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Abstract This paper proposes a classification of the intertheoretic relations in physics by

bringing out the conditions for a relation of reduction which is eliminative, so that a theory

reduced in terms of reductionism is superfluous in principle, and by distinguishing such a

relation from another one based on comparison, which will be called neighbourhood of

theories; the latter is a neighbouring relation between theories and is not able to support

claims of eliminative reductionism. In the first part, it will be argued that this differenti-

ation between neighbourhood and eliminative reduction permits an adequate classification

of the intertheoretic relations in physics. By means of this differentiation, the second part

discusses reductionism and shows that there are indeed some historical examples of

reduction in the aforementioned sense, but that modern physical theories are typically only

neighbouring.
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1 The Reduction of Physical Theories

It seems to be widely accepted that the complicated and miscellaneous intertheoretic

relations in physics do not fit into a single scheme of reduction and that the interesting

work to do is the investigation of special contexts. Nevertheless, the central question of this

paper is the basic concern whether there are eliminative reductions in physics: are there

physical theories that have been reduced to other theories, hence not needed any more for a

complete description of the world and therefore superfluous? To answer that question

requires taking into account that such a reduction is generally possible only in principle, so

that a theory might still be in use for pragmatic reasons but might be eliminatively reduced

as a matter of principle. The aim of the first part of this paper is to make clear the
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conditions for a reduction to be eliminative and to distinguish eliminative reductions from

other intertheoretical relations. This investigation deals with examples taken from the

context of gravitation. The second part is about reductionism itself. It analyses whether

there are actually eliminative reductions in physics and for this purpose applies the

resulting definitions of the first part to three examples: again to the case of gravitation, but

also to the relation between classical and quantum mechanics and to the relation between

phenomenological thermodynamics and statistical mechanics.

1.1 Direct and Indirect Reduction

Obviously, a reduction is eliminative if the reducing theory is suitable to explain all the

phenomena explained by the reduced theory, which makes the reduced theory obsolete

for a complete description of the world. The reducing theory should also be able to

replace all the other merits of the reduced theory beyond explanation, e.g. description,

prediction or introduction of an adequate vocabulary. However, the focus of this

investigation is on explanation, and a reduction by means of explanation of phenomena

is called indirect reduction. The disadvantage of indirect reductions is that the theories

within such a reductive relationship may possibly have nothing in common: they could

be able to explain the same phenomena just by chance. Hence, since Nagel (1961)

reductions are commonly understood as direct relations between theories, as immediate

relations between their laws and concepts. A reduction by means of direct relations

between the laws and concepts of the involved theories is called direct reduction and

does not by itself include the capability of the reducing theory to explain the phenomena

explained by the reduced theory. Therefore, the question arises, whether direct reductions

are eliminative, as the way of speaking in physics suggests that a theory is due to such

direct relations ‘contained as a special case’ in another one. This will be discussed in the

following: it will be shown that a reductive relation must indeed contain a direct part to

avoid the reduction of entirely different theories, but that also an indirect part is needed

for a reduction to be eliminative.

A direct reduction would be eliminative if the laws of the reduced theory could be

logically deduced from the laws of the reducing one. This would be in accordance with the

famous concept of reduction formulated in Nagel (1961), where the addition of some

bridge laws to the laws of the reducing theory is postulated in order to connect the different

terminologies of the theories—without bridge laws, a logical connection between the two

theories would be impossible. However, with his thesis of incommensurability in the

background, Feyerabend (1962) argues against the possibility of Nagelian bridge laws and

against this concept of reduction altogether. But while logical connections between dif-

ferent theories are indeed impossible, direct relations can still be established against

Feyerabend. But the question is, whether such direct relations are eliminative. To be able to

give an answer to this question, we will have to take a closer look on Feyerabend’s

objections in this regard.

It is Feyerabend’s main point that—ignoring trivial cases—different theories contradict

each other, so that a logical deduction is ruled out a priori. This can be seen in two aspects.

Firstly, we have to consider the mathematical aspect of the contradiction of laws. Sec-

ondly, there is the conceptual aspect of different terminologies: terms are defined in

contradicting theories and are thus incommensurable. Now, the mathematical aspect will

be briefly discussed, followed by the discussion of the aspect of terminology.
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1.2 Comparing Theories: Mathematics

In physics, relations between laws of different theories are usually only approximative

while deductions are in most cases impossible. Feyerabend’s point against reduction as

deduction is therefore really a matter of course but was explicitly aimed against Nagelian

reduction. Physics deals with the impossibility of logical deductions by deriving laws only

approximately with the help of limiting relations. The difference between (approximate)

derivation and (logical) deduction is crucial to the aim of this paper, because only a

deduction would be a direct relation between theories, which makes a (deduced) theory

really superfluous. Despite this, according to a definition of Batterman (2012), a physical

theory is reduced to another one if in a limiting process a characteristic dimensionless

parameter of the reducing theory takes a specific limiting value and if on that condition the

laws of the reduced theory can be derived from the laws of the reducing theory. On this

note, Galileo’s law of falling bodies is reduced to Newton’s law of gravitation because the

constant acceleration of the former can be derived from the increasing acceleration of the

latter if the distance to earth of the falling body compared to the earth’s radius is taken to

be zero.

But the law derived under this assumption is strictly speaking only valid for bodies lying

on the earth’s surface, while Galileo’s law is about falling bodies. Thus, the common mode

of speaking that this derivation delivers approximate validity only for small distances

covers the fact that we have not (logically) deduced Galileo’s original law but rather

established a comparison between the two theories under certain circumstances (in this

case under the condition of small distances to the earth’s surface): this is all we can say

about ‘approximate derivations’ here. Such a comparison is indeed a direct relation

between the two theories, but a relation between two independent theories with basically

different claims about the same physical situation, which therefore are simply contradicting

each other. Hence, this direct relation on its own does not establish an eliminative

reduction: there is no deduction of the original law of Galileo from Newton’s law of

gravitation. The only direct link between these contradicting theories is a comparison,

which is in general—as will be shown immediately—not necessarily a comparison

between explanations of phenomena and which thus on its own does not make any theory

redundant.

However, Galileo’s law is superfluous, but not because of its approximate derivation,

but rather because Newtonian physics can also describe falling bodies, in a similar manner

as Galileo’s law as has been shown in the comparative limiting process: Galileo’s law is

eliminatively reduced due to an indirect reduction based on the explanation of phenomena

and not just due to a direct comparison with Newton’s theory.

