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Abstract: Issues of reliability are claiming center-stage in the epistemology of machine learning. 

This paper unifies different branches in the literature and points to promising research directions, 

whilst also providing an accessible introduction to key concepts in statistics and machine learning 

– as far as they are concerned with reliability.  

.1.      Introduction 

Machine learning models often achieve impressive accuracy under training conditions, but fail in 

spectacular or unexpected ways when they are deployed in real-world settings. Is there some way 

to guarantee that predictive accuracy in training carries over to the settings in which models are 

actually deployed? In other words: can we be justified in relying on machine learning models on 

the basis of their performance in training?    

The underlying challenge is that there are various threats to reliability, arising at  the time of (i) 

model development, (ii) model deployment and (iii) adapting the socio-technical environment to 

accommodate the model. Concerning (i), unlike traditional statistical models, there is no widely 

accepted mathematical theory that explains why and when state-of-the-art models such as deep 

neural networks generalize well. As for (ii), machine learning models are commonly used in 

unstable environments, or even induce changes to the environment itself, and they can be fooled 

by humanly imperceptible manipulations to the data. Regarding (iii), one basic issue is to align the 
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model output with the existing epistemic norms in a given domain, which often involves 

aggregating the model output with other kinds of evidence. In addition, there is another 

overarching problem: machine learning models are notoriously opaque, which is why it is difficult 

to understand the inner logic of how and why they arrive at a given prediction. 

 

What is the relationship between the individual threats to reliability? When evaluating machine 

learning models, what types of assurances should we prioritize? What does the alleged 

(un)reliability tell us about the epistemic status of machine learning models in science and society? 

Can failure cases in machine learning even animate conceptual expansions or revisions of existing 

epistemological theories? These questions, among others, claim center-stage in the emerging 

debate on reliability in machine learning, spanning across statistical learning theory, mainstream 

epistemology, and the modeling literature in philosophy of science. This paper unifies different 

branches in the epistemology of machine learning and points to promising research directions, 

whilst also providing an accessible introduction to key concepts in statistics and machine learning 

– as far as they are concerned with reliability.  

 

2. Statistical Learning Theory: The Received View  

 

Statistical learning theory is the theory of reliability that is native to machine learning. The basics 

of the theory were developed by Soviet mathematicians in the 1960s; by the 1990s it was a 

fundamental part of the education of machine learning researchers. The spectacular successes 

chalked up by deep learning since the 2010s is somewhat incongruous with the theoretical 

predictions made by statistical learning theory. Indeed, reconciling the theoretical predictions of 

the canonical theory with the empirical successes of deep learningi remains one of the deepest 
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theoretical problems in machine learning (Belkin et al., 2019). Lack of progress in this area has 

caused the prestige of statistical learning theory to suffer somewhat in recent years. Nevertheless, 

mastering the basics of the received view is essential for understanding how machine learners 

approach issues of reliability.ii Statistical learning theory is a theory of an “ideal case” in which 

threats to reliability are well-understood and can be managed with precision. Indeed, many of the 

approaches to reliability that we cover in subsequent sections can be seen as responses to situations 

that depart from the assumptions of this classical theory.  

 

Reduced to their barest essentials, supervised learning problems in machine learning go something 

like this: we intend to collect N data points D = { (X1,Y1), (X2, Y2) … (XN,YN) }; we assume that 

these data will be randomly sampled from a probability distribution P. The Xi  take values in an 

input space X and the Yi  take values in a label space Y. For example, the Xi may contain email text 

and metadata and the Yi  label them “spam” or “not spam”. We would like to find a function f: 

X→Y that labels unseen emails “as accurately as possible”,  where the accuracy of f is defined as 

the probability of sampling a point (X,Y) from P, such that f(X)=Y. Typically, we do not consider 

every possible function from  X to Y but only those in some particular function space F.  

