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Abstract

Is it possible to give a justification of our own practice of deductive infer-
ence? The purpose of this paper is to explain what such a justification might
consist in and what its purpose could be. On the conception that we are go-
ing to pursue, to give a justification for a deductive practice means to explain
in terms of an intuitively satisfactory notion eflidity why the inferences

that conform to the practice coincide with the valid ones. That is, a justi-
fication should provide an analysis of the notion of validity and show that
the inferences that conform to the practice are just the ones that are valid.
Moreover, a complete justification should also explain the purpose, or point,
of our inferential practice. We are first going to discuss the objection that
any justification of our deductive practice must use deduction and therefore
be circular. Then we will consider a particular model of justificatory expla-
nation, building on Kreisel's concept of informal rigour. Finally, in the main
part of the paper, we will discuss three ideas for defining the notion of valid-
ity: (i) the classical conception according to which the notion of (bivalent)
truth is taken as basic and validity is defined in terms of the preservation
of truth; (ii) the constructivist idea of starting instead with the notion of (a
canonical)proof (or verificatior) and define validity in terms of this notion;

(i) the idea of taking the notions afational acceptancendrejectionas
given and define an argument to be valid just in case it is irrational to simul-
taneously accept its premises and reject its conclusion (or conchigioe

allow for multiple conclusions). Building on work by Dana Scott, we show
that the last conception may be viewed as being, in a certain sense, equivalent
to the first one. Finally, we discuss the so-called paradox of inference and the
informativeness of deductive arguments.
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a very special friend who has taught me more about philosophy—and how to do philosophy—than
anyone else.
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1 Introduction

In this paper we are going to consider the question whether it is possible for the
members of a community of reasoners to justify their own deductive practice. In
particular, is it possible for us to give a justification of our own practice for con-
structing deductive arguments? We assume that this practice is rule-governed and
that it conforms to classical logic. The question is now whether we can justify the
basic rules of inference that govern our practice of deductive reasoning.

In view of the conceptual analysis of Gentzen [13], it is plausible that a central
aspect of our deductive practice can be represented by a system of natural deduc-
tion for first-order predicate logic with introduction and elimination rules for the
logical constants\, v, —, v, 3, and—.> According to Gentzen’s analysis, the
intuitively correct inferences involving the logical constants of predicate logic are
broken down into atomic steps in such a way that each atomic step involves only
one logical constartt. There is for each logical constant arroduction rulethat
allows the introduction of the constant in a proof angdmination rulethat allows
its elimination:

(A AA/\BB (A-E) A'/;\B AQB
Al [B]
A B : ;
(v-) AV B AVB (v-E) AVB C C
C
(A
: A A—B
. (—E) 5
A—B
5 A(X) : VXA(X)
v VXA(X) (V-E) At)
o [AX)]
At :
) Zax S IXA(X) C
C
Al
: A A
U B A
A

IHere, A, v, —, V, 3, and— are formal counterparts of the expressions ‘and’, ‘or’ ,'if ..., then
..., 'every’, 'some’, and ‘not’ as they are used in ordinary mathematical practice.

2For a detailed analysis and development of Gentzen's ideas, see Prawitz [22, 23]. The description
given here is based on Prawitz’s presentation.



In addition, the system contains the elimination rule_for

1
(L-E) e

together with all instances of the schema:
(LEM) AV -A (Law of Excluded Middle

as axioms’

Informal mathematical proofs start out from assumptions, which are later elim-
inated or discharged. This argumentative structure of our informal deductive prac-
tice is not captured by the classical logical systems of Frege-Hilbert type. The
ambition of Frege and Hilbert was to characterise the set of logipatlyablefor-
mulas rather than to analyse the conceptjofamf. Gentzen’s [13, p. 68] ambition,
however, was another:

My starting point was this: The formalization of logical deduction, especially
as it has been developed by Frege, Russell, and Hilbert, is rather far removed
from the forms of deduction used in practice in mathematical proofs. Con-
siderable formal advantages are achieved in return.

In contrast, | intended first to set up a formal system which comes as
close as possible to actual reasoning. The result waalaulus of natural
deduction]...]

There is an analogy between Gentzen’s analysis of the notion of intuitively
valid proof and Turing’s analysis of the notion @omputation According to
Turing’s analysis every effective computation can, when sufficiently analysed, be
broken down into operations performable by a Turing machingiig’s thesis.
Similarly, according to Gentzen’s analysis any intuitively valid proof (involving
the standard logical constants only) can, when sufficiently analysed, be broken
down into the atomic steps of Gentzen’s system of natural deduction. In analogy
with Turing’s thesis, we might call this latter the§®ntzen’s thesisTuring’s and
Gentzen's theses are the results of conceptual analyses and cannot be proved in the
strict mathematical senéeHere, we shall assume that Gentzen'’s thesis is correct
i.e., that there is a distinctive part of our ordinary deductive practice that can be ad-
equately represented by a system of natural deduction for classical predicate logic
of the kind presented by Gentzen.

What we are looking for, when we ask for a justification of the above rules, is
an argument showing that they are correct in the sense that all inferences that can be

3The system without(-E) and (LEM) yields so-callethinimal logig while the system with_(-
E) but without (LEM) yielddntuitionistic logic. The full system, of course, yield$assical predicate
logic.

4Turing’s and Gentzen’s analyses are examples of what Kreisel [17]infdisnal rigour. See
section 3.

SUsually we will be concerned with propositional logic only, making occasional reference to
predicate logic. Sometimes we also consider non-classical (“intensional”) connectives, in addition
to the classical ones.



constructed by means of these rules are valid. An inferenaiif its conclusion

is alogical consequencef its premises. So one can say that the central notion of
logic is the notion of logical consequence. However, it is far from obvious how this
concept should be defined. Classical logicians usually define logical consequence
in terms of the preservation of truth from premises to the conclusion. Another
idea is to define it in terms of preservation of assertability: if one is justified in
asserting the premises of a valid argument, then one is also justified in asserting
the conclusion. A third intuition is that it is irrational to accept the premises of a
valid argument and, at the same time, reject its conclusion. In this paper we are
going to compare these three ideas for defining logical consequence.

