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Abstract

This paper presents a unified theory of the truth conditions and prob-
ability of indicative conditionals and their compounds in a trivalent
framework. The semantics validates a Reduction Theorem: any com-
pound of conditionals is semantically equivalent to a simple condi-
tional. This allows us to validate Stalnaker’s Thesis in full generality
and to use Adams’s notion of p-validity as a criterion for valid in-
ference. Finally, this gives us an elegant account of Bayesian update
with indicative conditionals, establishing that despite differences in
meaning, it is tantamount to learning a material conditional.

1 Introduction

Consider a simple conditional sentence such as “if the die landed even, the
number is greater than 3”. Intuitively, its probability is 2/3 assuming the die
is fair. This corresponds to the conditional probability of the consequent,
given the antecedent (e.g., Adams 1965):

For conditional-free A and B: p(A→ B) = p(B|A) (Adams’s Thesis)

This claim, known as “Adams’s Thesis”, is widely endorsed, and accepted
by theories of conditionals that differ substantively otherwise. It is more
controversial whether the above equality should also hold for arbitrary sen-
tences A and B (e.g., allowing A and B themselves to contain conditionals,
see Stalnaker 1970):

For arbitrary A and B: p(A→ B) = p(B|A) (Stalnaker’s Thesis)
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Accepting Stalnaker’s Thesis in full generality poses notable difficul-
ties: starting with the classical triviality results by David Lewis (1976)
and Robert Stalnaker (1976), an entire literature of technical results (e.g.,
Bradley 2000; Milne 2003; Hájek 2011; Fitelson 2015) shows that Stalnaker’s
Thesis clashes with plausible principles of conditional logic and probabilis-
tic reasoning. Moreover, recent contributions argue that Stalnaker’s Thesis
should fail for specific types of nested conditionals (Goldstein and Santorio
2021; Khoo 2022).

Can an attractive analysis of conditionals validate Stalnaker’s Thesis in
full generality? Some semantics give up on truth conditions for condition-
als and define the probability of a simple conditional as the corresponding
conditional probability (e.g., Adams 1965, 1975; Edgington 1995). Such ac-
counts accurately predict probabilistic reasoning with simple conditionals,
but their scope is too limited: they fail to account for the semantics and
probability of nested and compound conditionals (see McGee 1989, p. 485).
Consequently, they do not yield Stalnaker’s Thesis.

By contrast, truth-conditional accounts of conditionals that save Stal-
naker’s Thesis either (i) restrict attention to a fragment of the language,
excluding left-nested conditionals (e.g., McGee 1989), or (ii) they let the
proposition expressed by a conditional depend on the agent’s epistemic
state (van Fraassen 1976; Kaufmann 2009; Bacon 2015). While the first re-
search program saves only a restricted version of Stalnaker’s Thesis, the
second buys into a strong form of contextualism about conditionals.

A third option consists in adopting trivalent truth conditions for con-
ditionals (McDermott 1996; Cantwell 2006; Rothschild 2014; Lassiter 2020;
Égré, Rossi, and Sprenger 2021a, forthcoming). On this account, pioneered
by the work of de Finetti (1936), the truth value of “if the die landed even,
the number is greater than three” is true if the die landed 4 or 6 (=even
and greater than three), false if the die landed 2 (=even, but not greater
than three), and void or nonassertive if the die landed odd. The probability
of any conditional sentence can be defined in analogy with classical biva-
lent probability, by restricting attention to those worlds where the sentence
takes a classical truth value.

In this paper, we develop a general theory of compound conditionals
and their probability within the trivalent framework. It differs from extant
accounts in three ways: First, while trivalent accounts typically rely on de
Finetti’s truth conditions, our account uses Cooper’s truth conditions for
the conditional (Cooper 1968), making distinct and arguably better pre-
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dictions in several places. Second, it is not limited to special classes of
conditionals, but handles arbitrary combinations of conditionals and other
sentential connectives. This is because our semantics validates a Reduction
Theorem: any nested conditional or compound of conditionals is seman-
tically equivalent to a simple conditional. Third, we define trivalent con-
ditional probability by the equation pA(B) := p(A → B) (for arbitrary A
and B) and show that this expression behaves in almost all respects like a
classical, bivalent conditional probability.

These results have far-reaching consequences. Most importantly, we
obtain Stalnaker’s Thesis in full generality, and we extend Bayesian condi-
tionalization to the trivalent setting and to a procedure for rational update
on conditionals. Moreover, we can rephrase inferences with conditionals in
a language containing at most simple conditionals, and use Adams’s no-
tion of p-validity as a criterion for valid inference. This allows us to deal
with compound conditionals and their probability in a way not explored
by Adams, or more recent accounts. All this goes significantly beyond past
explorations of the logic and probability of trivalent conditionals.1

Summing up, we develop a fully compositional, truth-functional seman-
tics of conditionals that respects Stalnaker’s Thesis and unifies the semantic
layer with probabilistic reasoning and Bayesian learning. The price to pay
for such a unified theory is the non-classical behavior of conjunction (and
disjunction) and the violation of the product rule in probabilistic reason-
ing, but these features can be motivated independently, and classical laws
in inferences with non-conditional sentences are preserved.

The paper proceeds as follows: Section 2 explains our basic idea for
trivalent truth conditions and the probability of indicative conditionals.
Section 3 presents the Reduction Theorem, namely how nested condition-
als and compound conditionals are, on this semantics, equivalent to simple
conditionals. Section 4 defines logical consequence relations for proba-
bilistic inference with trivalent conditionals along the lines of Égré, Rossi,
and Sprenger (forthcoming) and shows that Adams’s p-validity criterion is
sufficient for deciding which inferences are valid, and which ones aren’t.
The section concludes with the discussion of an impossibility result es-

1In particular, the trivalent account by Lassiter (2020) only validates specific cases of
Stalnaker’s Thesis and it is based on different definitions of truth-functional connectives
and conditional probability. And while Égré, Rossi, and Sprenger (forthcoming) lay the
semantic foundations of the present account, they mainly explore valid and invalid in-
ferences of the resulting logics. They do not address the validity of Stalnaker’s Thesis or
Bayesian learning for trivalent propositions.
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tablished by McGee (1981) and Schulz (2009) for trivalent representations
of probabilistic inference with conditionals. Section 5 introduces a suit-
able notion of conditional probability for complex sentences that avoids
Lewis-style triviality results and yields Stalnaker’s Thesis in full generality.
Here and in the next section, we also respond to recent counterexamples
against the unrestricted form of Stalnaker’s Thesis. Section 6 generalizes
Bayesian conditionalization to the trivalent setting. In particular, we obtain
that updating on a simple indicative conditional amounts to updating on
the corresponding material conditional. Section 7 concludes.

2 Outline of Trivalent Semantics

It is controversial whether indicative conditionals have factual truth condi-
tions and whether they express propositions just like conditional-free and
modal-free sentences do (e.g., see the dialogue in Edgington 1991; Jeffrey
1991). However, even a defender of a non-truth-conditional view such as
Adams (1965, p. 187) admits that we feel compelled to say that a condi-
tional “if A, then B” has been verified if we observe both A and B, and
falsified if we observe A and ¬B”. For example, take the sentence “if it
rains, the match will be cancelled”; it seems to be true if it rains and the
match is in fact cancelled, and false if the match takes place in spite of rain.
No similarly strong intuitions apply to the case where the antecedent is
false (i.e., in case it does not rain).

This observation motivates the treatment of the indicative conditional
“if A, then B” as a conditional assertion—i.e., as an assertion about B upon
the supposition that A is true. On this account, when the antecedent is
false, the speaker is committed to neither truth nor falsity of the consequent
(e.g., de Finetti 1936; Quine 1950; Belnap 1973). There is simply no factual
basis for evaluating the assertion. Therefore the conditional assertion is
classified as neither true nor false. See Table 1.

Truth value of A→ B B true B false
A true true false
A false neither neither

Table 1: Partial truth table for a conditional A → B analyzed as a conditional
assertion.

The question is whether “neither” should be understood as a truth-
value gap, i.e., whether the valuation function for A→ B should be a partial
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function, or whether we should treat “neither” as a third semantic value
(“void” or “nonassertive”) that can freely interact with the two standard
semantic values. In the remainder, we will pursue the second option and
develop it systematically.