The difference between direct retentive comparisons and indirect eliminative reductions

is not particularly striking if we consider simple cases like that of Galileo’s law, where

explanations of phenomena are compared. Therefore, this point has been widely overlooked

in the debate on reduction. Of course, comparisons between physical theories are possible

also without explanations of phenomena, for example between Newton’s theory of gravi-

tation and general relativity. The comparing relation which is possible in this case can be

established between the mathematical structures of these theories. It is the claim of this

paper that this relation on its own does not make Newton’s theory redundant. In physics, the

relation between these theories is often presented as a limiting process, which leads to the

belief that Newton’s theory of gravitation is contained in general relativity as a special case

(cf. e.g. Misner et al. 1973, Section 17.4). In contrast to that, a mathematical relation

between these theories in a more precise manner is developed for example in Scheibe (1999)
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within the structuralist metatheory, which was founded by Sneed (1971) and Stegmüller

(1973) and applied to the problem of reduction e.g. by Moulines (1984). The structuralist

metatheory formalizes physical theories in a way that differs from the formalizations of

physics itself for the purpose of a rational reconstruction of these theories (cf. Schmidt

2008). For the sake of a precise comparing relation, Scheibe (1999) formulates Newton’s

theory and general relativity axiomatically according to the structuralist metatheory within a

common superset as sets of models. These sets can be compared topologically with respect

to a well-defined metric within this superset. Scheibe defines a common extension of the

axiomatically formulated theories by varying the value of the velocity of light up to infinity,

so that finite values represent the Minkowski space–time and an infinite value the Euclidean

space (cf. l.c., 59–108 for the technical details). It is not the aim of this paper to analyse the

technical details of the structuralist account of reduction (cf. e.g. Moulines 1984 in addition

to Scheibe 1999), but to discuss the general consequences of the differentiation between

logical deduction and approximate derivation in the context of the intertheoretic relations in

physics. In this regard, Scheibe does not derive the original Newtonian equations—which

would not lead to a deduction anyway—but rather proves the topological neighbourhood of

solution sets of characteristic equations of the different theories in terms of the metric of a

common topological superset and shows that this is all we can achieve as a relation between

these theories in a mathematically adequate way. The physicist’s derivation is actually

nothing but a tentative form of such a topological comparing relation and the claim of

having shown that Newton’s theory of gravitation is contained in general relativity as a

special case is a rather loose mode of speaking, which hides the fact that a limiting process

ultimately is nothing but a comparison between independent theories. Newton’s theory is

not ‘contained’ in general relativity, but approximates the latter as an independent theory,

which can be shown in the physicist’s typical derivation or, more precisely, in topological

comparing relations with the help of the structuralist metatheory.

However, Scheibe’s aim of a complete structuralist ‘reduction’ of the whole Newtonian

theory of gravitation has not been fully achieved, and would not have been a deduction

anyway, but a subtle topological comparison between mathematical structures of indepen-

dent theories reformulated in the structuralist metatheory. This comparison would indeed

provide a demonstration of the topological neighbourhood of the two theories in the sense

indicated above, but the possibility to compare mathematical structure does not include at all

that the reducing theory is able to deal with the phenomena explained by the theory to be

reduced as it is the case in the simple example of Galileo’s law. For instance, these topo-

logical comparisons have to rely on assumptions as low velocity, low gravity and the like,

while there may be phenomena explained by the theory to be reduced not being in line with

these assumptions and therefore not being explained by means of these comparisons. As a

matter of fact, there are only very few cases of explanations of concrete Newtonian phe-

nomena by general relativity in an eliminative way (for example the explanation of the orbits

of the planets by the Schwarzschild solution, cf. Scheibe 1999, 89–101).While Galileo’s law

is eliminatively reduced to Newtonian gravitation because the latter can also explain falling

bodies, there are in contrast many phenomena of gravitation explained by Newton’s theory

but lacking a description by means of a solution of the field equations of general relativity.

This will be discussed in more detail in the second part of this paper.

1.3 Comparing Theories: Terminology

The second of Feyerabend’s objections concerns terminology and the incommensurability

of the vocabulary of contradicting theories. In our context, the equation of motion in
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general relativity is the geodesic equation for neutral test particles whereas Newton’s law

of gravitation describes a force between two masses. Hence, we are concerned with two

entirely different concepts and the identification of the Newtonian gravitational potential

with Christoffel Symbols, which can be found in physics textbooks (cf. e.g. Misner et al.

1973, 415), connects concepts of different theories, which are not identical but—though

not necessarily incommensurable—only comparable with each other. Even more con-

cretely, in the example of the orbits of the planets, their description within the

Schwarzschild solution deals with test particles without influence on the overall curvature

and thus without gravitational masses, whereas their Newtonian description is based on

forces just between these masses. Therefore, these concepts cannot be related by any

simple identification and it has to be conceded that it is generally not possible to establish

reductions via logical deduction with the help of identifying bridge laws.

But nonetheless theories need not be incommensurable. It is of course possible to

compare the concepts of different theories, e.g. with the aid of the structuralist metatheory.

But this is generally a difficult and not very straightforward comparison process: the terms

of two theories can be related in special case studies which can prove for example that the

Newtonian potential is related to (and in a sense neighbouring, passing asymptotically into)

the Christoffel symbols in the topological way explained above. The precise structuralist

elaboration of this in Scheibe (1999) does not identify these concepts, but compares the

corresponding equations and shows that their solution sets are topologically neighboured

with respect to a certain metric in a common superset of models of the theories (cf. l.c.,

87–89). But such case studies of comparing concepts are no self-evident processes and

again lead to a comparing relation rather than a deduction, and such a direct comparison on

its own does not permit an eliminative reduction. As has been shown in the discussion of

the mathematical aspect, a reduction is only eliminative if there is not only a direct

comparing relation between the structures of the theories, but also an indirect reduction

based on the explanation of phenomena. This result, which was obtained here using the

example of the different theories of gravitation, will be briefly recapitulated twice in the

second part by means of the examples of quantum versus classical mechanics and of

phenomenological thermodynamics versus statistical mechanics.

1.4 Concepts of Reduction: Schaffner, Hooker and Bickle

By means of the differentiation between direct and indirect reduction, which can be found

in Kemeny and Oppenheim (1956) already, the answer of Schaffner (1967) to the argu-

ments of Feyerabend will now be discussed. Schaffner concedes that a deductive link

between contradicting theories is impossible, but he nonetheless tries to establish an

eliminative concept of reduction, which is explicitly supposed to be a direct relation

because indirect reductions can be justified between completely alien theories. He thus

suggests that a theory is not reduced to another one if its laws are logically deduced, but if

it is possible to deduce a new corrected theory from the reducing theory, which is (as a

direct relation) strongly analogous to the original theory to be reduced. This approach was

extended by Hooker (1981), who additionally postulates that, in order to guarantee its

deducibility, the corrected theory should be formulated in the reducing theory’s vocabu-

lary. Finally, Bickle (1998) made the concept of analogy, which remains rather vague in

the accounts of Schaffner and Hooker, more precise with the help of the above-quoted

structuralist metatheory, which again yields a subtle comparing procedure between

mathematically formalized theories, or as Moulines (1984) states, a ‘[…] mathematical

relationship between two sets of structures’ (l.c., 55). In doing so ‘[…] this [structuralist]
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scheme of reduction does not require semantic predicate-by-predicate connections nor

deducibility of statements’ (Moulines 1984, 54). The structuralist approach to physical

theories is also the basis of the comparing relations between theories in the aforementioned

account of Scheibe (1999) and thus a fundamental constituent of the following definitions

of this paper, but it does not—on its own—establish an appropriate concept of reduction,

for Moulines also indicates that in a purely structuralist account of reduction ‘[w]e could

have a reductive relationship between two theories that are completely alien to each other’

(ibid., 55). This point is accentuated even more by Endicott (2001): ‘For example, ther-

modynamics, hydrodynamics, and exchange economics might have the same formal

structure, but they do not reduce to one another’ (381).

