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Abstract: 

To obtain effective fusion results of multi source 
evidences with different importance, an evidence 
fusion method with importance discounting factors 
based on neutrosopic probability analysis in DSmT 
framework is proposed. First, the reasonable 
evidence sources are selected out based on the 
statistical analysis of the pignistic probability 
functions of single focal elements. Secondly, the 
neutrosophic probability analysis is conducted 
based on the similarities of the pignistic probability 
functions from the prior evidence knowledge of the 
reasonable evidence sources. Thirdly, the 
importance discounting factors of the reasonable 
evidence sources are obtained based on the 
neutrosophic probability analysis and the reliability 

discounting factors of the real-time evidences are 
calculated based on probabilistic-based distances. 
Fourthly, the real-time evidences are discounted by 
the importance discounting factors and then the 
evidences with the mass assignments of 
neutrosophic empty sets are discounted by the 
reliability discounting factors. Finally, 
DSmT+PCR5 of importance discounted evidences 
is applied. Experimental examples show that the 
decision results based on the proposed fusion 
method are different from the results based on the 
existed fusion methods. Simulation experiments of 
recognition fusion are performed and the 
superiority of proposed method is testified well by 
the simulation results. 

Keywords: Information fusion; Belief function; Dezert-Smarandache Theory; Neutrosophic probability; 
Importance discounting factors. 

1. Introduction

As a high-level and commonly applicable key 
technology, information fusion can integrate partial 
information from multisource, and decrease potential 
redundant and incompatible information between 
different sources, thus reducing uncertainties and 
improving the quick and correct decision ability of 
high intelligence systems. It has drawn wide 
attention attention by scholars and has found many 
successful applications in the military and economy 
fields in recent years [1-9]. With the increment of 
information environmental complexity, effective 
highly conflict evidence reasoning has huge demands 
on information fusion. Belief function also called 
evidence theory which includes Dempster- Shafer 
theory (DST) and Dezert-Smarandache theory 
(DSmT) has made great efforts and contributions to 
solve this problem. Dempster-Shafer theory (DST) 
[10,11] has been commonly applied in information 
fusion field since it can represent uncertainty and full 
ignorance effectively and includes Bayesian theory 

as a special case. Although very attractive, DST has 
some limitations, especially in dealing with highly 
conflict evidences fusion [9]. DSmT, jointly 
proposed by Dezert and Smarandache, can be 
considered as an extension of DST. DSmT can solve 
the complex fusion problems beyond the exclusive 
limit of the DST discernment framework and it can 
get more reasonable fusion results when multisource 
evidences are highly conflicting and the refinement 
of the discernment framework is unavailable. 
Recently, DSmT has many successful applications in 
many areas, such as, Map Reconstruction of Robot 
[12,13], Clustering [14,15], Target Type Tracking 
[16,17], Image Processing [18], Data Classification 
[19-21], Decision Making Support [22], Sonar 
Imagery [23], and so on. Recently the research on the 
discounting factors based on DST or DSmT have 
been done by many scholars [24,25]. Smarandache 
and et al [24] put forward that discounting factors in 
the procedure of evidence fusion should conclude 
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importance discounting factors and reliability 
discounting factors, and they also proved that 
effective fusion could not be carried out by Dempster 
combination rules when the importance discounting 
factors were considered. However, the method for 
calculating the importance discounting factors was 
not mentioned. A method for calculating importance 
or reliability discounting factors was proposed in 
article [25]. However, the importance and reliability 
discounting factors could not be distinguished and 
the focal element of empty set or full ignorance was 
processed based on DST. As the exhaustive limit of 
DST, it could not process empty set effectively. So, 
the fusion results based on importance and reliability 

discounting factors are the same in [25], which is not 
consist with real situation. In this paper, an evidence 
fusion method with importance discounting factors 
based on neutrosophic probability analysis in DSmT 
framework is proposed. In Section 2, basic theories 
including DST, DSmT and the dissimilarity measure 
of evidences are introduced briefly. In Section 3, the 
contents and procedure of the proposed fusion 
method are given. In Section 4, simulation 
experiments in the application background of 
recognition fusion are also performed for testifying 
the superiority of proposed method. In Section 5, the 
conclusions are given. 

2. Basic Theories

2.1. DST 

Let Θ = {𝜃1, 𝜃2, 𝐿, 𝜃𝑛}  be the discernment
frame having n exhaustive and exclusive hypotheses 
𝜃𝑖 , 𝑖 = 1, 2, 𝐿, 𝑛. The exhaustive and exclusive limits
of DST assume that the refinement of the fusion 
problem is accessible and the hypotheses are 

precisely defined. The set of all subsets of Θ , 
denoted by 2Θ, is defined as the power set of Θ. 2Θ 
is under closed-world assumption. If the discernment 
frame Θ is defined as above, the power set can be 
obtained as follows [10,11]: 

2Θ = {∅, {𝜃1}, {𝜃2}, 𝐿, {𝜃𝑛}, {𝜃1, 𝜃2}, 𝐿, {𝜃1, 𝜃2, 𝐿, 𝜃𝑛}}. (1) 
In Shafer’s model, a basic belief assignment 