Suppose that we have a set of possible worlds W, where each possible
world corresponds to a complete trivalent valuation function over all sen-
tences of our language L→. (Of course, we have not yet specified which
valuation functions we select for L→; we will do this shortly, but the gen-
eral shape of our approach can be presented without committing ourselves
to specific valuation functions). Sentences of L→ are interpreted as propo-
sitions, i.e., as functions from W to a set of truth values {1, 0, 1/2} (=true,
false, or neither). In addition, we assume that atomic sentences, and in
general all conditional-free sentences, only take classical truth values (in
Humberstone (2011)’s terminology, that valuations are atom-classical). The
guiding idea, going back to Cooper (1968), is that L→ is an extension of the
Boolean propositional language L to a language with a conditional connec-
tive, and so L-sentences should receive classical truth values.

Suppose further that we have a credence function c : A 7→ [0, 1] on the
measurable space of possible worlds (W,A), where A is an algebra defined
on subsets of W, representing the subjective plausibility of a particular set
of possible worlds. Moreover, we assume that any algebra A includes the
singletons of worlds, i.e., for every w ∈ W, {w} ∈ A. We assume that
the credence function c is a finitely additive probability function, i.e., for
all singleton worlds {w} ∈ A, we have c({w}) ≥ 0, whereas c(∅) = 0,
c(W) = 1, and c(X ∪Y) = c(X) + c(Y) whenever X ∩Y = ∅.

We can then define a (non-classical) probability function p : L→ 7→ [0, 1]
on the language L→, taking into account that sentences of L→ can receive
three values: true, false, or neither (“void”).2 For convenience, define

AT = {w ∈W | vw(A) = 1} AV = W\(AF ∪ AT)

AF = {w ∈W | vw(A) = 0}

where vw is the valuation function associated with the world w (recall,
worlds essentially are valuation functions). In other words, AT, AF, and
AV are the sets of possible worlds where A is true, false and neither true
nor false, respectively. What should then be the probability of A? Tradi-
tionally, the probability of a sentence A is simply the credence assigned to

2For a survey of non-classical probability functions, see Williams (2016).
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all possible worlds where A is true: p(A) = c(AT). But when A involves
a conditional, it is possible that c(AF ∪ AT) < 1, so using that approach
we may end up assigning a small probability to A, even though A is much
more likely to be true than false.

Therefore, for trivalent valuations, the relative weight of truth and fal-
sity is a better indicator of the probability of a sentence than the credence
that it is true (the same point is made by Bradley 2002, p. 363). Apart
from its intuitive appeal, this idea is supported by Bayesian accounts that
explicate probability by means of fair betting odds (de Finetti 1974; Ramsey
1929/1990). In particular, the subjective probability of A is the inverse of
the decimal betting odds on A: p(A) = 1/O(A), e.g., a probability of 1/3

corresponds to 3:1 betting odds. These odds specify the factor by which the
bettor’s stake is multiplied in case A occurs and she wins the bet. When
A is a conditional assertion, bets are naturally generalized as follows: they
are settled in the ordinary way if A takes a classical truth value, and they
are called off otherwise (i.e., the original stakes are returned). Indeed, it is
hard to imagine how we should declare a bet on a conditional assertion
like “if it rains on Saturday, the match will be cancelled” as won or lost
unless it actually rains on Saturday.

The relation between probabilities and fair betting odds helps us to
show why only the relative weight of c(AT) and c(AF) should affect the
probability of A. Suppose that the bettor is betting on A at stake S > 0
and odds O(A) > 0 and that we are sampling possible worlds at random,
according to a credence function c. Since the bet on A will be called off
in case A does not take a classical truth value, with the stake returned to
the bettor, her long-run net gain will in the limit approach the following
quantity:

G = −S + c(AT)× S×O(A) + c(AF)× 0 + c(AV)× S

= S× (−1 + c(AT)×O(A) + c(AV))

If bettor and bookie agree on credence function c, the bet is fair if and only
if G = 0, i.e., neither side is supposed to have a long-run advantage. This
can be shown to be equal to

c(AT)×O(A) = 1− c(AV)
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or, equivalently,

O(A) =
c(AT) + c(AF)

c(AT)
,

which agrees with the definition of decimal betting odds in the standard
bivalent case. Moving back from conditional bets to probabilities for sen-
tences with trivalent valuations, and defining probability as the inverse of
fair betting odds (as in the bivalent case), we obtain:

p(A) :=
c(AT)

c(AT) + c(AF)
if c(AT) + c(AF) > 0 (Probability)

(If c(AT) + c(AF) = 0, then we set p(A) = 1 by convention.) For a Boolean,
conditional-free sentence A, this will collapse to the standard definition of
probability as the credence in the set of possible worlds where A is true
(since AT ∪ AF = W and hence c(AT) + c(AF) = 1). Whereas for a simple
conditional “if A, then B”, with conditional-free sentences A and B, we
obtain, given Table 1,

p(A→ B) =
c(AT ∩ BT)

c(AT)
=

p(A ∧ B)
p(A)

= p(B|A) (Adams’s Thesis)

where the probability function in the last two expressions refers to standard
bivalent probability on L. In other words, Adams’s Thesis—the equal-
ity of probability of conditionals and conditional probability for simple
conditionals—follows as a corollary of the trivalent semantics and need not
be stipulated as a definition, as in Adams’s own account.

These considerations do not yet show how we can assign a probabil-
ity to Boolean compounds of conditionals, nested conditionals, and other
complex sentences of L→. We need to extend Table 1 and the truth tables
for the regular Boolean connectives to cases where both the antecedent and
the consequent can take the third semantic value, which we call “void”. For
the conditional, there are two main options: the de Finetti conditional→DF
where void antecedents are grouped with false ones (e.g., de Finetti 1936;
Belnap 1970; Dubois and Prade 1994; McDermott 1996; Rothschild 2014)
and the Cooper conditional →C where they are grouped with true ones
(e.g., Cooper 1968; Belnap 1973; Cantwell 2008; Olkhovikov 2002/2016).
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See Table 2.3 Semantic values are represented by numbers, with 1, 1/2 and
0 standing for true, void and false.

→C 1 1/2 0
1 1 1/2 0

1/2 1 1/2 0
0 1/2 1/2 1/2

→DF 1 1/2 0
1 1 1/2 0

1/2 1/2 1/2 1/2

0 1/2 1/2 1/2

¬
1 0

1/2 1/2

0 1

∧ 1 1/2 0
1 1 1 0

1/2 1 1/2 0
0 0 0 0

∨ 1 1/2 0
1 1 1 1

1/2 1 1/2 0
0 1 0 0

Table 2: Truth tables for the trivalent conditional according to Cooper (→C) and
to de Finetti (→DF), and the Boolean connectives in our trivalent logic.

Reasons for preferring the Cooper conditional to the de Finetti condi-
tional, i.e., treating a void antecedent like a true one, are discussed in detail
by Égré, Rossi, and Sprenger (2021a, forthcoming), as are those for devi-
ating from the Strong Kleene connectives for conjunction and disjunction.
We just mention one important motivation: as argued by Bradley (2002),
we want to be able to consider “partitioning” sentences like

(1) If the sun shines tomorrow, John goes to the beach; and if it doesn’t,
he goes to the museum.

as true when one of two conditional predictions is verified (e.g., the sun
shines and John goes to the beach). But if we used Strong Kleene connec-
tives for conjunction, (1) would always be void or false. This means that
as long as John’s actions are uncertain, (1) will have probability zero. This
would be an unwelcome prediction since (1) is certainly more assertable
than “If it rains tomorrow, John goes to the beach; and if not, he goes
to the museum.”. Therefore, we consider the conjunction of a true and a
void sentence to be true. In other words, the third truth value acts as a
chameleon: the conjunct or disjunct with classical truth value determines
the truth value of the compound.4 In spite of their non-standard nature,

3Negation is Strong Kleene negation and conjunction and disjunction happen to coin-
cide with those of Sobociński (1952). The combination of these Boolean connectives and
the connective→C was first advocated by Cooper (1968).

4Another unwelcome consequence of the Strong Kleene tables is that regardless of
whether we follow Cooper or de Finetti in the interpretation of the conditional, v((A →
B) ∨ (B → A)) ≥ 1/2 for all valuations v. In other words, such sentences—encoding the
so-called linearity principle—cannot be false.
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the truth tables for conjunction and disjunction interact with each other,
and with Strong Kleene negation, in the usual way, respecting the de Mor-
gan rules and the distributivity laws. We use them to define the family of
valuation functions we will employ:

Definition 1 (Cooper valuations). A valuation function v : L→ 7→ {1, 1/2, 0}
that assigns semantic values to all formula of L→ is called a Cooper valuation
if and only if (i) it assigns classical values to all atomic formulas and (ii) respects
all constraints in the truth tables of Table 2 with the →C interpretation of the
conditional connective.

