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Preface

In the present version of these lecture notes only a number of typos and a few
glaring mistakes have been corrected. Thanks to Paul Dekker for his help in this
respect.

No attempt has been been made to update the original text or to incorporate
new insights and approaches. For a more recent overview, see our ‘Questions’ in the
Handbook of Logic and Language (edited by Johan van Benthem and Alice ter
Meulen, Elsevier, 1997).

Jeroen Groenendijk
Martin Stokhof
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Chapter 1

Interrogatives

In Section 1.1 of this chapter we first formulate general constraints on a semantics
of interrogatives. In Section 1.2 we present the basic features of a theory that meets
these constraints. Later chapters will elaborate on this.

1.1 Requirements on a semantics for interrogatives

1.1.1 Belnap’s Requirements

In this section we formulate three general methodological constraints on a theory
of questions and answers which are taken from Belnap . Belnap uses them as
a means to classify and evaluate different theories.
Independent meaning requirement Interrogatives are entitled to a meaning of

their own.
Equivalence requirement Interrogatives and their embedded forms are to be

treated on a par.
Answerhood requirement The meaning of an interrogative resides in its answer-

hood conditions.
The independent meaning requirement goes against theories which analyze inter-
rogatives in terms of indicative paraphrases, e.g., as explicit performative sentences,
as in (1b), or as epistemic imperatives, as in (1c).

(1) a. Does Mary walk in the garden?
b. I (hereby) ask you whether Mary walks in the garden
c. Bring it about that I know whether Mary walks in the garden

(An example of an explicit performative analysis of interrogatives is Lewis . An
imperative epistemic approach is presented, e.g., in Hintikka .) The problem
with such paraphrases is that they usually contain the embedded form of the inter-
rogative that they intend to analyze. This is particularly problematic if we combine
the independent meaning requirement with the equivalence requirement.

The latter takes it for granted that, since interrogatives (‘direct questions’)
and embedded interrogatives (‘indirect questions’) come in pairs, they should be
treated as being semantically intimately related, much in the same way as indicative
sentences and their embedded forms are treated as being directly related to each
other.
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4 Interrogatives

The strongest way to meet the equivalence requirement is to treat interrog-
atives and their embedded forms as being identical in meaning. In this strong form
we can use observations concerning semantic relations (such as entailment) between
indicative sentences which contain embedded interrogatives, to determine the se-
mantic properties of interrogatives. This may be helpful, since indicatives are a a
more familiar domain of investigation.

One can take the independent meaning requirement to be so strong as to
require that interrogatives are assigned a meaning different from that of indicatives.
The meaning of an indicative is given by its truth conditions. Interrogatives are not
true or false, hence their meanings cannot be identified with truth conditions. At
the same time, there should be similarities between the meanings assigned to both
kinds of sentences. They can be coordinated, and can be related to each other as
question-answer pairs.

The answerhood requirement asks (at least) that a semantics of interroga-
tives enable us to account for the question-answer relation. As it is stated above,
it is even stronger. If we treat the notions ‘answerhood conditions’ and ‘truth con-
ditions’ on a par, the following picture emerges. In possible world semantics, the
notion of a proposition captures that of truth conditions. A proposition is a func-
tion from possible worlds (more neutrally indices) to truth values. Similarly, we
can associate answerhood conditions with semantic objects called questions, which
would then be functions from indices to answers. If we take the latter to be of a
propositional nature, a question is a function from indices to propositional objects,
viz. the function which for every index tells us what the true answer(s) to that
question is/are at that index.

It seems that something can be said against this. Viewed this way the seman-
tics of interrogatives presupposes the existence of a notion of ‘standard semantic
answerhood’. It seems that this does not do justice to the observation that questions
can be answered in many different ways, and that what is the best way to answer a
question may depend on the information already available to the one who asks the
question. So, we want to interpret the answerhood requirement in such a way that
the notion of a standard semantic answer that a semantic theory of interrogatives
characterizes, should form a suitable basis for a general semantic and pragmatic
theory of answerhood, which takes into account that a question serves to indicate
a gap in one’s information, and that a suitable answer should contribute to closing
this gap.

1.1.2 Entailment and Coordination

The answerhood requirement already provides us with an informal notion of the
kind of semantic objects that is to be associated with interrogatives: the meaning
of an interrogative is a question, a function which for every index tells us what the
true answer at that index is. At the same time this suggests a notion of entailment
between questions:

Definition 1 A question Q entails a question R iff for every index i it holds that,
if a proposition P gives a true answer to Q at i, it gives a true answer to R at i.

A prime example of a questions which entails another is the following.
(2) a. Who walk(s) in the garden?

b. Does Mary walk in the garden?
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Other examples come from coordinated interrogatives. In general we have that a
conjunction entails each of its conjuncts, and that a disjunction is entailed by each
of its disjuncts. Consider the following examples:

(3) a. Where are your father and your mother?
b. Where is your father? And where is your mother?

(4) a. Where is your father or your mother?
b. Where is your father? Or, where is your mother?

Example (3a) has a reading on which it can be paraphrased as (3b), which is
a conjunction of two interrogatives. Similarly, (4a) has a reading which can be
paraphrased as (4b), which is a disjunction of two interrogatives. And, indeed,
according to our definition, the conjunction of two interrogatives entails each of its
conjuncts, since to answer (3b) is to answer its two conjuncts. And, similarly, the
disjunction (4b) is entailed by each of its disjuncts. To answer (4b), it suffices to
answer one of its disjuncts.

We will deal with these issues in greater detail in the chapters to follow. But
we want to remark now that these observations give rise to the following additional
requirement:
Entailment requirement A semantics of interrogatives should account for en-

tailment relations between (coordinated) interrogatives. And it should do so
on the basis of the general notions of entailment and coordination that one’s
semantic framework provides.

The semantic framework we use here is that of possible worlds semantics. The
logical language we use is that of two-sorted typetheory. Two-sorted typetheory is
like ordinary typetheory, but instead of having types e and t as basic types, it also
has a third (sic) one, in our case, s. The domain corresponding to type s is the set of
indices (possible worlds). Unlike the more usual language of intensional typetheory,
the language of two-sorted type theory contains variables and constants of type
s (among others). (We use i and j as variables of type s.) And, hence, it allows
for explicit λ-abstraction and quantification over indices, thus making the modal
operators and the cup- and cap-operator from intensional type theory superfluous.
The interpretation function assigns extensions the non-logical constants. The index-
dependent nature of most constants is taken care of by providing them with an
extra argument place of type s. For example, the sentence Bill walks is translated
as walk(i)(b), where walk is a constant of type 〈s, 〈e, t〉〉, i a variable of type s, and
b is a constant of type e. Notice that in this way the proper name Bill is treated as
a rigid designator, an index-independent expression, since it is not provided with
an argument place of type s.

Before we can give the generalized notions of entailment and coordination of
the framework, we first define an auxiliary notion:

Definition 2 (Relational types) The set of relational types is the smallest set
such that:

1. t is a relational type
2. if b is a relational type, then 〈a, b〉 is a relational type

The relational types are the types that ‘end in t’. Next we define notions of general-
ized conjunction, disjunction and entailment restricted to expressions of relational
types.
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Definition 3 (Generalized conjunction)
1. If α and β are of type t, then α u β = α ∧ β
2. If α and β are of relational type 〈a, b〉, then α u β = λxa[α(x) u β(x)]

Definition 4 (Generalized disjunction)
1. If α and β are of type t, then α t β = α ∨ β
2. If α and β are of relational type 〈a, b〉, then α t β = λxa[α(x) t β(x)]

Definition 5 (Generalized entailment) If α and β are of the same relational
type, then α entails β iff |= α v β, where v is defined as follows:

1. If α and β are of type t, then α v β = α→ β
2. If α and β are of relational type 〈a, b〉, then α v β = ∀xa[α(x) v β(x)]

The entailment requirement forces upon us that the semantic objects that the theory
assigns to interrogatives are such that by using the notions of coordination and
entailment defined above, we can give a correct account of entailment relations
such as the ones exemplified in (2)–(4).

1.1.3 The Categorial and the Propositional Approach

In this section we discuss the following two approaches to the semantics of inter-
rogatives:
The categorial approach The syntactic category and semantic type of an in-

terrogative are determined by the category and type of its characteristic
constituent answers.

The propositional approach The semantic interpretation of an interrogative has
to give its answerhood conditions, i.e., it should determine which propositions
count as its semantic answers.

Examples of categorial approaches can be found in Hausser ; Hausser and
Zaefferer ; Tichy ; Scha , and of propositional approaches in Hamblin
; Karttunen ; Bennett ; Belnap .

It will be clear from the requirements set out in Section 1.1.1, that we favor
the propositional approach. However, we will indicate that we think that the basic
insights of the categorial approach should be incorporated in an overall theory as
well.

Categorial theories have in common that they prefer ‘short’ linguistic an-
swers to, which we will refer to as constituent answers, to ‘long’ sentential answers.
Constitituent answers are of different syntactic categories and semantic types in
case they answer different kinds of interrogatives:

(5) Whom did John kiss?
(6) What happened in the kitchen last night?
(7) — Mary.
(8) — John kissed Mary.

The constituent answer (7) can be used to answer (5), but not (6). (8) on the other
hand can be used to answer both (5) and (6). Constituent answers are closely tied
to certain types of interrogatives, whereas the tie between sentential answers and
different kinds of interrogatives seems much looser.

Categorial theories focus on the relation between interrogatives and con-
stituent answers. The existence of a categorial match between interrogatives and
their characteristic constituent answers is taken to determine their category. The
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categorial definition of interrogatives is chosen in such a way that in combination
with the category of its constituent answers, the category of indicative sentences
results.

As a result, different kinds of interrogatives are of distinct categories and
semantic types. One of the consequences of this lack of a uniform interpretation of
interrogatives is that entailment relations between interrogatives of different cate-
gories cannot be accounted for by means of the generalized notion of entailment
defined above, since the latter requires such interrogatives to be of the same type.
(A case in point is example (2) given above.) More generally, in focussing on the
linguistic answerhood relation, constituted by categorial fit, the more interesting
semantic notion of answerhood as a relation between propoositions and questions
is hardly touched upon.

Still, it can be argued that the relation between constituent answers and in-
terrogatives not only should be accounted for in an overall theory, but even that any
semantic theory should give it a prominent place in the analysis of interrogatives.
Consider the following two interrogatives:

(9) Who of John, Bill, and Mary will go to the party?
(10) Who of John, Bill, and Mary will not go to the party?
(11) — John and Mary.

The two interrogatives (9) and (10) are equivalent in the sense that they have the
same semantic answerhood conditions: each proposition which completely settles the
one question will settle the other. However, in the context of (9), the constituent
answer (11) expresses a different proposition than it does in the context of (10). In
case of (9) it expresses the proposition that John and Mary are the ones that will
attend the party, whereas in case of (10) it expresses that John and Mary are the
ones that will not go to the party.

What the constituent answer (11) means depends on the context of the in-
terrogative. But how can an analysis within the propositional approach account for
this? Since the two interrogatives are equivalent, they have the same answerhood
conditions, how can they provide a different context for the answer (11).

A categorial approach fares better in this respect. Both interrogatives require
a term as constituent answer. A term and a property forms a sentence. So according
to the categorial approach the two interrogatives express a property. And these
properties, indeed, are different. In case of (9) it is the property of being John,
Mary or Bill and going to the party. In case of (10) it is the property of being John,
Mary or Bill, and not going to the party. And if we combine the answer (11) with
these properties, a different proposition is expressed in each case.

On the other hand, since the categorial approach will identify the meaning
of the two interrogatives with these two different properties, how is it to account for
the fact that the two interrogatives are equivalent in the sense that they have the
same answerhood conditions? This fact is accounted for in a propositional approach,
which identifies the meaning of interrogatives with their answerhood conditions.

So, it seems that one has to be eclectic, one needs to combine both kinds of
approaches to arrive at an overall theory.
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1.2 A Semantics for Interrogatives

1.2.1 Index Dependency

First we consider sentential interrogatives, which express yes/no-questions, and their
corresponding embedded forms, which under the strict version of the equivalence
requirement denote the same semantic object. There is an intimate relation between
embedded indicatives and embedded sentential interrogatives:
(12) a. John knows whether Mary walks in the garden

b. Mary doesn’t walk in the garden
c. John knows that Mary doesn’t walk in the garden

Together, (12a) and (12b) entail (12c).
Embedded indicative sentences and embedded sentential interrogatives can

be coordinated, as shown in (13):
(13) John knows that Peter left for Paris, and whether Mary went with him

The simplest assumption to account for the entailment in (12) is to assume that
embedded interrogatives denote the same kind of semantic object as embedded
indicatives, i.e., a proposition.

The denotation of an embedded indicative is index independent: at every
index it denotes the same proposition. If we compare (12) with (14), we see that
what proposition an embedded interrogative denotes depends on the actual facts.
(14) a. John knows whether Mary walks in the garden

b. Mary walks in the garden
c. John knows that Mary walks in the garden

So, the denotation of embedded interrogatives is index dependent:

whether φ denotes the proposition
{

that φ, if φ is true
that not φ, if φ is false(a)

According to the equivalence requirement the same holds for non-embedded sen-
tential interrogatives:

φ? denotes the proposition
{

that φ, if φ is true
that not-φ, if φ is false(b)

This squares with the answerhood requirement. It means that the proposition de-
noted by an interrogative at a certain index i is its true answer at i. The sense of an
interrogative is then a propositional concept, a function from indices to propositions.

extension intension meaning
indicative truthvalue proposition truth conditions
interrogative proposition propositional concept answerhood conditions

Table 1.1: Interpretation of indicatives and interrogatives

In set-theoretical terms, the interpretation of a sentential interrogative can
be defined as folows:

[[φ?]]i =
{
{j | [[φ]]j = 1} if [[φ]]i = 1
{j | [[φ]]j = 0} if [[φ]]i = 0(c)

Or, equivalently:
[[φ?]]i = {j | [[φ]]i = [[φ]]j}(d)

This means that the interrogative φ?, and the embedded interrogative whether φ
translate in two-sorted type theory as follows:
(15) λj[φ(i) = φ(j)]
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A more concrete example Does Mary walk? and whether Mary walks both translate
into:
(16) λj[walk(i)(m) = walk(j)(m)]

The intension of this expression is:
(17) λiλj[walk(i)(m) = walk(j)(m)]

It denotes a propositional concept, a function from indices to propositions, or equiv-
alently, a relation between indices. The relation holds between two indices i and j
if the denotation of Mary walks is the same at i and j:

[[φ?]] = {〈i, j〉 | [[φ]]i = [[φ]]j}(e)
Such relations are equivalence relations on the set of indices I, and correspond to
bi-partitions of I. (See Chapter 2).