 

One of the fundamental problems of supervised learning arises because we need to use the data 

D in two ways: (1) to pick a promising function f from the function space F and (2) to estimate 

the accuracy of our chosen candidate. Suppose for a moment that step (1) is finished: someone 

else has proposed a function f and we intend to sample D to probe its accuracy. That reduces our 

problem to a simple statistical estimation problem: the success rate of f on samples in D is a 

statistically unbiased estimate of its accuracy on future points sampled from P. We can appeal to 

standard statistical resultsiii to derive the following kinds of guarantees:  
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(1) the probability that the accuracy of f differs appreciably from its success rate on D is less 

than દ,  

 

where દ depends on the sample size N and precisely how large a difference has to be for us to 

consider it appreciable. Note that this guarantee holds only before we sample the points in D from 

the distribution P. Anything might happen after the sampling — if D is unrepresentative, it might 

mislead us about the accuracy of f. Nevertheless, if N is large, this should happen only with small 

probability.  

 

Unfortunately, this is not the typical situation. We have to use D both to pick a promising f and to 

estimate its accuracy. If we “double dip” by using the same data to pick an f and to estimate its 

accuracy, then it is not at all straightforward to derive guarantees like (1). Unless a great deal of 

technical sophistication is applied, such a procedure will tend to yield flattering, but biased, 

estimates of the accuracy of the chosen function.iv The way that machine learners often deal with 

this situation is by splitting the data D into a training set Dtrain which is used to pick a promising f, 

and a test set Dtest, which is used to estimate the accuracy of the chosen candidate. It is crucial that 

test data is never used to pick the candidate. If the machine learner is very disciplined, and never 

peeks at Dtest in order to pick a candidate, then statistical guarantees like (1) can be derived for 

whatever f is ultimately chosen. However, this means that you can use the test set only once. 

Therefore, you had better be satisfied with your choice of candidate f before you use your precious 

test sample to estimate its accuracy. Moreover, it creates a fundamental trade-off: if you use more 

of the points in D for training, you may be better able identify the best candidate in F, but only at 

the expense of a less accurate estimate of its accuracy; if you use more of the points in D for 

testing, you will get a better estimate of the accuracy of your chosen candidate, but at the expense 

of data you might have used for picking a better one.  
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Hopefully, the preceding discussion makes clear that picking a promising f on the basis of the 

training set is, from a statistical perspective, a rather consequential decision. But shouldn’t we 

simply pick the f in F that performs best on the training set? That might be computationally 

difficult, but isn’t it rather obviously the right thing to do? The problem of overfitting bedevils this 

otherwise sensible proposal. To explain this, we need to introduce a notion of the capacity (or 

sometimes richness or complexity) of the function class F.v Intuitively, capacity notions capture how 

much a small perturbation of the data perturbs the best-fitting candidate in F. In the setting of 

regression, a typical example of a low-capacity class is the set of linear functions: perturbing the 

data does not significantly change the line of best fit; if, on the other hand, we consider the set of 

all polynomials of degree five, then small perturbations of the data — even moving just one point 

— can lead to large changes in the best-fitting polynomial. The latter situation should make you 

worried about overfitting: a good fit in the training sample might be highly misleading about accuracy 

on future samples. If you have overfit, then what you see (in the training data) is not what you get 

(out of sample). The fundamental results of statistical learning theory addresses this issue. These 

results provide the following kinds of what-you-see-is-what-you-get guarantees: 

 

(2) the probability that the accuracy of the best-fitting f in F differs appreciably from its 

success rate on D is less than દ,  

 

where, in addition to being a function of the sample size N, and how large a difference has to be 

in order to be appreciable, દ is now also a function of the capacity of  F. As before, this guarantee 

holds only before we sample the points in D from the distribution P.    