In other words, Cooper valuations combine the “ideal” configuration of
truth tables with the aforementioned idea that the conditional connective
extends a language with classical semantic values. Specifically, assuming
Cooper valuations, our trivalent probability function obtains more struc-
ture, and satisfies the following three principles:

(1) p(>) = 1 and p(⊥) = 0.

(2) p(A) = 1− p(¬A) (unless c(AF ∪ AT) = 0, in which case p(A) =

p(¬A) = 1).

(3) If AT ∩ BT = ∅ (i.e., A and B cannot both be true) and AT ∪ AF =

BT ∪ BF (i.e., they take classical truth values in the same conditions),
then p(A ∨ B) = p(A) + p(B).

These axioms are similar to the standard axioms of probability, where the
additional requirement AT ∪ AF = BT ∪ BF for the Additivity axiom re-
flects that the probability of a disjunction reduces to the probability of its
disjunctions only if the disjunctions take classical truth values in the same
worlds.

Notably, our conjunction is non-classical and allows for violations of the
standard probability law p(X∧Y) ≤ p(X). This behavior can be justified as
follows: suppose that A, B and C are conditional-free sentences, with A and
B false and C true. Then the bet on (A → B) ∧ C yields a positive return
(because the expressed proposition is true for Cooper valuations), while
the bet on A → B is called off. Betting on X is therefore not always safer
than betting on X and Y. Since these properties of betting odds transfer
to probabilities, some probability functions will have the feature p((A →
B)∧C) > p(A→ B), in notable difference to standard bivalent probability.
Of course, as long as X and Y are conditional-free, the standard law p(X ∧
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Y) ≤ p(X) will continue to hold. Section 4 will get back to this point in
more detail.

3 Simplifying Complex Conditionals

This trivalent account deals with nested and compound conditionals in a
particularly pleasant way. It is a well-known drawback of Adams’s account
that complex conditionals (and compounds of conditionals) such as A →
(B → C) or (A → B) ∧ (C → D) with A, B, C, D ∈ L, cannot be directly
analyzed; instead they have to be rephrased by means of a formula in L→1
that approximates their meaning. For instance, letting A ⊃ B stand for
¬A ∨ B, Adams defines the meaning of a conjunction of conditionals (A →
B) ∧ (C → D) as (A ∨ C) → ((A ⊃ B) ∧ (C ⊃ D)) (Adams 1975, 1998,
pp. 164-165). This move, however, is not independently justified.5

The advantage of a fully compositional trivalent semantics is that
Adams’s “translations” from L→ to its flat fragment L→1 cease to be def-
initions. Instead, they are statements whose truth or falsity can be decided
in our semantics, in line with the following definition.

Definition 2. For two formulas ϕ, ψ ∈ L→, we write ϕ ≈ ψ if and only if for all
Cooper valuations v : L→ 7→ {1, 1/2, 0}, v(φ) = v(ψ).

We can now state some equivalence results for nested conditionals and
Boolean compounds of conditionals.

Proposition 1. For all sentences A, B, C, D ∈ L:

¬(A→ B) ≈ A→ ¬B (Negation Commutation)

(A→ B) ∧ (C → D) ≈ (A ∨ C)→ ((A ⊃ B) ∧ (C ⊃ D)) (Conjunction)

(A→ B) ∨ (C → D) ≈ (A ∨ C)→ ((A ∧ B) ∨ (C ∧ D)) (Disjunction)

A→ (B→ C) ≈ (A ∧ B)→ C (Import-Export)

(A→ B)→ C ≈ (A ⊃ B)→ C (Left-Nesting)

For Negation Commutation, and Import-Export, the identities hold even for
A, B, C ∈ L→.

5Actually, Adams assigns “ersatz truth values” to the conjunction of conditionals P1 ∧
. . . ∧ Pn, classifying it as false if any of the Pi is false, as true if none of the Pi is false and
at least one of them is true, and as being neither true nor false otherwise. This description
agrees exactly with Cooper’s conjunction as described in Table 2.
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Proof: By inspection of the (trivalent) truth tables.

The equivalences expressed by Conjunction and Disjunction of con-
ditionals are intuitive and correspond to Adams’s translation procedures
(e.g., his “quasi-conjunction” of conditionals). Negation Commutation
seems intuitive in natural language: when we negate sentences such as

(2) If Oswald didn’t kill Kennedy, Jack Ruby did.

we seem to assert that under the supposition that Oswald didn’t kill
Kennedy, someone other than Jack Ruby did (Cantwell 2008, p. 246). San-
torio (2022, pp. 60-61) notes that this phenomenon persists under the scope
of epistemic operators such as “doubt” and “believe”. Also from a logical
point of view, the principle has been frequently defended (Cooper 1968;
Adams 1975; Ramsey 1929/1990).

Of course, Negation Commutation in trivalent semantics implies that
some sentences of the form A ∧ ¬A cannot be false. (Take A := (⊥ → B),
for any B, then both A and ¬A take semantic value 1/2.) However, this
would only be a problem if logics for trivalent conditionals satisfied the
principle of explosion, according to which any B follows from a sentence
of the form A ∧ ¬A. As we will see in the next section, they don’t.6

The Import-Export principle means that right-nested conditionals can
be simplified: the right-nested conditional A → (B → C) expresses the
simple conditional (A ∧ B) → C. Import-Export enjoys strong theoreti-
cal support (McGee 1985, 1989; Ciardelli 2020; Ciardelli and Ommundsen
2024) and it is also supported by empirical work in cognitive psychology
(van Wijnbergen-Huitink, Elqayam, and Over 2015). Even accounts that
reject Import-Export, like Khoo and Mandelkern (2019) and Mandelkern
(2020), concede that these two expressions have the same meaning in many
contexts, and specifically when A, B and C themselves do not contain con-
ditionals.

Notably, on our account Left-Nesting yields a distinct simplification
rule, for it means that left-nested conditionals like (A→ B)→ C express an
assertion of the consequent C conditional on the material conditional (A ⊃
B). While the indicative conditional A → B and the material conditional
A ⊃ B do not have the same meaning, in the antecedent of a conditional
they express the same supposition—either because they have the same value,

6More details on negation commutation, possible trade-offs and the relationship to
Conditional Excluded Middle can be found in Égré, Rossi, and Sprenger (2021a,b).
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or because A ⊃ B gets the value 1 when A → B gets the value 1/2. This
observation will be important in Section 6, where we develop a Bayesian
theory of learning conditionals.7

Finally, note the important restriction to Boolean sentences for Left-
Nesting, Conjunction, and Disjunction: these equivalences do not hold
for arbitrary sentences, unlike Negation Commutation and Import-Export.
For example, for Left-Nesting, counterexamples to the scheme (F → G)→
H ≈ (F ⊃ G) → H require v(G) = 1/2 (and v(F) = 1 and v(H) 6= 1/2),
i.e., G is a conditional with false antecedent. Still, the equivalences are
practically useful since natural language conditionals will rarely be more
complex than the ones displayed in Proposition 1.

The above observations allow us to derive a general result:

Theorem 1 (Reduction Theorem). For every X ∈ L→ there is an X1 ∈ L→1 ,
i.e., the fragment of L→ containing at most simple conditionals, such that X ≈ X1.

While the formal proof by induction is in the appendix, we can sum-
marize the argument informally: Suppose A → B and C → D are sim-
ple, non-nested conditionals, i.e., A, B, C, D ∈ L. Then each compound of
these sentences is semantically equivalent to another simple conditional.
For conjunction, disjunction, and negation, this is immediate from Propo-
sition 1, while the L→1 -sentence corresponding to (A → B) → (C → D) is
((A ⊃ B)∧C)→ D. Hence, compounds of L→1 -sentences are equivalent to
L→1 -sentences, regardless of the chosen connective. Now we gradually sim-
plify any complex L→-sentence X, starting with the innermost elements,
until X can be rewritten as containing at most a simple conditional.

This means that Adams was right on an important point: restricting
the language of interest and the logic of conditionals to L→1 , i.e., the flat
fragment of L→, does not lose anything logically nor semantically essen-
tial because complex conditionals are equivalent to simple conditionals. We
can consider them with Adams, if we want, as convenient linguistic ab-
breviations. The next section explores the consequences of the Reduction
Theorem for a theory of valid inference with conditionals.