(bba) 𝑚(. ): 2Θ → [0,1] which consists evidences is 
defined by 𝑚𝑘(∅) = 0 and ∑ 𝑚(𝑎) = 1𝐴∈2Θ . (2) 

The DST rule of combination (also called the 
Dempster combination rule) can be considered as a 
conjunctive normalized rule on the power set 2Θ . 
The fusion results based on the Dempster 
combination rule are obtained by the bba’s products 

of the focal elements from different evidences which 
intersect to get the focal elements of the results. DST 
also assumes that the evidences are independent. The 
ith evidence source’s bba is denoted 𝑚𝑖 . The
Dempster combination rule is given by [10,11]: 

(𝑚1⊕𝑚2)(𝐶) =
1

1−𝐾
∑ 𝑚1(𝐴)𝑚2(𝐵)𝐴𝐼 𝐵=𝐶 , ∀𝐶 ⊆ Θ (3) 

𝐾 = ∑ 𝑚1(𝐴)𝑚2(𝐵)𝐴,𝐵⊆Θ
𝐴𝐼 𝐵=∅

(4) 

In some applications of multisource evidences 
fusion, some evidences influenced by the noise or 
some other conditions are highly conflicting with the 
other evidences. The reliability of an evidence can 
represent its accuracy degree of describing the given 
problem. The reliability discounting factor 𝛼 in [0, 
1] is considered as the quantization of the reliability
of an evidence. The reliability discounting method of 

DST (also called the Shafer’s discounting method) is 
widely accepted and applied. The method consists of 
two steps. First, the mass assignments of focal 
elements are multiplied by the reliability discounting 
factor 𝛼. Second, all discounted mass assignments of 
the evidence are transferred to the focal element of 
full ignorance Θ. The Shafer’s discounting method 
can be mathematically defined as follows [10,11] 

{
𝑚𝛼(𝑋) = 𝛼 ∙ 𝑚(𝑋), for 𝑋 ≠ Θ

𝑚𝛼(𝑋) = 𝛼 ∙ 𝑚(Θ) + (1 − 𝛼)
(5) 

where the reliability discounting factor is denoted by 
𝛼  and 0 ≤ 𝛼 ≤ 1, 𝑋  denotes the focal element 
which is not the empty set, 𝑚(. ) denotes the original 
bba of evidence, 𝑚𝛼(. ) denotes the bba after 
importance discounting. 

2.2. DSmT 

For many complex fusion problems, the 
elements can not be separated precisely and the 
refinement of discernment frame is inaccessible. For 
dealing with this situation, DSmT [9] which 
overcomes the exclusive limit of DST, is jointly 
proposed by Dezert and Smarandache. The hyper-
power set in DSmT framework denoted by 𝐷Θ 
consists of the unions and intersections elements in 
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Θ. Assume that Θ = {𝜃1, 𝜃2}, the hyper-power set of
Θ  can be defined as 𝐷Θ = {∅, 𝜃1, 𝜃2, 𝜃3, 𝜃1 ∪
𝜃2, 𝜃1 ∩ 𝜃2 }. The bba which consists the body of the
evidence in DSmT framework is defined on the 
hyper-power set as 𝑚(. ): 𝐷𝛩 → [0,1]. 

Dezert Smarandache Hybrid (DSmH) 
combination rule transfers partial conflicting beliefs 
to the union of the corresponding elements in 
conflicts which can be considered as partial 
ignorance or uncertainty. However, the way of 
transferring the conflicts in DSmH increases the 
uncertainty of fusion results and it is not convenient 
for decision-making based on the fusion results. The 

Proportional Conflict Redistribution (PCR) 1-6 rules 
overcome the weakness of DSmH and gives a better 
way of transferring the conflicts in multisource 
evidence fusion. PCR 1-6 rules proportionally 
transfer conflicting mass beliefs to the involved 
elements in the conflicts [9,26,27]. Each PCR rule 
has its own and different way of proportional 
redistribution of conflicts and PCR5 rule is 
considered as the most accurate rule among these 
PCR rules [9,26,27]. The combination of two 
independent evidences by PCR5 rule is given as 
follows [9,26,27]: 

𝑚1⊕2(𝑋𝑖) = ∑ 𝑚1(𝑌) ∙ 𝑚2𝑌,𝑍∈𝐺Θ and 𝑌,𝑍≠∅
𝑌I 𝑍=𝑋𝑖

(𝑍) (6) 

𝑚𝑃𝐶𝑅5(𝑋𝑖) =

{
 
 

 
 𝑚1⊕2 + ∑ [

𝑚1(𝑋𝑖)
2 ∙ 𝑚2(𝑋𝑗)

𝑚1(𝑋𝑖) + 𝑚2(𝑋𝑗)
+
𝑚2(𝑋𝑖)

2 ∙ 𝑚1(𝑋𝑗)

𝑚2(𝑋𝑖) + 𝑚1(𝑋𝑗)
]𝑋𝑖 ∈ 𝐺

Θ and 𝑋𝑖 ≠ ∅

𝑋𝑗∈𝐺
Θ and 𝑖≠𝑗

𝑋𝑖I𝑋𝑗=∅

0  𝑋𝑖 = ∅

where all denominators are more than zero, 
otherwise the fraction is discarded, and where 𝐺Θ 
can be regarded as a general power set which is 
equivalent to the power set 2Θ, the hyper-power set 
𝐷Θ and the super-power set 𝑆Θ , if discernment of 
the fusion problem satisfies the Shafer’s model, the 
hybrid DSm model, and the minimal refinement 
Θ𝑟𝑒𝑓 of Θ respectively [9,26,27].  