 



6 
 

Holding fixed our sample size N and minimum appreciable difference δ, guarantees like (2) tell us 

how rich a function space we can afford to search on the “budget” given by our sample size, while 

maintaining the quality of the estimate of the accuracy of the best-fitting function.vi Holding fixed 

the function space F and the minimum appreciable difference δ, these  guarantees tell us how large 

a training sample we need for the success rate on the training data to be a good estimate of the 

accuracy of the best-fitting function. Holding fixed the function space F and the sample size N, 

they tell us how precise an estimate of the accuracy we can expect. If you manage these trade-offs in 

the way suggested by theory, then what you see (in the training data) is, with high probability, what 

you will get (out-of-sample). Thus, when its preconditions apply, the guarantees of the theory allow 

you to solve the fundamental problem sketched above: you can use the training data both to pick 

a promising function from the space F and to reliably estimate its accuracy. Then, if you have test 

data left over, you can independently corroborate your estimate of the accuracy of the chosen 

function. 

 

In practice, there are many situations where the guarantees provided by statistical learning theory 

do not apply. It is increasingly the habit of machine learners to search function classes of 

unbounded capacity, which means that the theory can provide no interesting guarantees. This is 

particularly true of work in deep learning. Despite the successes of deep learning, nothing magical 

is going on: if you train a deep neural network on white noise, it will give you a beautiful fit on the 

training sample and then fail spectacularly on future samples (Belkin, 2021). Thus, the predictions 

of statistical learning theory are borne out: if you do not bound capacity, then past results (in the 

training data) are no guarantee of future performance (out of sample). When a great deal of data 

is available, reliable estimates of accuracy can still be obtained from the test data. But, this requires 

the discipline never to peek at the test data during training.  
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In this section we have identified the reliability of a machine learning model with its predictive 

accuracy on samples drawn from the same distribution as the ones on which it was trained. Even 

if we search function classes of bounded capacity, significant problems are posed by the fact that 

in many deployment scenarios, the machine learning model is used on samples drawn from a 

distribution different from the one on which it was trained. We discuss this issue in the next section.  

 

3. Robustness  

 

Statistical learning theory provides no guarantees if the machine learning model is deployed in a 

distribution different from the one on which it was trained. Nevertheless, we might hope that the 

model is relatively robust under a range of situations. Rather than providing theoretical guarantees, 

research in robustness proceeds experimentally, employing a variety of evaluation techniques and 

mitigation strategies to detect and preempt possible performance failures. Freiesleben and Grote 

(2023) develop a conceptual framework for robustness in machine learning, synthesizing different 

strands in a fragmented research landscape. They define robustness as a multi-place concept, 

consisting of a robustness target (the machine learning model) and a robustness modifier (e.g., the 

deployment distribution). The target is robust if its performance is (relatively) stable despite 

(reasonable) changes to the modifier. The robustness notion is parametric and contextual: changes 

to the modifier are limited to a certain domain, fixed by what can be reasonably expected given 

the context; moreover, the acceptable loss in predictive accuracy between training and deployment 

conditions is fixed by the costliness of errors in the domain of interest.  

 

On this basis, Freiesleben and Grote develop a taxonomy of different phenomena impeding 

robustness. They distinguish between (i) natural distribution shifts; (ii) performativity; (iii) shortcut 

learning; and (iv) adversarial attacks. Roughly, natural distribution shifts are changes in the 

distribution due to changing background conditions. Think of how the COVID-19 virus mutated 
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so that many of its initial symptoms lost their predictive value (Finlayson et al., 2021). 

Performativity, by contrast, describes a kind of distribution shift induced by the deployment of the 

machine learning model (Perdomo et al., 2020). To illustrate, consider how epidemiological models 

are used to inform policy decisions (i.e., when to release lockdowns) or how financial models can 

shape markets (see also Khosrowi and van Basshuysen, forthcoming). 

 

Shortcut learning and adversarial robustness, in turn, refer to idiosyncrasies in how machine 

learning models learn. Shortcut learning describes situations in which a machine learning model 

achieves high predictive accuracy by associating features with the prediction target that do not hold 

across different settings e.g., when the model learns to use annotations on the margins of medical 

images for disease classification (Geirhos et al., 2020; Bellamy et al., 2022). Finally, adversarial 

attacks refer to the deliberate exploitation of learning idiosyncrasies by human actors: an 

adversarial actor searches for humanly imperceptible manipulations to the data that result in grave 

errors by the machine learning model. The predominant interpretation is that vulnerability to 

adversarial attacks arises because deep learning models detect predictively useful features in the 

data that humans cannot perceive (Ilyas et al., 2019; Buckner, 2020; Freiesleben, 2022).  