7Actually, several combinations of truth tables—de Finetti or Cooper conditional,
Strong Kleene connectives or quasi-connectives for conjunction and disjunction—validate
Import-Export and Negation Commutation (see Égré, Rossi, and Sprenger 2021a). How-
ever, only Cooper valuations validate the entire set of equivalences. Specifically, Strong
Kleene connectives fail Conjunction and Disjunction of conditionals (e.g., if v(A) = 0,
v(C) = c(D) = 1), while de Finetti’s conditional fails Left-Nesting: it satisfies (A→ B)→
C ≈ (A ∧ B) → C ≈ A → (B → C), i.e., it does not distinguish between left-nested
and right-nested conditionals. This difference is relevant for the discussion of Bayesian
learning in Section 6.
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4 Inferences with Conditionals

So far, we have dealt with the semantics and probability of trivalent con-
ditionals; we have not said much about inference, except indirectly for
the equivalences stated in Proposition 1. Following Adams, we consider
the consequence relation |=U introduced by Égré, Rossi, and Sprenger
(forthcoming) for valid inference in L→ in terms of non-increasing uncer-
tainty: the conclusion must not be less probable than the conjunction of the
premises.

Definition 3 (Valid Inference in U). For a set Γ of formulas of L→ and a formula
B ∈ L→: Γ |=U B if and only if there is a finite subset of the premises ∆ ⊆ Γ such
that for all probability functions p : L→ 7→ [0, 1]:

p(
∧

A∈∆

A) ≤ p(B)

As a limiting case of U, there is the logic C of reasoning with certain
premises where probability 1 is preserved:

Definition 4 (Valid Inference in C). For a set Γ of formulas of L→ and a formula
B ∈ L→: Γ |=C B if and only if for all probability functions p : L→ 7→ [0, 1]:

if for all A ∈ Γ, p(A) = 1, then p(B) = 1.

Both notions of probabilistic validity have been characterized semanti-
cally in a trivalent setting (see Égré, Rossi, and Sprenger forthcoming for
proofs and further analysis of the properties of C and U):

Proposition 2 (Trivalent Characterization of C). For a set Γ of formulas of
L→ and a formula B ∈ L→: Γ |=C B if and only if for all Cooper valuations
v : L→ 7→ {0, 1/2, 1}:

if for all A ∈ Γ, v(A) ≥ 1/2, then v(B) ≥ 1/2.

In other words, preservation of probability 1 is equivalent to preserva-
tion of designated values D = {1, 1/2} in passing from the premises to the
conclusion. For uncertain reasoning in U, we can derive a similar result:

Definition 5 (Consistent and Inconsistent Sets). A set of formulas Γ is con-
sistent if it has no subset ∆ ⊆ Γ such that p (

∧
A∈∆ A) = 0 in all probability

functions p : L→ 7→ [0, 1]. It is inconsistent if such a subset exists.
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Proposition 3 (Trivalent Characterization of U). For a consistent set of formu-
las Γ of L→ and a formula B ∈ L→ with 6|=C B, Γ |=U B if and only if there is a
finite subset ∆ ⊆ Γ such that for all Cooper valuations v : L→ 7→ {0, 1/2, 1}:

v(
∧

Ai∈∆

Ai) ≤ v(B).

This means that an inference in U is valid if and only if both sets of
designated values D = {1, 1/2} and D′ = {1} are preserved in passing from
the premise from the conclusion. Equivalently, the semantic value of the
conclusion must never drop below the semantic value of the conjunction
of (a subset of) the premises.8 These results connect the (trivalent) truth
conditions of conditionals to probabilistic reasoning and answer one of
the questions raised above at the opening of this paper: valid uncertain
reasoning preserves both truth and non-falsity, and valid certain reasoning
preserves non-falsity.

Let us get back for a moment to Adams. His logic of uncertain rea-
soning with (simple) conditionals (known as system P) is based on the
following consequence relation:

Definition 6 (p-valid inference, Adams 1975). Suppose Γ ⊆ L→1 , B ∈ L→1 .
Then Γ |=p B if and only if for all probability functions p : L→1 7→ [0, 1], the
uncertainty of the conclusion does not exceed the cumulative uncertainty of the
premises:

U(B) ≤ ∑
A∈Γ

U(A) (p-valid inference)

where U(X) := 1− p(X) for any X ∈ L→1 .

This definition of valid uncertain reasoning has been highly influential
among logicians, computer scientists, and psychologists of reasoning (e.g.,
Pearl 1988; Goodman, Nguyen, and Walker 1991; Evans and Over 2004;
Kleiter 2018); in fact, p-validity often serves as a benchmark for other sys-
tems of uncertain reasoning. However, as mentioned in the introduction,
it is limited to the fragment of L→ involving at most simple conditionals.
It is therefore a significant result that U extends p-valid inference to all
sentences of L→:

8The restriction to consistent premise sets is required to deal with some degenerate
cases, but imposes no substantial limitation.
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Proposition 4 (U is a conservative extension of P). Suppose Γ ⊆ L→1 , B ∈
L→1 . Then Γ |=p B if and only if Γ |=U B.

Proof. According to Adams (1986, p. 264), the premises Γ = {A1, . . . An}
yield a conclusion B (where A1, . . . An and B are sentences of L→1 ) if and
only if (1) any atom-classical valuation that falsifies none of the Ai, and
verifies at least one of them, verifies B, too; (2) any atom-classical valu-
ation that falsifies B also falsifies at least one of the Ai. He then shows
(“Meta-Metatheorem 3”) that Γ |=p B if and only if a subset of Γ yields the
conclusion B. It is not difficult to see that Adams’s conditions on yield-
ing are equivalent to conditions for valid inference in our system U: for
a subset ∆ ⊆ Γ, if v(

∧
A∈∆ A) = 1 then v(B) = 1, and if v(B) = 0, then

v(
∧

A∈∆ A) = 0, where the logical vocabulary satisfies the Cooper truth
tables (Table 2), as the Cooper connectives behave classically on classical
inputs.

The relation between U und p-valid inference is, however, more com-
plex than extension. Taking into account the Reduction Theorem, we can
establish an equivalence between the two logics, in the following sense.

Theorem 2 (U is representable in P). Suppose Γ ⊆ L→ and B ∈ L→. Then
there is a function f : L→ 7→ L→1 such that

Γ |=U B if and only if f (Γ) |=p f (B).

Proof. Immediate from Theorem 1—the function f is the translation of
L→-formulas into L→1 -formulas in the proof of the theorem—and from
Adams’s yielding criterion cited in the proof of Proposition 4.

In other words, all valid or invalid conditional inferences can be ex-
pressed by means of valid or invalid inferences with simple conditionals.
The Representation Theorem thus answers McGee’s challenge to Adams
from the introduction. It shows why Adams’s restriction of the logic of
probability conditionals to L→1 is not harmful: p-valid inference can be
characterized as inference in trivalent semantics (and vice versa), covering
also nested conditionals and Boolean compounds of conditionals.

The Representation Theorem raises interesting puzzles and questions.
For instance, Modus Ponens is invalid in U, but p-valid. How can this
happen if valid inferences in both logics can be mapped to each other?
The reason is that the translation procedure from L→ to L→1 changes the
logical form of the premises. For conditional-free sentences A, B, C ∈ L,
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Modus Ponens fails in U for inferences of the form “A → (B → C) and A,
therefore B→ C” (compare Égré, Rossi, and Sprenger forthcoming, Section
8). However, when we project these formulas to their semantic equivalents
in L→1 , we obtain a different inference scheme, namely “(A ∧ B) → C and
A, therefore B → C”. This inference is p-invalid, as predicted by Theorem
2. For L→1 -premises, however, we retain that A→ B, A |=p B, and similarly
in U.

Another interesting question prompted by the Representation Theorem
concerns impossibility results for representations of p-validity in many-
valued logic. McGee (1981) showed that no consequence relation in many-
valued logic defined as preservation of a set of designated values agrees
with p-validity on Adams’s restricted language. Adams (1995) proved that
such a characterization is possible if validity is defined more liberally, ba-
sically as we established above for U (namely not in terms of the preserva-
tion of a fixed set of designated values, but by quantifying over such sets).
However, Schulz (2009, Corollary 3.3) shows that no such characterization
is possible for a language admitting compounds of conditionals when the
conjunction is supposed to be “classical” with respect to the logical conse-
quence relation, i.e., if the following two conditions are satisfied:

(i) If Γ |= φ and Γ |= ψ, then Γ |= φ ∧ ψ.

(ii) If Γ |= φ ∧ ψ, then Γ |= φ and Γ |= ψ.

