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Abstract— This study aimed to evaluate if eye blinks can be used to 

discriminate players with different performance in a session of Nintendo 
Entertainment System (NES) Tetris. To that end, we developed a state-of-
the-art method for blink extraction from EAR measures, which is robust 
enough to be used with data collected by a low-grade webcam such as the 
ones widely available on laptop computers. Our results show a significant 
decrease in blink rate per minute (blinks/m) during the first minute of 
playing Tetris. After having defined 3 groups of proficiency based on in-
game performance (Novices, Intermediates, and Experts) we found out 
that expert players display a significantly lower decrease in blinks/m 
compared to novices during the first minute of gameplay, which shows that 
Tetris players’ proficiency can be detected by looking at eye blinks/m 
variations during the early phase of a game session. This difference in 
blinks/m is observed throughout the entire game session, which supports 
the general conclusion that proficient Tetris players have a lower decrease 
in blinks/m, even when playing more difficult levels. Finally, we offer some 
interpretations of this effect and the relationship that our results may have 
with the visual cognitive workload experienced during the gameplay 
 
Index Terms—Eye blinks, Expertise, Machine learning, Performance, 
Video games  

I. INTRODUCTION 

LAYING a video game for hours typically leads to 
mastery of its mechanics. Unsurprisingly, experienced 
players behave differently than novices when they play 

a video game [1], thus showcasing this mastery and 
developing strategies for their effective use to achieve game-
related goals. This study aimed to assess whether a player's 
blinks rate per minute (blinks/m) during the first minute of a 
game session of Tetris already provides enough information to 
discriminate between participants with different levels of 
proficiency in the game. In Tetris, the players have to 
successfully place Tetrazoids (henceforth zoids), the tile falling 
from the upper part of the game environment, in order to clean 
lines and avoid reaching the upper edge of the game 
environment. To do so, the player has to successfully clean lines 
placing zoids correctly avoiding leaving unoccupied spaces. 
The game increases its difficulty as the player clears more lines; 
more specifically the level increases every time the player 
clears a number of lines given by the current level * 10 + 10. 
The speed of the zoids’ fall increases as the player moves to 
harder levels. Given the specifications of Tetris, we expect that 
proficient players cope better, in terms of cognitive load, with 
harder levels than less proficient players. We speculated that 
expert participants, defined by their in-game performance [2, 3, 
4, 5], may experience a lower cognitive workload compared to 
less experienced ones and that this would be reflected in their 
blinks. In typical circumstances, humans blink on average about 
15 to 20 times per minute, with each blink lasting between 50 
and 500 milliseconds (ms) [6, 7]. A typical spontaneous blink 
rate in general ranges between 2.8 and 48 per minute [8] with 

inter-blink intervals lasting between 2 and 10 seconds [9] 
although they can be as short as 100 ms [8]. Neuroimaging 
studies have pointed towards a relationship between blinks and 
dopaminergic activity, suggesting that blinks may be an 
appropriate proxy to measure cognitive performance and goal-
oriented behavior [9,10,11]. For example, a higher blinking 
frequency has been found to be positively associated with the 
ability to ignore specific stimuli in a Go/Nogo task, an 
inhibition task where the subject has to respond to the word 
“Go” by pressing a button and simply ignore the “No go” word 
when is presented [12]. On the other hand,  blinking rates have 
been found to decrease during tasks requiring visual attention 
such as reading [13] or playing video games [14]. The rate of 
blinks/m also has an inverse relationship with cognitive load 
[10] during a task and its level of difficulty [15]. This has been 
observed in expert video game players during a Hearthstone 
tournament, suggesting that gameplay is less cognitively 
demanding for them [16]. Based on this related literature, we 
hypothesize that proficient Tetris players may also have lower 
variations of blinks/m. Such a difference may manifest not only 
throughout the entire game session but already in the early 
phase of the gameplay, after having corrected for their baseline 
[17,18]. Such correction is applied since the raw blinks/m 
during a task may be affected by not accounting for the 
individual blinks/m at rest. 