1.2.2 Extensional versus Intensional Interrogative Embedding Verbs

The validity of the entailments exemplified in (12) and (14) do not depend on the
factivity of know. They also hold for a non-factive verb like tell:
(18) a. John tells whether Mary walks in the garden

b. Mary walks in the garden
c. John tells that Mary walks in the garden

(19) a. John tells whether Mary walks in the garden
b. Mary doesn’t walk in the garden
c. John tells that Mary doesn’t walk in the garden

One difference between factive and non-factive interrogative embedding verbs is
illustrated by the difference between (20) and (21):
(20) a. John knows that Mary walks in the garden

b. John knows whether Mary walks in the garden
(21) a. John tells that Mary walks in the garden

b. Mary walks in the garden
c. John tells whether Mary walks in the garden

Whereas (20b) follows from (20a) alone, (21c) follows from (21a) only if the addi-
tional premiss (22b) is added.

Verbs like know and tell are extensional in the sense that they take the
extension of an embedded interrogative as argument. Verbs like wonder and guess
are intensional, they essentially take the intension of an embedded interrogative as
argument.
(22) a. John knows whether Mary walks

b. know(i)(j, λj[walk(i)(m) = walk(j)(m)])
(23) a. John wonders whether Mary walks

b. wonder(i)(j, λiλj[walk(i)(m) = walk(j)(m)])
The validity of the entailments exemplified by (12), (14), (18)–(21) can easily be
checked. In each case it crucially depends on the extensionality of the verbs involved.

The distinction between extensional and intensional interrogative embedding
verbs is a matter of lexical semantics that can be accounted for by means of meaning
postulates, or appropriate basic translations. Similarly, the fact that some verbs
take only interrogatives as argument, such as wonder, that others, like know, take
both indicative and interrogative arguments, and that there are also verbs which
only take indicative arguments, like believe, is also to be accounted for by lexical
semantics.
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1.2.3 Exhaustiveness

Like embedded sentential interrogatives, constituent interrogatives are intimately
related to embedded indicatives.
(24) a. John knows who walk(s) in the garden

b. Mary walks in the garden
c. John knows that Mary walks in the garden

(25) a. John knows who walk(s) in the garden
b. Mary doesn’t walk in the garden
c. John knows that Mary doesn’t walk in the garden

In these cases too, (c) follows from (a) and (b). (If, that is, we assume proper
names to be rigid designators, and know to be closed under logical consequence.)
And, again, this can most easily be accounted for if constituent interrogatives, like
sentential ones, denote propositions. The examples also reflect the index dependency
of the denotation of interrogatives: the proposition denoted by who walks in the
garden?, should entail the proposition that Mary walks in the garden in case Mary
actually walks in the garden, and the proposition that she doesn’t in case she in
fact doesn’t. This means that (26a) entails (26b), and that (27a) and (27b) are
equivalent (assuming that the ‘wh-term’ who concerns the universe of discourse as
a whole, and is not restricted to a certain subset thereof, and assuming that John
is informed about what constitutes the universe of discourse).
(26) a. John knows who walk(s) in the garden

b. John knows whether Mary walks in the garden
(27) a. John knows who walk(s) in the garden

b. John knows who doesn’t/don’t walk in the garden
Given the equivalence requirement, we also have that a proposition which gives a
complete answer to (28a), will also give a complete answer to (28b). Which means
that the interrogative (28a) entails the interrogative (28b), and that it does so on
the basis of the general definition of entailment defined in Section 1.1.2.
(28) a. Who walk in the garden?

b. Does Mary walk in the garden?
So, a simple interrogative like Who walk(s) denotes the proposition which gives
an exhaustive specification of the actual extension of the property of walking. In
set-theoretical terms, its denotation can be represented as:

[[who walk(s)?]]i = {j | [[walk]]i = [[walk]]j}(f)
In two-sorted type theory we get the following representation:
(29) λj[λxwalk(i)(x) = λxwalk(j)(x)]

This is equivalent to:
(30) λj[∀x[walk(i)(x)↔ walk(j)(x)]]

This shows that who walks means something like for all x whether x walks. Suppose
that Bill and Mary are the ones that walk at index i, then (29) and (30) denote the
same proposition as is expressed by:
(31) ∀x[walk(i)(x)↔ [x = b ∨ x = m]]

This illustrates the exhaustiveness of constituent interrogatives.

1.2.4 The De Dicto Nature of Interrogatives

The following series of examples indicate that things get slightly different if we are
dealing with a wh-term like which man instead of who.
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(32) a. John knows which man walks in the garden
b. Hilary is a man who walks in the garden
c. John knows that Hilary is a man who walks in the garden

(33) a. John knows which man walks in the garden
b. Hilary isn’t a man who walks in the garden
c. John knows that Hilary isn’t a man who walks in the garden

(34) a. John knows which man walks in the garden
b. John knows whether Hilary is a man who walks in the garden

(35) a. John knows which men walk in the garden
b. John knows who the men are
c. John knows which men do not walk in the garden

Knowing which men walk in the garden involves some de dicto knowledge about
who the men are. Of the men who actually walk in the garden, one should know
not only that they walk in the garden, but also that they are men. More precisely,
one should be able to give an exhaustive specification of the men who walk.

This means that the denotation of the simple one-constituent interrogative
which man walks can be represented in set theoretical terms as follows:

[[which man walk?]]i = {j | [[man]]i ∩ [[walk]]i = [[man]]j ∩ [[walk]]j}(g)
In two-sorted type theory this amounts to:
(36) λj[λx[man(i)(x) ∧ walk(i)(x)] = λx[man(j)(x) ∧ walk(j)(x)]]

Note that (36) is equivalent to (37), but not to (38):
(37) λj∀x[[man(i)(x) ∧ walk(i)(x)] = [man(j)(x) ∧ walk(j)(x)]]
(38) λj∀x[man(i)(x)→ [walk(i)(x) = walk(j)(x)]]

If we embed these propositions under know, we arrive at (39) and (40a) respectively.
The latter is equivalent to (40b). Whereas (39) gives the de dicto reading of (41a),
(40a) and (40b) represent its de re reading, which can be paraphrased as (41b). It
is only the de dicto reading, i.e., (36)/(37), that corresponds to the interrogative
(42).
(39) know(i)(j, λj∀x[[man(i)(x) ∧ walk(i)(x)] = [man(j)(x) ∧ walk(j)(x)]])
(40) a. know(i)(j)(λj∀x[man(i)(x)→ [walk(i)(x) = walk(j)(x)]])

b. ∀x[man(i)(x)→ know(i)(j, λj[walk(i)(x) = walk(j)(x)])]
(41) a. Bill knows which man walks

b. Of each man, Bill knows whether he walks
(42) Which man walks?

One-constituent interrogatives denote propositions which give an exhaustive specifi-
cation of the denotation of a property. Likewise, a two-constituent interrogative such
as (43a) denotes a proposition that gives an exhaustive specification of a two-place
relation.
(43) a. Which girl kisses which boy?

b. λj[λxλy[girl(i)(x) ∧ boy(i)(y) ∧ kiss(i)(x, y)] =
λxλy[girl(j)(x) ∧ boy(j)(y) ∧ kiss(j)(x, y)]]

(43b) denotes the proposition which gives an exhaustive specification of the relation
of loving, restricted in its first argument to the girls, and in its second argument to
the boys.

1.2.5 Interrogative Formation

Having decided in the previous sections what the semantic interpretation of sen-
tential, one-constituent and multiple constituent interrogatives is, we now turn to



12 Interrogatives

the question of how to construct interrogatives with these interpretations. Consider
(again) the following four representative examples:
(44) a. Does Mary walk?

b. λj[walk(i)(m) = walk(j)(m)]
(45) a. Who walks?

b. λj[λxwalk(i)(x) = λxwalk(j)(x)]
(46) a. Which man walks?

b. λj[λx[man(i)(x) ∧ walk(i)(x)] = λx[man(j)(x) ∧ walk(j)(x)]]
(47) a. Which girl kisses which boy?

b. λj[λxλy[girl(i)(x) ∧ boy(i)(y) ∧ kiss(i)(x, y)] =
λxλy[girl(j)(x) ∧ boy(j)(y) ∧ kiss(j)(x, y)]]

The four representations under (b) exhibit the following general form:
λj[λx1 . . . λxn[β(i)(x1, . . . , xn)] = λx1 . . . λxn[β(j)(x1, . . . , xn)]], n ≥ 0(h)

Each instance of the Schema (h) is a proposition which exhaustively specifies the
denotation of an n-place relation. For n = 0, we are dealing with zero-place relations,
i.e., propositions, the denotations of sentential interrogatives. For n > 0 we are
dealing with the interpretations of constituent interrogatives.

As we have indicated in Section 1.1.3, and will argue for more extensively in
Chapter 3, to be able to deal with the interpretation of linguistic answers, we need
to cover both the basic insights of the propositional approach, and of the categorial
approach. The latter requires that we assign n-place relations as interpretations to
n-constituent interrogatives at some level of interpretation.

This suggests that we form interrogatives in two steps:
1. construct n-constituent interrogatives as expressions denoting n-place rela-

tions
2. turn the relational interpretation of an interrogative into a propositional one

As for step 2, Schema (h) already tells us how to do this.
As for step 1, we refer to n-constituent interrogatives interpreted at rela-

tional level as n-place abstracts. Compositionality requires that n-place abstracts
be constructed stepwise. We do this in the following (rather orthodox and old-
fashioned) way. We start out with zero-place abstracts, sentential structures with
free variables. The rule of abstract formation then turns an n-place abstract into an
n+1-place abstract. Semantically this amounts to λ-abstraction over a free variable
in the n-place abstract. Thus, semantically, the rule of abstract formation turns an
n-place relation into an n + 1-place relation. In case of wh-terms of the form which
CN, λ-abstraction is restricted to the property denoted by the CN.

This leads to the following rule of abstract formation:

Regel 1 Let β be an n-place abstract, with translation β′. Then:
1. the n + 1-place abstract obtained from β by introducing the wh-term who

translates as λxβ′

2. the n+1-place abstract obtained from β by introducing the wh-term which δ
translates as λxdδ′eβ′, where δ′ is the translation of δ.

The notion of restricted λ-abstraction used in this rule of abstract formation is
defined as follows:

Definition 6
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1. If x ∈ V ARa, α ∈ ME〈a,t〉, and β ∈ MEb, where b is a conjoinable type,
then λxdαeβ ∈ME〈a,b〉.

2. [[λxdαeβ]]g is that function h ∈ D〈a,b〉 such that for all d ∈ Da:
a. h(d) = [[β]]g[x/d] if [[α]]g(d) = 1; and
b. h(d) = zerob if [[α]]g(d) = 0
where zerot = 0; zero〈a,b〉 is the constant function from Da to zerob

The rule which turns abstracts into interrogatives conforms to Schema (h):

Regel 2 If β′ is the translation of an abstract β, then the translation of the corre-
sponding interrogative is λj[β′ = (λi β′)(j)]

One example to illustrate these rules. The representation (47b) of the interrogative
(47a) is obtained as follows. We start from a sentential structure x kisses y, which
translates as kiss(i)(x, y). This expression is a zero-place abstract. If we apply the
rule of abstract formation to this zero-place abstract and the wh-term which boy,
we arrive at the one-place abstract x kisses which boy, which translates as (48a),
and which is equivalent to (48b).
(48) a. λydboy(i)ekiss(i)(x, y)

b. λy[boy(i)(y) ∧ kiss(i)(x, y)]
If we apply the rule of abstract formation to this one-place abstract and the wh-
term which girl, we arrive at the two-place abstract which girl kisses which boy. Its
translation is (49a), which is equivalent to (49b):
(49) a. λxdgirl(i)eλy[boy(i)(y) ∧ kiss(i)(x, y)]

b. λxλy[girl(i)(x) ∧ boy(i)(y) ∧ kiss(i)(x, y)]
By applying the rule for interrogative formation to (49b) we arrive at our semantic
representation (47b) for (47a).
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Chapter 2

Questions and Answers

In this chapter we explore some formal aspects of the analysis of questions as par-
titions of the set of indices. Section 2.1 considers the notion of a partition and dis-
cusses some elementary properties. Section 2.2 deals with notions of answerhood.
Section 2.3 is concerned with some aspects of the process of question-answering.

2.1 Questions as Partitions

In this section we point out some simple properties of partitions and discuss their
relevance for questions.

Definition 7 A is a partition of A iff
1. For all X in A it holds that X 6= ∅
2. For all X, Y in A it holds that if X 6= Y then X ∩ Y = ∅
3. ∪A = A

Questions are viewed as partitions of the set of indices I. The elements of a question
are non-empty subsets of I, i.e., propositions. These propositions are the possible
(complete semantic) answers of the question. A yes/no-question has two possible
answers, hence it makes a bi-partition on I. See Fig. 2.1 for an illustration.

not-φ

φ

I

Figure 2.1: Partition made by whether-φ

A constituent question has as many distinct semantic answers as there are
possible denotations of the relation on which it is based. Fig. 2.2 gives an illustration.
The view that questions are partitions of I embodies the view that the semantic

15
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everybody α

...

a1 and a2 are the ones that α

a2 is the one that α

a1 is the one that α

nobody α

I

Figure 2.2: Partition made by Who α

interpretation of an interrogative determines what its (complete semantic) answers
are. The latter view means adopting Schema (a) as the interpretation schema for
interrogatives derived from n-place abstracts α:

λiλj[α = (λi α)(j)](a)
Any relation that instantiates Schema (a) is reflexive, symmetric, and transitive, i.e.,
it is an equivalence relation. To every equivalence relation R on a set A corresponds
a partition of A, which consists of the equivalence classes of A under R. So, semantic
objects of the type of Schema (a) do indeed correspond to partitions of I.