Schulz concludes:

This poses a dilemma for proponents of a three-valued account of
compounds of conditionals which is supposed to conform to the the-
sis that conditionals are evaluated by conditional probabilities. Ei-
ther they will not succeed in defining a classical conjunction, or their
conception of validity will disagree with p-validity on the restricted
language. (Schulz 2009, p. 516)

For our consequence relation |=U, condition (i) holds, but condition (ii)
doesn’t.9 This means that conjunction in U is indeed not classical, and so we
choose the first horn of Schulz’s dilemma. However, while a non-classical
conjunction may look awkward at first, there are good independent reasons
to adopt it.

First, as argued in Section 2 (especially p. 8), the chameleon-like behav-
ior of the third truth value (i.e., 1 ∧ 1/2 = 1, etc.) is essential for showing

9Counterexample: v(Γ) = v(φ) = 1, but v(ψ) = 1/2. In this case Γ |= φ ∧ ψ, but Γ 2 φ.
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that specific conjunctions of conditionals, which we often employ in natural
language, can be true. Second, there is strong evidence that when condi-
tionals are involved, the probability of conjunctions need not be smaller
than the probability of a conjunct. Consider the following example from
Santorio and Wellwood (2023):10

(3) If the outcome of the die roll was even, it was two; and if it was odd,
it was one.

While “the die landed 2 if it was even” and “the die landed 1 if it was odd”
both have probability 1/3, their conjunction seems to be true exactly when
the die landed one or two, and false in all other cases. So (3) should have
probability 1/3, too. This prediction is borne out in our framework, but it
is at odds with what we would expect from a classical conjunction. Santo-
rio and Wellwood (2023) back up their argument with experimental data,
and so it seems that the non-classical behavior of conjunction in uncertain
reasoning has both normative and empirical support.11

Hence, we propose to interpret Schulz’s result as follows: a non-
classical conjunction is the only way of (i) providing a many-valued logic
that agrees with Adams’s widely accepted p-validity in their common do-
main, while (ii) yielding an adequate account of the truth values of com-
pounds of conditionals. Some properties of classical conjunction simply do
not generalize to more complex languages.

5 Conditional Probability and Stalnaker’s Thesis

A workable definition of conditional probability is essential for modeling
how we learn propositions and reason under uncertainty. Bayesian con-
ditionalization, for example, expresses the idea that the rational degree of
belief in a proposition B after learning proposition A is the conditional
probability of B, given A. Unfortunately, the standard analysis of condi-

10A similar case is made by Ciardelli and Ommundsen (2024).
11We view such examples as providing an answer to Schulz’s challenge as set in Schulz

(2009, p. 513): “If one designs a semantic theory for the unrestricted conditional language,
can there be any doubt that the conjunction should obey the standard introduction and
elimination rules? The burden of proof would be on the side of those who think that it
should not. Counterexamples would have to be produced”.
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tional probability

p(B|A) :=
p(A ∧ B)

p(A)
, if p(A) > 0, (Ratio Analysis)

fails in the trivalent case. Since the non-classical behavior of conjunction
allows for cases where p(A∧ B) > p(A), we could end up with p(B|A) > 1,
which is unacceptable for any conditional probability function.

In this section, we develop a surrogate notion of conditional probability,
which coincides with standard conditional probability for conditional-free
sentences, but extends to sentences which can take all three truth values.
Our definition is simple: for all A, B ∈ L→, the conditional probability of
B given A is the probability of the conditional A→ B.

Definition 7. For all A, B ∈ L→, the trivalent conditional probability of B
given A, in symbols pA(B), is defined as follows:

pA(B) := p(A→ B) =
c(ATV ∩ BT)

c(ATV ∩ (BT ∪ BF))
if c(ATV) > 0

(Trivalent Conditional Probability)

where ATV := AT ∪ AV (i.e., the set of worlds where A is not false).

It is clear by the truth-table for Cooper’s conditional that this definition
respects the operational definition of probability: it is the ratio of the weight
of worlds where the conditional is true to the weight of worlds where it is
defined, i.e. it has a classical value. It is also clear that this definition agrees
with standard axioms of conditional probability if A and B are conditional-
free: ATV = AT because AV = ∅, and the numerator will thus be equal to
p(A∧ B) and the denominator to p(A) (since BT ∪ BF = W). In this special
case, pA(B) also satisfies the standard axioms for conditional probability.12

We need to check, however, whether the behavior of pA(B) agrees with

12Using p(A→ B) as a surrogate notion for p(B|A) has been suggested first by McGee
(1989) as a means of introducing conditional probability into a language with a con-
ditional. McGee (1989, p. 504) provides an axiomatic characterization of the function
p(A → B), and of its interaction with the probability of conditional-free sentences. The
main pillar in his edifice is the

(Simple) Independence Principle (McGee 1989, p. 499). For conditional-free sentences
A, B, C ∈ L, and assuming that A and C are logically incompatible and p(A) > 0,
then

p(C ∧ (A→ B)) = p(C) · p(A→ B). (C1)
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what we expect from a conditional probability function if A and B can con-
tain conditionals. As before, we assume that propositional atoms receive
only classical values, and therefore that conditionals are the only source of
the third truth value.

Here below we list Popper’s axioms for a conditional probability func-
tions p(·|·) for classical propositional logic (taken from Hawthorne 2016):

1. 0 ≤ p(B|A) ≤ 1.

2. If |=CL ¬B and |=CL A, then p(B|A) = 0.

3. If A |=CL B, then p(B|A) = 1.

4. Left Logical Equivalence: If A |=CL B and B |=CL A, then p(C|A) =

p(C|B).

5. Additivity: If C |=CL ¬(A ∧ B), then either p(A ∨ B|C) = p(A|C) +
p(B|C) or p(D|C) = 1 for any D.

6. The Product Rule: p(A ∧ B|C) = p(A|B ∧ C)× p(B|C).

Before evaluating these axioms with respect to pA(B), we need to refor-
mulate them, replacing p(B|A) with pA(B) and classical entailment with
its generalization to the language L→, i.e., entailment in C (=preservation
of certainty).13 This means that the first four axioms read:

1’. 0 ≤ pA(B) ≤ 1.

2’. If |=C ¬B and |=C A, then pA(B) = 0.

3’. If A |=C B, then pA(B) = 1.

On our semantics, (C1) is invalid: it is immediate from C |=CL ¬A that the truth value of
C∧ (A→ B) is identical to the truth value of C. (If C is true, then A→ B is void and hence
the conjunction is true.) Hence p(C ∧ (A → B)) = p(C), which is almost always larger
than p(C) · p(A → B). However, our trivalent probability function satisfies the adequacy
conditions C2–C8 that McGee imposes, together with the Independence Principle, as nec-
essary and sufficient conditions for a (conditional) probability distribution on a language
with a conditional. While our account is, on the probabilistic level, quite close to McGee’s,
there are notable differences on the semantic level: McGee uses a Stalnaker-type, bivalent
semantics based on possible worlds and selection functions, and he does not consider
left-nested conditionals.

13Note that C generalizes certain reasoning from a classical Boolean setting to a lan-
guage with a conditional connective. Therefore C has the same role for trivalent probabil-
ity as classical logic has for classical, bivalent probability.
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4’. Left Logical Equivalence: If A |=C B and B |=C A, then pA(C) =

pB(C).

The reader is invited to verify that trivalent conditional probability satisfies
(1’)–(4’)—the proofs are simple.14

The Additivity axiom (5) has to be modified more substantially, similar
to the case of unconditional probability:

5’. Trivalent Additivity: Suppose (i) c(CTV) > 0 (ii) C |=C ¬(A ∧ B) and
(iii) if v(C) ≥ 1/2, then |v(A)− v(B)| 6= 1/2. Then:

pC(A ∨ B) = pC(A) + pC(B).