Previous studies have already shown that some early 
behaviors are predictive of performance in longer Tetris 
sessions finding results based on in-game behaviors such as 
zoids positioning or keyloggers [3, 4]. These behaviors, 
extracted during the early phases of a game session, may be 
enough to detect expert and proficient players in longer 
sessions. For example, previous studies suggest that the ability 
of experts to clear a higher number of minimum lines and 
manage piles of zoids already emerges at level 0 [2]. Another 
independent study showed that the keys pressed by the players 
during the first 45 seconds of a game session, with specific 
reference to the down key and left key, are sufficient to 
discriminate proficient players from less proficient ones based 
on performance in longer sessions [4]. We, on the other hand, 
take note that making complex decisions quickly and with a 
desired result is cognitively demanding, but this can improve 
with practice and expertise reducing the cognitive demands 
required from the player. Blinks can reflect this given their 
indirect connection to cognitive load [10]. 

However, up to date, no study investigated the connection 
between early variations in blinks/m and the performance 
obtained in Tetris. For this reason, in this study, we analyze the 
baseline corrected blinks/m that players have during the first 
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minute of gameplay. We decided to use the first minute since, 
during this time frame, all the players still played at level 0, and 
there was no effect due to the level of difficulty. As a 
consequence, this study aims to investigate if the baseline 
corrected blinks/m during the first minute of gameplay can be 
used to discriminate players obtaining a different performance 
on a full Tetris session. 

II. EXPERIMENT 1 

A. Methods 

A total of n = 160 participants were recruited to participate 
in this experiment (55% female, Mage= 21.81, SDage = 4.99; 
and 2 participants did not declare their sex). All participants 
filled out an informed consent form and were informed that 
their faces would be recorded with the laptop cameras (720 
pixels, 16:9 aspect ratio, and at a rate of 30 frames per second). 
The use of cameras characterized by such a frame per second 
recording should suffice to capture blinks since their duration 
spans between 50 ms and 500 ms [6,7] (each frame of a 30 fps 
recording = 33.34 ms) and generally, blink rate is evaluated on 
minutes [9, 10]. This study was approved by the Ethics 
Committee of Tilburg University under code REDC 2021.35a.   

After providing their consent, each participant was asked to 
watch a looped video for three minutes to establish their 
baseline blinks/m [19]. The video was selected from the 
OpenLAV library dataset [20] on account of it being 
emotionally neutral1. Each video recorded using the Open 
Broadcaster Software (OBS) contained both the participant’s 
face and the screen recording. The first author of this work 
manually annotated the blinks of 160 participants during the 
recording and counted the number of blinks to obtain the 
ground truth 

The videos collected with OBS were cropped so they 
contained just the participants' faces while playing the game. 
Then, the Eye Aspect Ratio (EAR), a measurement that 
calculates the distance between the upper eyelid and the lower 
eyelid, was extracted [16, 21].  The code to extract the EAR was 
implemented in Python and more specifically using the cv2 
library (version = 4.5.5) and cvzone (version = 1.5.6) libraries. 
The cv2 library was used to detect the participants’ faces while 
the landmarks of interest to measure the EAR were detected 
using the FaceMeshDetector available in the cvzone library 
[16], as in Figure 1. The number of landmarks needed to detect 
the EAR and their coordinate position as specified in the 
FaceMeshDetector is shown in Figure 2. 
 
 
 

 
 
 

Fig. 1. The FaceMeshDetector’s landmarks and their position 
on the eyes. 

 
1 the video is available at the following link 
https://www.youtube.com/watch?v=dHG_eKFJHtM and it is authored by 
Adrian Soare 

After having plotted the points using the previously 
mentioned method, the EAR is extracted using the following 
formula  (|P2-P6|+|P3-P5|)/(2|P1-P4|). The final EAR is an 
average calculated for both eyes since blinks occur when both 
eyes are closed, with a value ranging between 0.20 and 0.45. 
The EAR per each frame and the landmarks plotted on the 
participants’ faces are visualized in Figure 2; please note that 
EAR is multiplied by 100 [16, 21]. 
 

