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Substitutional Validity for Modal Logic

Marco Grossi

Abstract In the substitutional framework, validity is truth under all substitu-
tions of the nonlogical vocabulary. I develop a theory where � is interpreted
as substitutional validity. I show how to prove soundness and completeness for
common modal calculi using this definition.

1 Philosophical Backbone and Context of This Work

1.1 Simple truth versus truth in a model According to the substitutional account
of logical consequence, an argument is logically valid if it preserves truth under all
uniform substitutions of the nonlogical vocabulary. The substitutional account has a
long-standing pedigree.1 Quine is probably the main modern proponent and the target
of most of the contemporary discussion, especially in [23]. As it is not exactly clear
what formal theory Quine had in mind for his account—if he had any—the discussion
of his account of logical validity is complicated and entangled with sophisticated
historical points. Many have attacked him (e.g., Boolos [3], Etchemendy [8], Hanson
[13], Hinman, Kim, and Stich [15]), and some have tried to defend him, or at least to
soothe the critics (e.g., Berlinsky and Gallin [2], Eder [7], McKeon [19]).

It is common to view the substitutional account as an alternative to the model-
theoretic account, yet when it comes to making it precise, people have often used
model theory. For example, Berlinski and Gallin [2] developed one of the best ver-
sions of the substitutional account, which, however, is framed in model theory. First,
they argue that Quine’s definition of logical truth is incomplete “since ‘truth’ must
be relative to an interpreted language.”[2, p. 117] Then, they consider one specific
model—what they call a “Quine model”—and define a sentence to be logically true
when true in that model, under all substitutions. While their account answers many
questions others have raised, it neglects the fact that the substitutional account does
not need the scaffolding of model theory to work: it is really a genuine alternative. In
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their system, on the other hand, the substitutional account is not very different from
model theory: all the semantic work is done exactly in the same way, what changes
is only the definition of validity.

What is the point of developing an alternative to model theory to frame substitu-
tional validity? In model theory we define the concept of truth in a model. However,
the substitutional definition does not need the concept of truth in a model to work,
but only a concept of simple truth: validity is preservation of truth—simple truth—
under all substitutions of the nonlogical vocabulary. It follows that all the models
are superfluous, except maybe for the intended model where truth in a model col-
lapses into simple truth for the language. However, such an intended model is often
nowhere to be found. For example, in no model of the language of ZFC truth in that
model equates to truth simpliciter. All models have a set-sized domain, and a set-
sized extension of membership.2 Yet, the intended extension of membership is not
set-sized, nor is it the intended domain of quantification of the meta theory, where
we quantify over all models and thus over all sets. Consequently, for such languages
truth in a model cannot recapture simple truth. We require truth for a language to
satisfy a suitable T schema, maybe restricted to truth-free formulae. Yet, no model
satisfies a T schema even for atomic formulae of the language of ZFC: there is no
model where, for any x and y, membership holds between them in the model exactly
when x is in y. We also expect truth to give a homophonic reading of some expres-
sions, like the quantifiers, yet there is no model where pEverything is �q is true in
the model if and only if everything satisfies � in the model: quantification is always
restricted to a set.

1.2 Advantages of the axiomatic approach If we wish to apply the substitutional
account to the language of set theory, or to any language that shares a similar level
of generality and strength, the concept of truth in a model looks superfluous, and
even unsuitable to capture the intuitive meaning of validity in substitutional terms.
If all we need for the substitutional account is substitutions and simple truth, then
it seems reasonable to just build a theory of truth for the object language directly,
rather than hoping—often unsuccessfully—that the model-theoretic machinery will
provide us with a suitable substitute. Recently, Halbach [11], [12] followed this
idea. He builds a truth theory for ZFC using an axiomatically defined notion of
simple satisfaction; validity is preservation of satisfaction under all substitutions and
assignments of values to the variables: no concept of truth in a model is needed.

The axiomatic approach has many advantages over the model-theoretic account. I
list a few. First, there is a substitution—the identity function—that provides a homo-
phonic translation of all formulae, and under which truth satisfies the compositional
axioms for connectives and quantifiers, and a T schema for all formulae of set the-
ory. There exists no model that matches the homophonic substitution, however, nor
is there a model equivalent to any substitution which maps membership to some for-
mula that fails to define a set, like x … x. In contrast, for any model there exists
a substitution where truth in that model is equivalent to (simple) truth under that
substitution (see [11]).3

A second advantage is the ability to model absolute generality. Many philoso-
phers have argued that quantifiers are often absolutely general, especially when we
do logic and we state logical truths: when we say that everything is self-identical,
we really mean that everything whatsoever is self-identical without restriction (see
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Williamson [32]).4 Many have struggled to make sense of the restriction to a set
in the interpretation of quantifiers, which is otherwise essential in model theory to
ensure that truth in a model is definable in set theory. In the axiomatic approach, the
absolute generality of quantifiers is ensured by the homophonic reading and by the
(unrestricted) clause for the satisfaction of quantified sentences. There is no need to
relativize truth to a set, because truth is axiomatized as a primitive notion.

Many have tried the higher order route to provide interpretations where there are
no restrictions to a set, often appealing to plural resources (see, e.g., Boolos [4],
Rayo [24], Rayo and Uzquiano [25], Rayo and Williamson [27]). For the strategy
to be successful one needs to bear a lot of ideological baggage: Quinean skepticism
about higher order languages needs to be set aside; higher order quantification needs
to be sui generis, irreducible to quantification over singular objects, like sets or other
kinds of collections. In the substitutional approach, there is no need to appeal to
higher order resources to model absolute generality: everything can be done in a
first-order language. This is a great advantage because all that ideological baggage
is not needed. Also, in this way we can provide a universal theory of validity that
applies to possibly any language, not just to languages of some strictly lower order,
as is the case in the higher order theories of validity just mentioned.

Lastly, in the axiomatic approach one can show that logical truths are true and
that validity preserves truth simply by looking at the definitions. For example, since
logical truths are true under all substitutions, they are true under the homophonic
one: they are true. The situation is quite different in model theory, where there is no
intended model, so no model where truth is in it really means simple truth. Hence,
the relation between validity and truth is far from obvious: one will need to appeal
to reflection principles to achieve analogous results, if and when such principles are
available.5

1.3 Intensional languages All the substitutional accounts out there have been focus-
ing on first-order logic. As far as I know, no one has tried to extend the account
to intensional languages. Quine surely was not interested in this endeavor, for he
was skeptical of modal logic to begin with. The substitutional tradition thus far
has followed him in disregarding intensional languages. Yet, much of the success
of model theory resides in its adaptability to any language, and in particular in its
ability to interpret intensional languages through possible worlds semantics. If the
substitutional account cannot work for intensional languages at all, it would be less
interesting compared to model theory.

I propose a substitutional account of validity for modal languages where the box
is a way of talking about what is (substitutionally) valid. If what we are interested in
is not this kind of modality, but something else like epistemic modality, or deontic
modality, then the substitutional account is not really an alternative to the Kripke-
style semantics, where it seems we have more flexibility on what we take the possible
worlds of the theory to be. Yet, when they are compatible, the two accounts are
genuine alternatives, and I would argue that the substitutional account has many
advantages over the usual Kripkean account, spelled out in set theory. I will name a
few.

First, similar reasons in favor of the substitutional approach carry over into inten-
sional languages. The lack of an intended interpretation puts into jeopardy the rela-
tion between validity and truth: we cannot show that logical truths are true, nor that



294 Marco Grossi

validity is truth-preserving just by looking at the definitions. Kripke semantics is
spelled out in ZFC where there are no modal operators. It follows that reflection
principles are of no help: it cannot be proved that �� holds only if it is satisfiable,
and that therefore, if �� is true in all models, then it is true. So, as far as we know,
it might be that �� is true in all models but false, or false in all models but true.

Suppose that � means “it is valid that.” If we try to model “it is valid that” in
Kripke semantics, we run into problems. According to the model-theoretic account,
validity is preservation of truth under all interpretations. Therefore, it is natural to
think of points in the model as interpretations of the language. “It is valid that �”
is true at some interpretation if true at all interpretations. It should be clear from
the definition of � that �� implies that � is true because validity implies truth in
all interpretations, and in particular truth in the intended interpretation. Of course,
we can designate a point in the Kripke model that plays the role of the intended
interpretation, but, for the same reasons above, truth at the designated point cannot be
truth. The membership relation under the intended interpretation has the extension
it actually has, and the quantifiers range over what they actually range. Since all
points of any Kripke model receive a set-sized domain, the actual meanings of the
quantifiers and membership cannot be matched by any of them. So, even though the
schema �� ! � might be valid, it cannot be shown that the truth of �� implies
the truth of �, even though it should be obvious from the definitions. Other, obvious
links between validity, actuality, and truth are missing. It should be obvious from
the definition of validity that if � is logically true, then its necessitation is true, and
that if  follows from �, then the strict implication between � and  is satisfied. Yet
none of this can be shown in standard Kripke semantics.