To see that Trivalent Additivity is satisfied by our definition of conditional
probability, consider the division of the credence attached to sets of possible
worlds in CTV according to the following table:

W ∩ CTV BT BV BF

AT 7 7 α

AV 7 δ 7

AF β 7 γ

Condition 5’.(ii) ensures that the upper left corner is empty and condi-
tion 5’.(iii) ensures that all direct neighbors to the central square are empty.
Hence α+ β+γ+ δ = 1. We can now calculate the conditional probabilities
of A, B and A ∨ B according to Definition 7 and obtain

pC(A) =
α

α + β + γ
pC(B) =

β

α + β + γ
pC(A ∨ B) =

α + β

α + β + γ

showing that Trivalent Additivity holds.
Notably, trivalent conditional probability does not satisfy Popper’s ax-

iom 6, the Product Rule. The reason for the failure of the Product Rule
is inherited from unconditional probability and the non-classical behavior
of conjunction in particular: the term p(A ∧ B)/p(B) can be greater than
1, and so we cannot define conditional probability via the familiar Ratio
Analysis (i.e., p(B|A) = p(A ∧ B)/p(B)). This feature is inherited from

14
1’ is immediate. As to 2’, notice that BT = ∅. As to 3’, note that ATV ∩ BF = ∅, and

so numerator and denominator of pA(B) in (Trivalent Conditional Probability) are equal.
As to 4’, notice that given A |=C B and B |=C A, the conditionals A → C and B → C take
the same truth values in all Cooper valuations.

20



the non-classical behavior of conjunction in our semantics, but it does not
undermine the status of pA(B) as the appropriate conditional probability
function. Of course, the Product Rule is satisfied if we restrict ourselves to
conditional-free sentences.

Let us now look at a famous bone of contention for theories of con-
ditionals: Stalnaker’s Thesis p(B → C) = p(C|B) and its generalization
p(B → C|A) = p(C|A ∧ B). Lewis (1976) has shown that any bivalent se-
mantics of conditionals where Stalnaker’s Thesis holds will trivialize the
probability function, as long as we assume it to be closed under condition-
alization. In the wake of this and successor results (such as Bradley 2000

and Fitelson 2015), many theorists opted either for (i) saving Stalnaker’s
Thesis at the price of abandoning (full) truth conditions for conditionals
(e.g., Adams 1975; McGee 1989; Edgington 1995; Ciardelli and Ommund-
sen 2024), or (ii) declaring Stalnaker’s Thesis to be false (e.g., Fitelson 2015;
Khoo and Mandelkern 2019; Goldstein and Santorio 2021). As shown by
Lassiter (2020), the triviality proofs rely on classical features of probabil-
ity functions, such as the Product Rule and the Law of Total Probability,
which do not generally apply to probability functions over trivalent val-
uations. Indeed, our trivalent definition of conditional probability yields
Stalnaker’s Thesis as a mathematical fact:

Theorem 3 (Stalnaker’s Thesis, general form). For any A, B, C ∈ L→ with
c(ATV) > 0 and c((A ∧ B)TV) > 0, and any trivalent probability function
p : L→ 7→ [0, 1]:

pA(B→ C) = pA∧B(C) (Stalnaker’s Thesis)

The special case A = > yields the familiar-looking p(B→ C) = pB(C).

Proof. Follows immediately from Import-Export and Definition 7:

pA(B→ C) = p(A→ (B→ C)) = p((A ∧ B)→ C) = pA∧B(C).

Recently, Fitelson (2022) has shown that we can obtain Stalnaker’s The-
sis only at the price of giving up the Product Rule. Whenever conjunc-
tion is supposed to behave classically, the failure of the Product Rule looks
like an unacceptable price for obtaining Stalnaker’s Thesis. But in our
framework, we have independent reasons for rejecting classical conjunc-
tion, and therefore also for giving up the Product Rule (when conditional
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sentences are involved). Since our account of conditional probability satis-
fies axioms 1’-5’ and violates only the Product Rule, it is therefore as sim-
ilar to standard conditional probability as one can hope for if one wants
to obtain Stalnaker’s Thesis. The triviality results simply show that no
probability of conditionals can be a fully classical conditional probability
function.15 But we can reject this requirement on independent grounds.
Note that triviality can be avoided without giving up plausible logical
principles that appear to be in tension with Stalnaker’s Thesis, such as
A→ B, B→ A, A→ C |= B→ C, which is valid in C (compare Khoo 2022,
p. 149).

Several recent accounts of conditionals do not validate Stalnaker’s The-
sis without restrictions. For example, Goldstein and Santorio (2021) deny
it for right-nested conditionals. (Objections to Stalnaker’s Thesis involving
left-nested conditionals are discussed in the next section, since left-nesting
is closely related to learning conditional information.) It is instructive to
study their counterexample. They consider a fair die and the sentences

A: If the die landed even, then if it didn’t land on two or four, it landed on
six.

B: If the die did not land on two or four, it landed on six.

C: The die landed even.

We agree with Goldstein and Santorio’s premise that an adequate the-
ory of the probability of conditionals should assign the values p(A) = 1,
p(B) = 1/4 and p(C) = 1/2. Then they note that C (“the die landed even”)
is just another way of expressing the material conditional corresponding to
B (“either the die landed 2 or 4, or it landed on 6”). Since indicative condi-
tionals are, on their account, logically stronger than the corresponding ma-
terial conditionals, B must entail C. On the other hand, B ∧ C entails each
of its conjuncts, and so B =||= B ∧ C and therefore also p(B ∧ C) = p(B).
Moreover, by Stalnaker’s Thesis and the identity A = C → B, we infer that

15For example, both classical triviality results by Lewis (1976) and Stalnaker (1976)
rely on the Law of Total Probability p(A → B) = p((A → B) ∧ B) + p((A → B) ∧ ¬B),
which is invalid for trivalent conditional probability. Without the Law of Total Probability,
Stalnaker cannot derive the essential lemma p(X → Y|¬X) = p(X → Y). Lewis also
needs an application of the Product Rule in order to derive that p(A → C) = p(C).
Lassiter (2020) is an excellent survey of how Lewis-style triviality results fail to apply to
trivalent semantics for this reason.
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p(A) = p(C → B) = p(B|C). But then we obtain a contradiction:

1 = p(A) = p(C → B) = p(B|C) = p(B ∧ C)
p(C)

=
p(B)
p(C)

= 1/2,

From our viewpoint, it is tempting to attack the equality p(B|C) = p(B ∧
C)/p(C) since we know that the Product Rule fails in our semantics. But in
this concrete case, our account yields p(B∧C) = 1/2 and the above equality
actually holds. Rather, we should reject the equality p(B ∧ C) = p(B)(=
1/4). Due to the non-classical behavior of conjunction, and because B
is itself a conditional, B ∧ C can have a greater probability than B. This
suffices to block the above argument.16

Stalnaker’s Thesis is rarely declared invalid because it is believed to be
fundamentally mistaken. For example, Goldstein and Santorio agree with
the basic intuition about the probability of conditionals as conditional prob-
abilities and they declare Adams’s Thesis—the restriction of Stalnaker’s
Thesis to conditional-free statements—valid. They cannot have Stalnaker’s
Thesis in full generality because they treat probability as behaving classi-
cally with respect to conjunction. Similarly, in the light of the central role
of Import-Export both in Gibbard’s 1981 collapse result and in the trivial-
ization of Stalnaker’s Thesis, Khoo and Mandelkern (2019) give up Import-
Export as a logical principle while retaining that two sentences with the
logical forms A → (B → C) and (A ∧ B) → C express the same proposi-
tion in any context.17 Such solutions are feasible, but they look to us like
workarounds. We find it more attractive and straightforward to preserve
Import-Export and an unrestricted form of Stalnaker’s Thesis at the price
of giving up classical conjunction and the Product Rule, especially since we
have independent motivations for such a move.

16While the indicative conditional B and its corresponding material conditional C are
logically equivalent in the certainty-preserving logic C, the indicative conditional always
receives a lower probability. Actually, any simple indicative X → Y entails X ⊃ Y in U.

17Regarding Import-Export, Ciardelli and Ommundsen (2024) argue, in our opinion
convincingly, that the use of Import-Export in the trivialization of Stalnaker’s Thesis is
innocent from a normative point of view. By contrast, Sanfilippo et al. 2020’s treatment of
conditionals as conditional random quantities rejects Import-Export on grounds of triv-
iality, despite sharing some features with the trivalent approach. See Castronovo and
Sanfilippo 2024 for some comparisons.
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6 Bayesian Learning in a Trivalent Setting

We now move on to the dynamics of probabilistic reasoning: how should we
change our beliefs when we learn conditional propositions such as A → B
(for Boolean A, B), and possibly more complex expressions? The standard
theory for inductive learning is Bayesian conditionalization: the rational
credence in hypothesis H after learning evidence E should be the rational
credence in H conditional on E:

pE(H) := p(H|E) (Bayesian conditionalization)

This definition does not directly apply to conditionals (e.g., E = A → B)
since they are no standard propositions. Extensions of Bayesian condition-
alization to L→ typically rely on a more fine-grained, modal semantics,
where worlds are identified with sequences of classical valuations (Bacon
2015; Goldstein and Santorio 2021; Khoo 2022). That extension of condi-
tionalization acts on sets of such sequences (e.g., Goldstein and Santorio
call it “hyperconditionalization”). At the same time, Bayesian epistemolo-
gists have developed various proposals such as updating on the material
conditional A ⊃ B and prior-posterior divergence minimization, without
providing a semantic analysis of conditionals (Douven and Romeijn 2011;
Eva, Hartmann, and Rafiee Rad 2020).