Hence, the structuralist metatheory has to be combined with an autonomous concept of

reduction as given e.g. in the following definitions of neighbourhood and reduction. But it

can also be combined with Schaffner’s concept of reduction via corrected theories, which

indeed becomes more precise within the structuralist metatheory. Though Bickle (1998)

might be too optimistic in calling his account the New Wave Reduction—‘[…] Bickle’s

account is a model-theoretic [i.e. structuralist] version of Schaffner, not the new wave’

(Endicott 2001, 382)—his account nonetheless delivers a precise differentiation of the

concept of analogy between the original and the corrected theories in the Schaffnerian

account of reduction: these analogies may be strong or weak (smooth or bumpy, as Bickle

calls them), and in the end this is all Bickle wants to provide: ‘I only intend this discussion

to show that I can make quantitative sense of ‘‘amount of correction’’ that locates

reductions on the smooth-to-bumpy spectrum’ (Bickle 1998, 101).

A reduction in the Schaffner–Hooker–Bickle-sense is indeed eliminative. However, this

is not a result of a comparison in the framework of the analogy relation, but of the

construction of the corrected theory, which is—let the correction be smooth or bumpy—

able to explain the phenomena explained by the (not corrected) theory to be reduced. Since

the corrected theory, which is a strongly—smoothly or bumpily—analogous correction of

the theory to be reduced, is by definition also logically contained in the reducing theory and

even formulated within the latter’s vocabulary, these explanations are ultimately expla-

nations by the reducing theory itself.

But in order to carry out explanations by a reducing theory, there is no need for the

digression via corrected theories. On the contrary, as Callender (2001) shows using the

example of explanations of thermodynamic phenomena by statistical mechanics, this can

even be obstructive (cf. the second part of this paper). Moreover, scientific practice deals

with theory changes, but not with corrected theories in the spirit of the Schaffner–Hooker–

Bickle-account of theory reduction. Such corrected theories do not exist and are only

postulated to establish a concept of eliminative reduction based on deduction. Ultimately,

comparisons between theories can also be established between the theories themselves

without a corrected theory introduced between them. This can be seen in the above-quoted

example of Scheibe (1999), who—like Bickle—relies on the structuralist account of the-

ories. All in all, the endeavour of reduction is not easier with corrected theories: ‘Any

problems for classical bridge laws will therefore accrue to this newest new wave’ (Endicott

2001, 387).

Different concepts cannot be identified by bridge laws but can only be compared with

each other—by means of corrected theories or directly. Eliminative reductions on the other

hand can only be established by indirect reductions via the explanation of phenomena by the

reducing theory. While Bickle (2006)—in the context of the philosophy of mind—argues

for his new-wave-conception of direct reductions via comparing relations with corrected

theories as ‘ruthless reductionism’, Schaffner (2006) advocates small-sized indirect
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reductions in the context of biology, i.e. explanations of concrete phenomena by reducing

theories without claiming to reduce whole theories: ‘The results [of these explanations] are

like reductions, but I think they are better described as explanations, using that term as an

alternative to reduction because the e-word does not carry the conceptual freight of various

reduction models and is a more appropriate general context, within which to analyze what is

actually occurring in the biomedical sciences’ (380). Such explanations can indeed result in

eliminative (indirect) reductions if they are combined with the comparing relations of the

traditional concepts of (direct) reduction (e.g. Nagel 1961; Schaffner 1967; Hooker 1981;

Bickle 1998). But as Schaffner (2006) points out, robust eliminative reductions seem to be

unusual and small sized explanations seem to be the business to follow instead:

‘The first thesis is that what have traditionally been seen as robust reductions of one

theory or one branch of science by another more fundamental one are largely a myth.

Although there are such reductions in the physical sciences, they are quite rare, and

depend on special requirements. In the biological sciences, these prima facie

sweeping reductions tend to fade away, like the body of the famous Cheshire cat,

leaving only a smile… The second thesis is that the ‘‘smiles’’ that remain are

fragmentary patchy explanations, and though patchy and fragmentary, they are very

important, potentially Nobel-prize winning advances’ (378).

1.5 Reduction and Neighbourhood

Even if there are only a few examples, the concept of eliminative reduction can still be

defined and, as has been shown, has to rely on a combination of direct and indirect

reduction. The concept of reduction formulated by Schaffner (1967), Hooker (1981) and

Bickle (1998) with its relation of analogy and its explanation of phenomena consists of a

mixture of direct and indirect reduction—a mixture, which is possible also without cor-

rected theories. Consequently, a concept of eliminative reduction based on such a mixture

without corrected theories will now be defined.

In a first step, it seems to be appropriate to call most of the intertheoretic relations in

physics a relation of neighbourhood: two independent and contradicting theories can

actually be compared with each other, most adequately with the help of the structuralist

metatheory as indicated above. In this approach, a common topological superset can be

constructed, whose special metric permits topological comparisons of theories formulated

axiomatically as sets of models. As a matter of fact, the construction of this superset

presupposes that the involved theories describe the same physical phenomena. This con-

dition cannot be formalized in the structuralist metatheory and has to be assumed on a

primordial level (cf. Scheibe 1999, 72). But if two theories fulfil this condition, topological

comparisons can show that they are neighbouring via approximate derivation and related

concepts: the work of Scheibe (1999) quoted above demonstrates that the solution sets of

the equations of the predecessor theory may asymptotically approximate the solution sets

of the equations of the successor theory (e.g. Newton’s theory is approximating general

relativity within the structuralist account—not vice versa) and accordingly the concepts of

the predecessor theory may asymptotically pass into the concepts of the successor theory.