Although PCR5 rule can get more reasonable 
fusion results than the combination rule of DST, it 
still has two disadvantages, first, it is not associative 
which means that the fusion sequence of multiple 
(more than 2) sources of evidences can influence the 
fusion results, second, with the increment of the focal 
element number in discernment frame, the 
computational complexity increases exponentially.  

It is pointed out in [24] that importances and 
reliabilities of multisources in evidence fusion are 
different. The reliability of a source in DSmT 
framework represents the ability of describing the 
given problem by its real-time evidence which is the 
same as the notion in DST framework. The 

importances of sources in DSmT framework 
represent the weight that the fusion system designer 
assigns to the sources. Since the notions of 
importances and reliabilities of sources make no 
difference in DST framework, Shafer’s discounting 
method can not be applied to evidence fusion of 
multisources with unequal importances.  

The importance of a source in DSmT 
framework [24] can be characterized by an 
importance discounting factor, denoted 𝛽  in [0,1]. 
The importance discounting factor 𝛽 is not related 
with the reliability discounting factor 𝛼  which is 
defined the same as DST framework. 𝛽 can be any 
value in [0,1] chosen by the fusion system designer 
for his or her experience. The main difference of 
importance discounting method and reliability 
discounting method lies in the importance discounted 
mass beliefs of evidences are transferred to the empty 
set rather than the total ignorance Θ. The importance 
discounting method in DSmT framework can be 
mathematically defined as  

{
𝑚𝛽(𝑋) = 𝛽 ∙ 𝑚(𝑋), for 𝑋 ≠ ∅

𝑚𝛽(∅) = 𝛽(∅) + (1 − 𝛽)
(7) 

where the importance discounting factor is denoted 
by 𝛽  and 0 ≤ 𝛽 ≤ 1, 𝑋  denotes the focal element 
which is not the empty set, 𝑚(. ) denotes the original 
bba of evidence, 𝑚𝛽(. )  denotes the bba after
importance discounting. The empty set ∅  of 
Equation (7) is particular in DSmT discounted 
framework which is not the representation of 
unknown elements under the open-world assumption 

(Smets model), but only the meaning of the 
discounted importance of a source. Obviously, the 
importance discounted mass beliefs are transferred to 
the empty set in DSmT discounted framework which 
leads to the Dempster combination rule is not 
suitable to solve this type of fusion problems. The 
fusion rule with importance discounting factors in 
DSmT framework for 2 sources is considered as the 
extension of PCR5 rule, defined as follows [24]: 

𝑚𝑃𝐶𝑅5∅
(𝐴) = ∑ 𝑚1(𝑋1)𝑚2(𝑋2)𝑋1,𝑋2∈𝐺

Θ

𝑋1I𝑋2=𝐴

+∑ [
𝑚1(𝐴)

2∙𝑚2(𝑋)

𝑚1(𝐴)+𝑚2(𝑋)
+

𝑚2(𝐴)
2∙𝑚1(𝑋)

𝑚2(𝐴)+𝑚1(𝑋)
]𝑋∈𝐺Θ

𝑋I𝐴=∅

 (8) 
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The fusion rules with importance discounting 
factors considered as the extension of PCR6 and the 

fusion rule for multisources (𝑠 > 2)  as the 
extension of PCR5 can be seen referred in [24]. 

3. An Evidence Fusion Method with Importance Discounting Factors Based on Neutrosopic

Probability Analysis in DSMT Framework 

An evidence fusion method with importance 
discounting factors based on neutrosophic 
probability analysis in DSmT framework is proposed 
in this section. First, the reasonable evidence sources 
are selected out based on the statistical analysis of the 
pignistic probability functions of single focal 
elements. Secondly, the neutrosophic probability 
analysis is conducted based on the similarities of the 
pignistic probability functions from the prior 
evidence knowledge of the reasonable evidence 
sources. Thirdly, the importance discounting factors 

of the reasonable evidence sources are obtained 
based on the neutrosophic probability analysis and 
the reliability discounting factors of the real-time 
evidences are calculated based on probabilistic-based 
distances. Fourthly, the real-time evidences are 
discounted by the importance discounting factors and 
then the evidences with the mass assignments of 
neutrosophic empty sets are discounted by the 
reliability discounting factors. Finally, DSmT+PCR5 
of importance discounted evidences is applied. 

3.1. The reasonable evidence sources are selected out 

Definition 1: Extraction function for extracting 
focal elements from the the pignistic probability 
functions of single focal elements. 

𝜒(𝑃(𝑎𝑖)) = 𝑎𝑖 , 𝑎𝑖 ∈ {𝑎1, 𝑎2, 𝐿, 𝑎2} (11)
Definition 2: Reasonable sources.  