In this section, we show that Bayesian conditionalization generalizes
smoothly from L to L→, without having to change the concept of possible
world (they remain maximally consistent classical valuations). Specifically,
we propose that learning E should change our degree of belief in H from
p(H) to p(E→ H), i.e., the trivalent conditional probability of H given E:

Definition 8 (Trivalent Conditionalization). Suppose we learn E ∈ L→ with
c(ETV) > 0. Then the rational credence in H ∈ L→ is the trivalent conditional
probability of H, given E:

pE(H) := pE(H) = p(E→ H) (Trivalent Conditionalization)

The first thing to note is that the posterior probability function pE is
indeed a trivalent probability function (proof omitted, but straightforward).
Second, sentences that are equivalent in the logic of certain reasoning C
produce the same update under trivalent conditionalization. This is not
too surprising: learning a proposition E means that E is now a certainty,
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and if p(E) = 1 implies p(E′) = 1, and vice versa, learning E and learning
E′ should yield the same updates.

Proposition 5. For any formulas E, E′, H ∈ L→, if E =||=C E′, then pE(H) =

pE′(H).

Proof. Follows immediately from the observation that trivalent conditional
probability satisfies Left Logical Equivalence with respect to C (Property 4’,
p. 19).

When A and B are conditional-free, we also have A ⊃ B =||=C A → B,
and the above proposition implies the following corollary:

Proposition 6. For any H ∈ L→, and A, B ∈ L:

pA→B(H) = pA⊃B(H) (Updating on Simple Conditionals)

In other words, learning a simple conditional A→ B is the same as learning
the material conditional A ⊃ B. This prediction is also endorsed by Gold-
stein and Santorio (2021) and Santorio (2022, Section 7): it is required for
explaining why, upon learning a disjunction such as “either the butler or
the gardener did it”, we also fully accept the sentence “if the butler did not
do it, the gardener did it”. While Santorio’s account does not treat these
sentences as logically equivalent, but only as update-equivalent, our ac-
count explains the equivalence between learning a simple conditional and
learning the corresponding material conditional in terms of their semantic
and logical properties in C.

Trivalent conditionalization generalizes Bayesian conditionalization in
another important way, too. Conditionalization can be motivated as a spe-
cial case of a more general updating rule: minimizing the divergence between
prior distribution p and posterior distribution p′. Indeed, results by Cziszár
(1967, 1975) and Diaconis and Zabell (1982) show that for a certain class
of divergence functions—the so-called f -divergences—the two following
updating policies are equivalent:

(1) Bayesian conditionalization on the event E;

(2) minimizing the f -divergence between the distributions p and p′, sub-
ject to the constraint that p′(E) = 1.
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In general, for discrete probability spaces Ω = {ω1, . . . , ωn}, f -divergences
have the form

D f (p, p′) =
N

∑
i=1

p(ωi) f
(

p′(ωi)

p(ωi)

)
,

where f : R≥0 → R is a convex and differentiable function satisfying
f (1) = 0. A well-known f -divergence is the Kullback-Leibler divergence
or relative entropy, which is obtained by choosing f (x) = x log x.

The divergence minimization approach not only agrees with Bayesian
conditionalization for propositional learning, but it is also independently
motivated as a conservative method of belief revision. Incoming evidence
should change our beliefs only to the extent that this is strictly required;
if possible, we would like to stay close to the original prior distribution.
Moreover, in comparison to standard Bayesian conditionalization, it has
the advantage of being applicable to a wider variety of constraints on the
posterior probability distribution (e.g., constraints which we cannot express
in the object language).

We can now show that trivalent conditionalization too minimizes diver-
gence between prior and posterior distribution:

Theorem 4 (Updating Theorem). The following two procedures for updating
credences from a prior probability distribution p : L→ 7→ [0, 1] to a posterior
probability distribution p′ : L→ 7→ [0, 1] are equivalent:

(1) trivalent conditionalization on the proposition E ∈ L→;

(2) minimizing the f -divergence between p and p′, subject to the constraint that
p′(E) = 1.

Proof. Suppose we learn E ∈ L→, which, by the Reduction Theorem, can
be written as E ≈ A → B, with A, B ∈ L. Trivalent conditionalization and
Proposition 6 yield pE = pA→B = pA⊃B, i.e., learning E amounts to condi-
tionalizing on the corresponding material conditional A ⊃ B. Sprenger and
Hartmann (2019, Theorem 4.3) show that updating p on the material condi-
tional A ⊃ B is equivalent to minimizing the f -divergence D f (p, p′) subject
to the constraint that p′(B|A) = 1 (this expression denotes standard condi-
tional probability in L). However, by Adams’s Thesis, this constraint on the
posterior distribution is equivalent to p′(E) = p′(A → B) = p′(B|A) = 1.
The converse direction makes use of the same identities.
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Since trivalent conditionalization agrees with minimizing f -divergence,
it can be defended as a conservative method of belief revision in the
Bayesian spirit. And it is much more powerful than standard Bayesian
conditionalization: it applies to learning conditionals, and to compounds
of conditionals of arbitary complexity. Specifically, the Updating Theorem
implies that trivalent conditionalization on A → B, Bayesian conditional-
ization on A ⊃ B and minimizing an f -divergence relative to the constraint
p′(B|A) = 1 are equivalent update procedures.

Some examples in the Bayesian epistemology literature challenge the
view that learning a conditional A → B amounts to learning the material
conditional A ⊃ B (Douven and Dietz 2011; Douven and Romeijn 2011).
Moreover, since

p((A→ B)→ C) = p((A ⊃ B)→ C) = pA⊃B(C) = pA→B(C)

such examples immediately affect the tenability of Stalnaker’s Thesis for
left-nested conditionals. We look at a particularly pressing example (Edg-
ington 1991, p. 202; Khoo 2022, p. 154):

Edgington’s Coin. Coin x is either double-headed or double-
tailed. Each possibility is equally likely. The coin is flipped with
probability 50%, regardless of whether it is double-headed or double-
tailed. We learn “if the coin was flipped, it landed heads”. What is
the now the probability that x is double-headed?

Using the Boolean variables C (coin double-headed), F (flip) and O (out-
come heads), we calculate

pF→O(C) = p((F ⊃ O)→ C) = p(C|F ⊃ O) = p(C|¬F ∨O)

= p(C)× p(¬F ∨O|C)
p(¬F ∨O)

= 1/2× 1
3/4

= 2/3

Edgington and Khoo argue that after learning F → O, we should actually
be certain that the coin is double-headed. The predicted value of 2/3 is
therefore too low.18 What is driving their intuition? Imagine a reliable
source tells us “if the coin was flipped, it landed heads”. The most natural

18Jeffrey (1991), Kaufmann (2009, 2023) and Khoo (2022) obtain p(C → (F → O)) =
3/4. Our calculation differs because trivalent conditional probability does not satisfy the
Product Rule and Bayes’ Theorem for conditional expressions.
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reason for why she can assert F → O is that she knows that the coin is
double-headed. Hence, it is natural to infer that she must know C as well,
and we add this proposition to our evidence base. In other words, we learn
in this case more than the bare conditional.

Compare this to a scenario where our source has evidence that the coin
landed heads rather than tails if flipped, but admits the possibility that the
coin may not have been flipped. In this case, she asserts “if the coin was
flipped, it landed heads”, but here we should be less than certain that the
coin is double-headed: after all, the coin might not have been flipped at
all. Therefore we propose to account for the intuition that pF→O(C) = 1
as a pragmatic rather than a semantic phenomenon. Note that this line of
response is not ad hoc: Eva, Hartmann, and Rafiee Rad (2020) and Sprenger
and Hartmann (2019, ch. 4) develop the same strategy and apply it to a
variety of puzzling cases of learning conditional information.