 

The different stumbling blocks for robustness highlight why it is so challenging to establish 

guarantees for the reliability of machine learning models: distributions may change in many 

different ways and for many different reasons. Machine learning researchers have developed an 

advanced armory of game theoretic and causal inference techniques to predict distribution shifts 

or to identify stable points, but these methods are proven to work only under stylized conditions 

(Perdomo et al., 2020; Garg et al., 2022). Since we often have incomplete causal knowledge of a 

given domain, it can be hard to discern spurious from meaningful statistical relationships. 

Therefore, apart from paradigm cases of shortcut learning, it can be hard to tell whether relying 

on a statistical relationship threatens or supports robustness. The upshot is that ensuring the 
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robustness of machine learning models typically involves a trial-and-error process, requiring a 

combination of domain knowledge, external evaluation with out-of-distribution data, data 

augmentation, explainable AI (xAI) techniques, and continuous retraining.vii  

 

Philosophers are increasingly connecting robustness in machine learning with modal conditions 

for knowledge familiar from traditional epistemology. For example, Vandenburgh (2023) claims 

that, just as justified true belief is insufficient for knowledge, a guarantee of predictive accuracy is 

also insufficient for machine learning models to produce knowledge. Drawing parallels with safety 

conditions in epistemology, Vandenburgh argues that, if they are to yield knowledge, machine 

learning models must be robust to errors by registering the right features and predicting accurately 

in counterfactual scenarios. Buijsman (2023) uses examples from machine learning to refine 

theories of process reliabilism (see also Goldman, 1979). He argues that in order for a belief to 

count as a result of a reliable belief-forming process, it is sufficient that the relevant output is 

reliable only in a local range of circumstances. The local range, which is determined by a similarity 

metric, must be large enough to ensure a non-accidental connection between the actual input and 

the output. The intersection of machine learning robustness and the modal conditions of 

epistemology is a promising new research avenue. Looming in the background, however, are 

questions about the extent to which the modal conditions for knowledge are (in)compatible with 

best practices in statistical science (Mayo-Wilson, 2018). 

 

4. Socio-Technical Accounts of Reliability 

 

The preceding discussion has focused on predictive accuracy, whether in the training distribution 

or the distribution arising in deployment. But a focus on predictive accuracy is not sufficient to 

capture everything that is at stake in machine learning reliability. While the model makes 

predictions, there are typically humans in the loop that base their decisions on the output of the 
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model. The distinction between predictions and decisions is an important one: the human decision-

maker is typically not just a passive receiver of information, but an expert in her own right. For 

example, she might be a scientist, interested in finding out whether the model’s predictions are 

vindicated by the evidence, a clinician trying to select the optimal treatment for a patient, or a judge 

making a sentencing decision. In all likelihood, the model’s predictions will not be the only piece 

of evidence available to the human decision-maker, who forms a preliminary judgment 

independent of the model. Therefore, issues of model robustness are joined by questions of how 

to assess the evidential strength of machine learning predictions or how optimally to aggregate 

human and machine judgment. It is no coincidence that many of these issues are structurally similar 

to traditional problems of testimony and peer disagreement from social epistemology, with the 

important difference being that the testimony is generated by machines.  

 

‘Computational reliabilism’ has emerged as a frontrunner in socio-technical accounts of reliability. 

Initially born of the debate about the trustworthiness of computer simulations (Durán and 

Formanek, 2018; see also Boge, 2021), it has recently been applied to machine learning in 

healthcare (Durán and Jongsma, 2021). Computational reliabilism seeks to answer the question of 

when a user is justified in trusting model outputs. The notion of justification is here loosely inspired 

by theories of reliabilist epistemology (Goldman and Beddor, 2021): we are justified in trusting a 

model if it has a history of producing correct outputs. Another distinctive feature of computational 

reliabilism is that it tries to provide a justification for trusting the output of models, while bypassing 

the so-called “black box problem”.  