Fig. 2. On the left, an example of FaceMeshDetector landmarks 
plotted on the participant’ face and the online EAR recording. 
The peaks represent moments in which the participant blinked. 
On the right, the FaceMeshDetector landmarks’ numbers to 
identify the left and right eye 
 

There are several methods for automatic blink detection. To 
assess which method performed best, we applied and compared 
four methods: the rule-of-thumb [35], rule-of-thumb with 
differentiated thresholds [16], isolation forest, and Isolation 
forest with filtering. The first rule-of-thumb method uses a 
threshold of at least 3 consecutive frames of approximately 100 
ms being below EAR 30 [35]. This may be an unreliable 
measure since the EAR signal is influenced by the distance of 
the face from the screen, the position of the face, the shape of 
the participant’s eyes, and a 100 ms duration does not fit with a 
possible blink duration between 50 ms and 500 ms [7]. For this 
reason, other studies used a threshold-based algorithm with 
filtering, which used three distinct thresholds (EAR 25, 30, and 
35) [16]. This second method of extracting blinks from EAR 
looks for a sequence of frames by selecting sequences that are 
between 50 ms and 500 ms (approximately 2 and 15 frames 
long), which corresponds to the assumed lower and upper 
bounds of a typical blink duration. Then it looks for the 
minimum interval between blinks by comparing the distance 
between two continuous sequences and if this difference is 
lower than 9 frames (approx. 300ms) then the two sequences 
are concatenated to form one sequence corresponding to a blink 
[16]. The third method uses an isolation forest; an outlier 
detection algorithm that identifies sequences of outlier EAR 
values and treats them as belonging to blinks [22]. Specifically, 
this algorithm uses 100 trees and a contamination parameter, 
which is the expected percentage of outliers in the data, based 
on 3 standard deviations from the mean using a 100 frames-
wide rolling window [22]. Afterward, the Isolation Forest can 
be set to detect a blink every time an outlier is detected for more 
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than 2 consecutive frames in the sequence of EAR measures. 
However, this approach still has one of the problems of the rule-
of-thumb approach [21], since it does not take into account the 
potential interval between blinks and the wide range (50ms –  
500ms) of blink durations.  

The last method and the one developed for this study adapts 
the isolation forest method based on a rolling window of 100 
frames by adding a new definition of the contamination 
parameter, which uses the median with a median absolute 
deviation of 2.5. This specific value for the median absolute 
deviation is suggested by previous studies that focus on outlier 
detection [23, 24]. We also defined an upper and a lower 
threshold (to account for blink duration) of respectively 2 and 
15 frames, approximately equal to 50 - 500 milliseconds, rather 
than the 2 frames used in the previous method with isolation 
forest [22]. At this stage of the process, the isolation forest 
could detect groups of outlier frames with a length between 2 
and 15 frames that may be candidates to be parts of blinks.   
However, as suggested in previous studies, blinks have at least 
100 ms between one and another [14]. For this reason, the new 
isolation forest method takes all intervals shorter than 4 frames 
(132 milliseconds considering that 3 frames still represent a 
duration lower than 100 milliseconds) occurring between two 
groups of frames detected as outliers and marks them as 
outliers. This was done to filter potential noise or frames 
belonging to blinks that the algorithm failed to detect. 
Afterward, all outlier sequences with a length between 2 and 15 
frames were labeled as blinks.   

Finally, we compared the mean number of blinks found 
across the 3 minutes recording of the rule-of-thumb method, the 
rule-of-thumb method with differentiated thresholds (20, 25, 
and 35), the isolation forest method, and our new isolation 
forest with filtering method using  the mean absolute percentage 
error (MAPE) and Pearson’s r coefficient (r).   