The evidence sources are defined as reasonable 
sources if and only if the focal element which has the 
maximum mean value of the pignistic probability 
functions of all single focal elements is the element 
aj which is known in prior knowledge, denoted by  

𝜒(𝑃(𝜃)) = max(𝑃(𝑎))̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝑎𝑗 , 1 ≤ 𝑖 ≤ 𝑧

where 𝜃 represents that the focal element which has 
the maximum mean value of the pignistic probability 
functions of all single focal elements.  

Based on Definition 2 and the prior evidence 
knowledge, reasonable sources are selected out. The 

unreasonable sources are not suggested to be 
considered in the following procedure for they are 
imprecise and unbelievable.  

3.2. The neutrosophic probability analysis of the sources and the importance discounting factors in DSmT 

framework 

The neutrosophic probability theory is 
proposed by Smarandache [30]. In this section, the 
neutrosophic probability analysis is conducted based 

on the similarities of the pignistic probability 
functions from the prior evidence knowledge of the 
reasonable evidence sources.  

Definition 3: Similarity measure of the pignistic probability functions (SMPPF). 

Assume that the distribution characteristics of 
pignistic probability functions of the focal elements 

𝑎𝑖 , 1 ≤ 𝑖 ≤ 𝑧 and 𝑎𝑘, 𝑘 ≠ 𝑖, 1 ≤ 𝑘 ≤ 𝑧 are denoted
by: 

𝑷(𝑎𝑖): {𝑃(𝑎𝑖)̅̅ ̅̅ ̅̅ ̅, 𝜎(𝑎𝑖)}, 𝑷(𝑎𝑘): {𝑃(𝑎𝑘)̅̅ ̅̅ ̅̅ ̅̅ , 𝜎(𝑎𝑘)}.
The similarity measure of the pignistic 

probability functions(SMPPF) is the function 
satisfying the following conditions:  

(1) Symmetry: 
∀𝑎𝑖 , 𝑎𝑘 ∈ 𝛩, 𝑆𝑖𝑚(𝑷(𝑎𝑖), 𝑷(𝑎𝑘)) = 𝑆𝑖𝑚(𝑷(𝑎𝑘), 𝑷(𝑎𝑖));
(2) Consistency:  
∀𝑎𝑖 ∈ 𝛩, 𝑆𝑖𝑚(𝑷(𝑎𝑖), 𝑷(𝑎𝑖)) = 𝑆𝑖𝑚(𝑷(𝑎𝑖), 𝑷(𝑎𝑖)) = 1;

(3) Nonnegativity:  
∀𝑎𝑖 , 𝑎𝑘 ∈ Θ, 𝑆𝑖𝑚(𝑷(𝑎𝑖), 𝑷(𝑎𝑘)) > 0.
We will say that 𝑷(𝑎𝑖) is more similar to 𝑷(𝑎𝑘) than 𝑷(𝑎𝑔) if and only if:
𝑆𝑖𝑚(𝑷(𝑎𝑖), 𝑷(𝑎𝑘)) > 𝑆𝑖𝑚 (𝑷(𝑎𝑖), 𝑷(𝑎𝑔)).

(12)
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The similarity measure of the pignistic 
probability functions based on the distribution 

characteristics of the pignistic probability functions 
is defined as follows: 

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑎𝑖 , 𝑎𝑘) = exp {−
|𝑃(𝑎𝑖)̅̅ ̅̅ ̅̅ ̅̅ −𝑃(𝑎𝑘)̅̅ ̅̅ ̅̅ ̅̅ |

2[𝜎(𝑎𝑖)+𝜎(𝑎𝑘)]
} (13) 

Assume that 𝑎𝑗 is known in prior knowledge,
the diagram for the similarity of the pignistic 
probability functions of focal elements 𝑎𝑗  and 𝑎𝑘
which has the largest SMPPF to 𝑎𝑗 is shown in Fig.

1. 𝑷(𝑎𝑗) is mapped to a circle in which 𝑃(𝑎𝑗)̅̅ ̅̅ ̅̅ ̅ is the
center and 𝜎(𝑎𝑗) is the radius. Similarly, 𝑷(𝑎𝑘) is
mapped to a circle in which 𝑃(𝑎𝑘)̅̅ ̅̅ ̅̅ ̅̅  is the center and
𝜎(𝑎𝑘) is the radius. All the evidences in the prior
knowledge from the reasonable source are mapped to 
the drops in any circle which means that the mapping 
from drops in the circle of 𝑷(𝑎𝑗)  to the prior
evidences is one-to-one mapping and similarly the 
mapping from drops in the circle of 𝑷(𝑎𝑘) to the
prior evidences is also one-to-one mapping. If 𝑷(𝑎𝑗)
is very similar to 𝑷(𝑎𝑘), the shadow accounts for a

