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Abstract

This paper presents a formalization of the classical proof of completeness in Henkin-
style developed by Troelstra and van Dalen for intuitionistic logic with respect to
Kripke models. The completeness proof incorporates their insights in a fresh and
elegant manner that is better suited for mechanization. We discuss details of our
implementation in the Lean theorem prover with emphasis on the prime extension
lemma and construction of the canonical model. Our implementation is restricted
to a system of intuitionistic propositional logic with implication, conjunction, dis-
junction, and falsity given in terms of a Hilbert-style axiomatization. As far as we
know, our implementation is the first verified Henkin-style proof of completeness for
intuitionistic logic following Troelstra and van Dalen’s method in the literature. The
full source code can be found online at https://github.com/bbentzen/ipl.

Keywords: Intuitionistic propositional logic, Henkin completeness, Formal proofs,
Lean.

1 Introduction
Troelstra and van Dalen [17] propose a completeness proof in Henkin-style for
full intuitionistic predicate logic with respect to Kripke models. Despite being
a fairly standard result in the literature, this completeness proof has yet to be
formally verified in a proof assistant. In this paper, we describe a formalization
for intuitionistic propositional logic using the Lean theorem prover [13].

Our main goal is to document some challenges encountered along the way
and the design choices made to overcome them to obtain a formalized proof
that is elegant, intuitive, and better suited for mechanization using the spe-
cific techniques available in the Lean programming language, in particular, the
encodable.decode and insert_code methods developed by Bentzen [1].
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To the best of our knowledge, our implementation is the first verified
Henkin-style proof of strong completeness for intuitionistic logic following
Troelstra and van Dalen’s method in the literature. As far as its proposi-
tional fragment is concerned, the main ingredient of Troelstra and van Dalen’s
Henkin-proof is a model construction based on a consistent extension of sets
of formulas, which is achieved by going through all disjunctions of the lan-
guage [17, lem 6.3]. To carry out this extension, they assume an enumeration
of disjunctions with infinite repetitions, also remarking that an alternative ap-
proach in which at each stage we treat the first disjunction not yet treated.
This variant appears in Van Dalen [5, lem 5.3.8]. Our implementation is based
on a third variant of the consistent extension method, which we developed
to better suit our needs of formalization. Each propositional formula is only
listed once in the enumeration, but we carry out the extension for each of
them infinitely many times. The formalization consists of roughly 800 lines of
code and encompasses the syntax and semantics of intuitionistic propositional
logic, along with the soundness and strong completeness theorems. We adopt
a Hilbert-style proof system due to its simplicity. The full source code can be
found online at https://github.com/bbentzen/ipl.

1.1 Related work
The formal verification of completeness proofs for intuitionistic logic can be
traced back to Coquand’s [3] use of ALF to mechanize a constructive proof
of soundness and completeness with respect to Kripke models for the simply
typed lambda-calculus with explicit substitutions. Heberlin and Lee [9] give a
constructive completeness proof of Kripke semantics with constant domain for
intuitionistic logic with implication and universal quantification in Coq. Re-
cently, Hagemeier and Kirst [8] formalize a constructive proof of completeness
for intuitionistic epistemic logic based on a natural deduction system. They also
provide a classical Henkin proof using methods similar to those in Bentzen [1],
but they do not present a formalization of the approach of Troelstra and van
Dalen [17] as is done in this paper. Bentzen [1] formalizes the Henkin-style
completeness method for modal logic S5 using Lean and From formalizes in Is-
abelle/HOL a Henkin-style completeness proof for both classical propositional
logic [6] and classical first-order logic [7]. Maggesi and Brogi [12] give a for-
mal completeness proof for provability logic in HOL Light. The formalization
presented here is inspired by the work of Bentzen [1], but makes a few improve-
ments regarding design choices, in particular, the use of Prop in the definition
of the semantics and the indexing of models to arbitrary types.