1.3.1 A proposal Here is the approach I will follow. The substitutional account
comes with a concept of simple truth, so the pivotal relations among actuality, neces-
sity, and truth just mentioned plainly hold if we extend the substitutional account to
modal logic. My account will be reductive: the language of necessity can be inter-
preted in a nonmodal language. However, I do not wish to add a concept of truth in
a world, for the same reasons that I do not want a concept of truth in a model: sub-
stitutional validity is preservation of simple truth under all substitutions. It is neither
preservation of truth in a model nor preservation of truth in a world: the possible
world machinery is only superfluous structure from the substitutional point of view.
All that it is needed is a primitive concept of truth and a definition of substitution.

Our approach will be based on the following reductive analysis of modality: the
truth of �� is reduced to (possibly weaker versions of) logical truth. The broadest
notion of necessity is logical validity: �� is true exactly when � is logically true.
To be logically true, according to the substitutional account, is to be true under all
substitutions of the nonlogical vocabulary. Thus, �� is true exactly when � is true
under all substitutions of the nonlogical vocabulary.6 In virtue of this definition, we
can read � roughly as “it is valid that”:

Valid:: Where � means “It is valid that,” �� is true if and only if � is true under
all substitutions.

In the resulting system, the links highlighted above among truth, validity, and neces-
sity are met: if � is logically true, then it is true under all substitutions. In particular,
it is true under the identity substitution, so � is true. Also, because the truth of �
is preserved under all substitutions, �� is true as well. If  follows from �, then
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the implication and the strict implication between � and  are satisfied. Since there
exists a homophonic substitution, if �� is true, then � is true.

It would be wrong and unintended to suggest that this definition of � works in
general, given any suitable use of modal logic. � in the system does not talk about
truth in different possible worlds, and it is unsuitable to model such a reading of
modality. Our semantics is not neutral: it presupposes a specific understanding of
the box as a way of expressing logical validity, or suitable expansions of logical
validity. If this understanding is unfeasible, the semantics is unfeasible. The aim of
this article is to show that there is an interesting way of framing the substitutional
understanding of validity for intensional languages; I do not wish to replace model
theory in all of its applications.

Different truth theories can specify different interpretations of the modal oper-
ators by restricting the range of substitutions relevant to the truth of ��, with the
limit cases being the trivial and universal restriction. This nicely tracks the fact that,
usually, if something is valid, then its necessitation is true, even though the reverse
direction might not hold. Given any element i of the powerset of the set of substitu-
tion functions, there is a truth theory where the following holds:

Valid (extension):: p��q is true exactly when � is true under all substitutions
in i .

Thus, in effect I obtain (countably) many different theories of modal truth, that reflect
different extensions of “it is (substitutionally) valid.”

It is an open question whether, for some given calculus, there is a truth theory
where validity coincides with provability in the calculus. In such a case, I call the
truth theory canonical for the modal calculus. In the rest of the article, I show how to
develop a canonical theory when possible, and I prove soundness and completeness
for the most common (normal) modal logics.

1.3.2 Why I do not choose a nonreductive account In the axiomatic, substitutional
approach, we define truth axiomatically and we read logical expressions homophon-
ically via the recursive axioms of truth. One might wonder why I do not try the
same approach with modal operators, by reading necessity homophonically and by
stipulating the commutativity of � and satisfaction axiomatically, treating � pretty
much like negation. Yet, whether this axiom is feasible depends on what � is taken
to mean. In fact, many doubted this axiom under fairly common readings of �:
even though “Socrates is necessarily human” is true, it is not clear that necessar-
ily “Socrates is human” is true, since the sentence might have meant something
else completely (see Harman [14], Wallace [30]). Some suggested different ways
of getting out of the problem, for example by fixing a particular interpretation of
the language (see Gupta [10], Peacocke [22]). However, Davies [6] doubts even this
solution because, even if we relativized truth to a particular language (and thus to a
particular interpretation), since languages themselves are contingent objects, in some
world they would hold no relation to the sentence. Crucially, commutativity would
not be sound if we read � as “It is valid that,” either, as we are trying to do here: “It
is valid that it rains if it rains” is true, yet it is not valid that “It rains if it rains” is
true.
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2 Technical Preliminaries

2.1 Language I start with the language and theory of ZFC. The only relation sym-
bols are 2 and D.7 The only connectives and quantifiers are 8, :, and ^. The other
common quantifiers and connectives are to be defined as meta abbreviations. To this
language, I add the modal operator �, to be read informally as “it is valid that,” and
I extend the definition of well-formed formula, adding �� as well formed. I use Þ�
as an abbreviation for :�:�. I finally add a binary satisfaction predicate “Sat,” and
define Sat.v; w/ as well formed, where “Sat.v; w/” is to be read informally as “v is
satisfied under w.” I call the resulting language LSM. I use the following notation:

(i) LZFC: the language of ZFC;
(ii) L�: the result of adding � to LZFC, and �� among the well-formed formu-

lae;
(iii) LSat: the result of adding Sat to LZFC and updating the definition of well-

formed formula accordingly (the language has no �);
(iv) LSM: the result of merging LSat and L�.

I code all formulae of LSM in a natural way in set theory. There are no function
symbols in set theory, but functions can be represented through suitable formulae.
“Form” is the recursively definable condition of being (the code of) a formula of
LSM. I use Greek letters �,  , and so on as metavariables for things that satisfy
“Form.” For readability, I do not distinguish between formulae and codes when I use
Greek metavariables, hoping that it does not create confusion. That is, where  is
some condition and p�q the code of �, I do not write  .p�q/ but just  .�/ to say
that � satisfies  . I do need some coding notation when I need to show the structure
of the formula: in that case, I either use semiquotes pq or coding functions. A dot
under a symbol represents its correspondent coding function: :. is a function from
the code of � to the code of its negation, which I write either as p:�q or as :. �. 2.
is a function from the code of variables v and w to pw 2 vq or, which is the same,
w2. v. I seldom abuse notation, using coding functions for connectives that do not
belong to the language: �!.  is an abbreviation for :. .� .̂ :.  /. When I need to
talk about the numeral of the code of �, I use �. To save space I sometimes write
8x; y� instead of 8x8y�. For functions, instead of f .g.x//, I often write fg.x/.
j�; v1=w1; : : : ; vn=wnj is the result of uniformly substituting v1 for w1; : : : ; vn for
wn in �, and it is recursively definable. �at is a metavariable for (the code of) atomic
formulae, that is, Sat. .vn; vm/, vn2. vm or vnD. vm.

2.2 Substitution function A substitution function I that reinterprets the nonlogical
expressions is defined recursively on formulae of LSM. I do not write I.p�q/, much
less  .pI.p�q/q/, because it makes the text confusing and aesthetically unpleasant.

Substitution functions ought to treat logical expressions homophonically. In the
following, I consider logical expressions :, ^, 8, and �. I take a Quinean stance
on identity: it is not logical, but this can be changed if we wished to. A substitution
function can treat quantifiers in two different ways: it can relativize them to some
condition or not. I call the first relativized, the second unrelativized. If it adds a
condition, one might say that quantifiers are not treated as logical constants, after
all. A similar objection holds for model theory, where in different models quantifiers
range over different domains. Throughout the article, I will assume that substitutions
are unrelativized.
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I do not allow a substitution function to add modal operators: they respect the
modal depth of formulae. The modal depth md can be defined recursively:

md.�at / D 0;

md.:. �/ D md.�/;
md.� .̂  / D max

�
md.�/;md. /

�
;

md.8. v�/ D md.�/;
md.�. �/ D md.�/C 1:

I call a substitution I modally bounded whenever the following holds:

8�
�
md.�/ D md

�
I.�/

��
:

I stipulate that every I is modally bounded. We will see later that this requirement
ensures relative consistency and the validity of substitution of identicals.

Usually a substitution function will rename free variables. Variable renaming
is natural, because a renaming of variables looks like a correct substitution of the
formula. Also, it is used to avoid unintended variable bindings. Yet, we cannot let
substitutions rename free variables, because variable renaming disrupts the relation
between modality and quantification. Consider 9x�Fx. We would like to say that
the sentence is true if some thing y satisfies every modally relevant substitution of
Fx. To do so, we need to talk about that specific y across different substitutions, yet
it might be that the variable x gets substituted arbitrarily, making us “lose track” of
the thing we were considering through the existential quantifier when we started to
evaluate the formula. There is a lack of coordination between the way we rename
variables and the unravelling of the formula via the compositional axioms of truth.
The lack of coordination also makes substitution of identicals invalid.