This can be called the topological neighbourhood of solution sets of the equations of the

respective theories and—according to this—the corresponding neighbourhood of their

concepts. This leads to the following (asymmetrical) definition of neighbourhood:

Definition 1 Neighbourhood of Theories: Two theories are neighbouring if (1) they deal

with the same physical phenomena, if (2) mathematical and conceptual comparisons show
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that the solution sets of the equations of the predecessor theory are asymptotically

approximating and hence topologically neighbouring the solution sets of the successor

theory and if (3) accordingly the concepts of the predecessor theory are asymptotically

passing into the concepts of the successor theory.

This intertheoretic relation could also be called ‘retentive reduction’, but since in

physics reduction is mostly meant to be eliminative, the term ‘neighbourhood’ seems to be

more adequate, because it does not evoke reductionist claims. It is an approximative but

nonreductive relation between two independent theories with different claims about the

same phenomena (this is meant by ‘contradicting theories’ in this paper). Furthermore, if

two theories deal with differing scopes of phenomena, they can only be neighbouring with

respect to their common domain.

In a second step, as a special case of neighbourhood, a concept of reduction can be

defined on the basis of the explanation of phenomena: a physical theory can be regarded as

reduced to another one if it is neighbouring the latter, if any phenomenon explainable by

means of the theory to be reduced can be explained by the reducing theory and if some of

the explanations by the reducing theory are more adequate:

Definition 2 Reduction of Theories: A theory reduces to another one if (1) all phenomena

explained by it are also explained by the reducing theory, if (2) the reducing theory

explains some of these phenomena more adequately than the reduced theory and if (3) the

two theories are neighbouring.

This indeed defines an eliminative concept of reduction, because a theory reduced

according to this definition is redundant: ‘its’ phenomena are explained by another theory

equally well or even better. Additionally, this is not a coincidence, but comprehensible by

virtue of the neighbourhood of the two theories. Strictly speaking, however, the definition

ought to be supplemented by the requirement that the reducing theory is also able to

replace all the other merits of the reduced theory beyond explanation, e.g. description,

prediction or introduction of an adequate vocabulary. Furthermore, an adequate account of

reduction should also be able to account for shifts between explainable facts and contingent

phenomena. But while Definition 2 refers basically to the explanation of phenomena

according to the concept of indirect reduction introduced above, it can easily be augmented

adequately. And finally, since the explanations of indirect reductions are characteristic

explanations of physical phenomena and not pathological cases of the concept of expla-

nation as the length of the shadow cast by a flagpole or males taking birth control pills, the

definition above rests on the standard DN-model of explanation (cf. Gutschmidt 2009 for a

more detailed discussion of these definitions and the other concepts of reduction mentioned

above).

Let us now apply these two definitions to the theories of gravitation: First of all, it is

certainly true that Galileo’s law of falling bodies and Kepler’s laws of planetary motion are

in the framework of the well-known approximative relations neighbouring Newton’s

theory of gravitation with respect to the typical gravitational phenomena. In addition to

this, the quoted investigations of Misner et al. (1973) or Scheibe (1999) show that New-

ton’s theory of gravitation is neighbouring general relativity: Consider e.g. the Newtonian

gravitational potential, which is passing asymptotically into the Christoffel symbols

without being identical to them (cf. e.g. Scheibe 1999, 87–89, for a precise elaboration of

this neighbourhood, cf. also the examples of neighbouring theories given in this paper’s

second part). Moreover, Newton’s theory of gravitation is able to explain both, the phe-

nomenon of falling bodies and that of the planets’ motion in the solar system, and in fact
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more precisely than Galileo’s law of falling bodies or Kepler’s laws of planetary motion

respectively. Hence, in terms of the definition just introduced, these theories are elimi-

natively reduced to Newtonian gravitation.

But when it comes to the relation of Newton’s theory of gravitation to general relativity,

things are not that easy—it is doubtful whether we have a reduction beyond neighbourhood

here. There are many phenomena explained by the former but lacking an explanation by

the latter because nobody solved the field equations for these cases: at least at the moment

there is no reduction in the sense of the definition just given. Moreover, this could be even

a matter of principle: the second part of this paper introduces some arguments showing

fundamental limitations of explanations by general relativity without the systematic use of

Newtonian concepts.

This issue and similar questions concerning the relation between classical and quantum

mechanics and that between phenomenological thermodynamics and statistical mechanics

will now be discussed: it will be shown that these are—now and perhaps forever—

examples of neighbourhood without reduction and that therefore the differentiation

between neighbourhood and reduction proves to be fruitful.

2 Reductionism in Physics

According to the definition of the first part, a physical theory is eliminatively reduced to

another if they are neighbouring and if the latter is able to explain all the phenomena

explained by the former. Since this relation ought to show that the reduced theory is not

needed anymore for a complete description of the world and is therefore superfluous—this

is the claim of an eliminative reduction—the reducing theory must be able to explain all

these phenomena completely on its own and particularly without the systematic help of the

theory to be reduced. In contrast, the explanatory support of higher-level theories is

allowed in functional reductions showing that lower-level theories are actually able to deal

with higher-level phenomena. But if eventually these explanations of higher-level phe-

nomena are not possible without substantial support of a special theory, this special theory

is not eliminatively reduced by means of these explanations. Therefore, functional

reductions are indirect reductions, but not necessarily eliminative. Furthermore, if the

theory to be reduced is only applied heuristically to find some explanations, which are

eventually possible without the reduced theory, we may say that it is eliminatively reduced.

But it may be the case that the support of a putatively reduced theory is needed system-

atically—and the use of this theory may be well justified by a neighbourhood relation

between two independent theories. In this case, obviously the theory is still needed for a

complete description of the world and therefore not eliminatively reduced in spite of being

the neighbour of another theory.

However, it might be plausible to consider explanation to be transitive and to claim that

e.g. general relativity explains why Newton’s theory of gravitation works and that New-

ton’s theory explains in turn certain phenomena. But if general relativity is not able to

explain these phenomena on its own, Newton’s theory of gravitation is simply not

superfluous, no matter if it is explained by another theory or not: if the theory to be reduced

is systematically needed in order to carry out these explanations, it is not eliminatively

reduced. Besides, an ‘explanation’ of a theory by another one after all can be nothing but

the justification of a relation of neighbourhood between the two theories (leaving aside

trivial cases).
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With the differentiation between heuristic and systematic support in the background,

three examples of neighbourhood without reduction will be sketched briefly in the fol-

lowing (in the space of just a few pages only some arguments for these non-orthodox anti-

reductionist claims can be indicated: cf. Gutschmidt 2009 for the full elaboration of the

examples in all their particulars).

2.1 Newton’s Theory of Gravitation and General Relativity

The first example again concerns gravitation. For a start, it is important to point out that we

are dealing with two independent theories: there is Newton’s theory of gravitation, based

on the concept of gravitational forces between two or more bodies, and there is general

relativity with its field equations and its concept of gravity as a matter of curved space–

time. There indeed exist limiting relations between the two theories (cf. e.g. Misner et al.