 

B. Results 

The results demonstrate that the isolation forest with 
filtering method developed for this study performs the best (see 
Table 1). Furthermore, statistical analysis using a Mann-
Whitney U test accounting for the non-normality of the 
residuals shows that only for this method, the extracted average 
blinks/m on 3 minutes across all the participants (M) does not 
statistically differ from the ground truth blinks/m on 3 minutes 
(U).   
 
 
 
 
 
 
 
 
 
 
 
 

 
TABLE I.  

COMPARISON WITH 4 METHODS WITH CORRELATION 

COEFFICIENT (PEARSON’S R) AND MAPE. 

 
 

 
Fig 3. Correlation plot for the 4 methods adopted with the best 
fitting line. The Y axis represents the ground truth blinks/m on 
3 minutes while the X represents the blinks/m on 3 minutes 
detected by the 4 methods compared in this study. 
 

Moreover, our isolation forest with filtering method makes 
it possible to extract other features from EAR measures; an 
overview of these features is in Appendix A. The code for the 
Isolation Forest with filtering implemented for this work can be 
found at the following GitHub link: https://github.com/G-
Guglielmo/Blinks-tracker. 

III. EXPERIMENT 2 

A. Methods 

Eighty participants (49.37 % female, Mage = 22.27, SD = 
5.92) were recruited through the SONA participant recruitment 
platform to participate in this study. All participants filled out 
an informed consent form and were informed that their faces 
would be recorded with the laptop camera. One participant 
declined to answer the question regarding biological sex. 
Participants recruited at Tilburg University received a 

 

r 
MAPE 

(%) 

Blinks/m 
of 3 min 
(M, SD) U p 

Ground 
truth   

19.66 
(12.17)   

Rule of 
Thumb 

[21] 0.58 60.91 
14.02 

(16.01) 17343 p < .001 

Rule of 
Thumb 

with 
diff. 

thres. 
[16] 0.61 70.90 

25.98 
(17.00) 9877 p < .001 

Isolation 
Forest 
[22] 0.50 45.58 

9.65 
(7.02) 19911 p < .001 

Isolation 
Forest 
with 

filtering 0.88 27.98 
19.76 

(10.56) 
12278.

5 p = .53 
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formative credit required by their program of studies. This 
study was approved by the Ethics Committee of Tilburg 
University under code REDC2021.35.   

A full experimental session (introduction, test session, game 
session, debrief) typically lasted approximately 40 minutes. At 
the beginning of the session, after having given informed 
consent, participants were asked to self-assess their experience 
with the Tetris game on a Likert scale between 1 (not 
experienced at all) and 5 (really experienced) and how many 
hours they spent playing video games, different than Tetris, 
every week. At this point, participants were asked to watch a 3-
minute neutral video (see Methods of Experiment 1) to obtain 
their baseline blinks/m. Afterward, the experimenter introduced 
the participants to NES Tetris demonstrating how the 5 keys of 
a laptop computer keyboard can be used to play the game 
(Down for a forced drop, Left for a left translation, Right for a 
right translation, X for a clockwise rotation, and Z for a counter-
clockwise rotation). Videos of participants' faces were taken 
during each session with the laptops’ cameras (720 pixels, 16:9 
aspect ratio, and at a rate of 30 frames per second). The actual 
gameplay was also recorded with Open Broadcaster Software 
(OBS).  

After being introduced to the game, participants were given 
2 minutes to practice with the NES Tetris. During this phase, 
the experimenter explained that players could use the 
information provided by the “Next” zoid area to plan where 
they will place the next zoid and that the “Statistics” square on 
the gameboard provided real-time information about all the 
zoids placed during the match so far. An overview of the 
information provided by the game to the players can be found 
in Figure 4 
 
 
 
 
 
 
 
 
 
 
Fig. 4. The classic NES Tetris layout where the red square 
shows the “Next” zoid and the green square provides 
“Statistics” about the zoids placed 
 

After the 2-minute practice session, participants played NES 
Tetris for 13 minutes on the same laptop. In case of a lost match 
(zoids filling up the game board), participants were asked to 
restart the game at level 0.   