Notation. Let Q be an instance of Schema (a), then I/Q denotes the partition
on I which is induced by Q:

Definition 8 I/Q = {[i]Q | i ∈ I}

where [i]Q, the set {j ∈ I | Q(i)(j)}, is the answer to Q at i. This expresses that
the partition I/Q is the set of possible complete semantic answers to Q.

Two interesting partitions:
(1) a. {I}: the tautological question

b. {{i} | i ∈ I}: the most demanding question (What is the world like?)
Examples of tautological questions:

(2) a. whether (φ or not-φ)
b. whether (φ and not-φ)
c. who α or not α
d. which α is not α

We now consider some operations on partitions. (Througout we assume that all
partitions are of the same set.) First intersection, which takes the non-empty inter-
sections of all the elements of two partitions:

Definition 9 A1 u A2 = {X ∩ Y | X ∈ A1 & Y ∈ A2 & X ∩ Y 6= ∅}

Figure 2.3 illustrates how this intersection operation works.
We observe the following elementary fact:

Fact 1 For any partition A there exist bi-partitions B1, . . . ,Bn, . . . such that A =
B1 u B2, . . . ,uBn, . . .
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A2

A1

A

A1

A3 A4

A

A2

A2 ∩A3

A1 ∩A3

A2 ∩A4

A1 ∩A4

A

A1 u A2

Figure 2.3: Intersection

Consequence for questions:

Fact 2 If I/Q is a non-tautological question, then it can be constructed by inter-
section from a number of single yes/no-questions.

Examples:
whether φ or ψ = whether φ u whether ψ
who α = whether a1 α u whether a2 αu, . . . ,whether an αu, . . .

Next we consider union. The union of two partitions A1 and A2 is the set containing
the smallest non-empty sets Z which equal a real subset of A1 and A2:

Definition 10 A1 t A2 = {Z | Z 6= ∅ & ∃X ⊂ A1 & ∃Y ⊂ A2: Z = ∪X =
∪Y & ¬∃Z ′: Z ′ 6= ∅& Z ′ ⊂ Z & ∃X ⊂ A1 & ∃Y ⊂ A2: Z ′ = ∪X = ∪Y }

See figure 2.4 for an illustration.

A3

A1 A2

A

A1

A5 A6

A4

A

A2

A3 ∪A5 ∪A6

A1 ∪A2 ∪A4

A

A1 t A2

Figure 2.4: Union

The union operation seems to lack a straightforward linguistic analogue.
The most important notion in the present context is that of the relation of

inclusion between partitions:

Definition 11 A1 v A2 iff for all X in A1 there is a Y in A2 such that X ⊆ Y

Figure 2.5 gives an example.
The inclusion relation holds between two questions I/Q and I/R iff every

semantic answer to Q entails a (unique) semantic answer to R. Hence it models
the entailment relation between interrogatives. For, if every semantic answer to Q
entails a semantic answer to R, then asking Q implies asking R.

We observe the following facts concerning inclusion:
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A

A1

A

A2

A1 v A2

Figure 2.5: Inclusion

Fact 3 For all A1, A2:
1. A1 v {A}
2. {{a} | a ∈ A} v A1

3. A1 u A2 v A1

4. A1 v A2 iff A1 u A2 = A1

5. A1 v A1 t A2

6. A1 v A2 iff A1 t A2 = A2

We note that v is a partial order on the set of all partitions of a set A: v is reflexive,
anti-symmetric, and transitive.

The operations u and t satisfy commutativity, associativity, idempotency,
and absorption:

Fact 4 For all A1, A2, A3:
1. A1 u A2 = A2 u A1, and A1 t A2 = A2 t A1

2. (A1 u A2) u A3 = A1 u (A2 u A3), and (A1 t A2) t A3 = A1 t (A2 t A3)
3. A1 u A1 = A1, and A1 t A1 = A1

4. A1 u (A1 t A2) = A1, and (A1 u A2) t A1 = A1

In view of Facts 3 and 4, the set of all partitions of a set A forms a complete lattice
under v. In this lattice {A} is the maximal element (cf. Fact 3.1 ), and {{a} | a ∈ A}
is the minimal element (cf. Fact 3.2). The bi-partitions are the dual atoms of the
lattice, and u and t are the meet and the join.

Projecting this on the set of all questions, i.e., the set of all partitions of the
set of indices I, we observe that {I}, the least demanding question, is the maximal
element, and that its counterpart {{i} | i ∈ I}, the most demanding question, is
the minimal element. The single yes/no-questions, from which all non-tautological
questions can be derived by intersection (Fact 2), are the dual atoms. Assuming
we have enough expressions at our disposal the realm of all questions can thus be
pictured as in Fig. 2.6.

So we see that the set of all questions has a certain structure, which reflects
the logical relationships between natural language interrogatives.

2.2 Propositions as Answers

In this section we turn to an analysis of various relations of answerhood that
the present approach permits. Section 2.2.1 deals with semantic notions, and Sec-
tion 2.2.2 with their pragmatic counterparts.



Propositions as Answers 19

{{i} | i ∈ I}
PPP ���

. . . . . . . . .

. . .I/whether φn. . .I/whether φ1

��� PPP

{I}

Figure 2.6: Lattice of questions

2.2.1 Semantic Notions of Answerhood

In what follows we use P as a meta-variable over propositions, i.e., subsets of I,
and Q as a meta-variable over questions, i.e., partitions of I.

The two most basic notions:

Definition 12
1. P is a semantic answer to Q iff P ∈ I/Q
2. P is a partial semantic answer to Q iff P 6= ∅ and there is an X ⊂ I/Q such

that P = ∪X

A complete answer is the possible denotation of an interrogative. A partial answer
is the disjunction of some, but not all, such denotations. We notice the following
facts:

Fact 5
1. All complete answers to non-tautological questions are also partial answers.
2. Partial answers to yes/no-questions are complete answers.

Two more liberal notions:

Definition 13
1. P gives a semantic answer to Q iff P 6= ∅ and there is a P ′ ∈ I/Q such that

P ⊆ P ′

2. P gives a partial semantic answer to Q iff P 6= ∅ and there is an X ⊂ I/Q
such that P ⊆ ∪X

A proposition gives a (partial) answer iff it is non-contradictory and implies a
(partial) semantic answer.

Fact 6 If a proposition is a (partial) semantic answer, it gives a partial semantic
answer.

Fig. 2.7 gives illustrations of the four notions we have defined.
In general, there is not just one partial answer given by P to Q. There is,

however, always a strongest partial answer given by P , which is the disjunction of
the semantic answers it is compatible with. This strongest answer we will call the
partial answer which P gives:
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I
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P1

I

 P2

I

P3
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complete partial
is P1 P2

gives P3 P4

Figure 2.7: Examples of semantic answers

Definition 14 Let P give a partial semantic answer to Q. The partial semantic
answer to Q that P gives is ∪{P ′ ∈ I/Q | P ′ ∩ P 6= ∅}

If P is a (partial) semantic answer, then the answer that P gives is P itself.
We now consider the notion of a true semantic answer at a given index.

Parallel to definitions 7–8, four cases can be distinguished, captured in the one
following definition:

Definition 15 P is/gives a true (partial) semantic answer to Q at an index i iff
P is/gives a (partial) semantic answer to Q and the partial semantic answer to Q
that P gives is true at i

Notice that if P is a true (partial) answer, then P itself must be true. But if P
merely gives such an answer, this need not be so. The actual index may lie inside
the answer P gives, but outside P itself. Notice that for the analogous case of
being/giving a false answer, the falsity of P follows in both cases. Cf. the situations
depicted in Fig. 2.8.

I

}
P1i

I

 P2

i
I

P3

�
 �	
i

I

P4

�
�

�
�

i

Figure 2.8: True and false answers given

P1 is a true, complete answer, and is true itself; P2 is a false, partial answer,
and is false itself; P3 gives a false, complete answer, and is false itself; and P4 gives
a true, partial answer, and is false itself.
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2.2.2 Pragmatic notions of answerhood

In order to obtain pragmatic notions of answerhood, we relativize questions and
answers to information sets, i.e., to non-empty subsets of I. Cf. Fig 2.9.

P4

P3

P2

P1

J

I/Q

I

Figure 2.9: Relativization

We denote the set of semantic answers to Q which are compatible with J as
I/QJ :

Definition 16 I/QJ = {X ∈ I/Q | X ∩ J 6= ∅}

We observe the following fact:

Fact 7 I/QJ ⊆ I/Q, for all J .

A second notion is that of the partition that a question Q restricted to J makes on
J . We write this as J/Q:

Definition 17 J/Q = {X ∩ J | X ∈ I/Q & X ∩ J 6= ∅}

The notions I/QJ and J/Q are related as follows:

Fact 8 X ∈ I/QJ iff there is a Y in J/Q such that Y ⊆ X

The definition of the inclusion relation between partitions can now be generalized:

Definition 18 J/Q v K/R iff for all X in J/Q there is a Y in K/R such that
X ⊆ Y

Now we observe the following fact:

Fact 9 J/Q v K/R iff J ⊆ K and J/Q v J/R

Notice that this implies that we have:

Fact 10 J/Q v I/Q

This means that the partition that a question Q makes on I is preserved when Q is
restricted to J , in the sense that it may be compatible with less semantic answers,
but every answer to Q given the information J (i.e., every element of J/Q) will
imply a semantic answer.
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Next we define:

Definition 19 Q is a question in an information set J iff there are X, Y ∈ J/Q
such that X 6= Y

Conversely, a question Q is answered in J if J/Q has only one element, being J
itself.

Now we are ready to define the pragmatic counterparts of the semantic no-
tions of answerhood defined in the previous section.

First we define the notions of a (complete) pragmatic answer, and of a partial
pragmatic answer:

Definition 20 Let Q be a question in J .
1. P is a pragmatic answer to Q in J iff P ∩ J ∈ J/Q
2. P is a partial pragmatic answer to Q in J iff P ∩ J 6= ∅ and there is an

X ⊂ J/Q such that P ∩ J = ∪X

P is a (complete) pragmatic answer to Q in J if adding P to the information
set J results in an information set in which the question Q is answered, i.e., if
(P ∩ J)/Q = {P ∩ J}. And P is a partial pragmatic answer if adding it to the
information set J excludes at least one answer which hitherto was admitted.

The two corresponding notions of giving a complete or a partial answer are
captured in the following definition:

Definition 21 Let Q be a question in J .
1. P gives a pragmatic answer to Q in J iff P ∩ J 6= ∅ and there is a P ′ ∈ J/Q

such that P ∩ J ⊆ P ′

2. P gives a partial pragmatic answer to Q in J iff P ∩ J 6= ∅ and there is an
X ⊂ J/Q such that P ∩ J ⊆ ∪X

Each of the four situations depicted in Fig. 2.10 illustrates one of the pragmatic
notions of answerhood.
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is P1 P2

gives P3 P4

Figure 2.10: Examples of pragmatic answers

We observe that the semantic notions are limiting cases of the pragmatic
ones. For J = I, the two sets of definitions coincide (disregarding the tautologous
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question).
Similar dependencies as hold between notions of semantic answerhood hold

here: to be a pragmatic answer implies to give a pragmatic answer, and to be or
to give a complete pragmatic answer implies to be or to give a partial pragmatic
answer.

An important fact to be observed is the following:

Fact 11 Let J ′ be a subset of J , Q a question in J ′, P compatible with J ′. Then
the followings hold: If P stands in a certain type of pragmatic answerhood relation
to Q in J , then P stands in that same type of relation to Q in J ′

Moreover, since semantic answerhood is a limit of pragmatic answerhood, it follows
that (under the same provisos):

Fact 12 If P bears a certain semantic answerhood relation to Q, it bears the cor-
responding pragmatic answerhood relation to Q in any information set.

So, answerhood relations are preserved under information update.
Another fact to be noticed is the following:

Fact 13 Let J ′ be a subset of J . If P stands in a certain answerhood relation to
Q in J , it may stand in a ‘stronger’ relation to Q in J ′.

In this sense, too, answerhood is monotone with respect to increase of information.
We now turn to the notion of a true pragmatic answer. Its definition is

a bit complicated. Notice that, given suitable information, false propositions are
not only able to give true pragmatic answers, they can also be such answers. And
furthermore, it holds that even if not all of our information happens to be true, i.e.,
even if the information set J , being the conjunction of all our information, is false,
this does not prevent us from getting true answers. Cf. the situations depicted in
Fig. 2.11. Hence, if we want to decide whether P gives a true pragmatic answer in
J to Q, we have to inspect whether the (partial) semantic answer determined by P
with respect to J is true. So, we define:

Definition 22 Let P give a partial pragmatic answer to Q in J . The partial se-
mantic answer to Q determined by P in J = ∪{P ′ ∈ I/Q | P ′ ∩ P ∩ J 6= ∅}.

This leads us to the following definition of true pragmatic answerhood:

Definition 23 P is (gives) a true (partial) pragmatic answer to Q in J at i iff P
is (gives) a (partial) pragmatic answer to Q in J and the partial semantic answer
to Q determined by P in J is true at i.

Fig. 2.11 provides some illustrations. The answer given by P1 is P5, that given by P2

is P6, that given by P3 is P7, and P4 gives P8. P1 is false, but it is a true, complete
answer. P2 is true, and gives a true, partial answer. P3 is false, and gives a true
complete answer. And P4 is true, and gives a false, partial answer.
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Figure 2.11: True and false answers given

2.3 Comparing answers

This last section deals with one aspect of the correctness of question-answering.
The latter involves the well-known Gricean maxims:
Quality A proposition satisfies Quality if the answer it gives is true.
Relevance A proposition satisfies Relevance if it bears some answerhood relation

to the question, given the information of the questioner, and if it does not
contain, or contains only a minimum of, irrelevant information. What is
(ir)relevant depends on the question.

Quantity A proposition satisfies Quantity if it is the best answer that can be given,
modulo Quality.

We concentrate on the last topic, that of choosing a quantitatively best answer.
The problem is how one is to choose between several rival propositions which are
all qualitatively in order. Is there always a best answer? It will turn out that, given
certain additional conditions, the answer is ‘yes’. And we outline a kind of evaluation
procedure that leads to this result.