1973 or Scheibe 1999), but as has been demonstrated in the first part of this paper already,

these relations are no deductions but just subtle comparing relations between independent

theories, which merely show their neighbourhood. The simple point here is that con-

tradicting theories are not identical but, despite comparing limiting relations, due to their

entirely different concepts and laws basically independent of each other. Therefore,

Newton’s theory of gravitation is not eliminatively contained in general relativity as a

special case and may hence not be applied systematically in explanations of phenomena if

these explanations are supposed to show—in the framework of an indirect reduction—that

Newton’s theory of gravitation is redundant. Newton’s theory would only be superfluous if

there were genuine explanations by general relativity, i.e. solutions of the field equations,

for all gravitational phenomena which Newton’s theory can handle.

But Newton’s theory of gravitation is used to explain many phenomena of gravitation

lacking an exact solution of the field equations also describing them: while the two-body

problem is directly solved by Newton’s law of universal gravitation, it has (and as a matter

of fact can have) only numerical solutions in general relativity. The interactions between

the planets or even more complex formations as star clusters or spiral galaxies are handled

with Newton’s theory as well (neighbourhood to general relativity indicates that this might

not be too bad), but there does not even exist a numerical solution of the field equations for

them: all these phenomena are described by Newton’s theory of gravitation and are too

complex for the application of the field equations.

The Schwarzschild solution indeed describes the orbits of the planets in the solar

system, and even better than Newtonian gravitation, but has to regard the planets as test

particles without gravitational masses and is therefore as a matter of principle not able to

calculate the interactions of gravitation between them. Except for these interactions, we

can say that the Newtonian description of the orbits of the planets is reduced eliminatively

to the Schwarzschild solution of general relativity. But these interactions as well as the

other cases just mentioned are examples of phenomena, which are described by Newton’s

theory of gravitation and not by general relativity, which is why Newtonian gravitation as a

whole is not eliminatively reduced to general relativity according to the definition of the

first part. As Weinberg (1993) puts it: ‘[…] general relativity contributed very little to our

understanding of the Solar System or the tides. We already knew enough to calculate

planetary orbits with great precision, and general relativity did not help us with the major

puzzles still outstanding (long-term stability, tidal dissipation), only with one tiny anomaly

in the orbit of Mercury’ (475–476)—at the moment, there are only very few explanations

of Newtonian phenomena based on general relativity.
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However, this may be the case only at the moment and it can be claimed that an

eliminative reduction is possible in principle, for example by numerical solutions of the

field equations. But because of the difficult and abstract character of the field equations in

contrast to the high applicability of Newton’s theory we may also question the possibility

of such explanations. Leaving aside the problems of the complexity of the non-linear

differential equations involved here, it has to be considered that a numerical simulation can

only compute the temporal development of a system according to the field equations,

whereas the initial values of the system cannot be described in terms of the field equations

if there is no exact solution for that system—and that there is no exact solution in the cases

just mentioned is a fact of mathematics. Hence, if for example in astrophysics the inter-

action of two black holes is described numerically, the simulation is started at a distance

between them at which the system can be described by Newton’s theory of gravitation (or,

to be correct, by the so called post-Newtonian approximation, which is essentially based on

Newton’s theory of gravitation and is augmented by some extra terms approximating

general relativity):

‘Nevertheless, it is one of the remarkable consequences of general relativity that,

during the orbital phase before coalescence, the black holes follow orbits that are

described to first order by Newtonian gravity: their interaction when separated by a

significant distance does not reflect the enormously strong gravity inside and near

them. Only when they come within a few tens of gravitational radii do we require full

general relativity to describe the dynamics. Before that, the post-Newtonian

approximation—an asymptotic approximation to general relativity valid for small

orbital velocity […] in gravitationally bound systems—provides a systematic

approach to studying the orbital inspiral phase, where orbits shrink and lose

eccentricity through the radiation of energy and angular momentum in gravitational

waves’ (Schutz 2004, 1).

The values obtained from that post-Newtonian description of the inspiral phase are then

taken over for the calculation with the field equations:

‘A numerical simulation must start with a representation of the black holes at some

point late in their inspiral phase. Since our knowledge of their location at this time is

a result of solving the post-Newtonian approximation, we do not have a complete

description of the spacetime metric at this initial time. […] There is thus the pos-

sibility that the initial configuration for the numerical integration does not represent

two black holes after a long inspiral phase’ (9, emphasis added).

This describes the technical problem of how to change exactly from the Newtonian

description to general relativity: ‘But this problem is far from being solved, and until we

have a better understanding of it, it will be difficult to trust any waveform predictions [of

gravitational waves]’ (10). In our context, this particularly shows that for systematic

reasons the post-Newtonian approximation is indispensable for numerical solutions of the

field equations in complex scenarios. Therefore, the Newtonian theory of gravitation is not

eliminatively reduced to general relativity. It is of course a common practice in physics to

explain phenomena by a mixture of theories, but since this practice might have systematic

reasons, we should be very careful with reductionist claims.

Another reason against the possibility of numerical explanations without the help of

Newtonian gravitation is the problem of the physical interpretation of numerical values:

even in the exact Schwarzschild solution the mathematical result has to be compared with

Newton’s theory for the interpretation of a particular constant of integration as the system’s
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central mass. In Misner et al. (1973), the Schwarzschild solution with the uninterpreted

constant of integration is compared to its Newtonian equivalent in a region ‘where the

geometry is nearly flat’ (607), which means that Newton’s theory of gravitation can be

applied. This comparison then shows: ‘Consequently, M [the uninterpreted constant of

integration] is the mass that governs the Keplerian motions of planets in the distant,

Newtonian gravitational field—i.e. it is the star’s ‘‘total mass-energy’’’ (ibid.). Therefore,

in the case of non-exact, but numerical solutions of the field equations, physical inter-

pretations of the calculated data depend on the systematic support of Newtonian concepts

all the more. This can be shown by means of the example of the simulation of a binary

system similar to the aforementioned black-hole-merging, which is discussed in Pollney

et al. (2007):

‘A time-integration of those equations is needed in order to compute the recoil and

this obviously opens the question of determining an integration constant which is in

practice a vector. Fortunately, this integration constant has here a clear physical

meaning and it is therefore easy to compute. In essence it reflects the fact that at the

time the simulation is started, the binary system has already accumulated a non-

vanishing net momentum as a result of the slow inspiral from an infinite separation’

(10, emphasis added).