2 Justification and rule-circularity

Some philosophers, e.g. Susan Haack [14, 15], have argued that fundamental rules
of deduction cannot be justified in a way that is not question-begging. Often when
we want to justify something, we find it natural to do this by means of a deductive
argument. However, deductive arguments are ultimately built up from basic rules
of inference. So it seems impossible to argue deductively for these rules without
making use of the very same rules. Consider, for example, the following proof that
the rule modus ponens, i.e~(E), is truth-preserving:

(1) True@) A True(A — B) Premise

(2) True@) N-E

(3) True@A — B) N-E

(4) True@ — B) — (True(®) — True B)) truth-table for—

(5) True@) — True@B) (3), (4) modus ponens
(6) True@®) (2), (5) modus ponens

(7) (True@) A TruedA — B)) — True®) (1)—(6)—-I

This argument isule-circular: we have used modus ponens in order to prove
that modus ponens is truth-preserving. Similarly, any deductive argument with the
conclusion that a basic rule is correct must either ude or some derived rule
whose proof will presuppose the use Rf Moreover, non-deductive methods
of justification, like appeal to intuition or induction, appear to be non-starters. It
seems, therefore, that any justification of our basic deductive rules has to be rule-
circular.

A circular argument of the ordinary kind, what Boghossian [2] calisassly
circular argument, has the conclusion as one of its premises. The term rule-
circularity is only applicable to arguments that purport to establish the validity of a
rule of inference. Such an argument is rule-circular if it uses that very rule in one of
its argumentative steps. A grossly circular argument is obviously question-begging
and gives no support for its conclusion. Couldn’t the same charge be levelled at

SHere, we assume that the basic rules of a deductive practiéGedapendenbf each other, i.e.,
none of the basic rules can be derived from the others.



rule-circular arguments? If the correct use of a rule of inference always required a
justification of the rule itself, any rule-circular argument would presuppose its own
conclusion and would therefore be grossly circular. It seems reasonable, however,
that we can be entitled to use some rules, the basic ones, without prior justification.
It would be too strong to demand that the entitlement to use a rule of inference al-
ways required the possession of a justification of that rule, since such a demand—it
appears—leads to an infinite regréss.

It seems that we can still level two objections against rule-circular justifica-
tions. Firstly, they are powerless of persuading a sceptic of the correctness of a
rule. Secondly, it appears that we can give rule-circular justifications for patently
unsound rules of inference. In connection with the first objection, Michael Dum-
mett [9] has suggested that we make a distinction between what hesga#izve
andexplanatoryarguments. A suasive argument is one in which we believe or ac-
cept the premises and are convinced or persuaded by the argument to accept the
conclusion. This is the kind of argument that a justification of a basic rule of infer-
ence cannot be because of circularity. If we genuinely doubt the correctness of our
own deductive practice we cannot be convinced by a rule-circular justification. In
an explanatory argument, on the other hand, we do not doubt the validity of our ba-
sic rules of inference. What the argument does esdalainwhy it is reasonable for
us to believe that they are valid. If we accept this distinction, and also accept that
explanatory arguments, at least in some sense, can provide us with justifications
of things we already believe, then it seems clear that our rules of deductive infer-
ence can be justified by giving an explanation of why they work the way they are
supposed to. For example, one might argue that a deductive practice achieves its
purpose if acting in accordance with the practice can never lead from true premises
to false conclusions. Suppose that we can show that this is indeed the case for a
given practice and that we can also explain why this is so. Then it seems that we
can justify the given practice in the sense that we can explain what its purpose is
and why this purpose will be achieved as long as we act in accordance with the
practice.

The second objection, the so-calleald company objectigsays that it is pos-
sible to give rule-circular justifications also for rules that are unsound. An example
that is often cited concerns Prior’s [26] connective ‘tonk’ which is supposed to be
governed by the following pair of inference rules:

A

AtonkB
AtonkB

(tonk-1) B

(tonk-E)

Imagine a community of reasoners whose deductive practice includes the con-
nective ‘tonk’ governed by these rules. It seems that they should be able to produce
a rule-circular argument for the validity of the rule tonk-1 along the following lines:

Ct. Boghossian [2, 3].
8Cf. Lewis Carroll [5].



(1) True@) Premise
(2) True@) tonk True@tonkB) (1) tonk-I
(3) True@AtonkB) (2) tonk-E
(4) True@) — True(AtonkB) (1)—(3)—-I

A rule-circular argument for the validity of tonk-E could be given along similar
lines.

By means of the ‘tonk’ rules, we can infer any sentence from any other sen-
tence. Given that there is at least one logical truth, one can even show that
is logically true for anyA. In other words, any logical system that contains the
connective ‘tonk’ is “exploding”, i.e., it proves any sentence whatsoever. It can
therefore seriously be doubted whether any deductive practice could contain a con-
nective like ‘tonk’. Or rather a practice involving ‘tonk’ would not deserve the
label ‘deductive’. A rule-circular justification for a rule of inference is supposed to
be given from the standpoint of a community of reasoners. In the case of ‘tonk’,
there appears to be no place for such a community. Hence, there is no rule-circular
justification for the validity of the rules for ‘tonk’.

Still there is another worry, namely that it would be impossible to rationally
criticise our own deductive practice. But, as we will see below (section 4.2), this
is not necessarily the case. It is possible that philosophical considerations would
lead us to accept a different system of logic than the one we were initially trying
to justify. If this happens and we take our arguments seriously, we could find
ourselves forced to revise our logical practice in order to make it consistent with
our most basic assumptions.