Previous studies defined Tetris expertise using the average 
score obtained across completed matches [3, 4, 5] and/or the 
number of matches played in a limited amount of time [2,4]. 
According to these approaches, the most expert players 
typically play fewer matches and obtain a higher score. We 
clustered the number of matches played by the players and the 
average score obtained across completed matches to define 
expertise. The number of matches that each participant played 

had a limited skewness of 0.34 [25], however, the average score 
was severely skewed (skewness = 1.09) [25]. Therefore, the 
average score was log-transformed [2,6]. Participants were then 
clustered into a Novice, Intermediate, or Expert group using a 
k-means algorithm and the elbow method [2,6,5] similar to 
other studies [2,6,5]. Our participants had an average score of 
4291.93 (SD = 6771) across completed matches and played an 
average of 2.76 matches (SD = 1.88). The only exceptions were 
2 players who did not lose across the 13 minutes of gameplay; 
for this reason, we included their score obtained at minute 13 
[2].  The clusters (proficiency groups) used for this study, 
representing the 3 groups with different levels of performance, 
are the same as the ones used in a previous study that used early 
keystrokes to predict levels of performance in Tetris [4]. It is 
standard to group game players into brackets, or broad 
categories, such as expert or novice, and we followed this 
approach here.  

For what concerns blinks' extraction, first, EAR was 
extracted from video recordings of baseline (neutral video 
watching) and the 13 minutes of gameplay for each participant 
using the cvzone library. Second, an isolation forest with 
filtering (best method conveyed in experiment 1) was trained 
on both the baseline EAR values and complete gameplay EAR 
values for all participants. Third, using this model, the number 
of blinks from the 3-minute baseline EAR values for each 
participant and from the first minute of gameplay were 
extracted. At this point, a baseline corrected value of the 
blinks/m of the first minute of gameplay was calculated by 
subtracting from the baseline value for each participant,  to 
account for the individual differences in blinks/m at rest [17, 
18].  

Finally, a two-way ANOVA was run with the baseline 
corrected blinks/m during the game as the dependent variable 
and biological sex (control variable) and the level of expertise 
(novice, intermediate, expert) as independent variables. Before 
modeling, assumptions concerning the normality of the 
residuals were checked by comparing the data against a normal 
distribution using the Kolmogorov-Smirnov test [26] and 
concerning the homogeneity of variance using the Bartlett’s test 
[27]. 

B. Results 

The number of matches, average scores, and self-assessed 
Tetris experience are visualized in Table 2. A significant main 
effect was found for self-assessed experience (F(2,77) = 9.32, 
p < .001), and posthoc analyses run using an Holm correction, 
revealed that experts had higher self-assessed Tetris experience 
than Intermediates (p < .05), who in turn had higher self-
assessed Tetris experience than Novices (p < .001). Across all 
the matches played, the Expert group reached, on average, 
level  5.76 (SD = 2.13) while the Intermediate group and the 
Novice group respectively reached level 0.99 (SD = 0.54) and 
level 0.11 (SD = 0.16). These differences, after having run a 
Kruskal-Wallis test accounting for the non-normality of the 
residuals, resulted to be significant (H(2) = 65, p < .001). More 
specifically, running a Dunn post-hoc correction for non-
parametric analysis, Experts reached a higher level than 
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Intermediates (p < .001) and Novices (p < .001) while Novices 
reached a lower level than intermediates (p < .001). No 
significant effect of hours playing video games every week was 
found when running a Kruskal-Wallis test, across the 3 groups 
(Experts: M = 2.21, SD = 2.37; Intermediates: M = 1.80, SD = 
1.94; Novices: M = 1.77, SD = 2.76; H(2) = 2.50, p = 0.29). The 
3 groups had a balanced number of females and males; the 
Novices were composed of 11 males and 11 females, the 
Intermediates of 20 females and 17 males, and the Experts of 
12 males and 8 females. Females reported overall to have a 
lower self-assessed experience in Tetris (M = 1.95, SD = 0.81) 
than males (M = 2.5, SD = 0.87; t(77) = 2.88, p < .01). However, 
running a Mann-Whitney U test accounting for the non-
normality of the residuals, this did not result in a significant 
difference in terms of the average score when comparing males 
(M = 4904.5 SD = 7312.22) and females (females: M = 3720.85, 
SD = 6296.75) throughout the 13 minutes game session (U = 
575, p = .07) and in the average number of matches played 
(males: M = 2.83  SD = 1.69; females: M = 2.84, SD =  2.01; U 
= 725.5, p = .73). These results show no statistically significant 
differences between the biological sexes when looking at the 
variables used to cluster the participants in the 3 levels of 
performance.   