large proportion of 𝑷(𝑎𝑗)  or 𝑷(𝑎𝑘) . If 𝑷(𝑎𝑗)  or
𝑷(𝑎𝑘) has the random values in the shadow of the
diagram, the evidences of the reasonable source can 
not totally and correctly support decision-making for 
there are two possibilities which are 𝑃(𝑎𝑗) > 𝑃(𝑎𝑘)
and 𝑃(𝑎𝑗) ≤ 𝑃(𝑎𝑘) . If 𝑃(𝑎𝑗) ≤ 𝑃(𝑎𝑘)  in the
evidences, the decisions are wrong. However, if 
𝑷(𝑎𝑗) or 𝑷(𝑎𝑘) has the random values in the blank
of the diagram, there is only one possibility which is 
𝑃(𝑎𝑗) > 𝑃(𝑎𝑘) for the sources are reasonable and
the decisions by these evidences are totally correct. 
So, we define the neutrosophic probability and the 
absolutely right probability of the reasonable 
evidence source as probability of 𝑷(𝑎𝑗)  in the
shadow and blank of the diagram.

𝑃(𝑎𝑗) 

𝑃(𝑎𝑗) > 𝑃(𝑎𝑘) or 𝑃(𝑎𝑗) ≤ 𝑃(𝑎𝑘) 

𝑃(𝑎𝑘) 

Figure 1. The diagram for the similarity. 

Based on the above analysis, the neutrosophic 
probability and the absolutely right probability of the 
reasonable evidence source can be obtained by the 
similarity from the prior evidences for the mapping 
of the SMPPF of 𝑷(𝑎𝑗)  and 𝑷(𝑎𝑘)  to the
probability of 𝑷(𝑎𝑗)  in the shadow is one-to-one
mapping. 

As ∀𝑎𝑖 , 𝑎𝑘 ∈ Θ, 0 <

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑷(𝑎𝑖) P(𝑎𝑘)) ≤ 𝟏 , iff 𝑎𝑖 =

𝑎𝑘, 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑷(𝑎𝑖)) , we define that the
probability of 𝑷(𝑎𝑗) in the shadow is the same as
𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑷(𝑎𝑖) P(𝑎𝑘)).

Assume there are reasonable evidence sources 
for evidence fusion, denoted by 𝑆𝑘, 𝑘 = 1,2, L, ℎ. So,
the neutrosophic probability of the the reasonable 
evidence source in the prior condition that 𝑎𝑗  is
known can be calculated as follows: 

𝑃(𝑆𝑘 is neutral |𝑎𝑖) = max
1<𝑗<𝑛,𝑗≠𝑖

[𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑷(𝑎𝑖) P(𝑎𝑘))] (14) 

Then, the absolutely right probability of the 
reasonable evidence source in the prior condition that 
𝑎𝑗 is known can be calculated as follows:

(𝑆𝑘 is absolutely right|𝑎𝑖) = 1 − 𝑃(𝑆𝑘 is neutral |𝑎𝑖) = 1 − max
1<𝑗<𝑛,𝑗≠𝑖

[𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑷(𝑎𝑖) P(𝑎𝑘))] (15)

So, if the prior probability of each focal element 
can be obtained accurately, the absolutely right 

probability of the reasonable evidence source can be 
calculated by the equation 

𝑃(𝑆𝑘 is absolutely right) = ∑ 𝑃𝑎𝑖∈Θ,𝑖=1,2,L,𝑛
(𝑆𝑘 is absolutely right|𝑎𝑖)𝑔𝑃(𝑎𝑖). (16) 

If the prior probability of each focal element 
can not be obtained accurately and any focal element 
has no advantage in the prior knowledge, denoted by 

𝑃(𝑎1) = 𝑃(𝑎2) = L = 𝑃(𝑎𝑛) , the absolutely right
probability of the reasonable evidence source can be 
calculated as follows: 

𝑃(𝑆𝑘 is absolutely right) =
∑ (𝑆𝑘 is absolutely right |𝑎𝑖)𝑎𝑖∈Θ,𝑖=1,2,L,𝑛

𝑛
(17)  

We define the discounting factors of 
importances in DSmT framework 𝛼𝑆𝐼𝐺(𝑆𝑘)  as the
normalization of the absolutely right probabilities of 

the the reasonable evidence sources P(𝑆𝑘  is right),
𝑘 = 1,2, L, ℎ, denoted by  

𝛼𝑆𝐼𝐺(𝑆𝑘) =
𝑃(𝑆𝑘 is absolutely right)

max
𝑘=1,2,L,ℎ

[𝑃(𝑆𝑘 is absolutely right)] (18) 
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3.3. The reliablility discounting factors based on probabilistic-based distances 

The Classical Pignistic Transformation(CPT) [9,10,11] is introduced briefly as follows: 
𝑃(𝐴) = ∑

|𝑋I𝐴|

|𝑋|𝑋∈2Θ 𝑚(𝑋) (19) 

Based on CPT, if the mass assignments of the 
single focal elements which consist of the union set 
of single focal elements are equal divisions of the 
mass assignment of the union set of single focal 
elements in two evidences, the pignistic probability 
of two evidences are equal and the decisions of the 
two evidences based on CPT are also the same. From 
the view of decision, it is a good way to measure the 
similarity of the real-time evidences based on 
pignistic probability of evidences. Probabilistic 
distance based on Minkowski's distance [25] is 
applied in this paper to measure the similarity of real-
time evidences. The method for calculating the 

reliability discounting factors based on Minkowski's 
distance [25] (𝑡 = 1) is given as follows. 