We start with the procedure. The theory of answerhood gives the following
oppositions:

1. Complete answers vs. partial answers
2. Propositions that are answers vs. propositions that give an answer
3. Pragmatic answers vs. semantic answers

The question how to choose between rival propositions is no other than the question
how these oppositions between answers are to be evaluated.

There is no general answer to this question, so we adopt the following back-
ground perspective: question-answering concerns filling in gaps in the information
of individuals.

This answers the question with respect to 1. and 3. How about 2? This is
a matter of relevance: if P gives an answer to Q without being an answer to Q,
then P contains information that is strictly speaking irrelevant for Q. So, given our
background perspective, we have:

1. We prefer complete answers over partial ones.
2. Propositions that are answers are better than propositions that give answers.
3. Pragmatic considerations are more important than semantic ones.

The question now becomes: how are we to evaluate the three oppositions among
themselves?.

Notice that they work in opposite directions:
1. Preferring complete over partial answers favours stronger propositions
2. Preferring propositions that are answers over propositions that give answer

favours weaker propositions
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So, the evaluation procedure should apply these preferences in a definite order. The
background perspective indicates which order this is to be: pragmatic considerations
take precedence over semantic ones.

The evaluation procedure:
I. Pragmatic Quantity: Choose the answer that stands the best chance of filling

in the gap in the information of the questioner which is indicated by the
question, i.e., leave semantic considerations aside, for the time being.

There are two sides to this:
1. Choose the answer that excludes the greatest number of possible answers

which are still allowed by the information of the questioner, i.e., choose the
answer which is the least partial one with respect to the information of the
questioner.

2. If two or more answers come out the same according to 1, choose the one
that contains the least superfluous information, given what the question asks
for.

If two propositions come out equal under I, apply II:
II. Semantic Quantity: Choose the answer which is best from a purely semantic

point of view, i.e., which is the best one on the basis of conventional meaning
only.

Again, two aspects can be discerned:
1. Choose the answer which is most informative with respect to the question

asked.
2. Should two or more answers still rate equally: choose the one which contains

the least superfluous information given what the question asks for.
In what follows we will:

a. formalize the procedure
b. show that it yields a best answer

We consider the following case:
Assumption: P1 and P2 are two different, mutually compatible propo-
sitions, which both give a partial answer to the question Q.

Now recall that the procedure involves two opposing forces:
◦ towards weaker propositions (’relevance’, i.e., I.2 and II.2);
◦ towards stronger propositions (’informativeness’, i.e., I.1 and II.1)

This means that, beside P1 and P2 themselves, their conjunction P1 ∩ P2 and their
disjunction P1 ∪ P2 have to be taken into account. What we shall show, then, is:

To be shown: There is a best answer to Q among P1, P2, their con-
junction P1 ∩ P2, and their disjunction P1 ∪ P2.

We start with the semantic evaluation procedure (II). First, we define some notation:

Definition 24 dP, I/Qe =
⋃
{P ′ ∈ I/Q|P ∩ P ′ 6= ∅}

In definition 24 {P ′ ∈ I/Q|P ∩ P ′ 6= ∅} is the set of answers to Q which are
compatible with P , so by dP, I/Qe we denote the disjunction of these answers.

We use A(P, I/Q) as a notation for ‘P gives a partial answer to Q’, and we
notice:

Fact 14 A(P, I/Q) iff ∅ 6= dP, I/Qe 6= I

Next we define relative semantical informativeness:
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Definition 25
1. P is semantically more informative than P ′ with respect to Q iff
dP, I/Qe ⊂ dP ′, I/Qe.

2. P and P ′ are semantically equally informative with respect to Q iff
dP, I/Qe = dP ′, I/Qe.

Notice that if a proposition entails another, this does not imply that it is more
informative. What does hold is that if a proposition properly entails another one,
then the former is at least as informative as the latter with respect to any question:

Fact 15 If P ⊂ P ′, then dP, I/Qe ⊆ dP ′, I/Qe

Notice also:

Fact 16 If P gives a complete semantic answer to Q, then no other proposition P ′

gives a semantically more informative answer to Q than P

However, this does not determine a unique best answer.
We now turn to relevance, or, as we call it in this semantic context, that of

semantical standardness: containing less superfluous information, is, from a seman-
tic point of view, coming closer to being a standard identification of some object, or
state of affairs. A comparative notion of semantic standardness is defined as follows:

Definition 26 P is semantically more standard than P ′ with respect to Q iff P ′

and P ′ are semantically equally informative with respect to Q and P ′ ⊂ P

Of two propositions which are equally informative with respect to some question
the more standard one is the one which is the weakest. Standardness and informa-
tiveness work in opposite directions: the former favours weaker propositions, the
latter stronger ones. Notice:

Fact 17 A proposition that is a semantic partial answer to a question is semanti-
cally more standard than any other semantically equally informative proposition.

The next step is to combine the notions of semantic informativeness and semantic
standardness in a comparative notion.

Definition 27 P is semantically quantitatively better than P ′ with respect to Q
iff

1. P is more informative than P ′ with respect to Q; or
2. P and P ′ are equally informative with respect to Q and P is more standard

than P ′ with respect to Q

We shall use P ÀQ P ′ to denote this relation, and we observe:

Fact 18 P ÀQ P ′ iff
1. dP, I/Qe ⊂ dP ′, I/Qe; or
2. dP, I/Qe = dP ′, I/Qe and P ′ ⊂ P
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Definition 27 embodies the semantic evaluation procedure with its two subproce-
dures, of semantic informativeness and semantic standardness, properly ordered.
Notice:

1. Propositions that are (semantic standardness) complete (semantic informa-
tiveness) semantic answers are semantically quantitatively best.

2. There may be more than one such proposition.
In view of 2 it may seem that we are not getting anywhere. However, we now show
that the following holds:

Fact 19 Let P1 and P2 be distinct and compatible propositions, which both give a
partial answer to the question Q. Then there is a semantically quantitatively best
answer to Q in the set {P1, P2, P1 ∩ P2, P1 ∪ P2}.

We need to distinguish various cases. By the supposition of compatibility of P1 and
P2 we know that either:

a. P1 ⊂ P2 (or similarly, P2 ⊂ P1); or
b. P1 ∩ P2 ⊂ P1,⊂ P2.

The a-case is straightforward (since Q is a fixed parameter, we leave out reference
to Q and I/Q in what follows):
Since P1 ⊂ P2, we have dP1e ⊆ dP2e (Fact 15); hence either P1 ÀQ P2, in case
dP1e ⊂ dP2e, by informativeness; or P2 ÀQ P1, in case dP1e = dP2e, by standard-
ness. In the b-case the conjunction and disjunction come into play. The following
facts will prove useful:

Fact 20 If A(P, I/Q) and P ∩ P ′ 6= ∅, then A(P ∩ P ′, I/Q)

Fact 21 If A(P, I/Q), A(P ′, I/Q), and dP e = dP ′e, then A(P ∪ P ′, I/Q)

In the b-case we know that, since P1 ∩ P2 ⊂ P1, ⊂ P2, dP1 ∩ P2e ⊆ dP1e,⊆ dP2e.
This leaves 4 subcases to be considered:

1. dP1 ∩ P2e = dP1e,⊂ dP2e. Then dP1e ⊂ dP2e and hence,by informativeness,
P1 ÀQ P2

2. dP1 ∩ P2e = dP2e,⊂ dP1e. Then dP2e ⊂ dP1e and hence,by informativeness,
P2 ÀQ P1

3. dP1 ∩ P2e ⊂ dP1e,⊂ dP2e.Then, by Fact 20, A(P1 ∩ P2, I/Q), and hence, by
informativeness, P1 ∩ P2 ÀQ P1,ÀQ P2

4. dP1 ∩ P2e = dP1e, = dP2e. Then also dP1 ∪ P2e = dP1e, = dP2e, so A(P1 ∪
P2, I/Q), by Fact 21, and hence, by standardness, P1 ∪ P2 ÀQ P1,ÀQ P2

This proves Fact 19 stated above, that given two compatible propositions there is a
semantically quantitatively best one among these two, their conjunction and their
disjunction.

Now we turn to the pragmatic procedure, which, as is to be expected, turns
out to be structurally analogous to the semantic one.

First, some notation:

Definition 28 dP, J/Qe =
⋃
{P ′ ∈ J/Q|P ∩ P ′ ∩ J 6= ∅}

The set {P ′ ∈ J/Q|P ∩ P ′ ∩ J 6= ∅} consists of those answers to Q restricted to
J which are compatible with P , so by dP, J/Qe we denote the disjunction of these
answers.
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We use AP(P, J/Q) as a notation for ‘P gives a partial pragmatic answer to
Q relative to J ’, and we notice:

Fact 22 If AP(P, J/Q), then ∅ 6= dP, J/Qe 6= J

We get a relative notion of pragmatic informativeness as follows:

Definition 29
1. P is pragmatically more informative than P ′ with respect to Q and J iff
dP, J/Qe ⊂ dP ′, J/Qe.

2. P and P ′ are pragmatically equally informative with respect to Q and J iff
dP, J/Qe = dP ′, J/Qe.

Similar remarks as we made above apply here. Entailment, here given the infor-
mation in J , is not sufficient for being pragmatically more informative. What does
hold is that if the restriction of P to J properly entails the restriction of P ′ to J ,
then P is at least as pragmatically informative with respect to J as P ′ is, for any
Q:

Fact 23 If (P ∩ J) ⊂ (P ′ ∩ J), then dP, J/Qe ⊆ dP ′, J/Qe

Like in the semantic case, there are ‘upper bounds’ of informativeness, viz., the
propositions that give complete pragmatic answers:

Fact 24 If P gives a complete pragmatic answer to Q, then no other proposition
P ′ gives a pragmatically more informative answer to Q than P

Notice that in general there is no unique such limit.
A definition of pragmatic standardness can be obtained as a restriction of

the corresponding semantic notion:

Definition 30 P is pragmatically more standard than P ′ with respect to Q and
J iff P ′ and P ′ are pragmatically equally informative with respect to Q and J and
(P ′ ∩ J) ⊂ (P ∩ J)

Notice that if a proposition is weaker than another one in J , it is to be preferred.
What happens ‘outside J ’, so to speak, i.e., whether the proposition is also semanti-
cally weaker than its rival, is not considered at all: it is only as far as the information
contained in J goes, that things (propositions) are measured and compared.

Given this definition of pragmatic standardness, we can combine it with that
of pragmatic informativeness into a comparative notion, like we did in the semantic
case.

Definition 31 P is pragmatically quantitatively better than P ′ with respect to Q
and J iff

1. P is pragmatically more informative than P ′ with respect to Q and J ; or
2. P and P ′ are pragmatically equally informative with respect to Q and J and

P is more standard than P ′ with respect to Q and J

We use P ÀQ,J P ′ to denote this relation, and we note:
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Fact 25 P ÀQ,J P ′ iff
1. dP, J/Qe ⊂ dP ′, J/Qe; or
2. dP, J/Qe = dP ′, J/Qe and (P ′ ∩ J) ⊂ (P ∩ J)

Further we note the following:
1. Propositions that are (pragmatic standardness) complete (pragmatic infor-

mativeness) pragmatic answers are pragmatically quantitatively best.
2. Two propositions may come out equally well.

Propositions that are complete pragmatic answers are propositions that, given the
information that is available, completely settle the matter raised by the question
with respect to this information, without giving any other (‘irrelevant’) information.

However, the following fact can be proved:

Fact 26 Let P1 and P2 be distinct and compatible propositions, which both give a
partial pragmatic answer to the question Q given J . Then there is a pragmatically
quantitatively best answer to Q given J in the set {P1, P2, P1 ∩ P2, P1 ∪ P2}.

The proof runs completely parallel to that of the corresponding semantic fact. By
supposition we know that:

a. (P1 ∩ J) ⊂ (P2 ∩ J) (or vice versa); or
b. (P1 ∩ P2 ∩ J) ⊂ (P1 ∩ J), ⊂ (P2 ∩ J).

Again, the a-case follows immediately (again, we leave out reference to Q and I/Q
in what follows):
P1 ÀQ,J P2, in case dP1e ⊂ dP2e; and P2 ÀQ,J P1, in case dP1e = dP2e (since
(P1 ∩ J) ⊂ (P2 ∩ J)). In the b-case there are again four subcases to be considered,
and two general facts to take advantage of:

Fact 27 If AP(P, J/Q) and P ∩ P ′ ∩ J 6= ∅, then AP(P ∩ P ′, J/Q)

Fact 28 If AP(P, J/Q), AP(P ′, J/Q) and dP, J/Qe = dP ′, J/Qe, then AP(P ∪
P ′, J/Q)

The b-case is then proved as follows:
1. dP1 ∩ P2e = dP1e, ⊂ dP2e: P1 ÀQ,J P2

2. dP1 ∩ P2e = dP2e, ⊂ dP1e: P2 ÀQ,J P1

3. dP1 ∩ P2e ⊂ dP1e, ⊂ dP2e: P1 ∩ P2 ÀQ,J P1, ÀQ,J P2, by Fact 27
4. dP1 ∩ P2e = dP1e, = dP2e: P1 ∪ P2 ÀQ,J P1, ÀQ,J P2, by Fact 28

Now that we have defined the semantic and the pragmatic evaluation procedures, it
is important to note (once again) that the two may give different outcomes. However,
given the background perspective we assume, we must first apply the pragmatic
criterion, and only if that does not give us a unique outcome, the semantic one.

Hence the overall procedure combines the semantic procedure (Definition 27)
and the pragmatic procedure (Definition 31) as follows:

Definition 32 P is better than P ′ with respect to Q and J iff
1. P is pragmatically quantitatively better than P ′ with respect to Q and J ; or
2. P and P ′ are pragmatically quantitatively equal with respect to Q and J ,

and P is semantically quantitatively better than P ′ with respect to Q

Our final result follows immediately from Definition 32 and Facts 19 and 26:
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Fact 29 Let P1 and P2 be distinct and compatible propositions, which both give
a partial pragmatic answer to the question Q given J . Then there is a best answer
to Q given J in the set {P1, P2, P1 ∩ P2, P1 ∪ P2}



Chapter 3

Linguistic Answers

This chapter is devoted to an analysis of interrogatives and linguistic answers. Two
kinds of answers are distinguished: constituent answers and sentential answers. It is
argued that both kinds of answers can be interpreted properly only in the context
of an interrogative, and that this interpretation is exhaustive (Section 3.1). A gen-
eral operation of exhaustivization is defined and applied to various constructions
(Section 3.2): answers to single constituent interrogatives (Section 3.2.1); answers
to multiple constituent interrogatives (Section 3.2.2); answers to sentential interrog-
atives (Section 3.2.3). In Section 3.3 the relationships between various properties of
constituent answers and the various notions of answerhood, studied in Chapter 2,
are explored.