For the above reasons, I do not let substitutions rename free variables. To avoid
unintended variable bindings, substitutions must uniformly rename only bound vari-
ables. I define a formula in signed form as follows.

Definition 2.1 (Signed form) A formula � is in signed form if and only if every
free variable in � is even and every bound variable in � is odd.

I stipulate that I maps 2, Sat, and D to three formulae which are all in signed form.
I stipulate that in each of these formulae we order every free and bound variable: I
use ˛1 for the first free variable, ˛2 for the second, and so on, and I use ˇ1 for the
first bound variable, ˇ2 for the second, and so on. I show how to define I for the
case pvn 2 vmq. Similar definitions hold for pvn D vmq and pSat.vn; vm/q. First,
where ˇ1; : : : ; ˇs are the bound variables in I.2/, and k is the maximum between
the indices in ˇ1; : : : ; ˇs , define the following transformation � :

�
�
r; I.2/

�
WD

ˇ̌
I.2/; v2.kCrC1/C1=ˇ1; : : : ; v2.kCrCs/C1=ˇs

ˇ̌
:

Now, define I.vn2. vm/ as follows:

I.vn2. vm/ WD

´
j�.n; I.2//; vn=˛1; vm=˛2j if max.n;m/ D n;

j�.m; I.2//; vm=˛2; vn=˛1j if max.n;m/ D m:

I always chooses a bigger odd subscript for bound variables, so the free variables
it substitutes do not get bound, and the old (even) free variables ˛1; : : : ; ˛n do not
get bound either. It then substitutes the variable with the biggest subscript first;
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otherwise, where I.2/ D �.˛1; ˛2/, I.˛22. ˛3/ D j�.˛1; ˛2/; ˛2=˛1; ˛3=˛2j, which
is the unintended �.˛2; ˛2/.

We extend the definition of I recursively to all formulae of LSM. By construction,
where k is the maximum of all variables in I. /, u D 2k C 1,

I.�/ WD

8̂̂̂<̂
ˆ̂:

:. I. / if � is :.  ;
I. / .̂ I.�/ if � is  .̂ �;
8. ujI. /; u=vj if � is 8. v ;
�. I. / if � is �.  :

In the proofs below I seldom omit variables renaming because it makes the formula
unreadable, hoping that the reader trusts us with the fact that variable renaming works
and we can avoid unintended variable bindings.

2.3 Satisfaction I do not use a concept of simple truth, but rather a concept of satis-
faction under an assignment. Simple truth is truth under all assignments. Satisfaction
under an assignment of values to the variables is still an acceptable concept, from
the perspective of a truth-conditional semantics and a substitutional understanding
of validity: satisfaction is what Tarski [29] uses to define truth for a language and to
deal with quantified formulae. A variable assignment is a function from the domain
of variables. I use Asg as an abbreviation for the condition of being a variable assign-
ment, which is specifiable in set theory in the usual way. I use Gothic letters a, b,
and so on as metavariables for things that satisfy Asg. By “ax

v ” I mean the result of
changing the value of v to x in a, keeping everything else the same:

av
x.u/ D

´
x if u D v;

a.u/ otherwise.

In the following I will discuss different truth theories, which differ on how they inter-
pret modal formulae. However, all the truth theories I consider share the following
Tarskian axioms, for all (codes of) formulae of LSM:

8v;w; a.Sat.v2. w; a/ $ a.v/ 2 a.w//; (SM1)
8v;w; a.Sat.vD. w; a/ $ a.v/ D a.w//; (SM2)

8�; a.Sat.:. �; a/ $ : Sat.�; a//; (SM3)
8�; ; a.Sat.� .̂  ; a/ $ .Sat.�; a/ ^ Sat. ; a///; (SM4)

8a; �.Sat.8. v�; a/ $ 8y Sat.�; ay
v //; (SM5)

8v;w; a; �at.a.v/ D a.w/ ! Sat.�at $ j�at; v=wj; a//; (SM6)

8a; �.� 2 LZFC ! .Sat.�; a.u// $ Sat.Sat. .v; u/; a�
v ///; (SM7)

8x; y.:.Form.x/ _ Asg.y// ! : Sat.x; y//: (SM8)

By extending ZFC with axioms SM1–SM8 and extending the axioms and rules of
ZFC to LSM, we obtain the theory SM. The compositional axioms for connectives
and quantifiers also hold for modal formulae. Axioms SM1–SM5 provide a weak
type-free theory of satisfaction: they are but the extension to the modal language of
the theory Halbach [12] labels S. Since we lack a T schema for formulae with the
satisfaction predicate, the scope of Sat is opaque: SM6 ensures that substitution of
identicals holds regardless, for all atomic formulae. Axiom SM6 for �at D v2. u or
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vD. u is redundant. We will see how the axiom is enough to ensure that substitution
of identicals holds inside the scope of the modal operator as well.

We can prove a T schema for formulae of LZFC (the language without Sat and �).
Lemma 2.2 For all formulae � of LZFC with free variables x1; : : : ; xn, the fol-
lowing holds:

SM ` 8a.Sat.�.x1; : : : ; xn/; a/ $ �.a.x1/; : : : ; a.xn//:

Proof The proof is by induction on the complexity of � using axioms SM1–SM5.

Axiom SM7 allows us to iterate satisfaction twice, if we start from a formula of set
theory. It will prove useful for the adequacy theorem. The restriction of formulae
of set theory only ensures consistency. The axioms of SM are debatable and can
be changed if we wish to. With some modifications, what we prove can probably
be done in another truth theory of similar strength. If we choose a truth theory like
that of Kripke [16], which was axiomatized by Feferman [9], the resulting theory of
validity will probably be nonclassical and paracomplete. A classic, typed Tarskian
satisfaction may work too, even though the adequacy proof will have to be changed.8
In a typed system, however, logical consequence cannot be defined for all first-order
languages, but only for weaker object languages. We lose self-applicability: validity
cannot be defined in a language for that language.
2.3.1 Modal truth theories We can provide different interpretations of the box
through different truth theories, which result from adding specific axioms that cover
the clause for ��. The simplest equates its satisfaction to the satisfaction of � under
all substitutions:

8a; �.Sat.�. �; a/ $ 8I Sat.I.�/; a//:
We call a formula simply true when satisfied under all assignments. Via this axiom,
p��q is simply true exactly when it is simply true under all substitutions: when it is
logically true.9

Different interpretations of modality can be given through different modifications
of the above truth clause. In general, for any collection of substitutions, there is
a truth theory that makes it the set of modally relevant substitutions. Where = is
the set of substitution functions defined as above over LSM, for any element i of }=,
there is a theory of truth SMCSMi, which is the result of adding to SM the following
axiom:

8a; �.Sat.�. �; a/ $ 8I.I 2 i ! Sat.I.�/; a///: (SMi)
There are countably many I, so there are uncountably many interpretations of the
box available. The first one I considered equated i with the class of I. It is important
to point out that, even though we have many ways of interpreting �, when we specify
validity we always need to choose one first and then work in that truth theory only:
we never define validity by quantifying over different ways of interpreting �. If we
did, truth could not possibly be simple truth, when we define validity.

If substitutions are not modally bounded, the system might be inconsistent. For
example, consider i D ¹I W I.F / D :. �F º, where F is some designated atomic
formula of LSM. Via SM C SMi, Sat.�. F; a/ if and only if Sat.I.F /; a/, for any I

in i . That is, if and only if for any I such that I.F / D :. �F , Sat.I.F /; a/; that is,
if and only if : Sat.�. F; a/, which is a contradiction. However, when substitutions
are modally bounded, we have reasons to believe that the system is consistent. I call
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S the restriction of the axioms of Sat to the nonmodal language: to LSat. S is a very
weak type-free theory, and it is what is true at level 0 of modal depth. We obtain the
following lemma.
Lemma 2.3 Given any SM C SMi and given any level of modal depth n, what is
true at level n in SMCSMi is inconsistent only if what is true at level 0 is inconsistent.
Proof Take any SMi and any �, and say that md.�/ D n. Via SMi, Sat.�. �; a/
exactly when Sat.I.�/; a/, for any I 2 i . Since I is modally bounded, md.�/ is
md.I.�//, and thus md.I.�// < md.�. �/.

Now, if md.�/ is 0, then S would be inconsistent, so the lemma holds. Assume
that for any � of modal depth m < n, for any x, : Sat.� .̂ :. �; x/ (IH1). Suppose
that the lemma does not hold for formulae of modal complexity n. We apply another
induction, this time on the complexity of the formula. Suppose that, for any m < k,
for any x, the lemma holds for any  of complexity m and modal complexity n; that
is, : Sat. .̂ :.  ; x/ (IH2).  of complexity k and modal depth n is either (a) :. �,
(b) � .̂ 
 , (c) 8. v�, or (d) �. �.