1.2 Lean
Lean [13] is an interactive theorem prover based on the version of dependent
type theory known as the calculus of constructions with inductive types [15,4].
Users can construct proof terms directly as in Agda [14], using tactics as in
Coq [16] or both proof terms and tactics simultaneously. Lean’s built-in logic
is constructive, but it supports classical reasoning as well. In fact, our Henkin-
style proof is classical since it relies on a nonconstructive use of contraposition.

https://github.com/bbentzen/ipl


Guo, Chen and Bentzen 3

Therefore, we do not worry about any complexity and computational aspects
related to our proof. Our implementation makes use of some results from Lean’s
standard library and the user-maintained mathematical library mathlib [2].

Throughout the remainder of this paper, Lean code will be used to show-
case some design decisions in our formalization. The syntax and semantics of
intuitionistic propositional logic that is the starting point of our formalization
is described in Section 2. We also describe our formalization of a countermodel
for the law of excluded middle and sketch a proof of soundness. Then, an in-
formal overview of the Henkin-style proof method as well as a description of
our implementation is provided in Section 3. Finally, some concluding remarks
are given in Section 4.

2 Intuitionistic Logic
2.1 The language
The intuitionistic propositional language considered here contains implication,
conjunction, disjunction, and falsity as the only primitive logical connectives.
The language is defined using inductive types with one constructor for propo-
sitional letters, falsum, implication, conjunction, and disjunction, respectively:

inductive form : Type
| atom : N → form
| bot : form
| impl : form → form → form
| and : form → form → form
| or : form → form → form

This code can be found in language.lean file.
Since our language contains countably many propositional letters p0, p1, ...

we use the type N of natural numbers to define the constructor atom of propo-
sitional letters. The only way to construct a term of type form is using this
atomic constructor(atom) and the constructors for falsum (bot), implication
(impl), conjunction (and), disjunction (or).

The elimination rule is an operation that allows us to define functions by
recursion from it to any other types, including also the type of propositions
Prop, in which case, this elimination rule is an instance of the principle of
induction on the structure of the formula.

Constructors are displayed in Polish notation by default, but we define some
custom infix notation with the usual Unicode characters for better readability:

prefix `#` := form.atom
notation `⊥` := form.bot
infix `⊃` := form.impl
notation p `&` q := form.and p q
notation p `∨` q := form.or p q
notation `~`:40 p := form.impl p (form.bot )

Contexts are just sets of formulas. In Lean sets are defined as functions of type
A → Prop. As usual in logic textbooks, we display the formulas in a context in
list notation separated by a comma instead of using unions of singletons. We
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introduce the following notation to make this possible:
notation Γ ` ` ` p := set.insert p Γ

The formalization of the language can be found in the language.lean file.

2.2 The proof system

We define a Hilbert-style system for intuitionistic propositional logic that is
best described as a refinement of Heyting’s original axiomatization [10, §2].
The proof system is implemented with a type of proofs, which is inductively
defined as follows:

inductive prf : set form → form → Prop
| ax {Γ} {p} (h : p ∈ Γ) :prf Γ p
| k {Γ} {p q} : prf Γ (p ⊃ (q ⊃ p))
| s {Γ} {p q r} : prf Γ ((p ⊃ (q ⊃ r)) ⊃ ((p ⊃ q) ⊃ (p ⊃ r))

)
| exf {Γ} {p} : prf Γ (⊥ ⊃ p)
| mp {Γ} {p q} (hpq: prf Γ (p ⊃ q)) (hp :prf Γ p) : prf Γ q
| pr1 {Γ} {p q} : prf Γ ((p & q) ⊃ p)
| pr2 {Γ} {p q} : prf Γ ((p & q) ⊃ q)
| pair {Γ} {p q} : prf Γ (p ⊃ (q ⊃ (p & q)))
| inr {Γ} {p q} : prf Γ (p ⊃ (p ∨ q))
| inl {Γ} {p q} : prf Γ (q ⊃ (p ∨ q))
| case {Γ} {p q r} : prf Γ ((p ⊃ r) ⊃ ((q ⊃ r) ⊃ ((p ∨ q) ⊃ r

)))