TABLE II.  
   RESULTS OF CLUSTERING ALGORITHM AND CORRESPONDING 

AVERAGE SELF-ASSESSED TETRIS EXPERIENCE PER GROUP 

 

In our sample, participants had an average blinks/m of 19.47 
(SD = 10.80) during baseline and an average of 13.22 (SD = 
7.92) during the first minute of gameplay. To investigate the 
difference between baseline and the first minute of gameplay 
between males and females, and the effect of self-assessed 
experience on blinks/m (given the difference between males 
and females), we run a repeated measures ANOVA with 
biological sex and Tetris self-assessed experience as a between-
subject factor and time (baseline, first minute of the session) as 
a within-subject factor. Indeed, we found that females (M = 
21.64, SD = 11.79) have higher blinks/m than males (M = 17.42, 
SD = 9.30; F(1,74)= 5.81, p = .02) and that blinks/m are lower 
during the Tetris session than during the baseline (F(1,76)= 
28.85, p < .001). Tetris self-assessed experience had no effect 
on the blinks/m decrease during the first minute of gameplay 
(F(1,74) = 0.01, p = 0.97). No interaction effect of biological 
sex and time was found (F(1,76)= 0.06, p = .95). Given the 

different self-assessed experience of males and females in our 
sample, we also checked the interaction effect of biological sex 
and Tetris experience. Such interaction term resulted not to be 
significant (F(1,74) = 0.39 , p = .54).  

Finally, a two-way ANOVA (after having confirmed the 
normality of the data and the homogeneity of variance), to 
evaluate if groups with different performance have different 
baseline corrected blinks/m, showed a significant effect of 
group (F(2,74) = 3.17, p = .048) but not for biological sex 
(F(1,74) = 0.10, p = .75) suggesting that the baseline corrected 
blinks/m is not affected by the biological sex of the player. A 
Post-hoc Holm correction showed that Experts (M = 2.04, SD = 
8.68) experienced a lower variation in blinks when compared to 
Novices (M = 9.83, SD = 8.70; p = .024). However, no 
significant differences were observed when comparing 
Intermediates (M = 6.24, SD = 10.73) with Experts (p = .30) and 
Novices (p = .30) (see Figure 6).  

In order to evaluate if the patterns found in one minute of 
gameplay can be found on the entire recording the same 
methods were used to analyse the full 13 minutes of Tetris 
session. Similarly to what occurs in one minute, a repeated 
measure ANOVA, shows that there is a significant decrease in 
blinks between the baseline (M =19.47, SD = 10.80) and the 
average blinks/m across the 13 minutes (M = 8.68, SD = 8.97); 
both biological sex (F(1,74) = 5.32, p = .03) and the baseline 
blinks/m (F(1,76) = 71.36, p < .001) are significant predictors 
of the blinks/m during the 13 minutes of Tetris session while 
Tetris self-assessed experience is not a significant predictor 
(F(1,74) = 0.004, p = .95). Even in this case, no interaction 
effect between biological sex and time (F(1,76) = 0.33, p = .57) 
and between Tetris experience and biological sex (F(1,74) = 
1.41, p = .24) was observed. A white-corrected two-way 
ANOVA, accounting for the non-homogeneity of the variance 
in the sample, showed a significant effect for group (F(2,74)= 
4.89, p = .03) but not for biological sex (F(1,74)= 0.16, p = .69). 
A Games-Howell post-hoc correction, used in case of unequal 
variance in the sample, showed that Experts(M = 5.01, SD = 
5.03), similar to the previous analysis, had a lower variation in 
blinks when compared to Novices (M = 10.39, SD = 8.34; p = 
.046) but not with Intermediates (M = 9.54, SD = 10.30; p = 
.085). No significant difference was found when comparing 
Intermediates and Novices (p = .94).  