3 Justification and informal rigour

According to the standard, or received, viewfoamal logic has both gproof-
theoreticand asemanticpart. The proof-theoretic part consists of a formal lan-
guage together with a deductive system (for example, a logical calculus of propo-
sitional or first-order predicate logic) formulated therein. The semantic part is
usually taken to consist of a Tarski-style model-theoretic semantics, but there are
also other alternatives, for example a proof-theoretic semantics in the style of
Prawitz [25]. Providing an informal deductive practice with a justification might
be taken to involve the following steps:

¢ Informal semantic analysisThis means providing an informal notion of
valid inferenceand arguing that the aim of the practice is to construct infer-
ences that are valid in this sense. A deductive practicégasmally soundf
every chain of reasoning in accordance with the practice corresponds to an
argument that is valid in the informal sense. If every argument that is valid in
the informal sense can be reproduced as a piece of reasoning in accordance
with the practice, we say that the practicénformally complete



e Formalisation This step involves constructing farmal deductive system
and arguing that the informal practice can be represented (correctly and ad-
equately) within this system. A deductive systémis correct relative to
an informal deductive practice if each of its primitive rules of inference cor-
responds to a gap-free inferential step in accordance with the pracfice.
is adequatewith respect to a certain deductive practice if, for each chain
of reasoning in accordance with the practice, there is a deductignthmat
captures its fornd.

e Formal semantic analysisdere we define an exact notionfoirmal validity
and argue that this notion can be taken to represent (correctly and adequately)
the notion of informal validity. The formal notion of validity orrectif ev-
ery formally valid inference corresponds to arguments in natural language
that are informally valid. It issdequateaf for every natural language argu-
ment that is valid in the informal sense, there is a formal language argument
that is formally valid.

e Soundness and completeness probiisally, we provide, if possible, a math-
ematical proof that the deductive systéznis sound and complete with re-
spect to the notion of formal validityZ is sound if whenever a formulad
is provable inZ from a set of premisels, Ais is a logical consequence bf
according to the formal semantic$. is (strongly)completewith respect to
the formal semantics if the converse implication holds.

These steps can be represented by the following picture:

(1) Informal soundness
Informal and completeness , Informal
practice validity

(2) Correctnes (3) Correctness
and adequacy and adequacy

172}

Formal ! o Formal
deducibility ~ ~(4) Formal soundness  Validity
and completeness

Given a deductive practice, a notion of informal validity, and a logic consist-
ing of a formal deductive system with a formal semantics, we may formulate the
following hypotheses (compare the numbered arrows in the picture):

9The terminology of “correctness” and “adequacy” is due to Shapiro [34]. Shapiro stresses that
correctness “is a vague matter, not an all-or-nothing affair. If a deductive sy8tentmore or less)
correct, then each deduction ¢n (more or less) corresponds to a legitimate, or valid, derivation in
ordinary reasoning”. He adds: “Like correctness, adequacy is a vague matter, especially if we are
limiting its scope to certain kinds of arguments.” [34, p. 661].



(1) Informal soundness and completeness hypothd@sis notions ofinformal
logical proof andinformal logical derivation(from assumptions) are sound
and complete with respect to informal notions of logical validity and logical
consequence, respectively.

(2) Proof-theoretic representation hypothesiBhe notions ofintuitive logical
proof andintuitive logical derivation(from assumptions) are (correctly and
adequately) represented by the notiondasial proof andformal deriva-
tion, respectively.

(3) Semantic representation hypothesighe notions ofinformal logical truth
andinformal logical consequenaae (correctly and adequately) represented
by the corresponding formal notions of logical validity and logical conse-
guence, respectively.

(4) Formal soundness and completeness hypoth&bis notions oformal log-
ical proof andformal logical derivation(from assumptions) are sound and
complete with respect to the formal notions of logical validity and logical
consequence.

Arguing for the claims (1)—(3) is basically a matter of philosophical analysis.
Formal soundness and completeness, on the other hand, are mathematical claims
that demand mathematical proofs. In this connection, Kreisel [17] has made a
distinction betweennformal and formal rigour. Formal rigour consists in con-
structing formal deductive proofs and derivations in accordance with fixed (for-
mal) rules. Informal rigour, on the other hand, extends formal rigour by appealing
to uncontroversial properties of our intuitive notions. Informal rigour is applied,
for instance, when we by means of careful conceptual analysis lay down axioms for
some informal notion. Dedekind’s analysis of our concept of the system of natural
numbers, leading to the formulation of the Dedekind-Peano axioms, or Zermelo’s
analysis of the iterative notion of set, leading eventually to the formulation of the
axioms of ZF set theory, are examples of informal rigour. The claim that a given
intuitive notion can be represented by a corresponding precise mathematical one,
we may call arepresentation hypothesiKreisel argued that we sometimes can
provea representation hypothesis, by means of informal rigourous argumentation.

A famous application of Kreisel's notion of informal rigour is his proof that
for first-order languages, the informal notion lofjical validity is extensionally
equivalent to the exact notion ofodel-theoretic validitylnformal logical validity,
Kreisel analyses as truth @l interpretations, where the domain of an interpre-
tation may be either a set or a proper class. For example, the so-stdledard
modelfor set-theory(V,E), whereV is the collection of all sets (“the cumulative
hierarchy”) anck is the relation of membership between sets, is an interpretation
in this informal sense. It cannot be thought of as a set-theoretic entity, since its
domain is not a set. Intuitively, a set-theoretic sentemadsg true just in case it is
true in the standard model. Set-theoretic truth is an informal, or intuitive, notion



that cannot be studied by set-theoretic means. The same holds for the notion of
informal logical validity. The following relationship is an obvious consequence of
the definitions of these notions:

(1) If o is a set-theoretic sentence, thens logically valid (in the informal
sense) only ifx is true.

However, the following statement is far from obvious:

(2) If ais a set-theoretic sentence, thens model-theoretically valid only if
o is true.

Consider a given first-order language. [Bebe the set of all sentences in this
language that are theorems (provable) in (a given system of) first-order predicate
logic (with identity). LetVal be the set of informally valid sentences andvigitbe
the set of all sentences that are model-theoretically valid. Now, Kreisel shows that:

Val=val=D

Proof. Clearly,Val C val. By Godel's completeness theorem for first-order logic,
val C D. By the intuitive soundness of first-order logiz,C Val. Hence, the three
notions are extensionally equivalent. O

Suppose that we are considering a fragment of natural language for which
deductive reasoning can be (correctly and adequately) represented by first-order
logic. In view of Kreisel’s result, the following diagram commutes for such a frag-
ment:

Informal soundness

Informal and completeness
deductive o i Informal
practice y
Correctness| Correctness
and adequacy and adequacy
First-order Model-

o e e theoretic
deducibility Formal soundness validity
and completeness

The scope of this result is not clear, since it is not obvious how much of in-
formal deductive practice can be represented within first-order logic. In particular,
it is not clear whether first-order set theory (ZFC) is adequate for the representa-
tion of ordinary mathematical reasoning. Some philosophers—Quine [27] is one
example—claim that it is. But others, like Shapiro [32], have argued that only full
second-order logic has the resources for adequately representing informal mathe-
matical reasoning. However, completeness does not hold for second-order logic,

9



i.e. there is no formal deductive system which is complete for full second-order
logic. Moreover, there is a simple example, due to Vann McGee [19], showing
that the equivalence between informal logical validity and model-theoretic validity
need not hold when we increase the expressive resources of the object language:

Consider the language which is obtained from the language of first-order set
theory by adding a generalised quantifigps inf as a new logical constant, where
(Jabs infX) ¢ (X) means:

for absolutely infinitely many, a.(x).