Again, the elimination rule for this type generalizes definition by recursion
and induction on the structure of proofs. To follow the usual logical notation,
we abbreviate prf Γ p with Γ ⊢i p as follows:

notation Γ ` ⊢i ` p := prf Γ p
notation Γ ` ̸⊢i ` p := prf Γ p → false

To illustrate, we compare a mechanized formal Hilbert-style proof of the
identity of implication p ⊃ p in our implementation:

lemma id {p : form } {Γ : set form } :
| Γ ⊢i p ⊃ p :=
mp (mp (@s Γ p (p ⊃ p) p) k) k

with a non-mechanized formal proof written in Lemmon style:
1 p ⊃ ((p ⊃ p) ⊃ p) ⊃ (p ⊃ (p ⊃ p)) ⊃ (p ⊃ p) S
2 p ⊃ ((p ⊃ p) ⊃ p) K
3 (p ⊃ (p ⊃ p)) ⊃ (p ⊃ p) MP 1, 2
4 (p ⊃ (p ⊃ p)) K
5 p ⊃ p MP 3, 4

Notice that the proof structure in our term proof is actually clearer since it
indicates how the axiom schemes should be instantiated.

The formalization of the proof system can be found in the theory.lean
file.
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2.3 Semantics
2.3.1 Kripke models
We define the semantics for intuitionistic propositional logic in terms of Kripke
semantics as usual [17,5]. A model M is a triple ⟨W ,≤, v⟩ where W is a set
of possible worlds of type A, ≤ is a reflexive, symmetric and monotonic binary
relation on A, and v specifies the truth value of a formula at a world.

In Lean, Kripke models can be defined as inductive types having just one
constructor using the structure command. We define it not as a triple but
as a 6-tuple, composed of a domain W, an accessibility relation R, a valuation
function val, and proofs of reflexivity, transitivity, and monotonicity for the
accessibility relation R, denoted as refl, trans, and mono:

structure model (A : Type) :=
| (W : set A)
| (R : A → A → Prop)
| (val : N → A → Prop)
| (refl : ∀ w ∈ W, R w w)
| (trans : ∀ w ∈ W, ∀ v ∈ W, ∀ u ∈ W, R w v → R v u → R w u)
| (mono : ∀ p, ∀ w1 w2 ∈ W, val p w1 → R w1 w2 → val p w2)

In our case, a possible world is a term of type A. This allows for more
generality in the construction of a model unlike in [1]. What is more, the type
of propositions Prop is used to encode our truth values true or false.

2.3.2 Semantic consequence
To formalize the notion of truth at a type, we define a forcing relation w ⊩M p
that takes as arguments a model M, a formula p, and a type A and returns a
term of type Prop. As usual, falsity, conjunction, and disjunction are defined
truth-functionally and an implication p ⊃ q is true at a world w iff if R(w, v)
then p is true implies q is true at v, for all v ∈ W . We also introduce the
familiar notation for this forcing relation:

def forces_form {A : Type} (M : model A) : form → A → Prop
| (#p) := λv, M.val p v
| (bot) := λv, false
| (p ⊃ q) := λv, ∀ w ∈ M.W, v ∈ M.W → M.R v w
→ forces_form p w → forces_form q w
| (p & q) := λv, forces_form p v ∧ forces_form q v
| (p ∨ q) := λv, forces_form p v ∨ forces_form q v

notation w `⊩ ` `{` M `} ` p := forces_form M p w

To formalize the intuitionistic notion of semantic consequence Γ ⊨i p we
first extend this forcing relation to contexts pointwise and then we stipulate
that Γ ⊨i p iff for all types A, models M and possible worlds w ∈ W , Γ being
true at w in M implies p being true at w in M:

def forces_ctx {A : Type} (M : model A) (Γ : set form) : A →
Prop :=

λw, ∀ p, p ∈ Γ → forces_form M p w

notation w `⊩` `{` M `} ` Γ := forces_ctx M Γ w
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def sem_csq (Γ : set form) (p : form) :=
∀ {A :Type} (M : model A) (w ∈ M.W), (w ⊩ {M} Γ) → (w ⊩ {M} p

)

notation Γ `⊨i` p := sem_csq Γ p

It is worth noting that we are overloading the forcing relation notation for
formulas w ⊩ {M} p and contexts w ⊩ {M} Γ. There is no ambiguity because
Lean will delay the choice until elaboration and determine how to disambiguate
the notations depending on the relevant types.