3.1 Answers and Exhaustiveness

It is argued in this section that neither the category of constituent answers, nor that
of sentential answers, is ‘basic’ with respect to the other, since the interpretation
of both is context-dependent and exhaustive.

3.1.1 Constituent Answers

Some typical examples of interrogatives and constituent answers:
(1) Who walk in the garden?

— John and Mary.
(2) Whom did John kiss?

— A girl and two boys.
(3) Which boy kissed which girl?

— The tall boy, Mary; and the small boy, the two redheads.
Fig. 3.1 illustrates the context-dependency of constituent answer interpretation: the
constituent interpretation is combined with that of the interrogative to derive the
interpretation of the answer.

3.1.2 Sentential Answers

Naively we might think that that the interpretation of sentential answers is context-
independent, as in Fig. 3.2. The interpretation strategy of Fig. 3.2 works only for

31
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interrogative constituent

〈question, proposition〉
〈interrogative, constituent answer〉
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Figure 3.1: Interpretation of constituent answers (simplified)

interrogative sentence

〈question, proposition〉
〈interrogative, sentential answer〉

�
��>

Z
ZZ}

Figure 3.2: Naive interpretation of sentential answers

explicitly exhaustive answers:
(4) Who walk in the garden?

— Only John and Mary walk in the garden.
(5) Whom did John kiss?

— John kissed a girl and two boys and no one else.
(6) Which boy kissed which girl?

— The tall boy kissed just Mary, and the small boy kissed only the two
redheads, and no other boy kissed another girl.

The default interpretation of sentential answers is exhaustive:
(7) Who walk in the garden?

— John and Mary walk in the garden.
(8) Whom did John kiss?

— John kissed a girl and two boys.
(9) Which boy kissed which girl?

— The tall boy kissed Mary, and the small boy the two redheads.
Non-exhaustiveness of answers is a marked phenomenon:
(10) a. John and Mary, for example, walk in the garden.

b. (I don’t know, but) at least John and Mary walk in the garden.
c. John and Mary are among the ones that walk in the garden.

Conclusion: the interpretation of sentential answers also depends on the context of
the interrogative. Some further examples to illustrate this:
(11) a. Who kissed Mary?

b. Whom did John kiss?
c. Who kissed whom?
d. What did John do?

(12) John kissed Mary.
(13) a. John is the one who kissed Mary.

b. Mary is the one that John kissed.
c. The only one who kissed was John and the only one he kissed was Mary.
d. The thing that John did was kiss Mary.

A particularly interesting example:
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(14) a. Who walks in the garden?
b. Which boy walks in the garden?

(15) Hilary walks in the garden.
(16) a. The one who walks in the garden is Hilary.

b. The boy who walks in the garden is Hilary.
Conclusion: both constituent and sentential answers need to be interpreted in the
context of an interrogative. Question: what is the relevant interpretation of the
interrogative?
(17) a. Who walk?

b. Who do not walk?
(18) John and Mary.
(19) a. What time is it now in Amsterdam?

b. What time is it now in Moscow?
(20) 5 P.M.

These examples show that we need the relation (abstract) underlying the ques-
tion (interrogative) in determining the proposition expressed by the answer. So the
proper schema for the interpretation of answers is as in Fig. 3.3.

relation
abstract

constituent interpretation
constituent

〈question, proposition〉
〈interrogative, constituent/sentential answer〉

�
�
�
�
�
�
�

interrogative formation
�
�
��

�
�

�
�

�
�

�
�

�
�

exhaustivization

6
exhaustive constituent interpretation

PPPPPPPPPPP
6

Figure 3.3: Interpretation of answers

Notice that according to Fig. 3.3 sentential answers, too, are derived from
underlying constituents.

3.2 Semantics of Linguistic Answers

The implementation of the interpretation schema of Fig. 3.3 requires the definition
of two rules and one operation:

1. The rule of interrogative formation.
2. The rule of answer formation.
3. The operation of exhaustivization.

The first rule has been dealt with in Chapter 1, the second and the third are the
concern of what follows. Both rules will have to be formulated quite generally, since
they have to cover single and multiple constituent interrogatives, sentential interrog-
atives, and their answers. For expository reasons we first discuss single constituent
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interrogatives (Section 3.2.1). Then we generalize to multiple constituent interrog-
atives (Section 3.2.2.), and show how sentential interrogatives can be accomodated
by viewing them as zero-constituent interrogatives (Section 3.2.3).

3.2.1 Answers to Single Constituent Interrogatives

In this section we concentrate on single constituent interrogatives and their answers.
As abstracts, the former express properties of objects of some kind, and the latter
generalized quantifiers over those objects. Following the schema of Fig. 3.3, this
means that the answer formation rule is as follows:

Regel 3 If β′ is the relational interpretation of a single constituent interrogative,
α′ the interpretation of a term, exh the semantic operation of exhaustivization,
then the interpretation of the constituent answer α. is (exh(α′))(β′)

Now for the definition of the operation of exhaustiveness. (To facilitate reading we
will use extensional representations in what follows, whenever intensionality isn’t
really involved.) The following examples make clear what we are after:
(21) Who walk(s)?
(22) a. John.

b. John walks.
c. Only John walks.
d. ∀x[walk(x)↔ x = j]

(23) a. John and Mary.
b. John and Mary walk.
c. Only John and Mary walk.
d. ∀x[walk(x)↔ [x = j ∨ x = m]]

(24) a. Every boy.
b. Every boy walks.
c. Only every boy walks.
d. ∀x[walk(x)↔ boy(x)]

(25) a. John or Mary.
b. John or Mary walks.
c. Only John or Mary walks.
d. ∀x[[walk(x)↔ x = j] ∨ [walk(x)↔ x = m]]

(26) a. A girl.
b. A girl walks.
c. Only a girl walks.
d. ∃x[girl(x) ∧ ∀y[walk(y)↔ x = y]]

(27) John ; λPP (j)
exh(λPP (j))
λP∀x[P (x)↔ x = j]

(28) John and Mary ; λP [P (j) ∧ P (m)]
exh(λP [P (j) ∧ P (m)])
λP∀x[P (x)↔ [x = j ∨ x = m]]

(29) every boy ; λP∀x[boy(x)→ P (x)]
exh(λP∀x[boy(x)→ P (x)])
λP∀x[boy(x)↔ P (x)]
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(30) John or Mary ; λP [P (j) ∨ P (m)]
exh(λP [P (j) ∨ P (m)])
λP∀x[[P (x)↔ x = j] ∨ [P (x)↔ x = m]]

(31) a girl ; λP∃x[girl(x) ∧ P (x)]
exh(λP∃x[girl(x) ∧ P (x)])
λP∃x[girl(x) ∧ ∀y[P (y)↔ x = y]]

Exhaustivization is the operation which filters the minimal elements from a set of
sets:

Definition 33 exh = λPλP [P(P ) ∧ ¬∃P ′[P(P ′) ∧ P 6= P ′ ∧ ∀x[P ′(x)→ P (x)]]]

An example to illustrate how Definition 33 works: exh applied to the translation
of John and Mary.
(32) λP [P (j) ∧ P (m) ∧ ¬∃P ′[P ′(j) ∧ P ′(m) ∧ P 6= P ′ ∧ ∀x[P ′(x)→ P (x)]]]

Application of (32) to walk, the relational interpretation of Who walks?, results in
(33), which is equivalent to (23d).
(33) [walk(j)∧walk(m)∧¬∃P ′[P ′(j)∧P ′(m)∧walk 6= P ′∧∀x[P ′(x)→ walk(x)]]]

In order for the operation of exhaustivization to work properly, we need to assume
that some terms are ‘group denoting’. An example:
(34) Who walk(s)?
(35) a. John or Mary.

b. John or Mary or both (John and Mary).
(36) a. Only John or only Mary.

b. Only John or only Mary or only both (John and Mary).
At the individual level (35a) and (35b) are equivalent, hence their exhaustivization
would be the same too, viz., (36a). However, the exhaustivization of (35b) is (36b),
so we conclude that (35b) mentions two individuals and the group consisting of
them. We assume some theory of plurality which distinguishes between individuals
and groups,1, and we denote the group consisting of the individuals John and Mary
by [John, Mary].
(37) a. John or Mary or both (John and Mary)

b. {X | {John} ⊆ X ∨ {Mary} ⊆ X ∨ {[John, Mary]} ⊆ X}
(38) a. Only John or only Mary or only both (John and Mary).

b. {{John}, {Mary}, {[John, Mary]}}
A similar analysis shows how the group denoting term At least one girl. gives a
different answer than does the individual denoting term A girl.

A slightly more complex example to finish the discussion of single constituent
interrogatives and their answers. First the example:
(39) Which guests did John kiss?

— (John kissed) Bill or Peter, and two girls.
The constituent underlying both the constituent and the sentential answer, and its
translation:
(40) a. Bill or Peter, and two girls

b. λP [[P (b)∨P (p)]∧∃x∃y[x 6= y∧girl(a)(x)∧girl(a)(y)∧P (x)∧P (y)]]
And the abstract underlying the interrogative and the property it expresses:

1. See e.g., Scha ; Link ; Landman .
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(41) a. which guests John kissed
b. λx[guest(a)(x) ∧ kiss(a)(j, x)]

Application of exhaustivization to the constituent:
(42) a. λP [[P (b)∨P (p)]∧∃x∃y[x 6= y∧girl(a)(x)∧girl(a)(y)∧P (x)∧P (y)]∧

¬∃P ′[[P ′(b) ∨ P ′(p)] ∧ ∃x∃y[x 6= y ∧ girl(a)(x) ∧ girl(a)(y) ∧ P ′(x) ∧
P ′(y)] ∧ P 6= P ′ ∧ ∀z[P ′(z)→ P (z)]]], which reduces to:

b. λP [∃x∃y[x 6= y ∧ girl(a)(x) ∧ girl(a)(y) ∧ [∀z[P (z) ↔ [z = x ∨ z =
y ∨ z = b]] ∨ ∀z[P (z)↔ [z = x ∨ z = y ∨ z = p]]]]]

Finally, application of Rule 3 to derive the interpretation of the answer:
(43) ∃x∃y[x 6= y ∧ girl(a)(x) ∧ girl(a)(y)∧

[∀z[[guest(a)(z) ∧ kiss(a)(j)(z)]↔ [z = x ∨ z = y ∨ z = b]]∨
∀z[[guest(a)(z) ∧ kiss(a)(j)(z)]↔ [z = x ∨ z = y ∨ z = p]]]]

3.2.2 Answers to Multiple Constituent Interrogatives

We now turn to a generalization of the analysis to cover also answers to multiple
constituent interrogatives. First a simple example:
(44) a. Which man loves which woman?

b. — John, Mary.
— John loves Mary.

More complex examples involve conjunctions and disjunctions of constituent se-
quences:
(45) a. Which man loves which woman?

b. — John, Mary; and Bill Suzy.
— John loves Mary, and Bill (loves) Suzy.

c. — John Mary; or Bill Suzy.
— John loves Mary, or Bill (loves) Suzy.

In accordance with the interpretation strategy of Fig. 3.3 we derive the interpre-
tation of the answer by applying the exhaustivization of the interpretation of the
sequences of constituents to the interpretation of the multiple constituent interrog-
ative. The latter is a relation. For example, the interpretation of the interrogative
(45a) is:
(46) λxλy[man(a)(x) ∧ woman(a)(y) ∧ love(a)(x, y)]

In order to implement the schema of Fig. 3.3 completely generally, we need two
more things:

1. An interpretation of constituent sequences
2. A generalization of the operation of exhaustivization

Sequences of n terms are called n-place terms and are constructed from n
ordinary terms. The interpretation is given in Rule 4:

Regel 4 If α1 . . . αn are are n terms which translate as α′1 . . . α′n respectively, then
the sequence of these terms translates as:

λRn[α′1(λx1[. . . α′n(λxn[Rn(x1 . . . xn)]) . . .])]
where Rn ranges over n-place relations

Some examples to illustrate this. First a simple one, the two-place term John, Mary:
(47) a. λR[λPP (j)(λx1[λPP (m)(λx2[R(x1, x2]])])]

b. λRR(j, m)
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Conjunctions, John, Mary; and Bill, Suzy, and disjunctions, John, Mary; or Bill,
Suzy are dealt with by means of generalized conjunction and disjunction rules (see
Chapter 1):
(48) a. λR[[R(j, m) ∧R(b, m)]

b. λR[[R(j, m) ∨R(b, m)]
A complex example:
(49) a. John and Bill, Mary or Suzy; and Peter or Fred a redhead

b. λR[[[R(j, m)∧R(b, m)]∨[R(j, s)∧R(b, s)]]∧∃x[redhead(a)(x)∧[R(p, x)∨
R(f, x)]]]

Now the generalization of the operation of exhaustivization. We define a family of
operations exh

n, n ≥ 0:

Definition 34 exh
n = λRnλRn[Rn(Rn) ∧ ¬∃Sn[Rn(Sn) ∧Rn 6= Sn∧

∀x1 . . . xn[Sn(x1 . . . xn)→ Rn(x1 . . . xn)]]]

By way of example we show the application of exh
2 to the multiple terms in (45b),

(46b,c) and (50a):
(50) a. John, Mary

λR∀x∀y[R(x, y)↔ [x = j ∧ y = m]]
b. John, Mary; and Bill, Suzy

λR∀x∀y[R(x, y)↔ [[x = j ∧ y = m] ∨ [x = b ∧ y = s]]]
c. John, Mary; or Bill, Suzy

λR∀x∀y[R(x, y)↔ [x = j ∧ y = m]] ∨ [R(x, y)↔ [x = b ∧ y = s]]]
d. John and Bill, Mary or Suzy; and Peter or Fred a redhead

λR∃z1∃z2∃z3[[z1 = m ∨ z1 = s] ∧ [z2 = p ∨ z2 = f] ∧ [redhead(a)(z3) ∧
∀x∀y[R(x, y)↔ [[[x = j ∨ x = b] ∧ y = z1] ∨ [x = z2 ∧ y = z3]]]]]

With respect to group denoting terms a similar strategy has to be followed as was
indicated above.