(a) Assume that Sat.:. � .̂ :. :. �; x/. Via the axioms for satisfaction SM3 and
SM4, Sat.:. � .̂ �; x/, contrary to IH2.

(b) Assume that Sat.� .̂ 
 .̂ :. .� .̂ 
/; x/. Via the axioms for satisfaction SM3
and SM4, from Sat.:. .� .̂ 
/; x/ either Sat.:. �; x/ or Sat.:. 
; x/, and so in
any case either Sat.� .̂ :. �; x/ or Sat.
 .̂ :. 
; x/, contrary to IH2.

(c) Assume that Sat.8. v� .̂ :. 8. v�; x/. Via the axioms for satisfaction SM3, SM4,
and SM5, there is a y such that Sat.� ^ :�; y/, contrary to IH2.

(d) Assume that Sat.�. � .̂ :. �. �; x/. Then, by axioms SMi, SM3, and SM4, there
is a substitution I 2 i such that Sat.I.�/ .̂ :. I.�/; x/. Since I is modally
bounded, md.I.�// < n, so we obtain a contradiction via IH1.

We conclude by induction on the complexity of formulae, that for any  of modal
depth n, the lemma holds. We therefore conclude by induction on the modal depth
of formulae that for any � of any modal depth, the lemma holds.

3 Substitutional Logical Consequence

Substitutional logical consequence is defined in the language ofLSM: I label it “ˆS .”
Definition 3.1 (Substitutional validity) Where � and � are sets of formulae and
a formula of LSM, respectively,

8�;�
�
� ˆS � WD 8a8I

�
8 

�
 2 � ! Sat

�
I. /; a

��
! Sat

�
I.�/; a

���
:

For the proofs in the next sections, it is useful to highlight some properties of logical
validity. A quite obvious but useful lemma is the following.
Lemma 3.2 Given any SM C SMi,

SM C SMi ` 8� .�/ ! 8�; I 
�
I.�/

�
:

I.�/ is always a formula. Therefore, if some condition  holds for all formulae, then
it also holds for all their substitutions.
Theorem 3.3 Given any SM C SMi, where FOL is first-order logic without iden-
tity, and � and � are metavariables for formulae and sets of formulae of LSM, the
following holds:

SM C SMi ` 8�; �.� `FOL � ! � ˆS �/:
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Proof The proof is by induction on the complexity of formulae: the axioms hold
for all formulae and thus for all substitutions via Lemma 3.2. In particular, we can
safely prove soundness for universal instantiation and generalization even for de re
modal formulae, since I does not change free variables.10

Granted that � is logically necessary exactly when it is logically true, as expected,
where i is the class of all I, necessity is logical necessity, and ˆS � is equivalent to
8a Sat.�. �; a/: the logical truth of a formula is equivalent to the truth of its logical
necessitation. For arguments, we can prove that, if � follows from a conjunction
 1; : : : ;  n, then the strict conditional from  1 ^� � �^ n to � is satisfied. We cannot
show that being logically true is equivalent to being logically necessary, because
there is no T schema for modal sentences, nor in general for all sentences of LSat, on
pain of contradiction. For similar reasons, in any truth theory we consider we cannot
show that logical truths are necessary, but only that their necessitation is true.

Substitution of identicals is valid. Note that the result relies on substitutions being
modally bounded.

Lemma 3.4 Given any SM C SMi,
SM C SMi ` 8v;w; a; �.a.v/ D a.w/ ! .Sat.�; a/ $ Sat.j�; v=wj; a///:

Proof The proof is by induction on the modal depth of formulae. When the modal
depth is 0, we prove the lemma for atomic formulae via axiom SM6, and for the
other nonmodal formulae via axioms SM3–SM5 (via induction on the complexity
of �). Assume that the lemma holds for all  whose modal depth is less than m.
Then whenever � has md D m, we have added a � to some subformula � of �.
Assume that Sat.�. �; a/ but : Sat.j�. �; v=uj; a/, even though a.v/ D a.u/. Then
for any H in i , Sat.H .�/; a/. Since by construction, H does not rename variables,
jH .�/; v=uj D H .j�; v=uj/. So, for some H in i , : Sat.H .j�; v=uj/; a/. By con-
struction of H , H is modally bounded, so for any  , H . / has the same modal
depth of  . We can therefore apply the induction hypothesis, and conclude that for
any H in i , Sat.H .�/; a/ $ Sat.H .j�; v=uj/; a/, which contradicts our assump-
tion that : Sat.H .j�; v=uj/; a/ for some H in i . Since the lemma holds for �. �,
we can show that it holds for � via the definition of modal depth and well-formed
formula.

Lemma 3.5 Given any SM C SMi,
SM C SMi ` 8�

�
ˆS � ! 8a Sat.�; a/

�
:

Proof If ˆS �, then � is true under all a and I. In particular, it is true under the
identity function, so Sat.�; a/ for any a.

Lemma 3.6 (Additivity) For any I and I0, there exists a H ICI0 such that, for all
�, I0I.�/ D H ICI0

.�/.

Proof I construct the relevant H as follows:
H .2/ D I0I.2/;

H .Sat/ D I0I.Sat/;
H .D/ D I0I.D/:

The proof is a simple induction on the complexity of formulae.11
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We can read the definition of logical truth and necessity through an accessibility rela-
tion between formulae. A formula  is logically accessible to � if  is a substitution
of �. So, � is logically true exactly when all the formulae logically accessible to it
are true. Say that i is the set of modally relevant substitutions:  is modally acces-
sible to � if there is a substitution function in i from � to  . �. � is true if and only
if every modally accessible  from � is true. The process can be iterated: �. �. � is
true if and only if every  modally accessible from � is such that every � modally
accessible from  is true.

Definition 3.7 (Accessibility relations)

L.�;  / WD 9I
�
I.�/ D  

�
;

N .�;  / WD 9I
�
I 2 i ^ I.�/ D  

�
:

Lemma 3.8 Given any SM C SMi, the following holds:

(L7.1) 8�.ˆS � $ 8 ; a.L.�;  / ! Sat. ; a///;
(L7.2) 8�8a.Sat.�. �; a/ $ 8 .N .�;  / ! Sat. ; a///:

Proof The proofs are trivial given the definitions.

4 Soundness

In this section, I discuss soundness. I first consider a modal logic with a constant
domain: where Barcan and Converse are provable.

4.1 Soundness for K K is first-order logic plus the following:
Nec: `K � )`K ��,
K: �.� !  / ! .�� ! � /.

All the modal logics I consider for now have the following axioms (of which some
might be redundant in some of them):

BF: 8v�� ! �8v�,
CBF: �8v� ! 8v��.

K is sound with any theory of truth we consider, for the following holds.

Lemma 4.1 Given any SM C SMi,
SM C SMi ` 8�.ˆS � !ˆS �. �/:

Proof Given any SM C SMi,

ˆS � !

! 8I; a Sat.I.�/; a/

! 8I; I0; a Sat.H ICI0

.�/; a/

! 8I; I0; a Sat.II0.�/; a/

! 8I; I0; a.I 2 i ! Sat.II0.�/; a//

! 8I0; a Sat.�. I0.�/; a/

! 8I0; a Sat.I0.�. �/; a/
!ˆS �. �:
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Lemma 4.2 Given any SM C SMi,
SM C SMi ` 8�;  

�
ˆS �. .�!.  /!. .�. �!. �.  /

�
:

Proof Via the axioms for truth, Sat.�. .�!.  /; a/ is equivalent to

8I
�
I 2 i !

�
Sat

�
I.�/; a

�
! Sat

�
I. /; a

���
:

Also, Sat.�. �; a/ is equivalent to 8I.I 2 i ! Sat.I.�/; a//. The proof easily
follows by logic.

Lemma 4.3 Given any SM C SMi,
SM C SMi ` 8� ˆS �. 8. v�$. 8. v�. �:

Proof Note that jI.�/; u=vj D I.j�; u=vj/, where u and v are free. We show the
equivalence as follows, where H are the substitutions in i :

Sat.�. 8. v�; a/ Sat.8. v�. �; a/
$ 8H Sat.H .8. v�/; a/ $ Sat.8. u�. j�; u=vj; a/

$ 8H Sat.8. uH .j�; u=vj/; a/ $ 8y Sat.�. j�; u=vj; ay
u/

$ 8H8y Sat.H .j�; u=vj/; ay
u/; $ 8H8y Sat.H .j�; u=vj/; ay

u/:

The last two lines are the same.

Theorem 4.4 K is sound in any SM C SMi.

Proof The proof is by induction on the length of proofs of K. By Theorem 3.3 and
Lemmas 4.2 and 4.3, each proof of length 0 is valid. The induction step follows by
Theorem 3.3 and Lemmas 4.1, 4.2, and 4.3.