The formalization of the Kripke semantics described above can be found in
the semantics.lean file.

2.3.3 The failure of the law of excluded middle
Before proceeding to prove completeness, it will be helpful to see how we can
build models in our implementation. To give a concrete example, let us show
how to build the following countermodel for the law of excluded middle [11,
p.99] using the type of booleans true tt and false ff:

ff

p

tt

Since our possible worlds are always booleans, the domain, accessibility
relation, and valuation function are formalized in Lean in a slightly different
way. The reflexivity, transitivity, and monotonicity proofs are straightforward,
so we shall omit them:

def W : set bool := {ff, tt}

def R : bool → bool → Prop :=λ w v, w = v ∨ w = ff

@[simp]
def val : nat → bool → Prop :=λ _ w, w = tt

Using this countermodel, we assume that the law of excluded middle holds,
that is for any formula p, either ∅ |=i p or ∅ |=i ¬p, and then derive a con-
tradiction. This allows us to prove that the law of excluded middle fails in
general:

lemma no_lem: ¬ ∀ p, (∅ ⊨i p ∨ ~p)

The mechanization of the countermodel can be found in the nolem.lean
file.

2.3.4 Soundness
The soundness theorem asserts that if a formula p can be derived from a set of
assumptions Γ using the inference rules of the logical system, then p is logically
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valid under any interpretation that satisfies Γ.
theorem soundness {Γ : set form} {p : form} :
(Γ ⊢i p) → (Γ |=i p)

The code for proof of soundness can be found in soundness.lean.
The proof proceeds by using induction to perform case analysis for each

inference rule. For each rule, the proof provides a way to derive the conclusion
based on the rule and a way to show that the conclusion is logically valid based
on the interpretation and the premises.

3 The completeness theorem
Now that we have presented the implementation of the syntax and semantics
of intuitionistic propositional logic in the previous section, we are prepared to
undertake a formal proof of completeness. The strong completeness theorem,
which states that every semantic consequence is a syntactic consequence, can
be stated in Lean using our custom notation as follows:

theorem completeness {Γ : set form} {p : form} :
(Γ |=i p) → (Γ ⊢i p)

Our implementation follows the original Henkin-style completeness proof
given by Troelstra and van Dalen [17] with some small modifications. The
main proof argument runs as follows.
(i) Assume that Γ ⊨i p and Γ ⊬i p hold;
(ii) Build a model M such that w ⊩M p iff w ⊢i p for all worlds w ∈ W ,

where we have sets of formulas as possible worlds;
(iii) Show that there is a world w ∈ W such that w ⊩M Γ but w ⊮M p;
(iv) Establish a contradiction from our assumption that Γ ⊨i p.

Our proof appeals to classical reasoning at the metalevel of Lean’s logic on
two occasions [17, p.87], namely, in our proof of Γ ⊢i p where we assume double
negation elimination and in our proof of w ⊩M p iff w ⊢i p.

The reader can refer to the completeness.lean file for the full details of
our implementation of the completeness proof.
3.0.1 Consistent prime extensions
The first step of Troelstra and van Dalen’s proof is the definition of what they
call a “saturated theory” [17, def.6.2]. We shall make use of the equivalent
concept of prime theory instead [5, def.5.3.7], in which the disjunction property
is expressed in terms of the membership relation. We say that a set of formulas
Γ is a prime theory if Γ is closed under derivability and if p ∨ q ∈ Γ implies
p ∈ Γ or q ∈ Γ. In completeness.lean file, we write:

def is_closed (Γ : set form) :=
∀ {p :form}, (Γ ⊢i p) → p ∈ Γ

def has_disj (Γ : set form) :=
∀ {p q :form}, ((p ∨ q) ∈ Γ) → ((p ∈ Γ) ∨ (q ∈ Γ))
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def is_prime (Γ : set form) :=
is_consist Γ ∧ has_disj Γ