Assume that there are h evidence sources, 
denoted by 𝑆𝑘, 𝑘 = 1,2, L, ℎ , the real-time 2
evidences from 𝑆𝑖 and 𝑆𝑗, 𝑖 ≠ 𝑗 are denoted by 𝒎𝑖,
𝒎𝑗  the discernment framework of the sources is
{𝜃1, 𝜃2, 𝐿, 𝜃𝑛} , the pignistic probabilities of single
focal elements from 𝑆𝑖 are denoted by 𝑃𝑆𝑖(𝜃𝑤), 1 <
𝑤 < 𝑛 and the pignistic probabilities of single focal 
elements from 𝑆𝑗 are denoted by 𝑃𝑆𝑗(𝜃𝑤), 1 < 𝑤 <

𝑛. 

1) Minkowski's distance (𝑡 = 1) between two real-time evidences is calculated as follows:
𝐷𝑖𝑠𝑡𝑃(𝒎𝑖 ,𝒎𝑗) =

1

2
∑ |𝑃𝑆𝑖(𝜃𝑤) − 𝑃𝑆𝑗(𝜃𝑤)|𝜃𝑤∈Θ
|𝜃𝑤|=1

. (20) 

2) The similarity of the real-time evidences is obtained by
𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑦(𝒎𝑖 ,𝒎𝑗) = 1 − 𝐷𝑖𝑠𝑡𝑃(𝒎𝑖 ,𝒎𝑗). (21) 
3) The similarity matrix of the real-time evidences from 𝑆𝑘, 𝑘 = 1,2, L, ℎ is given

𝑆 = [

1 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑙𝑦(𝒎1,𝒎2)  L 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑙𝑦(𝒎1,𝒎ℎ)

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑙𝑦(𝒎2,𝒎1) 1  L 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑙𝑦(𝒎2,𝒎ℎ)

M
𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑙𝑦(𝒎ℎ,𝒎1)

M
𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑙𝑦(𝒎ℎ,𝒎2)

M  M
L  1

] (22) 

The average similarity of the real-time evidences from 𝑆𝑘, 𝑘 = 1,2, L, ℎ is given

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑙𝑦(𝑆𝑘)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =
∑ 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑙𝑦(𝒎𝑖,𝒎𝑘)𝑖=1,2,L,ℎ,𝑖≠𝑘

ℎ−1
(23) 

4) The reliability discounting factors of the real-time evidences from 𝑆𝑘, 𝑘 = 1,2, L, ℎ is given

𝛼𝑅𝐸𝐿(𝑆𝑘) =
𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑙𝑦(𝑆𝑘)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

max
𝑘=1,2,L,ℎ

[𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑙𝑦(𝑆𝑘)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ]
(24) 

3.4. The discounting method with both importance and reliability discounting factors in DSmT framework 

1) Discounting evidences based on the discounting factors of importance.

Assume that the real-time evidence from the 
reasonable evidence source sk is denoted by: 

𝒎𝑘 = {𝑚(𝐴), 𝐴 ⊆ 𝐷
Θ}, 𝐺Θ = {𝑎1L, 𝑎2, 𝑎1I L I 𝑎2, 𝑎1 UL U𝑎2}.

Based on the discounting factors of importances 
in DSmT framework αSIG(sk), the new evidence 

𝒎𝑘
𝑆𝐼𝐺  after importance-discounting by αSIG(sk) can

be calculated by: 

𝒎𝐾
𝑆𝐼𝐺 = {

𝑚𝛼𝑆𝐼𝐺(𝐴) = 𝛼𝑆𝐼𝐺(𝑆𝐾)𝑔(𝑚(𝐴)), 𝐴 ⊆ 𝐺
Θ

𝑚𝛼𝑆𝐼𝐺(∅) = 1 − 𝛼𝑆𝐼𝐺(𝑆𝐾)
(25) 

where 𝑚𝛼𝑆𝐼𝐺(𝐴)  are the mass assignments to all 
focal elements of the original evidence and 
𝑚𝛼𝑆𝐼𝐺(∅)  is the neutrosophic probability of the 

source, which represents the mass assignment of 
paradox.  

2) Discounting the real-time evidences based on reliability discounting factors after importance

discounting. 

As the property of the neutrosophic probability 
of the source, the pignistic probabilities of single 
focal elements are not changed after importance-
discounting the real-time evidences in DSmT 
framework and the mass assignments of 
neutrosophic empty focal element Ø which represent 
the importances degree of sources is added to the new 

evidences. If some real-time evidence has larger 
conflict with the other real-time evidences, the 
evidence should be not reliable and the mass 
assignments of the focal elements of the evidence 
should be discounted based on the discounting 
factors of reliabilities. As one focal element of the 
new evidence, the mass assignment of neutrosophic 
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empty focal element Ø of the unreliable evidence 
should also be discounted. So the new discounting 
method based on the discounting factors of 

reliabilities after discounting by the discounting 
factors of importances is given as follows 