The concept of th@bsolutely infinites due to Cantor. Intuitively a class is ab-
solutely infinite if it is bigger than any set, i.e., if it is a proper class. Hence,
(Jabs infX) ¢ (X) is true in an interpretatiof if and only if the collection of all mem-
bers of the domain di satisfyinga is a proper class.

Consider now the sentence

(Fabs infX) (X = X).

This sentence is true in the univelef sets: there are absolutely infinitely many
things in the universe of sets. However, there is no (set) model in which it is true,
since any model has a set as its domain. Hence,

—(Jabs infX) (X = X)

is an example o& false sentence that is true in all (set) moddikat is, it is false
but valid in the model-theoretic sense. It is clear from this that the implication

Truth in all (set) models- logical validity,

fails for the language in question. This is so, since logically valid sentences must
be true.

For a certain fragment of natural language (“the first-order fragment”), how-
ever, we seem to have a justification of sorts for first-order logic in view of the
equivalence of the notions of first-order provability, intuitive logical validity, and
model-theoretic validity. For this fragment, it appears that the proof-theoretic and
semantic concepts are all interwoven into a coherent, mutually supporting struc-
ture.

4 Three types of justification of deductive logic

In the following, we are going to pursue three ideas for defining logical conse-
guence and justifying deductive inference:

() in terms of truth-preservation,
(i) in terms of assertability- or verifiability-conditions, and
(iii) in terms of rational acceptance and rejection.

10



4.1 Truth-theoretic justification

In this section, we take the classical notions of truth and falsity as given and use
them to explain the meaning of the logical constants and the validity of the logical
rules of inference. In accordance with classical truth-conditional semantics—going
back to Frege and the early Wittgenstein—the meanings of the logical constants
are specified in terms @futh-conditions or in the case of the quantifiers, in terms

of satisfaction-conditionsThe logical validity of inferences is then explicated in
terms of thepreservationof truth (or satisfaction) from premises to conclusion.
Given the truth-conditions (or, in the more general case, satisfaction-conditions)
for the logical constants, one can then show that the rules of inference of classical
logic aresound i.e. truth-preserving. It is assumed that this kind of argument is
available to a sufficiently sophisticated reasoner who can thereby give a theoretical
explanation (amxplanatory justificatiomn Dummett’s sense) of her own deductive
practice. Such an explanation will be rule-circular, but will lead to a theoretical
understanding of the given practice. By such an explanation the reasoner can, it is
hoped, achieve a coherence between her deductive practice and her logical theory.

Let us now outline how the above line of reasoning can be made exflicit.
We assume that every sentence in the language under study has exactly one of
the truth-value§rueandFalse According to the classical truth-conditional view,
the meaning of a declarative sentence is its truth-conditions, and the meaning of a
meaningful part of a sentence is the contribution it makes to the truth-conditions
of sentences of which it is a part. To understand the meaning of a meaningful
expression is to know its meaning, i.e., in the case of a sentence to know its truth-
conditions, and in the case of a meaningful subsentential expression to know its
contribution to the truth-conditions of sentences in which it is a part.

The question now arises how we should understand the notion of truth-con-
ditions. One way, going back at least to Carnap [4], is to explicate the truth-
conditions of a sentence as an abstract entity, namely as a function from possible
worlds (possible circumstances, situations) to truth-values. The idea is that the
meaning (or to use Carnap’s terminology, thiensior) of a declarative sentence
that does not involve context-sensitive elements like tense, indexicals or demon-
stratives, is the function which specifies under which circumstances, in which
“possible worlds”, the sentence is true. We may speak of such a function as the
(Carnapian)propositionexpressed by the sentence. Equivalently we can identify
the Carnapian proposition expressed by a sentence with the set of possible worlds
(or situations) where the sentence is true.

According to classical possible worlds semantics, every meaningful expres-
sionE of a language (without context-dependent elements) has an intension which
specifies for every possible worlg an appropriatextensiorfor the expressiokk
in the worldu. If E is a singular term, then the extensionkbfs the object thaE

10There are various ways of developing truth-conditional semantic: the one sketched here being
only one of the alternatives, another one being to follow Davidson’s [6] truth-theoretic approach
inspired by the early work of Tarski on semantic truth definitions.

11



refers to (relative ta), if E is ann-ary predicate expression, then the extension of
E is ann-ary (set-theoretic) relation. Finally, E is a sentence, the extension of
E is its truth-value (relative ta). We write [E] for the intension ofE and [E]
for the extension oE in the possible worldl. It is assumed that the semantics is
compositionaln the sense that the intension of a complex expression is always a
function of the intensions of its parts (tpeinciple of intensionality.

In terms of this semantical framework we can specify the meaning (truth-
conditions) of the classical logical connectives as follows:

For any possible world,

(1) AABistrueinuiff Aistrue inuandB is true inu.
(2) AvBistrue inuiff Ais true inuorBis true inu.
(3) A— Bistrue inuiff either Ais false inu or B is true inu (or both).
(4) —Ais true inuiff Ais false inu.
(Or, if we define-A asA — L, we stipulate that_ is false inu, for anyu.)

A connective isextensionalor truth-functiona) if for any world u, the truth-
value inu of a sentence built up by means of the connective from other sentences is
a function of the truth-values of these sentences. For example, a binary connective
x is extensional (or truth-functional), if there exists a truth-functiosuch that for
any possible world,

(Ext) [A%B]u=t.([Alu [B]u)-

The classical connectives Vv, —, 1 defined above are obviously extensional.