Since no matter which i I consider K is sound, the minimal logic for which I can
define validity in the present substitutional system is K: the weakest normal modal
logic.

4.2 Soundness for other common modal calculi I give now some examples of rela-
tions between features of N and modal axioms, as well as a more general way of
checking soundness:

M: �� ! �,
B: � ! � Þ �,
4: �� ! ���,
5: Þ� ! � Þ �.

We offer now a resolution strategy to check soundness.

Definition 4.5 (Path) .
(i) � �  W 8a Sat.�$.  ; a/.
(ii) There is a direct path from � to  : N .�;  /.
(iii) There is an indirect path from � to  : 9�.N .�; �/ ^ � �  /.
(iv) Path reflexivity: for any �, there is always a path from � to �.
(v) Path symmetry: for any � and  , if there is a direct path from � to  , then

there is an indirect path from  to �.
(vi) Path transitivity: for any �,  , �, if there is a direct path from � to  and  

to �, then there is an indirect path from � to �.
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(vii) Path Euclideanicity: for any �,  , �, if there is a direct path from � to  and
� to �, then there is an indirect path from  to �.

Clearly, since anything is self-equivalent, if there is a direct path between x and y,
then there is also an indirect one. We offer the following lemma.
Lemma 4.6 Validity conditions:

(i) M is valid if path reflexivity holds.
(ii) B is valid if path symmetry holds.
(iii) 4 is valid if path transitivity holds.
(iv) 5 is valid if path Euclideanicity holds.

Proof I prove Lemma 4.6(i)–(ii). Similar proofs work for Lemma 4.6(iii)–(iv).
Suppose that Sat.�. �; a/. By Lemma 3.8(ii), 8 .N .�;  / ! Sat. ; a//. Via

path reflexivity, some I.�/ is equivalent to �, so Sat.�; a/. Since � and a were
arbitrary, I can generalize to any � and a and, via Lemma 3.2, to any I and a.

For Lemma 4.6(ii), assume that Sat.�; a/, yet : Sat.�. Þ. �; a/. Where H

and I are all in i , via the axioms for truth, this second formula is equivalent to
9H8I: Sat.IH .�/; a/. By definition of N , trivially N .�;H .�//. Via path sym-
metry, since N .�;H .�//, for some I 2 i , N .H .�/; IH .�//, where IH .�/ � �.
But Sat.�; a/, so Sat.IH .�/; a/, contrary to our assumption that, for all I 2 i ,
: Sat.IH .�/; a/.

System T is K plus axiom M. System S4 is K plus 4 and M. S5 is K plus M plus 5.
Theorem 4.7 (Soundness for T, S4, S5) The following hold:

(i) Calculus T is sound for validity in any SMCSMi where path reflexivity holds.
(ii) Calculus S4 is sound for validity in any SM C SMi where path reflexivity and

path transitivity hold.
(iii) Calculus S5 is sound for validity in any SM C SMi where path reflexivity and

path Euclideanicity hold.
Proof The proofs are by induction on the length of proofs of T, S4, and S5.

5 Completeness

In this section, I explore some completeness results. Completeness in modal logic
is a notoriously complex matter: some techniques work for some logics but not for
others and, in any case, there are continuum many Kripke incomplete normal modal
logics.12

5.1 Canonical model and adequacy For canonical modal logics, we can construct a
canonical truth theory. A truth theory X is canonical for a modal calculus Y when-
ever Y is adequate for validity defined in X . That is, when X proves the following:
8�.Y ` � $ˆS �/. I call a choice i of I canonical for Y if the canonical truth
theory for Y is SM C SMi. I will use a Henkin-style completeness proof for the
calculus K, by specifying the canonical i . Similar proofs can be run for other canon-
ical modal calculi. To prove the adequacy theorem, we need to prove the following
substitutional truth lemma.
Lemma 5.1 (Substitutional truth lemma) There is a truth theory SMCSM� where
the following holds, where � is a metavariable for Henkin extensions of K:

9c8�9I8�.� 2 � $ Sat.I.�/; c//:
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The rest of the section contains the proof of the lemma, and the adequacy theorem
that follows from it.

The canonical Kripke model is usually built by taking as points of the model all
complete and consistent extensions of the modal calculus with certain properties,
which we may call Henkin extensions. It is then shown that, with a suitable choice
of accessibility relation, membership to the extension is equivalent to truth at that
point. I will do something similar: the points in my system are substitutions, and the
accessibility relation is N .

A first issue is that the cardinality of the canonical model for K is the continuum,
yet we have but denumerably many substitution functions. We have two options: one
is to add uncountably many variables. Alternatively, we can appeal to a theorem
similar to the downward Löwenheim–Skolem theorem.

Theorem 5.2 Given any consistent extension of K, for any of its characteristic
Kripke models there is an equivalent countable model, that is, a model with at most
countably many worlds.13

Proof For a proof, see Chagrov and Zakharyaschev [5, Theorem 6.29].

By Theorem 5.2, there is a countable equivalent to the uncountable canonical model:
its countable filtration. It follows that our denumerable substitutions are enough.

A Henkin extension of K for the language of LSM is a set of sentences � with the
following properties:

8�.K ` � ! � 2 �/; (K conservativity)
8�.:. � 2 � ! � … �/; (Consistency)
8�.� … � ! :. � 2 �/; (Maximality)
8�; v9v0

�
p9v� ! j�; v0=vjq 2 �

�
; (Henkin witness)

where v and v0 are metavariables for variables. The Henkin witness property (Henkin
property, for short) is usually achieved by adding constants to the language; here
we use variables as witnesses, as in Halbach [11]. We will also use variables as
proxies for points of the Kripke model. Because of this twofold use, and because
substitutions cannot switch free variables, variables are to be handled carefully to
avoid variable clashes. Out of notational convenience, in the following I will assume
that variables in the language have a subscript and a superscript, the latter being
either 0 or 1. It is routine logic homework to show that everything that can be done
using superscripts and subscripts can be done using only subscripts. We can always
get rid of one superscript m > 0 in the following way: first we set vm�1

n D vm�1
2nC1,

and then we set vm
n D vm�1

2n . By reiterated applications of the process, we end up
with only one superscript, 0, and then we just set v0

n D vn. When we translate v1
n

as an even variable and v0
n as an odd variable, in the new notation to be in signed

form means that every free variable has superscript 1 and every bound variable has
superscript 0.

Given a consistent set of formulae, we build Henkin extensions in a somewhat
unorthodox way: first, in each formula we get rid of the superscript 1 in the way
just described: now each variable of each formula has superscript 0. Then, we use
variables with superscript 1 as witnesses, which are guaranteed to be fresh by con-
struction. We then again get rid of the superscript 1; we are left with formulae
whose variables have all superscript 0. There is no loss of generality: as just shown,
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superscripts do not add any expressive strength to the language. All formulae of the
Henkin extensions have variables with superscript 0, that is, odd subscripts, if we
had no superscripts.

We assume that we have well ordered the countable subset of Henkin extensions
we need to match the countable filtration of the canonical model in a suitable way.
Given such a well-order, define g.�/ D n if and only if � is the nth Henkin exten-
sion. We will use the following two variable assignments c and b:

c.v0
n/ D n for all n 2 !; b.v1

g.�// D � for all �;

c.v1
3/ D b:

The values not listed are set to zero and do not matter.
For any � , to define its characteristic substitution, called I� , we only need to

set the substitution of the atomic formulae. We do so for “2”; similar definitions
hold for “Sat” and “D”. Henkin extensions have only formulae with variables with
superscript 0, by construction. Thus, our aim is to show that Sat.I�.v0

n2. v0
m/; c/ $

v0
n2. v0

m 2 � . We define the following recursive function f :

f .x/ D

´
x if x 2 !;

0 otherwise.