 

In broad strokes, the strategy of computational reliability is to identify a number of epistemic 

safeguards, ensuring that the machine learning output is generated by a reliable process. These 

safeguards include (i) verification and validation, (ii) robustness analysis, (iii) a history of 

(un)successful implementations, and (iv) the role of expert knowledge. The first two conditions 
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are model-centric safeguards, while the latter are concerned with the model’s socio-technical 

embedding. Roughly, (i) ensures reliability via formal methods and performance on benchmarks 

(see ‘section 2’); (ii) involves testing the model under heterogeneous settings (see ‘section 3’); (iii) 

requires that the model is used in accordance with the epistemic standards of a (scientific) domain 

(see also Winsberg, 2003); and (iv) is about whether the model merits the trust of relevant experts 

(see also Beisbart, 2017). Importantly, these conditions are not derived from an overarching 

epistemological theory but can be understood as an assemblage of epistemic best practices. 

Furthermore, how exactly these conditions are operationalized is domain-specific. As a case in 

point, the epistemic norms for how machine learning models are to be used vary significantly from 

particle physics to clinical settings. 

 

In combining model-centric and socio-technical aspects, computational reliabilism is an ambitious 

research program. Like any ambitious research program, it faces some challenges: as discussed 

earlier, deep learning models lack proper theoretical foundations, making it difficult to obtain 

formal guarantees, as required by (i). More critically, (iii) and (iv) presuppose that the machine 

learning model is embedded in an epistemically well-ordered environment. The crux of the matter, 

however, is that in the process of being implemented in domains like criminal justice, clinical 

medicine, or science, machine learning models disrupt domain-relevant epistemic norms. For 

example, it is contested how much judges should rely on algorithmic risk estimates (Holm, 2023; 

Schmidt et al., 2023) or whether (and what kind of) scientific understanding can be provided by 

machine learning models (Sullivan, 2022a; Boge, 2022). These difficulties raise the possibility that 

computational reliabilism presupposes what it means to provide: a better grip on the epistemic 

standing of machine learning models. 

 

An adjacent problem is discussed by Genin and Grote (2021): when machine learning models 

provide clinical decision-support it is pivotal to ensure that this enables clinicians to make more 
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reliable decisions. In order to determine this, we cannot just rely on standard evaluation techniques 

in machine learning, but ideally we would conduct randomized clinical trials. However, when 

compared to drugs, randomized controlled trials for machine learning models raise various 

methodological issues, possibly undermining the validity of the generated data.  

 

5. Opacity and Reliability 

 

 

The remaining central approach for assessing the reliability of machine learning models is by 

evaluating the internal decision process of the model. As discussed above, it might be that machine 

learning models achieve high predictive accuracy but do so by learning what we consider the wrong 

features, like in the case of shortcut learning. In one well discussed case, a machine learning model 

trained for classifying wolves versus huskies based its classifications on spurious features in the 

background of the image. More precisely, the model used the fact whether there was snow in the 

background to be predictive for wolves (Ribeiro et al., 2016). If we can inspect why a machine 

learning model makes the predictions that it does, then this is one central, if not necessary, way for 

assessing model reliability. In the case of the wolf v. husky classifier, the model is unreliable, 

because it relies on the wrong features, which is why it is prone to overfit. While this seems like a 

simple solution to the reliability problem, since machine learning models are opaque, there are 

several challenges for this method of reliability assessment.viii 

 

In a recent paper, Duede (2022a) argues that opacity in machine learning prevents us from 

exploiting more traditional avenues of assessing model reliability. For example, he argues that 

machine learning models share a large resemblance to scientific instruments, such as simulations, 

that follow a “theoretically informed procedure to arrive at an output” (2022, p. 7).  But in order 

to rely on such theoretically mediated instruments, we must assess the procedural processes that 

underlie them. However, due to opacity, he argues, we cannot gain access to the high-level logical 

rules of a machine learning model, and thus cannot assess the procedural processes internal to the 



13 
 

ML model. As a result, we cannot assess its reliability.ix Similarly, he argues, machine learning 

models cannot be assessed as reliable in the same way that we assess experts, because again, 

machine learning models lack transparency.x This leaves Duede to conclude that we need to expand 

our concept of reliability that incorporates principles distinct from those in brute induction, 

instrumentation, and expertise. Nevertheless, how this conceptual expansion of reliability might 

look, besides simply developing the right interpretability tools, is not addressed.  