𝒎𝐾
𝑆𝐼𝐺 = {

𝑚𝛼𝑆𝐼𝐺(𝐴) = 𝛼𝑅𝐸𝐿(𝑆𝑘)𝑔𝛼𝑆𝐼𝐺(𝑆𝑘)𝑔(𝑚(𝐴)), 𝐴 ⊆ 𝐺
Θ

𝑚𝛼𝑆𝐼𝐺(∅) = 𝛼𝑅𝐸𝐿(𝑆𝑘)𝑔[1 − 𝛼𝑆𝐼𝐺(𝑆𝑘)]

𝑚𝛼𝑆𝐼𝐺(Θ) = 1 − 𝛼𝑅𝐸𝐿(𝑆𝑘)

(26) 

3.5. The fusion method of PCR5Ø in DSmT framework is applied 

After applying the new discounting method to 
the real-time evidences, the new evidences with the 
mass assignments of both the neutrosophic empty 
focal element Ø and the total ignorance focal 
elements Θ are obtained. The classic Dempster 

fusion rules can not be sufficient to process these 
evidences in DSmT framework and PCR5Ø for 2 
sources in DSmT framework is applied as our fusion 
method as follows:   

(27) 

𝑚𝑃𝐶𝑅5∅
(𝐴) = ∑ 𝑚1(𝑋1)𝑚2(𝑋2)

𝑋1,𝑋2∈𝐺
Θ

𝑋1I𝑋2=𝐴

+ ∑ [
𝑚1(𝐴)

2 ∙ 𝑚2(𝑋)

𝑚1(𝐴) + 𝑚2(𝑋)
+
𝑚2(𝐴)

2 ∙ 𝑚1(𝑋)

𝑚2(𝐴) + 𝑚1(𝑋)
]

𝑋∈𝐺Θ

𝑋I𝐴=∅

, 𝐴 ∈ 𝐺Θ or ∅ 

The mass assignment of the neutrosophic empty 
focal element Ø is included in the fusion results, 
which is not meaningful to decision. According to the 

principle of proportion, 𝑚𝑃𝐶𝑅5∅
(∅)  in the fusion

result is redistributed to the other focal elements of 
the fusion result as follows: 

𝑚𝑃𝐶𝑅5∅
′ (𝐴) = 𝑚𝑃𝐶𝑅5∅

(𝐴) +
𝑚𝑃𝐶𝑅5∅

(𝐴)

∑ 𝑚𝑃𝐶𝑅5∅
(𝐴)

𝐴∈𝐺Θ
∙ 𝑚𝑃𝐶𝑅5∅

(∅), 𝐴 ∈ 𝐺Θ

𝑚𝑃𝐶𝑅5∅
′ (∅) = 0 (28) 

where 𝑚𝑃𝐶𝑅5∅
′ (𝐴), 𝐴 ∈ 𝐺Θ is the final fusion results of our method. 

4. Simulation Experiments

The Monto Carlo simulation experiments of 
recognition fusion are carried out. Through the 
simulation experiment results comparison of the 
proposed method and the existed methods, included 
PCR5 fusion method, the method in [25] and PCR5 
fusion method with the reliability discounting 
factors, the superiority of the proposed method is 
testified. (In this paper, all the simulation 
experiments are implemented by Matlab simulation 
in the hardware condition of Pentimu(R) Dual-Core 
CPU E5300 2.6GHz 2.59GHz, memory 1.99GB. 
Abscissas of the figures represent that the ratio of the 
the standard deviation of Gauss White noise to the 

maximum standard deviation of the pignistic 
probabilities of focal elements in prior knowledge of 
the evidence sources, denoted by ‘the ratio of the 
standard deviation of GWN to the pignistic 
probabilities of focal elements’.)  

Assume that the prior knowledge of the 
evidence sources is counted as the random 
distributions of the pignistic probability when 
different focal element occurs. The prior knowledge 
is shown in Tabel 3 and the characteristics of random 
distributions are denoted by P(.): (mean value, 
variance). 

Table 3. Prior knowledge of evidence sources. 

Evidence sources Prior knowledge when a occurs Prior knowledge when b occurs 

s1 
P1(a) ~ (0.6,0.3) 

P1(b) ~ (0.4,0.3) 

P1(a) ~ (0.46,0.3) 

P1(b) ~ (0.54,0.3) 

s2 
P2(a) ~ (0.6,0.3) 

P2(b) ~ (0.4,0.3) 

P2(a) ~ (0.4,0.3) 

P2(b) ~ (0.6,0.3) 

s3 
P3(a) ~ (0.8,0.05) 

P3(b) ~ (0.2,0.05) 

P3(a) ~ (0.2,0.05) 

P3(b) ~ (0.8,0.05) 

5.1.1 Simulation experiments in the condition that importance discounting factors of most evidence sources 

are low 

Assume that there are 3 evidence sources, 
denoted by s1, s2, s3, and the discernment framework 

of the sources is 2 types of targets, denoted by {a,b}. 
The prior knowledge is shown in Table 3. Assume 
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that the pignistic probabilities of the focal elements 
are normally distributed. The real-time evidences of 
3 sources are random selected out 1000 times based 
on the prior knowledge in Table 3 in the condition 
that a occurs and b occurs respectively. The Moto-
carlo simulation experiments of recognition fusion 
based on the proposed method and the existed 
methods are carried out. With the increment of the 
standard deviation of Gauss White noise in the mass 
assignments of evidences, the fusion results 
comparisons in different conditions are shown in Fig.