A similar attack against Stalnaker’s Thesis for left-nested conditionals
(and implicitly, against the equivalence between learning a simple condi-
tional and learning the material conditional) has been launched by Justin
Khoo (2022, pp. 152-153) on the basis of the following example:

Poker Paul. Paul is playing poker against Nancy. Nancy has a
weak hand, but it is still possible Paul’s is weaker. It is also possible
for Paul to win even if he has the weaker hand, but since Nancy is
a good player, that is unlikely. Cheating is a way to increase your
success of winning with a weaker hand, and Paul is not opposed to
cheating, though it is unlikely he cheated if he had the better hand.
But, if Paul won with the weaker hand, it is overwhelmingly likely
that he cheated.

The point of contention is the probability of the left-nested conditional

(4) If Paul won if he had the weaker hand, he cheated.

Khoo represents the relevant sentences by H = “Paul has the weaker hand”,
W = “Paul wins”, C = “Paul is cheating”. On the basis of his proba-
bilistic model, we assign a rather low probability to (4) (p((H → W) →
C) ≈ 0.25)—intuitively way too low according to Khoo. Kaufmann (2023,
pp. 216-217) counters that it is overall very unlikely that Paul cheated, be-
cause probably he has the better hand. Learning that he won if he had the
weaker hand raises our confidence that Paul cheated, but not necessarily
to a high level. Khoo’s intuition is only supported if we interpret (4) along
one of the following lines:
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(5) If Paul won with the weaker hand, he cheated.

(6) If Paul won if he had the weaker hand, he cheated [if he had the
weaker hand].

Both (5) and (6) seem intuitively probable, and our semantics confirms this
verdict.19 The reinterpretations may be defended by the observation that if-
clauses frequently set topics in a discourse, or restrict the scope of what is
said in the main clause (e.g., Lewis 1975; Égré and Cozic 2011; Kratzer 2012;
Kaufmann 2023). In this view, “if he had the weaker hand” also restricts
the scope of evaluation of the consequent of the outer conditional, and (4)
can be rewritten as (6). However, such a reinterpretation would have to be
motivated independently, and the burden of showing that (5) or (6) are the
right reading of (4) is on their proponents. Our reading, by contrast, follows
the original syntactic structure of (4), and does not involve syntactic reanal-
ysis. While these and other data need to be investigated more thoroughly,
it seems to us that we can satisfactorily address alleged counterexamples
to Proposition 6 and Stalnaker’s Thesis for left-nested conditionals.

Summing up, trivalent conditionalization generalizes Bayesian condi-
tionalization from L to L→, without changing its basic mechanism. This re-
sult is achieved within the bounds of a purely extensional, truth-functional
semantics. Competing accounts which obtain similar results rely on se-
quences of possible worlds as semantic building blocks and probability is
defined over such sequences, too. The consequence is a strong form of
contextualism: the evidential base and past update operations affect the
meaning of the conditionals. Accounts along these lines can get extremely
complex (van Fraassen 1976; Kaufmann 2009; Bacon 2015), and the less
complex and more intuitive ones do not validate Stalnaker’s Thesis in gen-
eral (Goldstein and Santorio 2021; Khoo 2022). Our approach is simpler,
conceptually leaner and closer to the standard Bayesian framework.

7 Conclusions

The present paper has proposed a trivalent approach to both the truth con-
ditions and the probability of indicative conditionals, based on the idea of
assigning a third truth value when the antecedent is false. We have shown
that this semantics, when paired with an appropriate consequence relation

19For (5), this is obvious. Moreover, Import-Export implies that (5) and (6) are seman-
tically equivalent: (H →W)→ (H → C) = ((H →W) ∧ H)→ C) = (H ∧W)→ C.
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for uncertain reasoning, generalizes Adams’s logic of p-valid inference to
arbitrary compounds and nestings of conditionals. Moreover, this account
(i) shows that all complex conditionals can be rephrased equivalently as
simple conditionals, (ii) validates Stalnaker’s Thesis for the probability of
conditionals in its most general form; (iii) models the learning of (condi-
tional) information by means of generalizing Bayesian conditionalization
to updating on conditionals. To our knowledge, no other account offers
a unified analysis of the semantics, probability and learning of indicative
conditionals based on a simple truth-functional (albeit non-classical) se-
mantics.

In particular, we vindicate Adams’s conjecture that compound condi-
tionals represent “linguistic shortcuts”. Theorem 1 shows that they are
extensionally equivalent to simple conditionals. Therefore we can evalu-
ate any inferences with complex conditionals by translating them to the
fragment L→1 involving at most simple conditionals, and apply the rules
of p-valid inference (Theorem 2). Trivalent semantics provides fully truth-
functional, compositional truth conditions and an Adams-style theory of
probabilistic reasoning. Committing to the view that indicative condition-
als do not have truth conditions is unnecessary philosophical baggage for
proponents of an Adams-style approach: it bars the road to important in-
sights into how we use complex conditionals, how we learn them, and how
valid inference relates to truth preservation.

The second part of the paper amends this semantics with an account
of conditional probability and Bayesian learning. Conditional probabil-
ity pA(B) is defined as the probability of the conditional A → B (for all
A, B ∈ L→). We have argued that this is a natural generalization of con-
ditional probability to the trivalent case. Stalnaker’s Thesis in its general
form, i.e., pA∧B(C) = pA(B → C), follows, for all sentences of L→, as an
immediate corollary, without falling prey to Lewis-style triviality results or
having to restrict the scope of plausible principles such as Import-Export
(Theorem 3). Instead, triviality is avoided because trivalent probability
does not satisfy the Product Rule. The reason behind this is the (indepen-
dently motivated) non-classical behavior of conjunction in our semantics.
This allows us not only to obtain Stalnaker’s Thesis, but also to dodge the
impossibility result presented by Schulz (2009) for representing uncertain
inference with compounds of conditionals in trivalent logic.

Finally, Theorem 4, the Updating Theorem, establishes that trivalent
conditionalization on a proposition E minimizes the f -divergence between
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prior distribution p and posterior distribution p′, subject to the constraint
that p′(E) = 1. This shows that trivalent conditionalization in a lan-
guage with conditionals preserves a central epistemological motivation of
Bayesian conditionalization. Specifically, updating on a simple, non-nested
indicative conditional is equivalent to updating on the corresponding ma-
terial conditional—a prediction that agrees with the results by Goldstein
and Santorio (2021) and Santorio (2022). Despite our agreement with these
and other authors on crucial predictions, we consider our account simpler,
more unified, and more attractive in its results.
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A Proof of the Reduction Theorem

We reason by induction on the depth of formulae, assigning formulae of
L→1 a depth of 0, and positive depth to compounds of L→1 -formulae con-
taining at least one occurrence of→. This depth d(X) is defined recursively
as follows:

d(X) =


0 if X ∈ L→1
d(Y) + 1 if X ∈ L→ \ L→1 has the form ¬Y

max[d(Y), d(Z)] + 1 if X ∈ L→ \ L→1 has the form Y ◦ Z

and ◦ ∈ {∧,∨,→}

For the base case d(X) = 0, i.e., X ∈ L→1 , the theorem holds trivially. We
now consider more complex formulae X /∈ L→1 case by case, according to
the formula’s main connective.

Negation Suppose X = ¬X′ for some X′ ∈ L→. We observe d(X) =

d(X′) + 1, and so, by the induction hypothesis, there are A′, B′ ∈ L
such that X′ ≈ A′ → B′. So X ≈ ¬(A′ → B′). The Negation Commu-
tation property stated in Proposition 1 yields X ≈ A′ → ¬B′ ∈ L→1 .

Binary Connectives Suppose X = Y ◦ Z, with ◦ ∈ {∧,∨,→}, and Y, Z ∈
L→. Obviously, d(Y) < d(X) and d(Z) < d(X). Thus we apply the
inductive hypothesis to Y and Z and infer Y ≈ A → B and Z ≈ C →
D with A, B, C, D ∈ L. We have to consider three cases:

X = Y → Z
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≈ (A→ B)→ (C → D) (by compositionality)

≈ (A ⊃ B)→ (C → D) (by Prop. 1, Left-Nesting)

≈ ((A ⊃ B) ∧ C)→ D (by Prop. 1, Import-Export)

X = Y ∧ Z

≈ (A→ B) ∧ (C → D) (by compositionality)

≈ (A ∨ C)→ [(A ⊃ B) ∧ (C ⊃ D)] (by Prop. 1, Conjunction)

X = Y ∨ Z

≈ (A→ B) ∨ (C → D) (by compositionality)

≈ (A ∨ C)→ ((A ∧ B) ∨ (C ∧ D)) (by Prop. 1, Disjunction)

In all three cases we have shown that X is semantically equivalent to
a L→1 -formula, completing the proof.
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