The interpretation of numerical values obtained in a simulation of a binary system rests on

the time before the simulation starts and is therefore not based on general relativity, but on

the post-Newtonian approximation, which is valid in ‘an infinite separation’, and on

Newtonian considerations concerning the momentum. Furthermore, the simulation is not

only based on interpretations taken from the post-Newtonian approximation, but also

evaluated by comparisons with it: ‘We remark that a proper choice of this constant [the

integration constant quoted above] is essential […] because it allows for a systematic

interpretation of the results. Without it, in fact, […] a comparison with the PN [Post-

Newtonian] prediction [is] impossible’ (19). To sum up, since many gravitational

phenomena cannot be described in terms of the field equations alone and due to the

complexity and universality of the field equations, numerical solutions depend on an

interplay with Newtonian concepts: initial values and the interpretation of numerical values

are obtained by Newtonian descriptions. Physicists use a mixture of both theories for their

explanations, which is a fact that corresponds to similar approaches in the domain between

classical and quantum mechanics and phenomenological thermodynamics and statistical

mechanics respectively, as will be shown in the following. Inasmuch as there are

systematic reasons for these mixtures of theories, this fact matters to reductionism.

The examples discussed so far show that a description of the world of gravitation in

terms of the field equations alone seems to be impossible in principle, even if numerical

simulations are considered: there are the problems of the simulations’ initial values and of

the interpretation of numerical values. But since such a description would be necessary in

order to prove the claim that Newton’s theory is eliminatively reduced to general relativity,

even the fundamental possibility of an eliminative reduction of Newton’s theory of

gravitation to general relativity can be put into question. Of course, it is not possible to

show that such a reduction is fundamentally impossible, but the burden of proof is

transferred to the reductionist’s position, which has to show how all the phenomena

mentioned can be explained by general relativity without the systematic support of

Newton’s theory. Such explanations are not needed in physics, because for explanations by

a mixture of both theories it is legitimate to use Newton’s theory of gravitation due to its

neighbourhood to general relativity. But the fundamental possibility of such explanations
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by general relativity alone has to be shown in order to make a corresponding reductionist

claim plausible.

All in all, this demonstrates that Galileo’s law of falling bodies and Kepler’s laws of

planetary motion are reduced to Newton’s theory of gravitation and that the Newtonian

description of the orbits of the planets is reduced to the Schwarzschild solution of general

relativity, but that Newton’s theory of gravitation as a whole is merely neighbouring

general relativity: these are two independent theories contradicting each other in their

descriptions of gravitational phenomena and despite comparing limiting relations between

them there are many phenomena explained by the former but—at least at the moment—not

explained by the latter. And as the first part shows, without an explanation of these

phenomena there is no eliminative reduction.

2.2 Classical and Quantum Mechanics

When it comes to the question whether classical mechanics is reduced to quantum

mechanics according to the definition of the first part, the first problem to be considered is

whether the former is contained in the latter as a special case. A positive answer seems to

be a common belief in physics. But a closer look in the line of argument of the first part of

this paper shows that classical mechanics is not logically contained in quantum mechanics,

but as an independent theory only neighbouring the latter. This can be seen in at least three

ways. Firstly, there are the famous Ehrenfest theorems, which are nothing but relations of

formal analogy between entirely different concepts: they state that the mean values of the

differential operators, which describe quantum mechanical objects, satisfy equations,

which are formal analogues of the equations of the (exact) functions, which describe

classical objects. Not only are mean values of differential operators not classical functions

but there also is a wide difference between quantum and classical objects. Therefore, the

Ehrenfest theorems establish a comparing relation of formal analogy between two inde-

pendent theories and a closer investigation, e.g. with the help of the structuralist metath-

eory, might thus show the neighbourhood of these theories—but the Ehrenfest theorems

surely do not show that classical mechanics is logically included in quantum mechanics.

The second way concerns the argument of varying Planck’s constant in order to establish

classical mechanics as a special case of quantum mechanics. Varying constants of nature is

generally a peculiar procedure and seems to be physically senseless—it can only be jus-

tified for the purpose of comparing different theories. But then the result obviously is not a

logical deduction of a physical theory from another—either Planck’s constant is zero or

not—but merely a comparison between independent—and particularly contradicting—

theories. In short, as it has been shown in the first part of the paper with the help of the

example of the different gravitational theories, contradicting theories with different con-

cepts may be derived from each another by means of asymptotic limiting relations, but not

deduced. If the procedure of these derivations is analysed in a mathematically adequate

(e.g. structuralist) way, it becomes clear that these derivations are nothing but subtle,

topological comparisons between independent theories, which can show the neighbour-

hood of the respective theories at best (cf. e.g. Scheibe 1999, 163–250, for a detailed

investigation of the relation between classical and quantum mechanics with the help of the

structuralist metatheory and its topological supersets as discussed above in the case of

gravitation—again, it is not the aim of this paper to analyse the technical details of

structuralist reductions, but to discuss the general consequences of the differentiation

between logical deduction and approximate derivation).
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The third way to be discussed here is the programme of decoherence, which was

developed in the last decades and shows in another way that the common belief about

classical mechanics as being contained in quantum mechanics is mistaken. In this context,

this belief is reformulated as follows:

‘Most textbooks suggest that classical mechanics is in some sense contained in

quantum mechanics as a special case, similar to the limit of small velocities in

relativity. Then, for example, the center-of-mass motion of a macroscopic body

would be described by a narrow wave packet, well localized in both position and

momentum. The spreading of the wave packet according to the Schrödinger equation

is indeed negligible for large masses, so that the Ehrenfest theorems seem to allow a

derivation of Newtonian dynamics as a limiting case’ (Joos 1996, 1–2).

This belief was refuted above by means of the arguments from the first part of this paper

concerning the difference between logical deduction and approximate derivation: different

concepts and contradicting descriptions of phenomena cannot be part of one reducing

theory but belong to independent though, as the case may be, neighbouring theories.

Another refutation of this common belief comes from the programme of decoherence,

which stresses the interaction of macroscopic objects with their environment:

‘It is now increasingly being realized that the conventional treatments of the classical

limit are flawed for a simple reason: they do not represent any realistic situation. The

assumption of a closed macroscopic system (and thereby the applicability of the

Schrödinger equation) is by no means justified in the situations which we find in our

present universe. Objects we usually call ‘‘macroscopic’’ are interacting with their

natural environment in such a strong manner that they cannot even approximately be

considered as isolated, even under extreme conditions. Large molecules, for exam-

ple, are already ‘‘macroscopic’’ in this dynamical sense’ (2).

It is beyond the scope of this paper to discuss these arguments of decoherence, but it has to

be admitted anyway—against the common belief, especially among physicists—that

classical mechanics is not contained in quantum mechanics as a special case: their

relationship is, considering decoherence or not, much more complicated and can at best if

anything be described as some kind of neighbourhood.

It is nonetheless possible that classical and quantum mechanics are not only neigh-

bouring each other but that the former reduces to the latter in the sense of the definition of

the first part, i. e. by means of an indirect reduction based on explanations of phenomena.