The second step of Troelstra and van Dalen’s completeness proof is the proof
of a prime extension lemma [17, lem 6.3], which states that if Γ ⊬ r then there
is a prime theory Γ′ ⊇ Γ such that Γ′ ⊬ r. Assuming that they have a list of
disjunctions ⟨φi,1 ∨ φi,2⟩i with infinite repetitions, they define

Γ′ =
∪
i∈N

Γi,

where Γ0 = Γ and Γk+1 is defined inductively as follows:
• Case 1: Γk ⊢ φk,1 ∨ φk,2. Put

· Γk+1 = Γk ∪ {φk,2} if Γk, φk,1 ⊢ r, and

· Γk+1 = Γk ∪ {φk,1} otherwise

• Case 2: Γk ⊬ φk,1 ∨ φk,2. Put

· Γk+1 = Γk

Since we want to extend Γ to a prime theory Γ′, we want to ensure the
disjunctive property that if ϕ ∨ ψ ∈ Γ′ then ϕ ∈ Γ′ or ψ ∈ Γ′. If there were
no infinite repetitions in the list, we could never be sure that we have treated
all disjunctions in Case 1, for, at step k + 1, its disjuncts only get added to
the set when Γk proves the disjunction. It is possible that later the disjunction
becomes provable from Γk+m, but, we will never go back to it again.

Troelstra and van Dalen mention a simpler variant of the construction that
uses an enumeration of disjunctions without requiring infinite repetitions. At
stage k + 1 we simply treat the first disjunction not yet treated. This proof is
spelled out by van Dalen in [5, lem 5.3.8]. However, the proof method is less
suitable for mechanization given that it is difficult to tell a proof assistant how
exactly they should find the first disjunction not yet treated. We implement a
simplified version of this method where at each step k + 1 we always treat all
disjunctions in the language once more. The following Lean code encapsulates
the idea of the construction sketched above:

def insert_form (Γ : set form) (p q r : form) : set form :=
if (Γ ` p ⊢i r) then Γ̀ q else Γ̀ p

def insert_code (Γ : set form) (r : form) (n : nat) : set form
:=

match encodable.decode (form) n with
| none := Γ
| some (p ∨ q) := if Γ ⊢i p ∨ q then insert_form Γ p q r else Γ
| some _ := Γ
end
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def insertn (Γ : set form) (r : form) : nat → set form
| 0 := Γ
| (n+1) := insert_code (insertn n) r n

def primen (Γ : set form) (r : form) : nat → set form
| 0 := Γ
| (n+1) :=

∪
i, insertn (primen n) r i

def prime (Γ: set form) (r : form) : set form :=∪
n, primen Γ r n

Unlike in Troesltra and van Dalen [17] and van Dalen [5], the enumeration
in our formalization lists not just all disjunctions but all propositional formulas
in the language. When a formula is not a disjunction we simply ignore it just as
in Case 2 above. We follow Bentzen [1] in using encodable types to enumerate
the language. In Lean, a type α is encodable if there is an encoding function
encode :α → nat and a (partial) inverse decode :nat → option α that decodes the
encoded term of α.

Now that we extended Γ to Γ′, which we denote as prime Γ r, we have to
prove it is indeed a prime extension of Γ. First, we show that Γ ⊆ Γ′. But this
is easy, since for every Γ′

n n in the family of sets, Γ ⊆ Γ′
n n. Therefore, Γ must

also be included in the union of all Γ′
n n, which is Γ′

n.
lemma primen_subset_prime {Γ : set form} {r : form} (n):
primen Γ r n ⊆ prime Γ r

lemma subset_prime_self {Γ : set form} {r : form} :
Γ ⊆ prime Γ r

The next step is to prove that the Γ′ also has the disjunction property and
it is closed under derivability. Let us focus on the former first.