In addition to extensional connectives, the language may contain various inten-
sional connectives satisfying the principle of intensionality. For instaneasiain
intensional binary connective, then there is a funckpsuch that for all sentences
A B,

(Comp) [A«B] = FA([Al [BI).

Within this framework, it seems reasonable to say that a binary connedtve
meaningful only if there exists a functidf (specifying the meaning, or intension,
of %) satisfying the condition (Comp). At the end of this section, we show that
‘tonk’ is not meaningful in this sense. The assumption that ‘tonk’ has a meaning
leads to a contradiction.

Next, we turn to the notion dbgical consequenceThe following conditions
are usually considered necessary for a sent@rtoebe a logical consequence of a
setl’ of premises:

() itis impossible for all the premises Into be true but the conclusioh to
be false; in other words, the inference from the premises to the conclusion is
necessarily truth-preserving.

(2) itisin virtue of the meanings of the logical constants that the inference from
premises to conclusion is necessarily truth-preserving.

12



We assume that these requirements are also jointly sufficient for logical conse-
guence. Accordingly, we say thatis alogical consequencef I in the intuitive
sensdf, and only if, the conditions (1) and (2) are both satisfied. We say that an
argument (or an inference) istuitively valid if its conclusion is a logical conse-
guence (in the intuitive sense) of its premises.

Once we have agreed on an intuitive analysis of the notion of logical conse-
guence, we can turn to the task of giving an exact mathematical characterisation.
Suppose that our languagé contains the standard Boolean connectives, —,

— and in addition some intensional connectives, for instance a unary conrigctive
and a binary connective. A modelfor . is a structurelt = (U, []), whereU

is a non-empty set, [ ] is a function from the sentencesdinto 2V (i.e., the set

of all functions fromU to the set{0,1}, where 0 and 1 represent the truth-values
False and True, respectively), and the following conditions are satisfied:

(1) [AABlu=1iff[Alu=[Blu=1

(2) [AVvB]y=1iff max([Alu [Blu) =1

(3) [A—B]Ju=1iff not: [A]u=1and [B].=0.
4) [-Alu=1iff[Aly=0.

U is called thedomainor universeof the model and the elements Udf are
calledpossible worlds For each sentend® [A] is the intension ofA in 9t and,
forue U, [A]y is the extension (or truth-value) éfat u (relative to9t). We say
that A is true at the worlds in the modeft (in symbols, 9, uE A) if [A]l, =1
holds int. The modebJt is said to be classical with respect to the connectives
andsx if there are functiong : 2¥ — 2Y andF, : 2V x 2V — 2Y such that:

(5) [DA] = Fo([AD-
(6) [A«B] = F.([Al [BD).

Intuitively, these conditions mean that the connectivesnd are intensional
in 901

Let K be a non-empty class of models. We say thds a K-consequence
of I (in symbols,I” Ex A) if for every model?t in K and every worldu in 9, if
M, ukE Bforall sentenceBin I, thendt, uE A. WhenK is the class of all models,
we say thaf is atautological consequenas I.

It is easy to see that the rules of classical natural deduction for propositional
logic are sound relative tek for any classK of models. Moreover, by the strong
completeness theorem for propositional logids a tautological consequence of
I if and only if A is formally derivable fronT in the system of classical natural
deduction.

We end this section with a discussion of the connective ‘tonk’. We assume that
the object language contains a connective ‘tonk’ and that there is a non-empty class
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of modelsK validating the tonk-rules. Then we have for any mao##elin K and
any worldu in 9t:

(@) if [A]u=1, then [AtonkB] =1,

(b) if [AtonkB] =1, then B],=1.
Hence, for allA, B

(c) if[A],=1, then B],=1.

But [T]u=1 (T=gi—L). Thus [B],=1 for all B. In particular, [L],=1, which
contradicts the definition of truth in a model. Hence, the ‘tonk’-connective is not
meaningful within the truth-conditional semantics presented here.

4.2 \erificationist justification

In order to accept the kind of justification of deductive inference that was given
in the previous section, one must accept the assumptions on which the argument
depends. This seems to involve the adoptiosarhantic realispncharacterised by
Miller [20] as the view that the understanding of a sentence consists in grasping its
truth-conditions and that these conditions are potentialtpgnition-transcendent
i.e. there can be cases where the truth-conditions of a sentence obtain without us
having any means of recognising that they do. Opponents of semantic realism,
e.g. Dummett [8], have argued that this view is incompatible with the idea, going
back to Wittgenstein, that our understanding of the meaning of a sentence has to be
something that we are capableménifestinghrough the way we use the sentence
(themanifestability requirement Their argument runs along the following lines:
Suppose that we can understand the sentences of a language by grasping their
truth-conditions, i.e. by knowing what it is for the sentences to be true. If commu-
nication and learning is to be possible, there must be some way formaridest
that we have understood a sentence andb®ervethat someone else has under-
stood. Sometimes this can be accomplished by the use of a synonymous sentence.
But sooner or later we reach a point where we can no longer state our understand-
ing explicitly in words. The idea then is that we must manifest the knowledge that
constitutes our understanding of a certain sentence through some practical abil-
ity connected to the way we use this sentence. When the sentence is decidable,
in the sense that we have a procedure for determining whether it is true or false,
we can say that our understanding can be manifested through our ability to apply
this decision procedure and place ourselves in a position where we can recognise
the truth-value of the sentence. However, there are sentences—for instance many
sentences of mathematical theories, or sentences about the past—that we think
we understand even though there is no method for determining their truth-value.
For such sentences it seems that the knowledge that, according to semantic real-
ism, constitutes our understanding of them goes beyond what can be manifested
through any practical ability. We simply cannot find any linguistic behaviour that
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corresponds to the ability of grasping what it is for these undecidable sentences
to be true in cases when we have no means of recognising that they are. So we
must either reject the idea that the understanding of a sentence consists in grasping
its truth-conditions, or redefine truth in a way that does not make it recognition-
transcendent.

Miller [20] distinguishes between a strong and a weak version of this so-called
manifestation argument. According to the strong version, advocated by Dummett,
semantic realism is false and must be rejeéte@he weak version, on the other
hand, only claims that we have no reason to prefer semantic realism to semantic
anti-realism. Perhaps this is the best way to understand the argument: not as a
conclusive argument forcing us to abandon semantic realism, but rather as present-
ing achallengeto the semantic realist, namely, to explain how our knowledge of
truth-conditions is manifested in our use of language.