The generalization of Rule 3 is simple:

Regel 5 If α′ is the interpretation of an n-place term, and β′ is the relational
interpretation of an n-constituent interrogative, the interpretation of the linguistic
answer based on α in the context of the interrogative β is (exh

n(α′))(β′)

A simple example to illustrate Rule 5: the derivation of (45b). It consist of the
application of the exhaustified interpretation of the conjunctive two-place term to
the relational interpretation of the interrogative:
(51) a. (exh

2(λR[R(j, m) ∧R(b, s)]))(λxλy[man(a)(x) ∧ woman(a)(y)∧
love(a)(x, y)]), which reduces to:

b. λR∀x∀y[R(x, y)↔ [[x = j ∧ y = m] ∨ [x = b ∧ y = s]]](λxλy[man(a)(x)
∧woman(a)(y) ∧ love(a)(x, y)]), which reduces to:

c. ∀x∀y[[man(a)(x) ∧ woman(a)(y) ∧ love(a)(x, y)]↔ [[x = j∧
y = m] ∨ [x = b ∧ y = s]]]

3.2.3 Answers to Sentential Interrogatives

Answers to sentential interrogatives are covered by Rule 5 as well: sentential inter-
rogatives can be viewed as zero-constituent interrogatives, and constituent answers
to such interrogatives as zero-place terms. An example:
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(52) a. Does John walk?
b. — Yes.

— (Yes,) John walks.
c. — No.

— (No,) John does not walk.
Sentences are of type t, and hence are zero-constituent interrogatives. They express
propositions, i.e., zero-place relations. Yes and No are extensional sentential adverbs,
i.e., expressions of type 〈t, t〉. They can be viewed as sets of (properties of) zero-
place relations, i.e., as zero-place terms. Their interpretations are (p is a variable of
type t):
(53) yes ; λp p

no ; λp ¬p

Derivation of the interpretation of (52b) by means of Rule 5:
(54) a. (exh

0(λp p))(walk(a)(j)), which is equivalent to:
b. (λp[p ∧ ¬∃p[p′ ∧ p′ 6= p ∧ [p′ → p]])(walk(a)(j)), which reduces to:
c. walk(a)(j) ∧ ¬∃p′[p′ ∧ p′ 6= walk(a)(j) ∧ [p′ → walk(a)(j)]], which is

equivalent to:
d. walk(a)(j)

The derivation of (52c) is analogous.
The reason that exhaustivization has no effects is that Yes and No always

denote exhaustive sets:
(55) a. λp p = {1} = {{∅}}

b. λp ¬p = {0} = {∅}
An example of a non-exhaustive answer to a sentential interrogative:
(56) a. Does John walk?

b. — If Mary walks.
— John walks if Mary walks.

In cases such as these, too, the default interpretation is exhaustive: in the context
of (56a), (56b) means:
(57) John walks if and only if Mary walks

The derivation according to Rule 5:
(58) a. (exh

0(λp[walk(a)(m)→ p]))(walk(a)(j)), which reduces to:
b. [walk(a)(m)→ walk(a)(j)] ∧ ¬∃p[[walk(a)(m)→ p] ∧ [p 6=

walk(a)(j)] ∧ [p→ walk(a)(j)]]
So, the exhaustivization of if Mary walks means the same as if and only if Mary
walks. The reason is that if Mary walks does not always denote an exhaustive set:
if Mary walks denotes {∅, {∅}}.

Notice that this effect depends on the interrogative:
(59) a. Is it true that John walks if Mary walks?

b. — (Yes,) John walks if Mary walks.
In a similar vein it can be shown that disjunctive answers in the context of certain
interrogatives express exclusive disjunctions. Cf.:
(60) a. Are there cookies in the box?

b. — (Yes,) or chocolates.
— (Yes,) there are cookies in the box or chocolates.

(61) a. Are there cookies or chocolates in the box?
b. — (Yes,) there are cookies or chocolates in the box.
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3.2.4 Qualified Answers and Qualified Interrogatives

In this section we briefly indicate that certain aspects of the meanings of answers
and of interrogatives are best considered to be not part of their semantic content
in the truth-conditional sense, but qualifications thereof.

Some examples:
(62) a. Who walks?

b. — John, I believe.
— John walks, I believe.

(63) a. Does John walk?
b. — (Yes,) I believe so.

— (No,) I believe not.
— If Mary walks, I believe.
— John walks if Mary walks, I believe.

And some more:
(64) a. Who walks?

b. — John, obviously.
— John, maybe.
— John, of course.

(65) a. Does John walk?
b. — Possibly, yes.

— Maybe so.
— Certainly not.

Interrogatives, too, can be qualified so as to express an epistemic or doxastic atti-
tude. Interesting examples are negative sentential interrogatives:
(66) a. Doesn’t John walk?

b. — No.
Application of Rule 5 to the zero-place relation ¬walk(a)(j) and (the exhaustiviza-
tion of) no predicts that (66b) means that John walks. So, the negation is not
part of the semantic content, but qualifies the question being asked: the questioner
expects a negative reply.

Some support comes from the following observations.
Positive answers to negative interrogatives are marked, as are negative an-

swers to positively marked interrogatives:
(67) a. Doesn’t John walk?

b. — But yes, he does!
(68) a. John does walk, doesn’t he?

b. — Yes.
c. — But no, he doesn’t!

Interrogatives can be marked in other ways, too:
(69) Does John come, perhaps?
(70) Do you have a pen, by any chance?

Cf. also the following contrast:
(71) a. Are you not happy?

b. — No. (= I am not happy)
— But yes, I am. (= I am happy)

(72) a. Are you unhappy?
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b. — No. (= I am happy)
— Yes. (= I am unhappy)

3.3 Linguistic Answers and Answerhood

This section is devoted to an application of the abstract theory of answerhood
relations that was developed in Chapter 2, to interrogatives and their characteristic
answers. The main point to be illustrated is that although answerhood is a relation
which may hold between any question and any (contingent) proposition given some
suitable information set, characteristic linguistic answers have certain properties
which guarantee that certain answerhood relations will obtain between the question
expressed by an interrogative and the proposition they express in the context of
that interrogative. This provides a (partial) explanation of why these answers form
a natural class.

As we shall see, two factors may be involved in determining connections be-
tween properties of linguistic answers and relations of answerhood: (i) the context-
dependent interpretation of an answer; and (ii) properties of the constituent in-
volved.

We first study semantic notions of answerhood (Section 3.3.1), and then turn
to the pragmatic counterparts thereof (Section 3.3.2). For expository reason we first
deal with answers to single constituent interrogatives, leaving the generalization to
the multiple and zero-constituent case for the final Section 3.3.3.

3.3.1 Linguistic Answers and Semantic Answerhood

A proposition which is a semantic answer to a single-constituent question identifies
one of the possible denotations of the related property. This means that it is:

1. exhaustive
2. rigid
3. definite

These notions are defined as follows:

Definition 35 α is exhaustive iff it holds for all i that if X ∈ [[α]]i, then there is
no Y ∈ [[α]]i such that X ⊂ Y .

Definition 36 1. α is rigid with respect to i and j iff [[α]]i = [[α]]j .
2. α is rigid iff α is rigid with respect to all i and j.

Definition 37 1. α is definite with respect to i iff there exists an X ∈ [[α]]i
such that for all Y ∈ [[α]]i, X ⊆ Y .

2. α is definite iff α is definite with respect to all i.

Fact 30 For all terms α, exh(α) is exhaustive.

Fact 31 The following are rigid terms:
1. proper names; unrestricted quantifiers everyone, someone, no-one; quantifiers

restricted by means of rigid properties
2. conjunctions, disjunctions, negations, exhaustivizations of rigid terms

Fact 32 The following are definite terms:
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1. proper names; universally quantified terms; definite descriptions
2. conjunctions and exhaustivizations of definite terms

Rule 5 guarantees that an answer is exhaustive, but this is not sufficient:
(73) a. Who walk(s)?

b. — The ones who walk.
Since (73b) is a tautology it bears no answerhood relation to (73a).

Assuming a rigid designator treatment of proper names, the following answer
is exhaustive and rigid:
(74) a. Who walk(s)?

b. — John or Bill.
This is only a partial answer.

The following is both exhaustive, rigid, and definite:
(75) a. Who walk(s)?

b. — John and Bill.
The following fact holds:

Fact 33 Let β be a one-place interrogative, and α a one-place term. Let β′r be
the interpretation of β as a relation, and β′q its interpretation as a question, α′

the interpretation of α. If α is exhaustive, rigid and definite, and [[α′(β′r)]] is not a
contradiction, then [[λa(α′(β′r))]] is a (complete) semantic answer to β′q.

Obviously, in virtue of Rule 5 the case where α is a non-exhaustive term that is
used as an answer to β, is a subcase of Fact 33.

The following counterexample shows that the reverse of Fact 33 does not
hold:
(76) a. Which prime number did John write on the blackboard?

b. — An even number.
According to Fact 33, (exhaustive,) rigid, and definite terms always are answers. To
give an answer, a proposition must contain additional, contingent information, and
hence cannot be derived from a term which is rigid and definite.

There are properties connected with giving, instead of being, an answer:

Definition 38 A term α is semi-rigid iff for all i and j either α is rigid with respect
to i and j or [[α]]i = ∅.

Definition 39 A term α is semi-definite iff for all i either α is definite with respect
to i or [[α]]i = ∅.

Now we can state the following fact:

Fact 34 If α is exhaustive, semi-rigid, and semi-definite, and [[α′(β′r)]] is not a
contradiction, then [[λa(α′(β′r))]] gives a (complete) semantic answer to β′q.

Consider the following example:
(77) a. Who kissed Mary?

b. — John, who really loves her.
c. — John is the one who kissed Mary, and John really loves Mary
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d. — John is the one who kissed Mary
The difference between complete and partial answers is the property of definiteness:

Fact 35 If α is rigid and exhaustive, and [[α′(β′r)]] is a contingency, then
[[λa(α′(β′r))]] is a partial semantic answer to β′q.

Fact 36 If α is semi-rigid and exhaustive, and [[α′(β′r)]] is a contingency, then
[[λa(α′(β′r))]] gives a partial semantic answer to β′q.

The various facts are summed up in Table 3.1.

be an answer give an answer

complete
rigid semi-rigid

definite semi-definite
partial rigid semi-rigid

Table 3.1: Properties of terms and notions of answerhood

3.3.2 Linguistic Answers and Pragmatic Answerhood

Pragmatic notions of answerhood are restrictions, to an information set J , of the
various semantic notions. Pragmatic analogues of the correllations between prop-
erties of terms and semantic notions of answerhood are obtained by restricting the
former to information sets:

Definition 40 A term α is exhaustive in J iff it holds for all j in J that if X ∈ [[α]]j ,
then there is no Y ∈ [[α]]j such that X ⊂ Y .

Definition 41 A term α is rigid in J iff α is rigid with respect to all j and k in J .

Definition 42 A term α is definite in J iff α is definite with respect to all j in J .

In a similar way we obtain notions of semi-rigidness in J and of semi-definiteness
in J .

We then observe the following facts:

Fact 37 If α is exhaustive, rigid and definite in J , and [[α′(β′r)]] is compatible with
J , then [[λa(α′(β′r))]] is a (complete) pragmatic answer to β′q in J .

Fact 38 If α is exhaustive, semi-rigid, and semi-definite in J , and [[α′(β′r)]] is com-
patible with J , then [[λa(α′(β′r))]] gives a (complete) pragmatic answer to β′q.

Fact 39 If α is rigid and exhaustive in J , and [[α′(β′r)]] is compatible with J but
not included in J , then [[λa(α′(β′r))]] is a partial pragmatic answer to β′q.

Fact 40 If α is semi-rigid and exhaustive, and [[α′(β′r)]] is compatible with J but
not included in J , then [[λa(α′(β′r))]] gives a partial pragmatic answer to β′q.

Some examples to illustrate this. First, pragmatic rigidness:
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(78) a. Whom did you talk to?
b. — Your father.

Another example of pragmatic rigidness:
(79) a. Who won the Tour de France in 1980?

b. — The one who ended second in 1979.
Finally, pragmatic definiteness:
(80) a. Who served you when you bought these boots?

b. — An elderly lady wearing glasses.
As was the case with Fact 33, the reverse of Fact 37 (and the others, of course) does
not hold. Consider:
(81) a. ¿From which authors did the editors already receive their contribution

to the proceedings?
b. ¿From whom did the organizers already receive a letter of acceptance

to attend the conference?
c. — (I don’t know, but) at least from Professor A.

3.3.3 Multiple- and Zero-Constituent Answers and Answerhood

Here we consider the n-constituent case, and note some nice results concerning
answers to sentential interrogatives.

The generalization of the notions of exhaustiveness, (semi-)rigidness, and
(semi-)definiteness, and their relativized counterparts, is straightforward: replace
X, which ranges over sets of individuals, by Rn, which ranges over sets of n-tuples
of individuals. The relevant facts also generalize in a completely straightforward
way.

Finally, two observations with respect to answers to sentential interrogatives.
First of all, yes and no as defined in (53) are exhaustive, rigid, and definite,

which explains why these phrases are standard answers to sentential interrogatives.
Secondly, phrases of the form if φ are always definite but not always rigid.

Those that are function in the same as yes and no:
(82) a. Will you come to the party?

b. — If 2+2 = 4.
c. — If 2+2 = 5.
d. — If Mary comes to the party.
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Chapter 4

Coordinating Interrogatives

This chapter is devoted to an analysis of coordination of interrogatives and related
phenomena. Section 4.1 discusses two of these: the phenomenon of pair-list-readings
and that of choice-readings of interrogatives, and shows that they are intimately tied
to coordination. Both phenomena require an extension of the core theory developed
in the previous chapters. Section 4.2 shows how an analysis of pair-list readings
can be provided in a simple extension of the core theory. Section 4.3 deals with
disjunction and choice-readings, and shows that a proper analysis of them requires
a higher level of analysis of interrogatives. Section 4.4, finally, is concerned with
another phenomenon, that of mention-some interpretations.

