 21.0 7.7 1.2 0.3 99.7 

 

Table 4.  Percentage of cases in which each value appears among the 3 heuristic numbers 

of the 9 ‘best-performers’ on 100 landscapes for smoothing factors 0 through 5.  Column 

represents the smoothing factor while row represents percentage of cases. 

 

Why exactly these particular heuristic values to well on these smoothing factors is a mystery to 

us.  Possible explanations include that ‘1’ is valuable as a heuristic number because it is the 

ultimate hill-climber.  Should other numbers in rotation not interfere, repeated access to ‘1’ alone 

would allow a heuristic to climb to the highest point on any incline.  With ‘1’ present, the value 

of 2 tends at best to be redundant on landscapes with smoothing factor 1, and potentially 

disruptive—pushing one over the top of a local maximum to a decline on the other side—hence 

its total disappearance at smoothing factor 0.  The same appears to be true for 2 and 3 given a 

smoothing factor of 2, and of 2, 3, and 4 given a smoothing factor of 3.  The value of 12 as the 

highest number available, on the other hand, is that it offers the best promise of leaping over 

declines to an incline on the other side of a valley—a promise that is of increasing importance as 

the width of valleys widen as smoothing factor increases.   

The details aside, the broader lesson of this first set of results is a warning against 

accepting the claim that ‘diversity trumps ability’ without a qualification regarding the character 

of the epistemic landscape at issue.  Keeping other values in the Page and Hong simulation 

constant, it turns out that groups of random agents do better than groups of ‘experts’ or high-



20 

 

performing individuals only for a very narrow range of fairly random landscapes.  For more 

realistic landscapes—on which successful individuals are more easily interpretable as ‘experts’ 

in terms of heuristics transportable with comparable success—it is the groups of high-performing 

individuals that do better.  Given the other assumptions in play, it is ability that trumps diversity 

on smoother landscapes.   

 

IV.  Diversity over Expertise with Larger Heuristic Pools 

With a heuristic pool limited to numbers between 1 and 12, there is a cross-over in favor of 

groups of the best-performing once the smoothness factor exceeds 4.  At that point, it is no 

longer true that ‘diversity trumps ability.’  Another cross-over occurs, however, if we increase 

the size of the heuristic pool.  Rather than being confined to numbers between 1 and 12, for 

example, our heuristics might have any three numbers between 1 and 16 or 1 and 20.  With 

increase in the heuristic pool as a further parameter, diversity again shows its strength.   

At a smoothness of 8, for example, the best-performing do better than a random group 

when the three numbers of heuristics are chosen from a set of 12 numbers (see Figure 2).  When 

heuristic numbers are chosen from a set of 24 or more, however, the group of random heuristics 

again does better.  Figure 4 shows subtractive differences in average score for groups of random 

heuristics and the best-performing as we increase the size of the heuristic pool.   
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Figure 4.  Cross-over in favor of random groups at heuristics pool of 24 with a landscape 

smoothness of 8.  Differences in averages over 100 runs shown. 

 

Across various points of smoothness we have found a very rough ‘rule of three.’  For heuristic 

pools that are less than three times the smoothing factor of the landscape, groups of 9 composed 

of the best-performing outperform random groups as outlined in the previous section.  For 

heuristic pools roughly three times the smoothing factor or greater, we once again see a 

‘diversity trumps ability’ effect.  Although increases in landscape smoothness favor expertise, 

such an advantage is always relative to the maximum size of the heuristic pool from which 

strategies are drawn.   

The virtues of diversity and ‘expertise’ are therefore relative to the interaction of at least 

two important factors: landscape smoothness and heuristic pool.  Figures 5 through 7 show a 

parameter sweep across both variables, indicating distinct areas of relative strength for diversity 

and expertise.   
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Figure 5  Areas in which groups of random heuristics do best (brown) and areas in which 

groups of the best-performing do best (blue) across a parameter sweep of landscape 

smoothness and the size of the heuristic pool. 

 
Figure 6  Differences in averages for groups of random heuristics and groups of the best-

performing over 100 runs at different parameters for smoothing factor and heuristic pool.  

Positive values (in green) show higher averages for groups of the best-performing.  

Negative values (in yellow and red) show higher averages for groups of random heuristics. 
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Figure 7  Percentages of runs in which groups of the best-performing do better than groups 

of random heuristics.  Percentages greater than 50% colored in blue; those less than 50% 

colored in yellow and orange. 

 

 

Figure 5 presents the data in the roughest form, showing those areas in which the average score 

for each is greater over 100 runs.  Figures 6 and 7 show the more nuanced reality behind this 

result.  Even where an average over 100 runs is higher for diversity as opposed to expertise, the 

difference may be very slight.  Figure 6 shows the same data mapped in terms of difference in 

average.  Figure 7 shows the percentage of 100 runs in which a random group or expert group 

does better at each setting of maximum heuristic and landscape smoothness. 