If this challenge is to be taken seriously, we need an alternative to truth-con-
ditional semantics, an explanation of meaning and logical consequence that avoids
recognition-transcendence. In the special case of mathematics, Dummett [8] and
Prawitz [24] suggest that the most natural starting point for such an alternative is
to use the notion gbroof instead of truth as fundamental. On this conception, it is
not the preservation of (classical) truth from premises to conclusion that makes a
mathematical argument valid, but the preservation of provability: the validity of an
argument is a guarantee that if we can prove the premises, then we can also prove
the conclusion.

The practical ability through which knowledge of the meaning of a mathemat-
ical statement can be manifested is the ability to recognise a proof of the statement
when one is presented to us. We should note that this is not the same as to say that
understanding lies in the ability to actually construct a proof or to decide whether
a statement is provable or not. Dummett explicitly points out that “our understand-
ing of a statement consists in a capacity, not necessarily to find a proof, but only to
recognise one when found2 1t seems to be a part of the intuitive notion of a proof
that if something is a proof of a statemeytthen it is possible to know that it f$.
Hence, if knowledge of the meaning Afmanifests itself in the ability to recog-

11ct. Prawitz [24] and Pagin [21] for analyses of Dummett's version of the manifestability argu-
ment.

17110, p. 70].

13¢f. Kreisel [16, pp. 201-202], “Theenseof a mathematical assertion denoted by a linguistic
objectA is intuitionistically determined (or understood) if we have laid down what constructions
constitute goroofof A, i.e., if we have a constructian, such that, for any constructianra(c) =0
if cis a proof ofA andra(c) =1 if cis not a proof ofA: the logical particles in this explanation
are interpreted truth functionally, since we are adopting the basic intuitionistic idealization that we
can recognize a proof when we see one, andasis decidable. (Note that this applies pooof,
not provability).” Compare also Dummett [10, p. 110], “The fundamental idea is that the grasp of
the meaning of a mathematical statement consists not in a knowledge of what has to be the case,
independently of our means of knowing whether it is so, for the statement to be true, but in an ability
to recognize, for any mathematical construction, whether or not it constitutes a proof of the statement;
an assertion of such a statement is to be construed, not as a claim that it is true, but as a claim that a
proof of it exists or can be constructed.”
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nise a proof (or a refutation) & when one is presented to us, then it seems that
our knowledge of the meaning éfcan be manifested in our use A&f It appears,
therefore, that an approach to meaning based on the notion of proof of the kind
proposed by Dummett and Prawitz will satisfy the manifestability requirement.

Let us now explain, in rough outline, what a theory of meaning of the pro-
posed kind might look like. For simplicity we focus on the language of arithmetic.
The so-calledBHK-interpretation(Brouwer-Heyting-Kolmogorov) of intuitionis-
tic mathematics consists in explaining the meaning of a sent@rimedefining,
in a recursive manner, what a direct, ganonica) proof of A would consist in.
Given that we know what constitutes a canonical proof of an atomic sentence, we
can define the notion of canonical proof of complex sentences in the following way
(which we can also see as a specification of the meaning of the logical condfants):

To form a canonical proof of itis necessary and sufficient to have

ANB canonical proofs oA and ofB;

AvVB a canonical proof oA or of B;

A—B a procedure which yields a canonical proof
of B when applied to a canonical proof of
A

—A a procedure which transforms any canoni-

cal proof ofA into a canonical proof of a
contradiction (1);

VXA(X) a procedure which yields a canonical proof
of A(n) when applied to any numera|

IXA(X) a canonical proof ofA(n) for some nu-
meraln.

It is assumed that nothing is a proof of

In this definition, the notion of procedures taken as primitive. Someone who
understands this notion together with the above definition, can also be credited with
an understanding of the notion of a canonical proof. If we identifyntle@ningof
a statemen# with the propertyPa of being a canonical proof d&, then a person
who knows the meaning @&, should in principle be able to decide whether any
construction has the properBs of being a proof ofA, or not. It is through this
ability that the person’s understandingdmanifests itself.

The BHK-interpretation immediately provides us with justifications of the in-
troduction rules for the logical constants v, —, V and3. These rules can be
viewed as prescriptions for constructing canonical proofs. For example, the rule
(—-I), can be read as saying that any procedure which yields a canonical proof of
B when applied to a canonical proof Af yields a canonical proof ok — B. We
can also show, in a more indirect way, that the elimination rules\fov, —, vV
and3 are valid under the BHK-interpretation. Consider, for instaneg;l) i.e.,
modus ponens Given canonical proofs of the premisAsand A — B, one can
obtain a canonical proof d by concatenating the canonical prooffvith the

145ee Prawitz [24, p. 26].
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the canonical proof oA — B. Moreover, the the BHK-interpretation validates the
rules (-1) and (—-E) for negation. Hence, all of Gentzen'’s natural deduction rules
for intuitionistic predicate logic are validated by the BHK-interpretation.

However, we cannot show that the law of excluded middie—-A, is valid on
the BHK-interpretation. One has the right to assert a particular instanceA of
the law of excluded middle, only if one can construct either a canonical proof of
A or a canonical proof of-A. But we have no guarantee that we always will be
able to accomplish this. L&k be an undecided sentence, i.e., a sentence that we
have not been able yet either to prove or disprove. For instakceuld be the
sentence “There exists an odd perfect number”. Then there is no guarantee that we
will ever find a proof ofA. Nor is there a guarantee that we will find a proof-c.
Hence, we have no right to assAn —A. Thus, the law of excluded middle cannot
be justified solely on the basis of the BHK-interpretation. It should be pointed out
that——(AV —A) is valid on the BHK-interpretation, so we can never hope to find
a statement A for whick(AV —A) holds. In other words, we can never expect to
find, on the basis of the BHK-interpretation, an actual counterexample to the law
of excluded middle.