4.1 Some Phenomena

4.1.1 Pair-list Readings

An example:
(1) a. Which student was recommended by each professor?

b. Direct reading:
— John.
— John was recommended by each professor.

c. Pair-list reading:
— Professor Jones, Bill; professor Williams, Mary; and professor Peters,
John.
— Professor Jones recommended Bill, professor Williams recommended
Mary, and professor Peters recommended John.

Compare the pair-list reading of (1) with the two-constituent interrogative:
(2) Which professor recommended which student?

The ambiguity also arises with embedded interrogatives, which are in fact three
ways ambiguous:

(3) John knows which student was recommended by each professor
(4) a. Direct reading:

John knows which student is such that each professor recommended
him

45
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b. Pair-list reading:
John knows which professor recommended which student

c. ‘Quantificational’ reading:
Of each professor, John knows which student was recommended by him

The difference between (4b) and (4c) is that (4b) requires de dicto knowledge about
who the professors are.

The connection with conjunction is quite obvious in the following example:
(5) a. Whom do John and Mary love?

b. Direct reading:
— Suzy.
— Suzy is (the one who is) loved by John and Mary.

c. Pair-list reading:
— John, Suzy; and Mary, Suzy and Bill.
— John loves Suzy, and Mary loves Suzy and Bill.

Cf. the following conjunction of interrogatives:
(6) Whom does John love? And, whom does Mary love?

Conclusion: pair-list readings have the following characteristics:
1. they are answered like two-constituent interrogatives
2. they involve de dicto interpretation of the NP
3. they are connected with conjunction

4.1.2 Choice Readings

Choice readings are important because they seem to contradict an essential feature
of the core theory: viz., that every question has a unique answer. An example:

(7) a. Whom does John or Mary love?
b. Direct reading:

— Suzy and Bill.
— Suzy and Bill (are the ones that) are loved by John or Mary.

c. Choice reading:
i. — John, Suzy.

— John loves Suzy.
ii. — Mary, Suzy and Bill.

— Mary loves Suzy and Bill.
Cf. the following disjunction of interrogatives:

(8) Whom does John love? Or, whom does Mary love?
Another example:

(9) a. What did two of John’s friends give him for Christmas?
b. Direct reading:

— A watch.
c. Choice reading:

— Bill, a watch and a ball; Peter, a book and a pen.
— Bill gave him a watch and a ball, and Peter gave him a book and a
pen

Again, the ambiguity also shows up with embedded interrogatives:
(10) a. John knows whom two girls love

b. Direct reading: John knows who is such that two girls love him
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c. Choice reading: John knows of two girls, that they are girls and whom
they love

d. ‘Quantificational reading’: Of two girls, John knows whom they love
Again, the difference between the choice reading and the quantificational reading
is that the latter does not, and the former does involve de dicto knowledge about
girls. So choice readings share the first two characteristrics of pair-list readings.
and they are connected with disjunction of interrogatives. Notice that whether a
pair-list reading a choice reading or neither occurs is determined by the semantic
characteristics of the term involved. Cf.:
(11) a. Which student did each professor recommend? (pair-list)

b. Which student did two professors recommend? (choice)
c. Which student did no professor recommend? (neither)

Summing up:
1. On its choice reading an interrogative is associated with more than one ques-

tion, and, for that reason, has more than one complete and true semantic
answer.

2. Both pair-list readings and choice readings are a matter of scope, and both in-
duce an n+1-constituent interpretation of what superficially is an n-constituent
interrogative.

3. Both pair-list readings and choice readings are preserved under complement
embedding verbs.

4. Whether a pair-list reading or a choice reading results when we assign a term
wide scope with respect to a wh-phrase, depends on the semantic properties
of the term.

4.1.3 Mention-some interpretations

Other cases of interrogatives which seem to have more than one semantic answer:
mention-some interpretations. Example:
(12) a. Where do they sell Italian newspapers in Amsterdam?

b. Who has got a light?
c. Where can I find a pen?

Notice that depending on the context exhaustive (‘mention-all’) answers are possible
too. Most important issue: is this a separate reading, i.e, a matter of semantics, or
is this a pragmatic phenomenon? (See Section 4.4.) In any case, mention-some
interpretations differ from choice readings. Two observations support this claim.
First of all, they are answered differently:
(13) — At the Central Railway Station.

— At the Central Railway Station they sell Italian newspapers.
Secondly, mention-some interpretations also occur with universal and negative terms:
(14) Where do they have all books written by Nooteboom in stock?
(15) On which route to Rotterdam is there likely to be no police control?

4.2 Pair-list readings

Adding pair-list readings requires only a minor extension of the core theory.
The derivation of a two-constituent interrogative. Take the one-place ab-

stract:
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(16) a. whom he0 loves
b. λy[love(a)(x0, y)]

Introduce the wh-term which man to get the two-place abstract:
(17) a. whom which man loves

b. λx0dman(a)eλy[love(a)(x0, y)], which is equivalent to:
c. λxλy[man(a)(x) ∧ love(a)(x, y)]

Turn this into the interrogative:
(18) a. Whom does which man love?

b. λi[λxλy[man(a)(x) ∧ love(a)(x, y)] = λxλy[man(i)(x) ∧ love(i)(x, y)]]
Pair-list readings. Consider:
(19) a. Whom do John and Mary love?

b. λxλy[[x = j ∨ x = m] ∧ love(a)(x, y)]
c. λi[λxλy[[x = j ∨ x = m] ∧ love(a)(x, y)] = λxλy[[x = j ∨ x = m] ∧

love(i)(x, y)]]
Conclusion: like two-constituent interrogatives, pair-list readings are cases of re-
stricted λ-abstraction, the term delivering the property which functions as restric-
tion.

General procedure for extracting the required property from the term:

Definition 43 Let α be a pair-list term. Then live(α) = λaλx∀P [α(P )→ P (a)(x)]

Then the following generalization of the rule for forming abstracts suffices:

Regel 6 If α is an NP, translating as α′, and β is an n- place abstract, translating as
β′, then the n+1-place abstract formed from them translates as λxndlive(α′)(a)eβ′

An example. Combining (16b) with the NP every man using Rule 6 gives:
(20) λx0dlive(λP∀x[man(a)(x)→ P (a)(x)])(a)eλy[love(a)(x0, y)]

Application of Definition 43 gives:
(21) a. (λaλx∀P [∀x[man(a)(x)→ P (a)(x)]→ P (a)(x)])(a), which is equivalent

to:
b. (λaλx[man(a)(x)])(a)

Whence (20) is equivalent to:
(22) λx0dman(a)eλy[love(a)(x0, y)]

The entire core theory, including pair-list readings, consists of three rules.
1. The rule which turns an n-place abstract and a term into an n+1-place

abstract (Rule 6).
2. The rule which turns an n-place abstract into an interrogative (Rule 2 from

Chapter 2).
3. The rule which turns an n-place abstract and an n-place term into a charac-

teristic linguistic answer (Rule 5 from Chapter 3).

4.3 Choice readings

A characteristic of the core theory is that questions have a unique complete semantic
answer at an index. An interrogative on a choice reading has more than one such
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answer. So? So we conclude that such interrogatives express more than one question
(and not that questions may have more than one answer). Again, an extension of
the core theory is called for.

4.3.1 Type-shifting

In this section we add two (intensional) type-shifting principles. ( See Partee and
Rooth ; Hendriks ; Groenendijk and Stokhof  for more rules and more
discussion). This extension will enable us to deal with interrogatives which are
associated with more than one question. Consider the following simple examples:
(23) a. Whom does John love? And, whom does Mary love?

b. Whom does John love? Or, whom does Mary love?
Generalized conjunction and disjunction predict the following interpretations:
(24) a. λi[λx[love(a)(j, x)] = λx[love(i)(j, x)]∧

λx[love(a)(m, x)] = λx[love(i)(m, x)]]
b. λi[λx[love(a)(j, x)] = λx[love(i)(j, x)]∨

λx[love(a)(m, x)] = λx[love(i)(m, x)]]
(24a) expresses a question, i.e., an equivalence relation on the set of indices I, but
(24b) does not: it is reflexive and symmetric, but not transitive.

The solution that suggests itself is to lift interrogatives to the level of ex-
pressions denoting sets of properties of questions. We do so by application of the
operation lift:

Definition 44 If α is of type a, then lift(α) is of type 〈〈s, 〈〈s, a, 〉, t, 〉〉, t〉.
If α translates as α′, then lift(α) translates as λX〈s,〈〈s,a〉,t〉[X(a)(λaα′)].

Applied to interrogatives φ from the core theory:
lift(φ) translates as λQ[Q(a)(λaφ′)](a)

where Q is a variable of type 〈s, 〈〈s, 〈s, t〉〉, t〉〉. In accordance with Schema (a) we
obtain for (23a,b):
(25) a. λQ[Q(a)(λaλi[λx[love(a)(j, x)] = λx[love(i)(j, x)]])∧

Q(a)(λaλi[λx[love(a)(j, x)] = λx[love(i)(j, x)]])]]
b. λQ[Q(a)(λaλi[λx[love(a)(j, x)] = λx[love(i)(j, x)]])∨

Q(a)(λaλi[λx[love(a)(j, x)] = λx[love(i)(j, x)]])]]
We check this result with the appropriate notion of entailment, provided by the
generalized entailment schema:

Definition 45 An interrogative Φ entails an interrogative Ψ iff ∀a∀Q[Φ(Q) →
Ψ(Q)]

where Φ, Ψ are of type 〈〈s, 〈〈s, 〈s, t〉〉, t〉〉, t〉. According to Definition 45, (16a) en-
tails each of its conjuncts, and its of its disjuncts entails (16b). For embedded
interrogatives we need the operation of argument-lifting:

Definition 46 Let c be a conjoinable type. If α is of type 〈a, c〉, then arg-lift(α)
is of type 〈〈〈s, 〈〈s, a〉, t〉〉, t〉, c〉. If α translates as α′, then arg-lift(α) translates
as λX〈〈s,〈〈s,a〉,t〉〉,t〉[quant(X, ya, α′(y))], where

quant(X, y, δ) =
{

X(λyδ) if δ is of type t
λxd[quant(X, y, δ(xd))] if δ is of type 〈d, f〉
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Distribution of coordinated interrogatives over extensional verbs is guaranteed, since
the following is universally valid (Q is a variable of type 〈s, 〈〈s, 〈〈s, 〈s, t〉〉, t〉〉, t〉〉:
(26) ∀i∀x∀Q[(arg-lift(know))(i)(x,Q) = Q(i)(λaλq[know(a)(x, q(a))])]

Intensional verbs are lexically typed on the higher level. This guarantees that no
distribution over them takes place. But notice that all interrogatives which the
core theory deals with denote sets of properties of unique questions. In those cases
reduction without meaning postulates goes through. So for such Q the following
holds for example:
(27) ∀i∀x∀Q[wonder(i)(x,Q) = Q(i)(λaλq[(arg-low(wonder))(a)(x, q(a))])]

where arg-low indicates the type-shifting operation of ‘argument-lowering’, which
we do not bother to define here.

We now illustrate the effects of adding type-shifting to the core theory by
investigating what happens on the level of lifted interrogatives with:

1. answerhood relations
2. entailment
3. linguistic answers

All facts concerning answerhood relations carry over to lifted interrogatives.
We treat one case, that of a proposition giving a complete and true semantic answer
(the other cases are completely analogous). It is convenient to define an object-
language expression to denote this relation:

Definition 47 ans(a)(p, q) iff ∀i[p(i)→ q(a)(i)]

Next, we define its analogue on the lifted level:

Definition 48 ANS(a)(p,Q) iff Q(a)(λaλq[ans(a)(p, q)])

We observe the following fact:

Fact 41 For all i and p: ans(i)(p, φ) iff ANS(i)(p, lift(φ))

As for answerhood of disjunctive interrogative, Definition 48 predicts such results
as:
(28) ANS(a)(p, λQ[Q(a)(λaλi[λx[love(a)(j, x)] = λx[love(i)(j, x)]])∨

Q(a)(λaλi[λx[love(a)(j, x)] = λx[love(i)(j, x)]])]]
if and only if
ans(a)(p, λaλi[λx[love(a)(j, x)] = λx[love(i)(j, x)]])∨

ans(a)(p, λaλi[λx[love(a)(j, x)] = λx[love(i)(j, x)]])]
With respect to entailment, differences exists between the core level analysis of
interrogatives and their lifted analogues. Notice that the strong connection between
entailment and answerhood is loosened:

Fact 42 φ entails ψ iff ∀i∀p[ans(i)(p, λaφ)→ ans(i)(p, λaψ)]

Fact 43 If Φ entails Ψ then ∀i∀p[ANS(i)(p, Φ)→ ANS(i)(p, Ψ)]

The reverse of Fact 43 does not hold. Given Fact 42 this means that not all facts con-
cerning entailment carry over. An example of something we loose is the prediction
that (29) entails (30):
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(29) Who walks?
(30) Does John walk?

Conclusion: we cannot confine ourselves to the higher level analysis, both levels of
analysis are needed.

Finally, linguistic answers. According to Definition 44, the following result
obtains for n-place abstracts β (Rn ranges over properties of n-place relations):

lift(β) translates as λRn[Rn(a)(λaβ′)](b)
The rule for turning lifted abstracts into lifted interrogatives becomes (rn ranges
over n-place relations):

Regel 7 Let β′ be the translation of a lifted n-place abstract. Then the trans-
lation of the corresponding lifted interrogative is λQ[β′(λaλrn[Q(a)(λaλi[rn(a) =
rn(i)])])]

The rule for deriving answers becomes:

Regel 8 Let β′ be the translation of a lifted n-place abstract β and α′ the trans-
lation of an n-place term α. Then the answer expressed by α in the context of β is
β′(λa[exh

n(λa α′)])

A simple example:
(31) a. whom John loves

b. λR1[R1(a)(λaλx[love(a)(j, x)])]
c. ∀x[love(a)(j, x)↔ x = s]
d. Whom does John love?
e. — Suzy.