 

 

 

 

 

Fig. 5. Lines representing the decrease of blinks for males and 
females comparing the baseline and the first minute of 
gameplay 

 
Novices Intermediates Experts 

Matches 
played 

5.22  
(1.41) 

2.32  
(0.86) 

1.1  
(0.30) 

Average 
score 

305.69 
(147.07) 

1483.26 
(971.14) 

14013.45 
(7556.00) 

Tetris 
experience 

1.73 
(0.69) 

2.21  
(0.87) 

2.80  
(0.75) 
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Fig 6. Comparison between the 3 groups showing the baseline 
corrected blinks/m. 

IV. DISCUSSION 

This study aimed to test the hypothesis about using blinks to 
discriminate groups with different Tetris performances during 
the early stages of a game session. In order to achieve that goal, 
a method that can track blinks non-invasively using a widely 
available computer webcam was developed and validated 
against other available methods. In our sample, we found that 
the hours spent every week playing video games were not 
significantly different across the 3 groups. This suggests that 
there was no transfer between the number of hours spent 
playing video games and the performance obtained in Tetris in 
our experiment. We found that males self-assessed themselves 
as being more experienced in Tetris, however, this factor did 
not significantly impact the blinks/m variation between the 
baseline and the gameplay blinks/m for the first minute and for 
the complete game session.  For what concerns the baseline-
corrected blinks/m variations, the results show a significant 
difference between novice and expert Tetris players in the first 
minute of gameplay. Furthermore, the lack of significant effect 
of biological sex suggests that baseline corrected blinks/m are 
a robust measure that is not affected by biological sex. Previous 
studies with similar aims, but assessing behavioral factors, 
demonstrated that expert players can be differentiated from less 
experienced ones just by looking at behavior during level 0 and 
level 1, such as their positioning of zoids or minimum lines 
cleared [3,4]. Furthermore, these differences may manifest in 
the use of the down and left keys in the first 45 seconds of 
gameplay [2]. Similarly, Guglielmo and colleagues found that 
more experienced players in Hearthstone have a higher 
blinks/m than novices during gameplay [2]. Our results show 
that during the early phases of a game session, group 
differences also occur on a physiological level. More interesting 
is that the significant patterns found in the first minute of 
gameplay seem to be present when looking at the entire 13 
minutes of the game session. This suggests that experts, 
independently from the level reached and played, undergo a 
lower variation in blinks/m compared to novices. This 
interpretation is in line with previous studies, which 
demonstrate that blinks/m decreases with an increase in 
cognitive load [10] and that proficiency in a task relates to 

higher blinks/m [15]. To sum up: proficient Tetris players 
display a lower decrease in blinks/m  as early as one minute and 
across a full session of complex tasks, in this case playing 
Tetris. 

Despite our results establishing a connection between 
blinks/m variation and performance in a video game, our study 
presents several limitations that may be worth mentioning. 
First, experiment 2 used a sample of participants that is smaller 
than those used in other studies using Tetris and early detection 
of expertise [3, 4]. Having more participants may result in wider 
variations in obtained scores and in different levels of 
proficiency across the players. Second, we did not directly 
control for other cognitive processes that may impact blinks/m 
such as attention [30]. The effect of attention on blinks/m 
variation may be further investigated in a future study involving 
eye-tracking measures [31] or EEG measures [32]. Third, the 
presence of an error in estimating the blinks using our Isolation 
Forest with filtering may also have played a role in the results 
obtained. Fourth, in this study, we applied the subtractive 
method to perform a baseline correction [17, 18]; however, 
applying another correction method, such as a divisive one, may 
lead to different results. This issue reflects a gap in the literature 
where the best method to perform baseline correction for blinks 
has not been investigated yet. 