We need to show that p∨ q ∈ Γ′ implies p ∈ Γ′ or q ∈ Γ′. If p∨ q ∈ Γ′ then
there is some n ∈ N such that p ∨ q ∈ Γ′

n. But then since Γ′
n ⊢ p ∨ q, then we

know that p ∈ Γ′
n+1 or q ∈ Γ′

n+1 because the disjunction was treated at some
point. Thus, p ∈ Γ′ or q ∈ Γ′.

def prime_insertn_disj {Γ: set form} {p q r : form} (h : (p ∨
q) ∈ prime Γ r) :

∃ n, p ∈ (insertn (primen Γ r n) r (encodable.encode (p �q)+1))
∨ q ∈ (insertn (primen Γ r n) r (encodable.encode (p ∨ q)

+1))

lemma insertn_to_prime {Γ : set form} {r : form} {n m : nat} :
insertn (primen Γ r n) r m ⊆ prime Γ r

def prime_has_disj {Γ : set form} {p q r : form} :
((p ∨ q) ∈ prime Γ r) → p ∈ prime Γ r ∨ q ∈ prime Γ r

Saying that Γ′ is closed under derivability means that if we can deduce a
formula from Γ′, it is an element of Γ′. We use a lemma that states that if we
can prove r∨ p from Γ′, then there exists an n such that p ∈ Γn+1. We use the
above lemma insertn_to_prime to deduce that p ∈ Γ′:
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lemma prime_prf_disj_self {Γ : set form} {p r : form} :
(prime Γ r ⊢i r ∨ p) → ∃ n, p ∈ (insertn (primen Γ r n) r (

encodable.encode (r ∨ p)+1))

def prime_is_closed {Γ : set form} {p q r : form} :
(prime Γ r ⊢i p) → p ∈ prime Γ r

At this moment, we need to prove that Γ′ still remains consistent. First,
we by structural induction on the derivation that if Γ′ ⊢ r then there is some
n such that Γn ⊢ r. Then we prove by induction on n that if Γn ⊢ r then
Γ ⊢ r. The base case is trivial. In the inductive case, we complete the proof
by unfolding the definition of Γn and manipulating the inductive hypothesis.
Putting both lemmas together, we prove that Γ′ ⊢ r implies Γ ⊢ r:

def primen_not_prfn {Γ : set form} {r : form} {n} :
(primen Γ r n ⊢i r) → (Γ ⊢i r)

def prime_not_prf {Γ : set form} {r : form} :
(prime Γ r ⊢i r) → (Γ ⊢i r)

3.0.2 The canonical model construction

Given a set of formulas Γ and ϕ such that Γ ⊬ ϕ, the next step is to build
a canonical Kripke model M such that with w ⊩M Γ and w ⊮M ϕ for some
possible world. We build this model by letting W be the set of all consistent
prime theories; w ≤ v iff w ⊆ v for w, v ∈ W ; and v(w, p) = 1 iff w ∈ W and
p ∈ w, for a propositional letter p. The following Lean code reflects the model
construction:

def domain : set (set form) := {w | is_consist w ∧ ctx.
is_prime w}

def access : set form → set form → Prop :=λ w v, w ⊆ v

def val : N → set form → Prop :=λ q w, w ∈ domain ∧ (#q) ∈ w

The accessibility relation ≤ is clearly reflexive and transitive since so is ⊆.
Monotonicity is easy to see since p ∈ w and w ⊆ v means that q ∈ v. We prove
these lemmas by straightforward unfolding the definition of access.

Our model is integrated into Lean’s code as follows:
def M : model (set form):=
begin
fapply model.mk,
apply domain,
apply access,
apply val,
apply access.refl,
apply access.trans,
apply access.mono
end
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3.0.3 Truth and derivability

It turns out that a formula is true at a world in the canonical model if and only
if it can be proved from that world:

lemma model_tt_iff_prf {p : form} :
∀ (w ∈ domain), (w |= {M} p) ↔ (w ⊢i p)

We mechanize the proof employing the induction tactic, which allows us to
use the elimination rule of a type. This approach yields five goals, namely, to
prove the case where a formula is a propositional letter, falsity, implication,
conjunction, or disjunction. The proof of implication and disjunction deserve
some mention.