But then quantum mechanics should be able to explain all the phenomena of classical

mechanics and should particularly be able to explain them completely on its own, without

the systematic help of classical mechanics. This really seems to be out of question and is

only considered here as an hypothetical speculation for the sake of argument. An authentic

quantum mechanical explanation of a macroscopic phenomenon would have to consider all

particles involved and to solve the Schrödinger equation for all of them. If this were

possible, this would also show that the macroscopic phenomenon is in a quantum state

because all solutions of the Schrödinger equation allow for superpositions. However,

nobody ever observed macroscopic objects in quantum states (aside from neutron stars and

the like). Admittedly, the claim of the programme of decoherence is to show that mac-

roscopic objects actually are in quantum states and that they only seem to be in a classical

state due to measurement-like interactions with the objects’ environment. This would also

mean that we would have to solve the Schrödinger equation not only for the macroscopic

phenomenon in question, but also for its environment. Since it is not clear, where this
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environment ends, we ultimately would have to solve the Schrödinger equation for the

whole universe: ‘Given that everyday macroscopic objects are particularly subject to de-

coherence interactions, this raises the question of whether quantum mechanics can account

for the appearance of the everyday world […]. To put it crudely: if everything is in

interaction with everything else, everything is generically entangled with everything else

[…]’ (Bacciagaluppi 2012, Section 2.2).

On the other hand, there are exact solutions of the Schrödinger equation only for very

few and simple cases like the hydrogen atom. Calculations in quantum mechanics therefore

consists essentially in numerical solutions of the Schrödinger equation. But even in the

micro-world of molecules these numerical solutions partly base on classical assumptions:

The WKB-method and the Born–Oppenheimer-Approximation are only valid in semi-

classical cases, where Planck’s constant is neglected due to classical approximations and

where larger collections of particles are considered not to be in quantum states, but in a

statistical mixture of classical states. This is not only a heuristic simplification, but a

necessary assumption, because larger molecules are in classical states already. Therefore,

even numerical quantum explanations in the micro-world rest in a systematic way on

classical mechanics. This is another example for explanations by a mixture of two theories

as it was mentioned above in the case of the theories of gravitation. Using mixtures of

theories is a typical method of the working physicist, which may be well justified in terms

of the neighbourhood of the theories involved, but which should also lead to caution with

regard to reductionist claims.

Nevertheless, as a matter of principle it is still possible to claim that numerical solutions

of the Schrödinger equation for macroscopic objects (including their environment up to the

whole universe) are possible some day. But as was already mentioned in the example of the

numerical solutions of the field equations of general relativity, the problem of interpreting

numerical values has to be considered. As Primas (1981) shows, even in quantum

chemistry, dealing with numerical solutions of the Schrödinger equation for larger mole-

cules, it is systematically necessary to use concepts of chemistry in order to be able to

interpret the numerical values. Numerical solutions on their own are not able to reproduce

chemical concepts which on the contrary are necessary to interpret these solutions. This is

an argument similar to the necessary guidance of Newton’s theory of gravitation in the case

of the numerical simulations of general relativity. Therefore, the problem of interpreting

numerical values is a problem in the micro-world of quantum chemistry already and will

thus be a problem of calculations of classical macroscopic phenomena all the more. In

general, numerical simulations require initial values and interpretations of numerical

values, which, in the case of a quantum mechanical calculation of macroscopic phenom-

ena, both can only be obtained by Newtonian descriptions, because a description of

macroscopic phenomena in terms of quantum mechanics alone would only be possible as

the result of just this calculation. Because of this circularity, numerical solutions of the

Schrödinger equation for macroscopic phenomena are indeed impossible without Newto-

nian guidance. As in the case of the numerical solutions of the field equations, numerical

solutions of the Schrödinger equation for macroscopic objects can only be obtained by an

interplay with Newtonian theory. Hence, the latter is for fundamental reasons not elimi-

natively reduced to quantum physics, but systematically needed in explanations by a

mixture of the two theories. This is no big deal and corresponds to the common practice in

physics, but it was discussed here for the sake of argument. This discussion shows that

classical mechanics is not eliminatively reduced to quantum mechanics. While there is no

need for quantum mechanical explanations of macroscopic phenomena—everything is fine
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with classical mechanics—classical concepts in fact are indispensable in the micro-world

of larger molecules.

An even more fundamental problem for the applicability of quantum mechanics to

macroscopic objects, which would be necessary to show that classical mechanics reduces

in principle to quantum mechanics according to Definition 2 of the first part, arises in the

context of the measurement problem. As already mentioned, the successful application of

the Schrödinger equation to macroscopic objects would imply that they are in quantum

states, because all solutions of the Schrödinger equation allow for superpositions. Krips

(2007) discusses an ‘insolubility theorem’ for this problem: ‘[…] by sticking to the

Schrödinger linear dynamics we are stuck also with the result that at the end of the

measurement process, there must be superpositions of macroscopically distinct states of the

apparatus, and in general of a macro-system […]. And this result […] is contrary to

experience, since, at the end of the measurement process, although we may be uncertain of

the position of the pointer, the pointer itself is never in an indeterminate superposition of

different positions’ (Section 2). The discussion of the programme of decoherence above

demonstrates the necessity to account for the object’s environment in order to understand

the classical appearance of the macroscopic world, what makes numerical calculations of

macroscopic phenomena to a lost cause of unmanageable complexity. But over and above

it seems to be doubtful, whether the programme of decoherence can handle the funda-

mental problem of the applicability of quantum mechanics to macroscopic objects at all,

which is crucial for the question of the fundamental possibility of reducing classical

mechanics to quantum mechanics according to the first part of the paper:

‘We are left with the following choice, whether or not we include decoherence:

either the composite system is not described by such a sum [superposition], because

the Schrödinger equation actually breaks down and needs to be modified, or it is

described by such a sum, but then we need to understand what that means, and this

requires giving an appropriate interpretation of quantum mechanics. Thus, deco-

herence as such does not provide a solution to the measurement problem, at least not

unless it is combined with an appropriate interpretation of the theory’ (Bacciagaluppi

2012, Section 2.1).

Therefore, the programme of decoherence on its own does not solve the measurement

problem, despite of its self-image—‘Unfortunately, naive claims of the kind that

decoherence gives a complete answer to the measurement problem are still somewhat

part of the ‘‘folklore’’ of decoherence, and deservedly attract the wrath of physicists […]

and philosophers […] alike’ (ibid.)—, and it is hence a matter of principle that classical

mechanics does not reduce to quantum mechanics according to the presented definition: the

insolubility of the measurement problem depends on questions concerning the interpre-

tation of quantum mechanics, but demonstrates above all that the Schrödinger equation

cannot be applied to macroscopic objects, which is the essential requirement for a

reduction according to Definition 2 of classical to quantum mechanics.