 

Perhaps one promising approach for having internal reliability is through a mechanistic 

interpretability approach (Langer et al., 2021). This approach borrows tools from neuroscience to 

do systematic experiments on deep neural networks to uncover mechanisms that contribute to the 

model's decision. The idea is that if we have mechanistic knowledge of how models make decisions 

then we can use that to judge whether the informed procedures constitute a reliable versus 

unreliable process. However, any research program in interpretability is still young, so if we need 

to know the internal properties of a model, then we may not be able to assess reliability in the 

short term.   

 

Looking slightly beyond reliability, others have argued that interpretability is required in order to 

assess the epistemic success of a machine learning model (see also Räz and Beisbart, 2022). In one 

influential paper, Krishnan (2020), discusses model reliability in terms of justifying the use of a 

model without the need for internal transparency, but there are two cases where she argues model 

transparency is important: scientific discovery and public trust. First, she argues that the public 

often believes that knowing the inner logic of a machine learning model is paramount to assessing 

whether it is trustworthy and reliable. Turning to scientific discovery, Krishnan argues that 

interpretability methods are necessary to help uncover hypotheses, and knowing the internal logic 

of the model is necessary. However, assessing the reliability of a machine learning model used for 

scientific discovery seems like a paradigmatic case of external reliability. It does not matter if the 
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hypothesis we generate is actually linked at all to the model, all that matters is if the hypothesis 

turns out to be scientifically fruitful, which must be done by additional scientific work outside of 

the machine learning model (Duede, 2022b, Sullivan, 2022a, Zednik and Boelsen, 2022).  

 

The problem of opacity in machine learning also introduces a second-order epistemic problem. 

xAI techniques themselves can be more or less reliable. Recent work in computer science has exposed 

that the leading xAI techniques are subject to adversarial attacks (Slack et al., 2020, Slack et al., 

2021), can be just plain wrong (Rudin, 2019), and disagree (Krishna et al., 2022). If it is necessary 

to judge the reliability of a machine learning model through yet another model that also needs to 

be assessed for reliability, then we start to enter into epistemically pernicious territory. 

 

 While there is growing work around assessing the reliability of xAI, exploring the dependence and 

tension between xAI reliability and machine learning reliability is underdeveloped. Fleisher (2022) 

provides a nice argument that xAI models are idealizations of machine learning models, but he 

stops short of taking a critical stance on xAI models, or how we might evaluate if the idealizations 

are successful. Watson (2022), in turn, explores how Mayo’s (2018) severe testing approach can be 

used to guide testing procedures that establish the fidelity of xAI models. Lastly, Sullivan (2022b) 

argues that the stakes of the domain, or even the stakes of the data subject, can influence how 

much opacity, or xAI reliability is a problem for model use or gaining knowledge or understanding 

of the model. However, this simply shows that there are context dependent ways of assessing how 

much this second-order problem matters.  

 

But perhaps internal reliability is just a red herring. Other work calls into question the need for 

solving the internal reliability problem. For example, the work on computational reliabilism 

discussed above, downplays internal reliability: if we validate the model with data that is 

representative of the deployment distribution, and install the right external epistemic guardrails, 
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achieving transparency may not be necessary for justified trust in the model output. At best, XAI 

techniques might act as an additional plausibility check. One area for future work is connecting 

the collection of issues in reliability, model evaluation, and scientific discovery. Defining reliability 

in terms of modeling purposes along the lines of an adequacy-for-purpose model evaluation 

framework may help (Parker, 2020). In that case, there could be times where the internal reliability 

matters and times where it may not.  