Additionally, this study makes a  methodological 
contribution by introducing and validating a novel method—
Isolation Forest with filtering—to detect blinks even using a 
low-quality webcam. This method is more noise-resistant 
compared to any other in existent literature while allowing for 
the extraction of additional features, such as blink durations and 
blink intervals, among others (see: Appendix A). Arguably, the 
Isolation Forest with filtering could be used with higher-quality 
cameras or an eye-tracker [22], which would further increase 
accuracy. This provides an additional, easy-to-use 
psychophysiological measurement option for other researchers, 
which only requires a webcam. The use of blinking behavior 
has been associated with dopaminergic activity and receptors 
[12, 10] but also with the detection of fatigue [28], drowsiness 
[15], and cognitive load [11] just to mention a few. This 
suggests that the method introduced here may be effective in 
investigating these phenomena. However, despite its potential 
applications, Isolation Forest with filtering still suffers from 
some limitations, which should be mentioned. First, the EAR 
measure is sensitive to lighting conditions. Second, its accuracy 
may be influenced by the sample size of the time series used to 
train the algorithm, as with any other machine-learning method. 
Furthermore, according to our results, the method seems 
effective when using a camera with 30 fps recording but such a 
method has not been tested yet with lower-quality cameras. 
Future studies may investigate if the method currently used in 
this study applies successfully to lower-quality cameras as 
well.  Given this, there is still room to reduce the error between 
the ground truth blinks and the blinks detected using EAR-
based methods. Future studies should aim to further fine-tune 
the algorithm. 
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V. CONCLUSION 

In this work we provide evidence that players with different 
levels of performance may exhibit different blinks/m variations 
during the early phase of the game session. To investigate this 
we developed a new method that effectively tracks blinks using 
the EAR extracted from a low-grade camera. Future study may 
apply our methods to other games to detect early performance 
and use the method year introduced in other fields of research.  
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APPENDIX A 

A list of general features extractable from the EAR using the 
algorithm introduced in this work and their description. 
 

General Features 
 

Blinks/m: this measure returns to the number of blinks 
performed on average per minute. 
Mean_blinks_interval: It returns the calculation of the average 
interval between one blink and another.  
Std_int: it is the standard deviation between one blink interval 
and another (in seconds) 
Min_int: it is the minimum interval occurring between one 
blink and another (in seconds) 
Max_int: it is the maximum interval occurring between one 
blink and another (in seconds) 
Blinks per recording: the total number of blinks recorded 
during the video. 
Mean blink duration: This refers to the mean duration of the 
blinks across the entire recording. It is based on the number of 
frames that are considered as part of blinks (in milliseconds). 
Std_duration: it refers to the standard deviation for the blinks’ 
durations across the recording (in milliseconds) 
Min_duration: the duration for the shortest blink in the 
recording (in milliseconds) 
Max_duration: the duration for the longest blink in the 
recording (in milliseconds) 
RMSSD: the root mean square of the successive difference 
between one blink and another [29]. This measure is able to 
capture changes in the blink intervals that may be caused by 
specific phenomena (e.g. visual workload) [29].  
 

Besides the features above mentioned, it is possible to 
extract additional features when binning the recording (for 
example considering variations across minutes of recording). 

 
 
 

Additional Features 
 
Std_blinks: returns the standard deviation for the number of 
blinks occurring across the bins defined. 
Min_blinks: this feature extracts the minimum number of 
blinks that occur during the recording according to the bins 
defined. 
Max_blinks: this feature extracts the maximum number of 
blinks that occur during the recording according to the bins 
defined. 
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