I�.2/ is the following formula, where g.�/ is k:
8x; y; t; z

��
x D f .v1

1/^y D f .v1
2/^ t D pv0

x 2 v0
yq^z D t2. v1

k

�
! Sat.z; v1

3/
�
:

I abbreviate it to:
8x

�
x D v0

f .v1
1

/
2. v0

f .v1
2

/
2. v1

g.�/ ! Sat.x; v1
3/

�
:

I�.2/ is in signed form (we assume that x, y, z, and t have superscript 0). The
formula has only v1

1 , v1
2 , and v1

3 free. All these variables have superscript 1, so they
will not be inadvertently substituted when we construct I�.�/, where � is in some
Henkin extension, since Henkin extensions have only variables with superscript 0.
Via the definition of I, if we ignore the renaming of the bound variables, then we
obtain the following:

I�.v0
n2. v0

m/ D 8x
�
x D v0

f .v0
n/

2. v0

f .v0
m/

2. v1
g.�/ ! Sat.x; v1

3/
�
:

Under c, v1
3 is b and vn is n; under b, v1

g.�/
is � , so the formula is saying that the

formula that says that pv0
n 2 v0

mq is in � is true. Since the formula talks about a
formula of set theory, SM7 applies, so if it is true that such a formula is true, then
the formula is true. The equivalence between I� and � is proved below (every line
is equivalent to the next):

Sat
�
I�.v0

n2. v0
m/; c

�
;

8x
�
x D v0

f .c.v0
n//

2. v0

f .c.v0
m//

2. v1
g.�/ ! Sat

�
Sat. .v; v1

3/; c
x
v

��
; Lem. 2:2;Def. I�

8x
�
x D v0

n2. v0
m2. v1

g.�/ ! Sat
�
Sat. .v; v1

3/; c
x
v

��
; Def. f; c

Sat
�
pv0

n 2 v0
mq2. v1

g.�/; c.v
1
3/

�
; Axiom SM7

pv0
n 2 v0

mq 2 b.v1
g.�//; Def. c;Lem. 2:2

pv0
n 2 v0

mq 2 �: Def. b
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This takes care of the induction base. We now proceed to the induction step. The
cases for negation and conjunction are trivial. The case for the quantifier is handled
as in Halbach [11, p. 325]. For the modal case, first we need to define the set � of
modally relevant I that is canonical for K. The canonical accessibility relation C
between Henkin extensions is defined as follows:

C.x; y/ WD 8�.�. � 2 x ! � 2 y/:

We now need to define � viaC so that, when we apply a modally relevant substitution
to a I�.�/, we end up in a formula that is equivalent to some I� such that C.�;�/
(and, conversely, whenever C.�;�/, there is a modally relevant substitution that
makes us jump from I� to I�). Now, if we could switch free variables, then this
would be easy, but substitutions cannot switch free variables. So, instead, I chose to
double quote the formula, and then change the clause for Sat. .v; u/, so that instead
of v being the formula that says that x is in � , it is the formula that says that x is in
�.14 Here are the details.

Definition 5.3 (Canonical condition) I is in � if and only if it satisfies the fol-
lowing condition. There is a � and � such that C.�;�/ and, for all �at, I is as
follows:

I.�at/ D

´
�at if �at ¤ pSat.v; u/q;
pSat.jv; v1

g.�/
=v1

g.�/
j; u/q otherwise:

We make use of the following observation.

Lemma 5.4 (Composition lemma) For any two � and �, C.�;�/ exactly when
there is a substitution function H is in � such that, for any �, truth under HI� is
equivalent to truth under I�. That is,

8�;�.C.�;�/ $ 9H .H 2 � ^ 8�; a.Sat.HI�.�/; a/ $ Sat.I�.�/; a////:

Proof The right-to-left direction follows from the definition of �. For the other
direction, by construction of � , the relevant H is clearly the one that swaps Sat. .v; u/
with Sat. .jv; v1

g.�/
=v1

g.�/
j; u/. That truth under HI� is equivalent to truth under I�

is shown by induction on the complexity of �. We prove the base, using vr
n2. vs

m as
an example. First, in I�.2/ there is only one occurrence of Sat. So, the following
holds:
HI�.vr

n2. vs
m/ D 8x

�
x D v0

f .vr
n/

2. v0
f .vs

m/
2. v1

g.�/ ! Sat
�
jx; v1

g.�/=v
1
g.�/j; v

1
3

��
:

The proof continues as follows (every line is equivalent to the next):

Sat
�
HI�.vr

n2. vs
m/; a

�
; (1)

Sat
�
8. x

�
xD. v0

f .vr
n/

2. v0
f .vs

m/
2. v1

g.�/!. Sat.
�
jx; v1

g.�/=v
1
g.�/j; v

1
3

��
; a

�
; (2)

8x
�
x D v0

f .a.vr
n//

2. v0
f .a.vs

m//
2. v1

g.�/ ! Sat
�
Sat.

�
jv; v1

g.�/=v
1
g.�/j; v

1
3

�
; ax

v

��
; (3)

8x
�
x D v0

f .a.vr
n//

2. v0
f .a.vs

m//
2. v1

g.�/ ! Sat
�
jx; v1

g.�/=v
1
g.�/j; a.v

1
3/

��
; (4)

pv0
f .a.vr

n// 2 v0
f .a.vs

m//q 2 a.v1
3/.v

1
g.�//; (5)

8x
�
x D v0

f .a.vr
n//

2. v0
f .a.vs

m//
2. v1

g.�/ ! Sat
�
x; a.v1

3/
��
; (6)

Sat
�
I�.vr

n2. vs
m/; a

�
: (7)
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In the step from line 3 to line 4 we are applying SM7, since the formula belongs
to LZFC. The step from 4 to 5 is proved as follows: a.v1

3/ must be an assign-
ment. If it was not, then 8x: Sat.x; a.v1

3// via SM8, in particular when x D

v0
f .a.vr

n//
2. v0

f .a.vs
m//

2. v1
g.�/

, so line 4 would not hold, contrary to our assumption.
Since a.v1

3/ is an assignment, and x is a formula of set theory, we can apply
Lemma 2.2 and proceed to line 5.

The induction step follows by definition of I and the compositional axioms of
Sat.

The lemma shows that truth under HI�.�/ is equivalent to truth under I�.�/. For
this reason, we call H the composition from I� to I� , written H I� 7!I� .

We are now ready to prove the induction step of the substitutional truth lemma for
the modal case. First, suppose that �. � 2 � , yet : Sat.I�.�. �/; c/. Via commutation
of I with �, : Sat.�. I�.�/; a/. By the axioms for truth, there exists an H in � such
that : Sat.HI�.�/; c/. By construction of � , there is an H I� 7!I� such thatC.�;�/
and : Sat.H I� 7!I�

I�.�/; c/. Via the composition lemma, : Sat.I�.�/; c/. By the
induction hypothesis, � … �. By construction of C , since �. � 2 � , � 2 �, which is
a contradiction.

For the other direction, assume that �. � … � , yet Sat.I�.�. �/; c/. We claim
that the set S D ¹ W �.  2 �º [ ¹:. �º is consistent. Suppose that it was
not. Then a finite subset  1; : : : ;  n in � is such that . 1 ^ � � � ^  n/ ! ?.
By logic, . 1 ^ � � � ^  n/ ! �. But � is closed under K rules, so by neces-
sitation and K .� 1 ^ � � � ^ � n/ ! ��. Thus, �. � 2 � , contrary to our
assumption. Since S is consistent, by Lindenbaum’s lemma we can extend it to
a maximal and consistent set to which we can add the Henkin witness property
via the renaming of variables explained above. We obtain a Henkin extension �
where, by construction, C.�;�/ and � … �. We construct the substitution that
maps Sat.v; u/ to Sat.jv; v1

g.�/
=v1

g.�/
j; u/ and reads the other atomic formulae

homophonically. By construction of �, the substitution is in �: it is H I� 7!I� .
By assumption, Sat.�. I�.�/; c/, so Sat.II�.�/; c/ for any I 2 � , in particular
Sat.H I� 7!I�

I�.�/; c/. Via the composition lemma Sat.I�.�/; c/ and � 2 � by
the induction hypothesis, contrary to our assumption. This concludes the induction
and the proof of the substitutional truth lemma.

Theorem 5.5 (K adequacy) There is a canonical truth theory for K. That is, a
truth theory SM C SMi such that

SM C SMi ` 8�.K ` � $ˆS �/:

Proof The theory in question is of course SMCSM� . Theorem 4.4 ensures sound-
ness. For the right-to-left direction, suppose that � is not provable in K. Then :. � is in
some Henkin extension of K. Via Lemma 5.1, : Sat.I�.�/; a/, and thus 6ˆS �.

The proofs used in this section can be generalized to the usual, familiar canonical
modal logics like S4, S5, B, and so on. By construction, � will ensure the relevant
features for soundness (i.e., path reflexivity, path transitivity, etc.). We show this for
T. The canonical condition for T is reflexive, so it follows that there is, for any � ,
an H in � such that H .Sat.v; u/ D Sat.jv; v1

g.�/
=v1

g.�/
; u/, leaving the other atomic

formulae the same. We show that, for any �, � � H .�/. The base is trivial for v 2 u
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and v D u. For Sat.v; u/, we reason as follows. jx; y=yj D x and Sat.jx; y=y0j; z/

is actually a short for 8t .t D jx; y=y0j ! Sat.t; z//:

Sat.Sat. .v; u/; a/ $ 8x.x D a.v/ ! Sat.Sat. .vn; u/; a
x
vn
//

$ 8x.x D ja.v/; v1
g.�/=v

1
g.�/j ! Sat.Sat. .vn; u/; a

x
vn
//

$ Sat.8. vn.vnD. jv; v1
g.�/=v

1
g.�/j!. Sat. .vn; u//; a/

$ Sat.I�.Sat.v; u//; a/:

The induction step follows because I always reads connectives and quantifiers homo-
phonically. Thus, since H .�/ � �, there is always a path from � to �, and the system
is path reflexive.