Landscape smoothness can be taken as a measure of the character of a problem, with one 

aspect of difficulty increasing as the landscape is ‘stretched.’  We can think of the size of the 

heuristic pool as a measure of the conceptual resources available to tackle the problem 

represented by a particular landscape.  What our results suggest is therefore particular niches in 

which expertise and diversity are each of particular value.  Expertise is favored for a wide range 

of ‘smoothness,’ but only where the available conceptual resources are importantly limited.  
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With a wider pool of conceptual resources, a diverse group will do better even on problems of 

that same character.     

A key to understanding many of these results, we think, is the extent of heuristic 

coverage represented in a group of individuals.  As landscapes increase in smoothness from 

random, best-performing individuals tend to be very much alike, as indicated in table 4.  A small 

number of the available heuristic numbers will be best on landscape of that smoothness, and all 

experts will share that small set of numbers.  A group of experts will therefore show high 

redundancy: their collective numbers will not be dense on the space of heuristic numbers.  We 

suggest that what gives random groups of heuristics an advantage is not that they are random 

(pace Thompson 2014) but that they will offer a more complete coverage of the space of 

heuristic numbers.  Between them a group of random strategies will have more numbers to try, 

and so have a prospect of reaching higher peaks and avoiding more local maxima. 

As Page and Hong hint in their original work, greater coverage explains the success of 

groups of random heuristics on random landscapes: the random groups have more heuristics to 

work with in their union, and so have a greater of number of options to pursue in finding highest 

peaks.  Coverage also helps to explain the fact that for a landscape smoothness at which experts 

do better, random heuristics can pull ahead with an expanded heuristic pool.  In a larger heuristic 

pool the percentage of ‘expert’ numbers is smaller; the relative redundancy, we might say, is 

larger.  Even groups of random heuristics have some redundancy, but in a larger heuristic pool 

that expected redundancy will be smaller.  At least one reason why random groups do better than 

experts with increased heuristic pools seems to be because their coverage of available heuristic 

numbers increases with a larger pool.   
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V. Group Dynamics and Composition: Diversity and Expertise 

There is a further factor that surprisingly and dramatically favors random heuristics, largely 

ignored in the original Hong-Page results.  In all the results above we use the ‘relay’ dynamics 

employed in Hong and Page’s original simulation.  Starting from a given point, an assigned first 

agent in the group finds the highest point her heuristic will reach.  The second agent then starts 

from that point in search of a higher and so forth.  Once all members of the group have 

sequentially sought for the highest point from that of their predecessor the baton is passed again 

to the first agent of the group. 

A clear alternative to ‘relay’ dynamics is a ‘tournament’ in which all agents of a group 

simultaneously strive for their highest point.  From the highest of any of those, all again try for a 

higher, and so on.  What is eliminated in tournament dynamics is the artificial around-the-table 

sequential updating of a relay.  Hong and Page consider both dynamics, saying that “our results 

do not seem to depend on which structure was assumed” (2004, 16386).  For many group 

dynamics, we would argue, it is ‘tournament’ rather than ‘relay’ that is a more realistic model of 

epistemic exploration.  And here results do depend on which structure is assumed.  Just as group 

size and the conceptual headroom of a larger heuristic pool favor diverse groups, so does the use 

of tournament over relay dynamics.  In comparison with Figures 5 through 7, Figure 8 shows 

results for tournament dynamics in place of relay. 
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c 

 
 

Figure 8.  Corresponding to Figures 7 through 9, parameter sweeps across smoothing 

factor and heuristic pool size with tournament rather than relay group dynamics.  (a) 

Areas in which groups of random (brown) and groups of best-performing (blue) do best.  

(b) Differences in averages over 100 runs, with positive values (green) showing 

advantage to the best-performing, negative values (yellow and red) for random groups.  

(c) Percentages of runs in which each group does better, with blue values for best-

performing, red and yellow for random heuristics. 

 

For a maximum heuristic over 10, ‘tournament’ rather than ‘relay’ updating gives a strong 

advantage to random heuristics.  Indeed one might almost say that a group dynamics 

characterized by simultaneous tournament rather than sequential relay reverses the advantage to 

experts offered by increasing landscape smoothness.   

Interesting results occur when we compare not merely groups (a) entirely of experts or 

(b) entirely of random heuristics, but also groups with some proportion of each.  The difference 

between tournament and relay group dynamics also plays out on these mixed groups.  Returning 

to our initial pool of 12 heuristics, we show results for relay dynamics in Figure 9.   
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Figure 9.  Normalized averages for pure and mixed groups of size 9 using a relay group 

dynamics 

 

In Figure 9 that group that scores the highest average at any smoothness factor is normalized to 

1, that which scores the lowest is normalized to 0.  The dramatic cross-over between experts and 

randoms thus plays out in the cross-over between smoothness 5 and 6.  For 5 and below it is 

experts that do the worst; for 6 and above it is the random group that performs worst. 