 

6. Taking Stock and Looking Ahead 

 

 

This paper unified different strands of the epistemology of machine learning, concerned with 

reliability. Issues discussed ranged from the (lacking) theoretical foundations of deep learning 

models, robustness issues under deployment conditions, and problems of testimony and 

disagreement. These reliability issues are further complicated by the opacity of machine learning 

models’ internal decision-processes. Regardless of which level we are referring to, a recurring 

theme is that, so far, we neither have the right technical tools nor a sufficiently pronounced 

conceptual understanding of the problems involved, to provide clean guarantees for the reliability 

of machine learning models.  

 

Moreover, the rapid developments in machine learning are constantly giving rise to new 

developments, new conceptual problems will emerge. A pertinent example here are ‘foundation 

models’, referring to exceedingly large machine learning models (when compared to traditional 

deep learning models), whereby a ‘foundation core’ gets initially trained by vast amounts of un-

curated data (often virtually the whole internet), which is then subsequently refined via high quality 

data from a domain of interest. What is distinct of foundation models is that they are not confined 

to a single task but can be applied to a broad range of downstream tasks (see also Bommasani et 

al., 2021). To illustrate, think of how new large language models are able to write texts on different 

topics, at varying length, style, and sophistication.  



16 
 

 

Nevertheless, while their performance is often unprecedented, said models raise various reliability 

concerns – e.g., they are prone to fabricate facts that may seem credible at first glance. More 

interesting, however, is that they also raise profound conceptual problems that challenge the 

standard paradigm of evaluation in machine learning: if the foundation core has been trained by 

the whole internet, is it even possible to test its performance on unseen data? Can we still draw a 

meaningful distinction between data from within and outside of the training distribution? How 

can we obtain precise performance estimates if there are no clear bounds to the scope of 

application? And the list continues. Another interesting development in the technical literature is 

to test the knowledge of foundation models in exam-style questions (for example, see Singhal et al., 

2023). Arguably, this entails a shift in the reliability assessment of machine learning models, from 

a mere focus on predictive accuracy towards their reasoning capacities.  

In the end, we hope that is clear that the issues of reliability will take center stage for years to come 

in the debate. And we hope that this paper proves to be a useful point of reference for future work 

in the epistemology of machine learning.  

 

 
i See Buckner (2019) for an introduction to deep learning. 
ii For an excellent introductory article with more technical detail, see Von Luxburg and Schölkopf (2011). For a 
book-length introduction, see Shalev-Shwartz and Ben-David (2014). For philosophical connections with the 
problem of induction, see Harman and Kulkarni (2012) and Sterkenburg and Grünwald (2021). For connections 
with Popper and falsificationism, see Corfield et al. (2009). 
iii We have in mind “concentration inequalities” such as Hoeffding’s inequality. 
iv  In statistics, this is known as the problem of valid post-selection inference. 
v There are many notions of capacity, but the most prominent of these is the VC dimension (Corfield et al, 2009). 
vi Some philosophers and machine learners interpret these results as a mathematical expression of Ockham’s razor 
(Steel, 2009; Sterkenburg, 2023). If capacity is a measure of complexity, then the advice of the theory is not to “live 
beyond your sample size” by searching a more complex function class than you can afford. But this is a rather 
different recommendation than the usual exhortation to select the simplest hypothesis compatible with the data. 
vii We will discuss the relationship between xAI and reliability in machine learning in section 5. 
viii There is also a rich debate regarding the nature of ML opacity itself (Boge, 2022, Creel, 2020), but for this we 
direct our readers to (Beisbart and Räz, 2022; Buchholz 2023). 
ix Though Sullivan (2023) argues that ML models can be assessed in a similar way as simulations, or ‘toy models.’ 
x There is a rich debate on whether there is actually a difference between opacity in human reasoning and the 
reasoning of machine learning models and whether this difference matters. Call this the ‘double-standard problem’ 
(Günther and Kasirzadeh, 2022; Peters, 2023; Zerilli, 2019). 
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