(31a) is the abstract underlying (31d), (31b) its lifted translation, (31c) the result
of combining (31b) with the term Suzy using Rule 8, which is what (31e) means in
the context of (31d).

4.3.2 Choice Readings

An implementation of choice readings uses both extensions of the core theory de-
veloped sofar: a lifted generalized version of Rule 6.

Relevant observations:
1. On a choice reading an interrogative poses more than question.
2. The questions are the result of combining the same relation with several

properties.
3. These properties are determined by the term.

This leads to:

Regel 9 λRn+1[β′(λαλrn[∃P [choice(α′)(P ) ∧Rn+1(a)(λαλxkdP (a)ern(a))])]

As before, rn ranges over n-place relations, and Rn over properties of n-place rela-
tions. Needed: a definition of choice. Consider:
(32) a. Whom does John or Mary love?

b. — John, Suzy.
c. — Mary, Suzy and Bill.
d. — John, Suzy; and Mary, Suzy and Bill.
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(32a) can be derived from:
(33) λR2[R2(a)(λaλxλy[x = j ∧ love(a)(x, y)]) ∨

R2(a)(λaλxλy[x = m ∧ love(a)(x, y))]
In order to derive this we need the following two relations:
(34) a. λx0dλx[x = j]eλy[love(a)(x0, y)]

b. λx0dλx[x = m]eλy[love(a)(x0, y)]
And these can be obtained from:
(35) a. λy[love(a)(x0, y)])]

b. λx[x = j]
c. λx[x = m]

Another example:
(36) a. Whom do two girls love?

b. — Mary, Bill and Suzy; and Hilary, Peter.
One of the relations underlying (36a) should be:
(37) λx0dλx[girl(a)(x) ∧ [x = m ∨ x = h]]eλy[love(a)(x0, y)]

So generally we should have:
(38) λx0dλx[girl(a)(x) ∧ [x = g1] ∨ x = g2]]eλy[love(a)(x0, y)]

for every two girls g1, g2. Notice that we get de dicto readings this way.
In order to determine the choice properties of α we need:

1. the set of properties of being an element of a minimal element of α
2. the property on which α lives

A choice property is the conjunction of a property in 1 with the property in 2.
We generalize the definition of live:

Definition 49 Let α be a pair-list or a choice term. Then:
live(α) = λaλx∃P [exh(α)(P ) ∧ P (a)(x)]

And we define the operation choice:

Definition 50 choice(α) = λP∃X[exh(α)(λaX)∧P = λaλx[X(x)∧live(α)(x)]]

This implements Rule 9.
One worked-out example.

(39) a. whom he0 loves
b. λR1[R1(a)(λaλy[love(a)(x0, y)])]

(40) a. two girls
b. λP∃x∃y[x 6= y ∧ girl(a)(x) ∧ girl(a)(y) ∧ P (a)(x) ∧ P (a)(y)]

Combining these with Rule 9 we get:
(41) a. λR2[(39b)(λaλr1[∃P [choice(40)(P )∧

R2(a)(λaλx0dP (a)er1(a))])], which can be reduced to:
b. λR2[∃P [choice(40)(P ) ∧R2(a)(λaλx0dP (a)eλy[love(a)(x0, y)])]

Suppose there are three girls: Mary, Hilary , and Jane. Then:
(42) a. exh(40)(a) = {{m, h}, {m, j}, {h, j}}

b. live(40) = λaλx[girl(a)(x)]
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c. choice(40) =
{λaλx[girl(a)(x) ∧ [x = m ∨ x = h]],
λaλx[girl(a)(x) ∧ [x = m ∨ x = j]],
λaλx[girl(a)(x) ∧ [x = h ∨ x = j]]}

So, in this situation, (41) is equivalent to:
(43) λR2[R2(a)(λaλxλy[girl(a)(x) ∧ [x = m ∨ x = h] ∧ love(a)(x, y)])∨

R2(a)(λaλxλy[girl(a)(x) ∧ [x = m ∨ x = j] ∧ love(a)(x, y)])∨
R2(a)(λaλxλy[girl(a)(x) ∧ [x = h ∨ x = j] ∧ love(a)(x, y)])]

Application of Rule 7 then results in:
(44) a. λQ[(41)(λaλr2[Q(a)(λaλi[r2(a) = r2(i)])])], which reduces to:

b. λQ∃P [choice(40)(P ) ∧Q(a)(λaλi[λx0dP (a)eλy[love(a)(x0, y)] =
λx0dP (i)eλy[love(a)(x0, y)]])]

In the given situation, this denotes:
(45) λQ[Q(a)(λaλi[λxλy[girl(a)(x) ∧ [x = m ∨ x = h] ∧ love(a)(x, y)] =

λxλy[girl(i)(x) ∧ [x = m ∨ x = h] ∧ love(i)(x, y)]])∨
Q(a)(λaλi[λxλy[girl(a)(x) ∧ [x = m ∨ x = j] ∧ love(a)(x, y)] =

λxλy[girl(i)(x) ∧ [x = m ∨ x = j] ∧ love(i)(x, y)]])∨
Q(a)(λaλi[λxλy[girl(a)(x) ∧ [x = h ∨ x = j] ∧ love(a)(x, y)] =

λxλy[girl(i)(x) ∧ [x = h ∨ x = j] ∧ love(i)(x, y)]])
We observe that an interrogative on a choice reading:

1. is associated with more than one question
2. functions as a two-constituent interrogative
3. is interpreted de dicto

which were the requirements we formulated earlier.
To finish off, we analyse the following answer to (36a):

(46) Hilary, Peter; and Jane, Suzy.
Notice that in the context of (36a) this answer expresses that Hilary is a girl. The
answer is based on the following two-place term:
(47) λR2[R2(a)(h, p) ∧R2(a)(j, s)]

Application of Rule 8 gives:
(48) (41)(λa[exh(λa[(47)])])

The exhaustivization of the two-place term is:
(49) λR2∀x∀y[R2(a)(x, y)↔ [[x = h ∧ y = p] ∨ [z = j ∧ y = s]]]

So we get:
(50) a. ∃P [exh(40)(P ) ∧ ∀x∀y[[P (a)(x) ∧ love(a)(x, y)]↔

[[x = h ∧ y = p] ∨ [z = j ∧ y = s]]]], which is equivalent to:
b. ∀x∀y[[girl(a)(x) ∧ [x = h ∨ x = j] ∧ love(a)(x, y)]↔

[[x = h ∧ y = p] ∨ [z = j ∧ y = s]]]
Conclusion. The core theory, including pair-list readings, consists of three rules:

1. The rule which turns an n-place abstract and a term into an n+1-place
abstract (Rule 6).

2. The rule which turns an n-place abstract into an interrogative (Rule 2 from
Chapter 2).

3. The rule which turns an n-place abstract and an n-place term into a charac-
teristic linguistic answer (Rule 5 from Chapter 3).

In order to deal with choice readings it suffices:
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1. To add two type-shifting principles, viz.:
(a) Lifting (Definition 44).
(b) Argument-lifting (Definition 46).

2. To define a lifted and generalized version of the rule which turns an n-place
abstract and a term into an n+1-place abstract (Rule 9).

3. To define a lifted version of the rule which turns an n-place abstract into an
interrogative (Rule 7).

4. To define a lifted version of the rule which turns an n-place abstract and an
n-place term into a characteristic linguistic answer (Rule 8).

4.4 Mention-Some Interpretations

In this section we treat mention-some interpretations of interrogatives. In Sec-
tion 4.4.1 we outline a possible pragmatic analysis, and show why it will not work.
Section 4.4.2. gives a semantic analysis, which appears to be quite sucessfull. In
Section 4.4.3, however, some problems for the semantic approach are indicated.

Mention-some interpretations differ from choice readings. Both are associated
with more than one complete semantic answer. However, these answers are of a
different nature. Cf.:
(51) a. Where is a pen?

b. — On my desk.
This answer is typically that to a one-constituent interrogative. Cf. also:
(52) a. John knows where a pen is

b. John knows a place where a pen is
c. John knows of a place where a pen is, that there is a pen there
d. John knows of a pen where that pen is

Only (52b) and (52c) are paraphrases of (52a), (52d) is not.

4.4.1 Problems for a Pragmatic Approach

Suggestion: the mention-some interpretation can be derived by pragmatic reasoning,
which infers from the context that an interrogative does not call for a complete,
i.e., an exhaustive answer, but only for a partial one. This keeps the semantics of
interrogatives uniform, but makes answers ambiguous: do, or do not exhaustify.

This does not work. For it requires that the following holds:
P is a complete, true mention-some answer to Q at an index i iff P is
a partial, true mention-all answer to Q at i

But this fails. Consider:
(53) a. Where is a pen?

b. — Not in the drawer.
c. — Nowhere

(53b) is a partial mention-all answer to (53a), and (53c) is a complete mention-all
answer. Both fail to be a complete mention-some answer.

Another argument against a pragmatic approach. The mention-all/mention-
some distinction is preserved under embedding:
(54) John knows where a pen is
(55) a. For all places where a pen is, John knows that there is a pen at that

place
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b. For some places where a pen is, John knows that there is a pen at that
place

(56) John wonders where a pen is
(57) a. John wants for all places where a pen is, to know whether there is a pen

at that place
b. John wants for some place where a pen is, to know whether there is a

pen at that place
The a- and b-paraphrases have distinct truth-conditions.

4.4.2 A Semantic Approach

Characteristics of the mention-some interpretation of an interrogative derived from
a one-place abstract:

1. It behaves like a one-constituent interrogative.
2. It has more than one complete true semantic answer.
3. Each answer is a positive specification of an individual which has the property

expressed by the abstract.
Illustration:

(58) a. Who has a pen?
b. — John.

The abstract and the term involved are:
(59) a. who has a pen

b. λx[∃y[pen(a)(y) ∧ has(a)(x, y)]], or lifted:
c. λR1[R1(a)(λaλx[∃y[pen(a)(y) ∧ has(a)(x, j)]])]

(60) a. John
b. λP [P (j)]

The meaning of (58b) in the context of (58a) is:
(61) ∃y[pen(a)(y) ∧ has(a)(y, j)]]

Another rule for deriving interrogatives from abstracts:

Regel 10 λQ[∃x[β′(x) ∧Q(a)(λaλi[β′(x) = (λaβ′(x))(i)])]]

Application of Rule 10 to the abstract (59) gives:
(62) λQ[∃x[∃y[pen(a)(y) ∧ has(a)(x, y)]∧

Q(a)(λaλi[∃y[pen(a)(y) ∧ has(a)(x, y)] = ∃y[pen(i)(y) ∧ has(i)(x, y)]])]]
Notice that at an index at which nobody has a pen, this denotes the empty set.
This accounts for the fact that in such a situation, the interrogative does not have
a true mention-some answer.

Examples involving embedding. First an intensional verb:
(63) a. John wonders who has a pen

b. wonder(a)(j, λaλQ[∃x[∃y[pen(a)(y) ∧ has(a)(x, y)] ∧
Q(a)(λaλi[∃y[pen(a)(y)∧has(a)(x, y)] = ∃y[pen(i)(y)∧has(i)(x, y)]])]]

Decomposing wonder into want to know we get:
(64) a. want(a)(j, λa[∃x[∃y[pen(a)(y) ∧ has(a)(x, y)] ∧

know(j, λi[∃y[pen(a)(y)∧has(a)(x, y)] = ∃y[pen(i)(y)∧has(i)(x, y)]])])
b. John wants to know of someone who has a pen whether he has a pen

which reduces to:
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(65) a. want(a)(j, λa[∃x[∃y[pen(a)(y) ∧ has(a)(x, y)] ∧
know(j, λa[∃y[pen(a)(y) ∧ has(a)(x, y)])]])

b. John wants to know of someone who has a pen that he has a pen
Next an extensional verb:
(66) a. John knows who has a pen

b. ∃x[∃y[pen(a)(y) ∧ has(a)(x, y)] ∧
know(j, λi[∃y[pen(a)(y) ∧ has(a)(x, y)] = ∃y[pen(i)(y) ∧ has(i)(x, y)]])]

c. Of someone who has a pen, John knows whether he has a pen
In fact this reduces to:
(67) a. ∃x[∃y[pen(a)(y) ∧ has(a)(x, y)]∧

know(j, λa[∃y[pen(a)(y) ∧ has(a)(x, y)]])]
b. Of someone who has a pen, John knows that he has a pen

Notice that if nobody has a pen and John knows this, (66) is false on its mention-
some interpretation but true on its mention-all reading. Observe furthermore:
◦ The choice reading of (66) implies its mention-some reading.
◦ The mention-all reading of (66) implies the mention-some reading if there is

someone who has a pen
Likewise we have for:
(68) Who has a pen?
◦ If P gives a complete and true answer to the choice reading, it gives a com-

plete and true answer to the mention-some reading.
◦ If P gives a complete and true answer to the mention-all reading, it gives

a complete and true answer to the mention-some reading, except when P is
the proposition that nobody has a pen
◦ If P gives a complete and true answer to the mention-some reading, it gives

a partial and true answer to the mention-all reading

4.4.3 Problems for a Semantic Approach

The semantic approach to mention-some interpretations faces some difficulties.
Main problem: the semantic approach predicts an ambiguity which in fact

seems to occur only with verbs which take a human subject and which express a
limited set of relations. Cf.:
(69) a. What the average grade is depends on what grade each student got

b. Where you can get gas depends on what day it is
c. Does it matter where a pen is?
d. Who will come to the party is partly determined by who is invited

Here only mention-all readings are likely.
Particularly striking is the following example:

(70) a. Where can I get gas around here?
b. — That depends on what time it is.

The natural interpretation of the interrogative is the mention-some interpretation.
But the anaphor in the answer refers back to the mention-all interpretation.

Finally, we note that some languages have the tendency to lexicalize mention-
some interpretations:
(71) a. ?Jan weet wie een vuurtje heeft

(John knows who has a light)
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b. better: Jan weet iemand die een vuurtje heeft
(John knows someone who has a light)

(72) a. ?Wat is een voorbeeld van een priemgetal?
(What is an example of a prime number?)

b. better: Geef een voorbeeld van een priemgetal
(Give an example of a prime number)
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