We track not merely groups of experts and random heuristics but others as well.  Our 

analysis of the Hong-Page result, consistent with indications in their work, is that what groups of 

the ‘best-performing’ have going against them is redundancy.  They are too much alike, thereby 

losing the exploratory spread of individuals selected randomly.  If that analysis is right, a ‘group’ 

consisting of a single best agent should have even higher redundancy and so should do worse.  

That is indeed the result for the range shown: a single best agent does so far worse than any of 

those groups shown in Figure 9 that we left it off rather than distort the readability of the chart.2   

                                                 
2 Even this can be complicated by additional factors.  In relay dynamics (though not simultaneous), with a heuristic 

pool of 24 and smoothness factor between 20 and 30 the single best expert outperforms the random group. 
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Contrary to Thompson 2014, we have suggested that it is not the randomness of random 

groups that is an epistemic virtue, but the extent to which their heuristics jointly cover the 

available space.  If that analysis is right, a ‘maximum diversity’ group should do better than a 

random group.  A group with maximum diversity might be constructed by choosing a random 

heuristic for the first member but then constraining successive choices for later members of the 

group so as to duplicate heuristic numbers as little as possible.  If the number 11 is already 

‘taken’ in the assignment of heuristics to three previous group members, for example, it is 

removed as a candidate for further assignments.  Figure 9 shows the performance of such a group 

in gray, significantly outperforming a group of random agents at every point. 

 

 
Figure 10  Normalized averages for pure and mixed groups of size 9 using a tournament 

group dynamics 

 

 

The other groups shown are composed of 1 expert with 8 random, 2 experts with 7 

random, and so forth.  For smoothness factors above 8 the pattern is clear.  Even 1 expert among 

randoms does better than our max diversity group.  Groups with 2 experts do better still, and the 
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‘added value’ of experts in place of randoms increases to roughly 7 or 8, though groups with 1 or 

2 random members still do better than groups composed of experts alone.  The difference 

between tournament and relay dynamics is clear when we construct a similar group for 

tournaments results, shown in Figure 10. 

It remains true in tournament play that a single expert does so far worse than others that 

he is left out in order to avoid distorting the chart.  It also remains true that a ‘maximum 

diversity’ group outperforms a random group at all points. 

In tournament dynamics, however, groups of 9 experts do far worse than in relay 

dynamics, occupying the normalized bottom of the chart at almost all points.  Random groups do 

slightly better than experts at most points, though they tend to join them at the bottom with 

higher smoothing factors.   

The performance of mixed groups is particularly interesting and importantly different 

than in the case of relay dynamics.  In tournament dynamics, mixed groups with at least one 

expert and at least one random agent do better than either pure experts or pure randoms at all 

points.  If one traces groups with 1 expert, 2 experts, 3 experts, or 4, these score progressively 

higher values in the graph.  From that point, however, increasing the percentages of experts 

proves a disadvantage: groups with 5, 6, 7, or 8 experts do worse than those with 3 or 4.  We 

have found very similar results showing advantage to roughly half-mixed groups with heuristic 

pools of 24 in place of 12.    

Group dynamics makes an important difference in the relative value of diversity and 

expertise.  In a nutshell, tournament dynamics favors random groups over experts but 

emphasizes the value of mixed composition groups over either.   
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VI   Group Size           

Are there other parameters that advantage either diversity or expertise?  In stating their original 

result, Hong and Page require that groups be ‘good sized’; the groups of 9 we have used 

throughout are very close to the groups of 10 they use in simulation.  In limited confirmation of 

that requirement, it appears that larger groups—at least up to a limit—favor groups of random 

heuristics over groups of experts.  Results hold for both relay and tournament dynamics.   

We replicated the smoothing factor and max heuristic graphs of the previous sections for 

groups of 3 and 6 rather than 9.  Previous results for 9 are included for comparison.  Up to 

groups of 9, it is clear that increased group size in relay dynamics advantages the relative 

performance of groups of random heuristics over groups of experts.  Figures 14 through 16 show 

similar comparisons for simultaneous tournament dynamics. 

3                                                                                  6 

 
                                            9 

 
 

Figure 11  Relay: areas in which groups of random heuristics do best (brown) and areas 

in which groups of the best-performing do best (blue) across a parameter sweep of 

landscape smoothness and max heuristic for groups of 3, 6, and 9 
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   3                                                                             6 

 
                                             9 

 
Figure 12  Relay: Differences in averages for groups of random heuristics and groups of 

the best-performing for groups of 3, 6, and 9. 