The adequacy proof cannot be extended to modal logics for which there is no
canonical model, even when such logics can be shown to be Kripke complete via
alternative methods. For example, the logic of provability GL is K4 plus Löb’s
axiom �.�� ! �/ ! �. GL is not canonical (and not strongly complete) but
admits selective filtration; thus it has the finite model property, being characterized
by the class of finite strict partial orders (see [5, p. 150]).15 Filtrations do not work
in the substitutional framework, because each truth theory and choice of i can copy
at most one filtration for some specific �. Of course, if we wanted we could change
the definition of validity by quantifying over different truth theories, which differ in
the choice of i . An argument is valid if and only if it is substitutionally valid in all
these truth theories. Then, we can pick as relevant all and only the modal theories
that correspond to each filtration, and adequacy would follow. However, this choice
would betray the substitutional understanding of validity: validity is preservation of
truth—simple truth—under all substitutions. It is not preservation of different mod-
els of truth under all substitutions. The correct philosophical conclusion is simply
that substitution-theoretic semantics is not as strong as Kripke semantics.

6 Identity and Quantification

The state of identity in the substitutional account is a tricky subject. There is a trade-
off between three different conditions:

(a) Quantifiers are logical.
(b) Identity is logical.
(c) Validity for a first-order, nonmodal language without identity should coincide

with classical first-order logic (without identity).
So far, I chose to give up (b), and keep (a) and (c). If we keep (a) and (b), then
we need to give up (c), because the system will prove “There are at least n things,”
for any n, which is not a classical validity. This condition can be stated using only
identity, quantifiers, and connectives. Since we are embracing (a) and (b), all these
expressions should be read homophonically, so the sentence is logically true if true;
it is true, so it is logically true.16

As [11] discusses, if we use the relativized substitutions mentioned above, the
definition of a substitution function I is changed so that quantifiers are treated quasi-
homophonically and can get restricted by a fixed condition ı; that is, I.8. v�/ might
be 8. v.ı ! �/). The new system can handle domain variation. In this case, we are
partially giving up (a); however, we can keep (b). The logic one naturally obtains is
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free and inclusive, since whenever I chooses ı D ?, I.9v�/ is never true.17 So, we
are giving up (c) as well, this time by undergenerating classical validities.18

In the remainder of the article, I sketch a semantics for modal logic where identity
is logical and quantifiers are read quasihomophonically. First, we redefine the clause
for 8. v� and vD. u in the definition of I as follows:

I.vD. u/ WD vD. u;
I.8. v�/ WD 8. u

�
jı; u=˛1j!.

ˇ̌
I.�/; u=v

ˇ̌�
;

where ı is some fixed condition. We assume that ı is in signed form, and the usual
care needs to be applied to avoid unintended variable bindings. Restricting quan-
tifiers to a condition ı is optional: we are considering both unrelativized and rela-
tivized substitutions, so the new system is a proper extension of the old one.

In the new system we can falsify BF and CBF. A substitution I is now such that
I.8. v�. �!. �. 8. v�/ is 8. v.ı!. �. I.�//!. �. 8. v.ı!. I.�//. We can easily falsify this
formula in some truth theory. For example, consider the following instance of BF,
where � is :x D x and ı is x 2 x:

8x.x 2 x ! �:x D x/ ! �8x.x 2 x ! :x D x/:

This instance of BF is false in a truth theory where, for all I in i , I.v2. v/ D :. v2. v,
for any v. The same truth theory falsifies CBF; just consider the following instance
of it where � is :x D x and ı is :x 2 x:

�8x.:x 2 x ! :x D x/ ! 8x.:x 2 x ! �:x D x/:

I will not analyze further the conditions for the validity of BF and CBF. Rather,
in the rest of the section, I show soundness and completeness for FKI: the result of
adding to free logic the axioms of identity, the modal axiom K, and the rule Nec (BF
and CBF are not valid).

6.1 Soundness and completeness for FKI We rewrite the definition of ˆS using the
new definition of I. One can easily check the following lemma.

Lemma 6.1 For any SMCSMi, where � and� are formulae and sets of formulae
of LSM, the following holds:

SM C SMi ` 8�; �.� `FKD � ! � ˆS �/:

Proof The proof is by induction on the length of proofs of FKI. Substitution of
identicals is valid by Lemma 3.4 and because a.v/ D a.u/ exactly when under all I,
Sat.I.vD. u/; a/.

The resolution strategies to check soundness for different modal calculi remain the
same. Statements of identity are all path equivalent. Theorems 4.4 and 4.7 still hold.

For completeness, we show that if something is substitutionally valid, it is true
in the canonical Kripke model of FKI, so it is provable in FKI. A Kripke model
M D hW;D;R; V;Qi for the language of LSM is defined in the usual way, where
W is the set of worlds, D the domain, R the accessibility relation, V the valuation
function, andQ a function fromW to the power set ofD. hM; w; ai ˆ � is defined
as usual:
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hM; w; ai ˆ Sat. .v; u/ $ ha.v/; a.u/; wi 2 V.Sat/;
hM; w; ai ˆ v2. u $ ha.v/; a.u/; wi 2 V.2/;

hM; w; ai ˆ vD. u $ a.v/ D a.u/;

hM; w; ai ˆ :. � $ :hM; w; ai ˆ �;

hM; w; ai ˆ  .̂ � $ hM; w; ai ˆ  ^ hM; w; ai ˆ �;

hM; w; ai ˆ 8. v� $ 8y.y 2 Q.w/ ! hM; w; ay
v i ˆ �/;

hM; w; ai ˆ �. � $ 8x.R.w; x/ ! hM; x; ai ˆ �/:

We define � to be true in M if and only if it is true in M under all a and w 2 W .
Define � as the result of getting rid of superscript 1:

�.v0
n/ D v0

2nC1;

�.v1
n/ D v0

2n;

�.�/ D the result of uniformly applying � to each variable in �.

We prove the following lemma.

Lemma 6.2 For any countable Kripke model M of FKI, there is a truth theory
SMCSM� where the following holds, wherew are worlds of M and H substitutions
in �:

8a9c8w9H8�.hM; w; ai ˆ �.�/ $ Sat.H�.�/; c//:

The rest of the section is the proof of Lemma 6.2 by induction on the complexity of
the formulae, and the adequacy theorem that follows from it.

For any �, �.�/ has only variables with superscript 0. Consider any countable
Kripke model M D hW;D;R; V;Qi. We match the elements of W with the natural
numbers. We order the elements of the setW [ ¹V;Qº. g.x/ D n if and only if x is
the xth thing in the order. Consider any a. Define the following assignments:

c.v0
n/ D a.v0

n/; b.v1
g.x// D x;

c.v1
3/ D b:

The values not mentioned are set to zero. Given a w of M, we build its character-
istic Iw inductively from the substitution for atomic formulae and the condition for
the quantifiers. We define Iw.2/. A similar definition works for Iw.Sat/. In the
definition, 8v1

n ranges over variables with superscript 1:

x ' y WD 8v1
nx.v

1
n/ D y.v1

n/;

˛ WD hv0
1 ; v

0
2 ; v

1
g.w/i 2 v1

g.V /.2/;

ˇ.x; y; z; t/ WD Asg.x/ ^ x.v0
1/ D y ^ x.v0

2/ D z ^ x ' t;

I.2/ WD 8x; y
��
x D p˛q ^ ˇ.y; v1

1 ; v
1
2 ; v

1
3/

�
! Sat.x; y/

�
:

The induction base for v0
n2. v0

m is proved as follows (every line is equivalent to the
next):

Sat
�
Iw.v0

n2. v0
m/; c

�
(1)

Sat
�
8. v; u

��
vD. p˛q .̂ ˇ.u; v0

n; v
0
m; v

1
3/

�
!. Sat. .v; u/

�
; c

�
(2)

8x; y
��
x D p˛q ^ ˇ

�
y; c.v0

n/; c.v
0
m/; c.v

1
3/

��
! Sat

�
Sat. .v; u/; cx;y

v;u

��
(3)



312 Marco Grossi

8x; y
��
x D p˛q ^ ˇ

�
y; a.v0

n/; a.v
0
m/;b

��
! Sat

�
Sat. .v; u/; cx;y

v;u

��
(4)

8d
��

d.v0
1/ D a.v0

n/ ^ d.v0
2/ D a.v0

n/ ^ d ' b
�

(5)

! Sat
�
hv0

1 ; v
0
2 ; v

1
g.w/i2. v

1
g.V /.2/;d

��
8d

�
d ' ˇ !