The disjunction case is simpler, so we shall discuss it first. Lean gives us a
biconditional in the following goal:

⊢ ∀ (w :set form),
w ∈ domain → (w |= {M} (p ∨ q)) ↔ (w ⊢i p ∨ q))

The proof in the forward direction starts with the introduction of assump-
tions and then splits the proof into two cases. In the first case, we assume
that w |=M p ∨ q and our goal is w ⊢i p ∨ q. Through the tactic cases, which
expresses case reasoning, we can finish our goal using some basic facts about
disjunctions and the inductive hypotheses in both cases.

In the backward direction, we assume that w ⊢i p∨q. Since w is a prime the-
ory and thus enjoys the disjunctive property, we can reason by cases depending
on whether w ⊢i p or w ⊢i q. The result follows the inductive hypothesis.

Now we proceed to the implication case. Using the intro tactic, we begin
by assuming the inductive hypothesis for p. If w is a world and it is a prime
theory, then by unfolding the true definition of a formula in the model’s world,
we arrive at a biconditional goal that can be expressed as follows.

⊢ ∀ (w :set form),
w ∈ domain → (w |=i {M} (p ⊃ q)) ↔ (w ⊢i p ⊃ q))

We split the biconditional proof into two smaller conditionals using the
split tactic. In the forward direction, we first assume that w ⊩M p ⊃ q. We
reason by cases depending on whether w ⊢i p ⊃ q or not, therefore invoking the
law of excluded middle. If that is the case, we are done. If not, then we know
that w, p ⊬ q. We want to derive a contradiction. We extend the context w, p to
a prime theory (w, p)′ that still does not prove q. By our inductive hypothesis,
since (w, p)′ is in the domain, we know that (w, p)′ ⊩M q ↔ (w, p)′ ⊢i q.

To derive a contradiction, we just have to show that (w, p)′ ⊩M q. Recall
that our assumption w ⊩M p ⊃ q states that for all v ∈ W such that w ≤ v,
if v ⊩M p then v ⊩M q. But, clearly, w ≤ (w, p)′. To complete the proof, we
just have to show that (w, p)′ ⊩M p. By our inductive hypothesis, it suffices
to show that (w, p)′ ⊢i p. But this is clearly true, since the original set w, p is
contained in the prime extension (w, p)′ and w, p ⊢i p.

For the backward direction, what we have to prove is w ⊩M p ⊃ q. This
means for all v ∈ W such that w ≤ v, if v ⊩M p then v ⊩M q. We assume that
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v ∈ W such that w ≤ v, v ⊩M p then we have to show v ⊩M q. Using our
inductive hypothesis, we just have to show that v ⊢i q.

Since we know w ⊢i p ⊃ q and w ⊆ v, by weakening, we will have v ⊢i p ⊃ q.
We complete the proof by noting that v ⊢i p by our inductive hypothesis and
assumption that v ⊩M p. The result follows from modus ponens.

We have finished the proof of implication.
3.0.4 The completeness proof
To finish our completeness proof we just have to put together all the above
pieces into 27 lines of code. We assume that Γ ⊬i p and Γ |=i p, we just need to
arrive at a contradiction. We extend Γ to a prime theory Γ′ such that Γ′ ⊬i p.
Since we know Γ′ ⊩M q ⇐⇒ Γ′ ⊢i q for every formula q, we can conclude
that Γ′ ⊮M p. Thus, we contradict our assumption that Γ |=i p, given that
Γ′ ⊩M Γ but Γ′ ⊮M p.

4 Conclusion
We have used Lean to formally verify the Henkin-style completeness proof
for intuitionistic logic proposed by Troesltra and van Dalen [17] restricted to
a propositional fragment with implication, falsity, conjunction, disjunction.
The propositional proof system we implement is based on a Hilbert-style
axiomatization. In future work, we hope to expand our implementation to
full intuitionistic first-order logic with existential and universal quantifiers
and thus complete the formalization of Troesltra and van Dalen’s proof.
Our implementation also includes a mechanized proof of soundness and
a countermodel for the general validity of the law of excluded middle in
intuitionistic propositional logic.
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