An important part of Gentzen'’s proof-theoretic analysis of our deductive prac-
tice is his discovery of a certain symmetry between the introduction rules and the
elimination rules for the logical constants. As Prawitz [23] puts it:

the corresponding introductions and eliminations iaversesof each
other. The sense in which an elimination, say, is the inverse of the corre-
sponding introduction is roughly this: the conclusion obtained by an elimi-
nation does not say anything more than what must already have been obtained
if the major premiss of the elimination was inferred by an introduction. [...]
In other words, a proof of the conclusion of an elimination is already “con-
tained” in the proofs of the premises when the major premiss is inferred by
introduction. We shall refer to this by saying that the pairs of corresponding
introductions and eliminations satisfy thersion principle

The inversion principle is closely connected with Gentzen’s [13, p. 80] seminal
idea that the meaning of a logical constant is determined by its introduction rule in
a system of natural deduction:

The introductions represent, as it were, the ‘definitions’ of the symbols con-
cerned, and the eliminations are no more, in the final analysis, than the con-
sequences of these definitions. This fact may be expressed as follows: In
eliminating a symbol, we may use the formula with whose terminal sym-
bol we are dealing only in ‘the sense afforded it by the introduction of that
symbol.

The connection with the BHK-interpretation is immediate as soon as we view the
introduction rules as prescriptions for constructing canonical proofs. All the other
rules of inference in a system of natural deduction must, on this interpretation,
be justifiable on the basis of the meaning provided for the logical constants by
the introduction rules. However, it is easy to see that the law of excluded middle
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is not so justifiable. Thus, the Gentzen-Prawitz view that all rules of inference
be justifiable on the basis of the meaning given to the logical constants by the
introduction rules leads toravisionof our logical practice (that we have assumed
to be in conformity with classical logic).

Gentzen’s proof-theoretic analysis can be applied in a straightforward way to
the connective ‘tonk®® It is easily seen that the rules of ‘tonk’ do not satisfy the
inversion principle: the elimination rule for ‘tonk’ cannot be justified on the basis
of its introduction rule. Hence, ‘tonk’ does not satisfy Gentzen’s and Prawitz's
requirements on a meaningful logical connective. As Tennant [37, pp. 637-638]
puts the point:

Prior’s introduction rule [tonk-1] confers oA [tonk] B the meaningA re-
gardless whethelB’. By contrast, Prior's elimination rule [tonk-E] would
confer onA [tonk] B the meaning ‘Regardless wheth®&rB’ [...] There is

no logical operator that these two rules, taken together, succeed in character-

izing [...]

The proof-theoretic theory of meaning advocated by Dummett and Prawitz has
many attractive features. However, it is revisionist in nature. Adherents of this
approach advocate abandoning classical logic in favour of some weaker logic sat-
isfying the inversion principle. However, we were looking for a justification of ex-
isting practice, which we assumed to be in accordance with classical logic. Hence,
we cannot be satisfied with the kind of approach considered in this section.

4.3 Epistemic justification

In this section, we will try to give a justification of classical propositional logic
without assuming, at the outset, a notion of truth or proof. Instead, we will start
out from the idea of a sentenéebeing a logical consequence of a Eet and only

if the following two conditions are satisfied:

(1) itis incoherent to accept all the sentenceb ahd simultaneously rejegt
(2) itis in virtue of the meaning of the logical constants that (1) héfds.

That is, we will start out from thepistemic attitudesf acceptancendrejection
that an epistemic agent might have towards a sent@nég¢a given time a rational
agent might either:

15¢ft. Belnap [1] and Tennant [37].

181n his bookRational Belief Systenja1], Brian Ellis develops an epistemic approach to logical
validity along these lines: “[...] as validity is here understood, an argument is valid iff there is no
rational belief system in which its premises are accepted and its conclusion rejected. [...] it follows
from my requirements on validity that to understand a statement sufficiently for all purposes of logic
we need to know its acceptability conditions, i.e., the conditions under which it may be accepted or
rejected by an ideally rational man.” Ellis’s belief systems are essentially what we hebeliadl
states Restall [28] contains an epistemic approach to (multiple-conclusion) logical consequence
which is similar to the one described here. He does not mention the equivalence between the epis-
temic semantics and Scott’s two-valued truth-value semantics (see Theorems 1 and 2, below), which
is the main point of this section.
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(1) accept A
(2) reject A or
(3) holdAin suspencgi.e., neither accept nor rejeét

It is not possible for a rational agent, simultaneously, both to accept and reject
one and the same sentence.

We assume that a certain languagfebe given which is closed under the sen-
tential connectives\, v, —, -. Thebelief state f an agent (at a certain time)
is represented by a systelif; A] consisting of the seff of all the sentences that
the agent accepts i (the acceptance satf s) together with the seA of all the
sentences that she rejectssifthe rejection setof s). We shall assume that both
setsl” andA are finite. The intuitive motivation for this requirement is that we are
only concerned with finite agents.

Moreover, we assume that there is alSaif all possible belief states. We may
think of the elements dK as the states that are epistemically possible for a given
agent. Thafl';A] € K means intuitively that it is possible for the agent to accept
all the sentences ih and, at the same time, reject all the sentencds iSuch a
non-empty sekK of belief states, we call belief system

Next we might ask what requirements it is reasonable to impose on the belief
systemK. In other words we are going to formulate requirements that an agent’s
belief system should satisfy in order to be rational. We have already mentioned
two such requirements:

(R1) The acceptance detand the rejection sét of a belief statél"; A] € K should
both be finite.
(R2) If ;A is a belief state ifK, then NA = &.

We find it natural to impose two additional requirements:

(R3) Ifs=[;Al e Kandl" CT andA’ C A, thens = [I";A'] € K. In this case,
we may say thas is asubstateof s (andsis anextensiorof §). Thus, any
substate of a belief state is a belief state.

(R4) If s=[I';A] € K andAis any sentence i, then either

s =[FTU{A};AleKor

s’ =[;AU{A}] e K.
That is, it should be possible for an agent being in the sfgt&] to add a
sentence either to his acceptance set or to his rejection set.

Finally, we assume that the connectives/, —, — satisfy:

(A [AABT;Al €K iff [AB,I;A €K
(v) [;AVBAJeK iff [ABA €K
(—) [MA—BA €K iff [[LABA €K
) F-AAeK iff [AAeK
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We say that a belief systekis coherenif it satisfies the conditions (R1)—(R4)
and (\), (V), (—), (—) above.