˝
a.v0

n/; a.v
0
m/;d.v

1
g.w//

˛
2 d.v1

g.V //.2/
�

(6)˝
a.v0

n/; a.v
0
m/; w

˛
2 V.2/ (7)

hM; w; ai ˆ v0
n2. v0

m: (8)

A similar reasoning works for Sat. .v0
n; v

0
m/. The induction base is straightforward for

identity: Iw.vD. u/ D vD. u, so Sat.Iw.v0
nD. v0

m/; c/ if and only if c.v0
n/ D c.v0

m/ if
and only if hM; w; ai ˆ v0

nD. v0
m.

For the induction step of Lemma 6.2, the axioms for satisfaction trivially take
care of negation and conjunction. The quantified case is handled as follows. First,
we define ı (x ' z is defined as above):

˛0
WD v0

1 2 v1
g.Q/.v

1
g.w//;

ˇ0.x; y; z/ WD Asg.x/ ^ x.v0
1/ D y ^ x ' z;

ı WD 8x; y
��
x D p˛0q ^ ˇ0.y; v1

1 ; v
1
3/

�
! Sat.x; y/

�
:

We prove a.v0
n/ 2 Q.w/ $ Sat.ı.v0

n/; c/ with a proof very similar to the one just
given for the induction base. Then, the proof continues as follows:

hM; w; ai ˆ 8. v0
n�;

8y
�
y 2 Q.w/ ! hM; w; a

y

v0
n

i ˆ �
�
;

8y
�
a

y

v0
n

.v0
n/ 2 Q.w/ ! hM; w; a

y

v0
n

i ˆ �
�
;

8y
�
Sat

�
ı.v0

n/; c
y

v0
n

�
! Sat

�
Iw.�/; c

y

v0
n

��
;

Sat
�
8ujı; u=v0

nj ! j�; u=v0
nj; c

�
;

Sat
�
Iw.8v0

n�/; c
�
:

For the modal case, we set � like before; however, we focus on the R of the Kripke
model at hand.
Definition 6.3 (� for M) Given a countable M and its R, the correspondent � is
defined as follows: I is in � if and only if there is a w and w0 in W of M such that
R.w;w0/ and, for all �at, I is as follows:

I.�at/ D

´
�at if �at ¤ pSat.v; u/q;
pSat.jv; v1

g.w0/
=v1

g.w/
j; u/q otherwise :

Modal substitutions are unrelativized. By construction of � and via the definition of
Iw , we can check that a result parallel to Lemma 5.4 holds.
Lemma 6.4

8w;w0.R.w;w0/ $ 9H .H 2 � ^ 8�; a.Sat.HIw.�/; a/ $ Sat.Iw0

.�/; a////:

Proof The only new cases are for vD. u in the induction base and Iw.8. v�/ in the
induction step. The case for vD. u is trivial. For the quantified case, the proof works
very similarly to the atomic cases, by exploiting the fact that the only difference
between ı of Iw and ı of Iw0 is the occurrence of v1

g.w0/
instead of v1

g.w/
in ˛0.
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The modal case for the induction for Lemma 6.2 proceeds as follows: hM; w; ai ˆ

�. � if and only if for all w0 such that R.w;w0/, hM; w0; ai ˆ �. Via the induction
hypothesis, for all w0 such that R.w;w0/, Sat.Iw0

.�/; c/. Via Lemma 6.4, this is so
if and only if 8H .H 2 � ! Sat.HIw.�/; c//, if and only if Sat.�. Iw.�/; c/ if and
only if Sat.Iw.��/; c/. This concludes the induction and the proof of Lemma 6.2.

Theorem 6.5 There is a canonical truth theory for FKI.

Proof We show that, for any �, `FKI � $ˆS �. For the left-to-right direction,
we use Lemma 6.1. For the other direction, pick the Kripke canonical model of FKI.
By Theorem 5.2, there is an equivalent countable model: its countable filtration M.
A canonical truth theory for FKI is the characteristic truth theory modeled from R

of M via Definition 6.3. Assume that °FKI
querymarkQ12phi . Then, in some world w of the countable filtration, under
some a, hM; w; ai 6ˆ �. Construct a0 as follows: a0.�.vs

n// D a.vs
n/. Clearly,

hM; w; ai ˆ � exactly when hM; w; a0i ˆ �.�/, so hM; w; a0i 6ˆ �.�/. By
Lemma 6.2, : Sat.Iw.�.�//; c/; therefore �.�/ is not substitutionally valid, and
thus � is not substitutionally valid either, since validity is preserved under uniform
substitutions of free variables.

Theorem 6.5 can be extended to other familiar canonical extensions of FKI without
BF or CBF. We can always apply Lemma 6.2 to the countable filtration of their
canonical model. Soundness will still hold by construction of �, as before.

Notes

1. For a discussion, see Halbach [12, Note 2]. The substitutional account arguably traces
back at least to Buridan.

2. By set-sized I mean the size of something that can be collected in a set.

3. Quine thinks this cannot be the case due to a variation of what he calls “Grelling’s
paradox.” He considers the set of all sentences of the object language that do not satisfy
themselves. In a type-free system this set is unproblematic: the satisfaction predicate is
in the object language, the paradox is stopped because a T schema is not provable for
sentences like “not x satisfies x.”

4. For a contemporary and in depth discussion on absolute generality, see Rayo and
Uzquiano [26].

5. Again, I point to Halbach [11], [12] for a discussion. Reflection principles roughly show
that any formula of set theory is satisfiable if what it says holds in the universe of sets.
So if it is true in all models, it holds; that is, it is true. They have been proved for ZFC by
Lévy [17] and Montague [21]. However, they are not provable in higher order languages
(see [28]).

6. If � is a formula and not a sentence, then it is simply true if and only if satisfied under
all assignments, and thus �� is true if and only if true under all assignments and substi-
tutions.
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7. Halbach [12] builds the theory from ZFC as well. Substitutional validity for first-order
logic can be defined using Peano arithmetic as base. Arguably, similar results hold for
modal logic.

8. My guess is that one will need either to add some syntax to the language, thus strengthen-
ing the substitution functions, or have two typed truth predicates and work in a meta-meta
language to mimic axiom SM7.

9. Note that �. � might be satisfied but not logically true, like for �.v/!. �.u/, where
a.v/ D a.u/ (since substitutions do not rename free variables). To be true is not to
be satisfied under some assignment: to be true is to be satisfied under all assignments.

10. Here is what I mean. Suppose that each I in i did rename variables via some recur-
sive mapping 0: in particular, v0

n D vn, v0
m D vn, and v0

k
¤ vn. Suppose fur-

ther that I.x2. y/ D x0D. y0 and that a.vn/ D n. Then Sat.8. vn�. vn2. vm; a/: by the
axioms for satisfaction, 8y; I.I 2 i ! Sat.I.vn2. vm/; a

y
vn
// and, by construction of

i , 8y Sat.vnD. vn; a
y
vn
/. Yet, Sat.j�. vn2. vm; vk=vmj; a/ fails because it is equivalent to

Sat.vnD. v0
k
; a/, with r ¤ k, where v0

k
D vr . Universal instantiation fails!

11. The reader might worry that Lemma 3.6 relies on substitutions being unrelativized.
However, this is not the case: if we allow them to add a condition ı to the quantifiers,
we just need to set ıH D ıI .̂ ıI0 . For the induction step in the quantified case, we use
the fact that .� ^  / ! � is equivalent to � ! . ! �/ under satisfaction, via axioms
(SM3)–(SM4) and the fact that � !  if and only if :.� ^ : /.

12. See, for example, Theorem 6.22 in Chagrov and Zakharyaschev [5, p. 173] and Miyazaki
[20].

13. The theorem is from Makinson [18]. It does not hold for frames (see, e.g., Chagrov and
Zakharyaschev [5, p. 189]).

14. I could have added a name for every Henkin extension, and then let the substitutions
swap names, yet I do not like the solution for two reasons. First, it makes the system rely
on syntactic resources too much, which is one of the main criticisms of the substitutional
account (see [8], [15]). Second, if we wished to consider identity logical, then we would
probably want a D b ! �a D b to be logically true, which it would not be if names
could be swapped.

15. For some other examples, see Chagrov and Zakharyaschev [5, Section 5.5].

16. This is often seen as an objection to the substitutional account (see [8]). Some endorse
the result as independently plausible if we read the quantifiers as absolutely general (see
Rayo and Williamson [27], Williamson [31]).

17. For a discussion of free and inclusive logic, see Bencivenga [1].

18. For a related discussion about the status of quantifiers in the substitutional system, see
Etchemendy [8].
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