   3                                                                             6 

 
                                             9 

.  

Figure 13  Relay: Percentages of runs in which groups of the best-performing do better 

than groups of random heuristics.   

 

   3                                                                             6 
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                                             9 

 
Figure 14  Tournament: areas in which groups of random heuristics do best (brown) and 

areas in which groups of the best-performing do best (blue) across a parameter sweep of 

landscape smoothness and max heuristic for groups of 3, 6, and 9 

 

 

   3                                                                             6 

   
                                             9 

 

 
Figure 15  Tournament: Differences in averages for groups of random heuristics and 

groups of the best-performing for groups of 3, 6, and 9. 

   3                                                                             6 
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Figure 16  Tournament: Percentages of runs in which groups of the best-performing do 

better than groups of random heuristics.   

 

The smaller the group, these figures indicate, the greater the advantage of expertise.  The 

larger the group, all things considered, the greater the advantage for random heuristics.  Here 

again heuristic coverage offers an explanation.  Larger groups of experts will have a small 

reduction in redundancy, since our experts are genuinely distinct, but larger groups of random 

heuristics can still be expected to outstrip the best-performing in terms of coverage on the 

available heuristic set.  At least one reason why larger groups favor random heuristics over 

expert heuristics is because the ratio of coverage for randoms over experts increases with group 

size.   

 

VI.  Conclusion 

Our results indicate that the slogan ‘diversity trumps ability’ can easily be overstated, and that 

some of the knocks taken by expertise are undeserved.  With other parameters patterned on the 

original Hong-Page simulation, we’ve shown that ‘diversity trumps ability’—that random groups 
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outperform groups of the best-performing—only within a small window of low landscape 

smoothness toward the random end.  Within roughly that same that window, moreover, the 

success of the best-performing heuristics on a specific landscape is limited to that specific 

landscape: success on one random landscape tends not to correlate with success on another.   

Genuine ability or expertise, on the other hand, would seem to demand transportability from one 

landscape to another.  We therefore warn against interpreting a heuristic’s success on these 

relatively random landscapes as ‘ability’ or ‘expertise.’  Within the other original parameters, 

‘diversity trumps ability’ or ‘diversity trumps expertise’ only where it is unclear that what it 

trumps should really be considered ability or expertise.   

For ‘smoother’ and arguably more realistic problem landscapes, again with other 

parameters the same, correlation from one landscape to another jumps for the ‘best-performing.’  

Here successful heuristics have a better claim to be modeling ability or expertise, and here that 

expertise shows its value.  For landscape smoothness above 4, using the Hong-Page relay 

dynamics, groups of experts outperform groups of random heuristics.  With an increase in 

landscape smoothness, leaving other parameters in place, it is ability that trumps diversity.   

Diversity again shows its strength, however, when other parameters are changed.  

Increase in the pool from which heuristic numbers are drawn increases the advantage for random 

groups.  Given a landscape smoothness factor at which groups of experts do better with a given 

set of available heuristics, groups of random heuristics perform better once we increase the 

conceptual space to a larger heuristic pool. 

Contrary to Hong and Page’s indication of little difference between the relay dynamics 

used in their simulation and an alternative ‘tournament’ dynamics, we have found a major 

difference between the two.  In an arguably more realistic ‘tournament’ dynamics, agents 
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deliberate and navigate a problem landscape with simultaneous suggestions from the floor rather 

than in a round-the-table ‘relay.’  A tournament group-dynamics, it turns out, further favors the 

value of diversity. Many of the points at which groups of experts show an advantage within a 

relay dynamics disappear in favor of groups of random heuristics once the dynamic is changed to 

a simultaneous tournament.  We find it particularly intriguing that within an arguably more 

realistic tournament dynamics, across arguably more realistic problem landscapes, it is neither 

pure groups of experts or pure groups of random heuristics that do best but mixed groups 

including both. 

The variety and sensitivity of these results undercut any uncritical application of the 

Page-Hong result in favor of diversity initiatives in all contexts.  While such policies may be 

supported by social justice considerations, it is the positive impact on educational quality that is 

offered as a primary consideration in the Supreme Court’s ruling on the matter (Grutter v. 

Bollinger. 2003), and the Hong-Page result is often cited as part of the small body of evidence in 

support of diversity (e.g. UCLA, 2014; Kreiter, 2013).  What our results indicate is that diversity 

does not always trump ability.  Policy makers must also consider aspects of the problem set at 

issue and the decision procedures to be employed.   

Relative to problem characteristics, conceptual resources, and group dynamics, the 

wisdom of crowds and the wisdom of the few each have a place.  We’ve attempted to offer some 

first modeling steps in understanding the role each has to play.   
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