Suppose is a coherent belief system. We say thd-entailsA (in symbols,
I Fx A) if and only if [I[;A] ¢ K. Intuitively, I K-entailsA iff there is no belief
statesin K such that" is the acceptance set sandA is the rejection set dd. It
is easily seen thd-entailment is a Scott-type (multiple-conclusi@monsequence
relation, i.e., it satisfies the following conditiorié:

(R) IfIrnA#g, thenl g A.

(M) fTFgA TCI' ACA, thenl I A.

(C) I AFgAandl Fg A A, thenl Fg A.
Moreover, we have for the connectives:

MAB g A
FLAAB Fg A

()

M Fx ABA
I Fx AVB,A

(V)

M A Fg BA
g A—BA

(=)

Mg AA
MNn-Atrg A

)

Each of these inference rules works both ways: the assertions above and below the
double line are said to be equivalent.

We have seen that every coherent belief syskengives rise to a consequence
relation satisfying the usual laws of classical propositional logic. It is a well-known
result of Scott [30, 31] that every consequence relation has a two-valued truth-value
semantics. Let us outline this result.

We first introduce the notions of a valuation and a semanticgalBation vis
a function which assigns to any sentercene of the truth values 0 (false) or 1
(true). A valuatiorv is Booleanif it satisfies the requirements

V(AAB)=1 iff Vv(A)=v(B)=1,
V(AVB) = iff  v(A)=v(B)=0,
V(A — ) = iff  v(A)=1andv(B) =0,

v(-A) =1 iff  v(A)=0.
A (two-valued)semanticss a non-empty set of valuations. A semantics is Boolean
if and only if each of its members is Boolean.

1"This notion was introduced by Dana Scott [30, 31] as a generalisation of Tarski’s notion of a
consequence operation

20



Theorem 1 (Scott).Let+ be a consequence relation. Then there exists a semantics
V such that for all finitd™, A: T = Aif and only if for allv e V, if v(A) = 1 for all
aer,thenv(B) =1 for someB € A. Moreover)V is Boolean if- is Boolean, i.e.,
satisfies the conditiong\), (V),(—), ().

Hence any coherent belief systéndetermines a Boolean consequence rela-
tion Fx. Moreover, there exists a Boolean semanticsuch that- is the conse-
guence relation determined by

Now we might definef” - A (A is aclassical consequena# I) if and only if
for every Boolean valuation whenevew assigns the value 1 (true) to all sentences
in I, thenv also assigns 1 to some sentencAilhen we have:

Theorem 2. T - Aifand only if ' - A for every coherent belief systeku

In other words, the epistemic semantics presented here gives the same propositional
logic as classical two-valued semantiés.

The above justification of classical logic in terms of the epistemic notions of
acceptance and rejection can be generalised to the case of predicaté logic.

Tor Sandqvist has pointed out that the approach presented here only requires
of a rational agent that she be coherent, namely that she not accepf aoket
sentences while at the same time rejecting ansdgtich is a logical consequence
of . However, it is not required that the agent accept sentences that are logical
consequences of sentences that she accept. Hence, the agent neddgioalhe
omniscient This is as it should be, we think. Sandqvist, however, also points out
that an agent that is rational in our sense is not even required to accept known
consequences of premises that she accadpsi{re under known consequences
This Sandgqvist regards as unintuitive. Arguably, an agent with a coherent belief
system who has a bivalent notion of truth, ought to satisfy closure under known
consequences. Assume namely that the agent know\tluagically implies B.

Then she can reason as follows: | know tAdogically impliesB. Hence, | know
thatA cannot be true unlegalso be true. Thus, accepting the truthAatommits
me to accepting the truth &.

However, it is not part of the approach described here that the agent be in
possession of a notion of truth—Iet alone a bivalent one. That she does is consistent
with the approach, but not entailed by it. In view of Theorem 2, however, any
coherent agent may be interpreted as having a bivalent notion of truth. Moreover,
for an agent having such a notion, it seems reasonable to require that she satisfies
closure under known logical consequences.

18Notice that the justification we have given here is not acceptable to an intuitionist, since we have
freely made use of classical reasoning in the metalanguage. In his dissertation [29], Tor Sandqvist
has given an account, based on inferentialist ideas, of the meanings of the standard logical operators
of predicate logic that validates classical logic and does not presuppose a recognition-transcendent
notion of truth. Sandqvist’s approach only makes use of constructively valid reasoning in the meta-
language.

19¢ft. Gabbay [12, Chapter 0].
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5 The paradox of inference

Our main concern so far has been to justify deduction by showing that it is a valid
form of reasoning. Given that such a justification is successful, it could be in-
terpreted as saying that the conclusion of a deductive argument in some sense
is already contained in the premises. However, then it seems hard to explain
how deductive inference can yield “new” knowledge. If the conclusion is already
contained in the premises, one is tempted to infer that someone who knows the
premises of a valid argument also knows the conclusion. But do we really know all
the logical consequences of what we knéW?

The answer to this question lies in the distinction betwlegital consequence
andlogical inference Logical consequence is an objective relation between state-
ments. A may be a logical consequence Bivithout us knowing that this is the
case. Logical inference, on the other hand, is a process by which we gain knowl-
edge that some statement is in fact a logical consequence of some premises.

Still there may be a problem whether someone, after having gone through a
complicated mathematical proof, really can be said to know the conclusion of the
proof. Perhaps one could point to inference beingjiable proces®f gaining new
truths. Hence, on a reliabilist conception of knowledge, someone who has actually
proved a theorem from known premises has arrived at the conclusion by a reliable
process, and can therefore be said to have knowledge of it.

6 Conclusion

If the explanation of the validity of the laws of classical logic given in section 4.3

in terms of the epistemic attitudes of acceptance and rejection is correct, then we
seem to have been able to justify our actual deductive practice in a way that does not
presuppose a primitive notion of truth or questionable metaphysical assumptions.
We could still have access to a notion of truth. This notion could then be explained
in a deflationary manner by the T-schema:

() ‘Aistrueiff A

suitably restricted to avoid semantic paradoxes; or deftnéd Tarski [36] or
Kripke [18].
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