3 and Fig. 4, and the mean value of the correct 
recognition rates and computation time are show in 
Table 11 and Table 12. 

The fusion results comparisons in the condition 
that importance discounting factors of most evidence 
sources are low show that: 

1) The method proposed in this paper has the
highest correct recognition rates among the existed 
methods. PCR5 fusion method has the secondly 
highest correct recognition rates, PCR5 fusion 
method with reliability discounting factors has the 
thirdly highest correct recognition rates, the method 
in [25] has the lowest correct recognition rates. 

2) The method proposed in this paper has the
largest computation time among the existed methods. 
the method in [25] has the secondly largest 
computation time, PCR5 fusion method with 
reliability discounting factors has the thirdly largest 
computation time, PCR5 fusion method has the 
lowest computation time.

Table 11. The mean value of correct recognition rates. 

Prior conditions 
The proposed 

method 

PCR5 fusion 

method 

The method 

in [25] 

PCR5 fusion 

method with 

realibility-

discounting 

factors 

a 98.9% 88.6% 80.5% 84.3% 

b 98.9% 87.6% 79.0% 82.9% 

Table 12. The mean value of computation time. 

Prior conditions 
The proposed 

method 

PCR5 fusion 

method 

The method 

in [25] 

PCR5 fusion 

method with 

realibility-

discounting 

factors 

a 1.47 × 10−4 0.48 × 10−4 0.88 × 10−4 0.67 × 10−4 

b 1.46 × 10−4 0.47 × 10−4 0.89 × 10−4 0.66 × 10−4 

Table 13. Prior knowledge of evidence sources. 

Evidence sources Prior knowledge when a occurs Prior knowledge when b occurs 

s1 
P1(a) ~ (0.6,0.3) 

P1(b) ~ (0.4,0.3) 

P1(a) ~ (0.46,0.3) 

P1(b) ~ (0.54,0.3) 

s2 
P2(a) ~ (0.8,0.05) 

P2(b) ~ (0.2,0.05) 

P2(a) ~ (0.2,0.05) 

P2(b) ~ (0.8,0.05) 

s3 
P3(a) ~ (0.8,0.05) 

P3(b) ~ (0.2,0.05) 

P3(a) ~ (0.2,0.05) 

P3(b) ~ (0.8,0.05) 

5.1.2 Simulation experiments in the condition that importance discounting factors of most evidence sources 

are high 

Assume that there are 3 evidence sources, 
denoted by s1, s2, s3, and the discernment framework 
of the sources is 2 types of targets, denoted by {a,b}. 
The prior knowledge is shown in Table 13. Assume 

that the pignistic probabilities of the focal elements 
are normally distributed. The Moto-carlo simulation 
experiments are carried out similarly to the Section

4.3.1. With the increment of the standard deviation 
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of Gauss White noise in the mass assignments of 
evidences, the fusion results comparisons in different 
conditions are shown in Fig. 5 and Fig. 6, and the 
mean value of the correct recognition rates and 

computation time are show in Table 14 and Table 15. 
The importance factors of the evidences are 
calculated by Equation (18). The importance factor 
of s1 is 0.19, the importance factor of s2 and s3 is 1. 

Table 14. The mean value of correct recognition rates. 

Prior conditions 
The proposed 

method 

PCR5 fusion 

method 

The method 

in [25] 

PCR5 fusion 

method with 

realibility-

discounting 

factors 

a 99.0% 98.8% 99.0% 99.0% 

b 99.0% 98.8% 99.0% 99.0% 

Table 15. The mean value of computation time. 

Prior conditions 
The proposed 

method 

PCR5 fusion 

method 

The method 

in [25] 

PCR5 fusion 

method with 

realibility-

discounting 

factors 

a 1.45 × 10−4 0.47 × 10−4 0.86 × 10−4 0.67 × 10−4 

b 1.46 × 10−4 0.47 × 10−4 0.87 × 10−4 0.65 × 10−4 

The fusion results comparisons in the 
condition that importance discounting factors of 
most evidence sources are high show that: 

1) The correct recognition rates of four
methods are similarly closed, PCR5 fusion method 
has the lowest correct recognition rates among four 
methods. 

2) The method proposed in this paper has the
largest computation time among the existed 
methods. the method in [25] has the secondly 
largest computation time, PCR5 fusion method 
with reliability discounting factors has the thirdly 
largest computation time, PCR5 fusion method has 
the lowest computation time. 

5. Conclusions

Based on the experiments results, we suggest that 
the fusion methods should be chosen based on the 
following conditions: 

1) Judge whether the evidences are simple.

2) The importance discounting factors of most
evidences are low or not high, the method in this paper 
is chosen. 

The importance discounting factors of most 
evidences are high, PCR5 fusion method with 
reliability discounting factors is chosen

.
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