To sum up, a reduction of classical mechanics to quantum mechanics in the sense of the

definition given in this paper’s first part based on the explanation of phenomena seems to

be out of question, even though this is not irrevocably proven and may depend on the

notorious and still open questions of interpreting quantum mechanics. These questions

concern especially the relation between classical and quantum mechanics. For that matter,

the complementarity conception of the Copenhagen interpretation could in some sense be

regarded as a special case of the concept of neighbourhood of theories as it is presented

here.
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Be that as it may, according to the discussion above it seems to be appropriate to call the

relation between classical and quantum mechanics a relation of neighbourhood (given that

the conditions of Definition 1 are fulfilled, what is not self-evident, cf. e.g. Scheibe 1999,

163–250, for a positive answer in structuralist terms) and not of reduction. Therefore, this

differentiation seems to be adequate in this case too.

2.3 Phenomenological Thermodynamics and Statistical Mechanics

The last part of this paper analyses the example of the relation between phenomenological

thermodynamics and statistical mechanics. While the discussion of the last two examples

has shown that it is a common practice in physics to explain physical phenomena by a

mixture of theories, the two theories of this last example are intertwined to statistical

thermodynamics from the outset and shall be separated here for the sake of argument:

thermodynamics on the one hand deals with macroscopic quantities of fluids or gases, and

describes phenomena as heat transfer or phase transitions, whereas statistical mechanics

deals with gases under the additional assumption that they are composed of molecules and

tries to explain the same phenomena by means of mechanical laws on the basis of this

assumption. In doing so, statistical mechanics copies thermodynamic concepts and refor-

mulates them within its terminology. For example, the phenomenological concept of

temperature is defined via equilibrium states and presupposes the second law of thermo-

dynamics, whereas statistical mechanics introduces an analogue concept defined as the

mean kinetic energy of the molecules of the amount of the respective gas.

This definition of temperature is just Nagel’s paradigmatic example of a bridge law, but

also Feyerabend’s paradigmatic example of his attack to the concept of bridge laws.

Feyerabend’s point is quite easy: these two theories contradict each other, because the

second law of thermodynamics is not valid in statistical mechanics due to its statistical

nature. More precisely, the two theories are contradicting with regard to the second law,

because they make different claims about the transfer of heat from a body of lower

temperature to a body of higher temperature, which is impossible according to thermo-

dynamics but which can happen as the result of statistical fluctuations according to sta-

tistical mechanics (consider the scenario of Maxwell’s demon). But the thermodynamic

definition of temperature rests just on the second law, for which reason the relation

between the two concepts of temperature cannot be an identification (cf. Feyerabend 1962,

78). As Sklar (1999) puts it:

‘The regularities in which it [temperature in its statistical reformulation] appears will

now be statistical regularities, and the association of these new laws with the tra-

ditional laws of thermodynamics will be less immediate than any simple identifi-

cation of the latter with the former. Heat, for example, most certainly can, and does,

flow from a colder to a warmer body in an isolated system in this new probabilistic

framework’ (194–195).

Hence, we have to do with difficult correlations of two independent concepts and not with

the deduction of thermodynamics from statistical mechanics by means of identifying

bridge laws. These correlations are once more a solely comparison which does not make

any theory redundant and which without explanation of phenomena can only establish the

neighbourhood of two different theories as has been shown in the first part of this paper.

Another argument concerns the concept of entropy. On the one hand, we have its

definition by Clausius as a quantity describing macroscopic heat transfers, on the other

hand there is the statistical entropy defined by Boltzmann, which describes the number of
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the possible microscopic configurations of the molecules of the amount of gas in question.

The relation between these two concepts is much more complicated than that between the

two concepts of temperature and is not in any account an identification. In physics text-

books the Boltzmann entropy is introduced as the definition of the Clausius entropy, but

this ignores the serious problems in establishing an appropriate relation between these two

different concepts, which are defined in theories with contradicting claims about the

phenomenon of heat transfer. The first problem is that there is ‘[…] a wide variety of

‘‘entropies’’ to correlate with the thermodynamic concept, each functioning well for the

specific purposes for which it was introduced’ (Sklar 1993, 354). Furthermore

‘[…] the choice of the appropriate statistical mechanical correlate of this kind for

thermodynamic entropy is fixed by a multitude of considerations, including the

additivity of entropy for independent systems in thermodynamics and, most

importantly, the demand that the function be maximized for the equilibrium con-

figuration of the microcomponents and that this configuration obey some kind of

stationarity under the kinetic equation’ (355).

Thus, the discussion of the concepts of temperature and entropy shows that phenom-

enological thermodynamics and statistical mechanics are two contradicting theories using

different concepts and that all direct relations between these theories are not straightfor-

ward, but difficult correlations and by no means simple identifications. Therefore, these

relations do not establish a direct reduction by means of a logical deduction but can only

show the neighbourhood of these two theories. The neighbourhood of these theories, which

are intertwined to statistical thermodynamics anyway, can again be demonstrated e.g.

within the structuralist metatheory (cf. Scheibe 1999, 129–158), but to establish a reduction

according to Definition 2 of the first part it is necessary to find (as an indirect relation)

statistical mechanical explanations of thermodynamic phenomena. This problem again is a

purely hypothetical speculation, since statistical thermodynamics is a well established

theory, but it will be considered here for the sake of argument.

While it is quite easy to give a statistical reconstruction of the ideal gas law, there are

many thermodynamic phenomena without a mechanical description, even if the heuristic

help of thermodynamics via copying its concepts is considered, which would be legitimate

if the resulting explanations are finally independent of thermodynamics (cf. the beginning

of the second part of this paper about functional reductions and the distinction between

heuristic and systematic support). On the contrary, as Callender (2001) shows, copying

thermodynamic concepts in statistical mechanics proves to be obstructive to mechanical

explanations (see below). But with heuristic help or not, there are no independent statistical

explanations of central phenomena as the approach to equilibrium states, phase transitions,

the universality of critical phenomena and, not least, the macroscopic phenomenon of

irreversibility and increasing entropy. These phenomena and the problem of their expla-

nation by statistical mechanics will now be discussed briefly.

Firstly, in phenomenological thermodynamics the description of phase transitions is

based on the so-called thermodynamic potential as e.g. the potential of free energy, which

has singularities at the critical temperatures of phase transitions. Therefore, in phenome-

nological thermodynamics phase transitions are defined as the singularities of the corre-

sponding thermodynamic potentials. Statistical mechanics copies this conception by

redefining thermodynamic potentials as partition functions of the possible micro-states of

the system. But the problem is that partition functions of finite systems do not have

singularities: ‘SM [statistical mechanics] represents the abrupt phase-changes of a system

as singularities of its partition function. But no partition function of a finite system can
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have these singularities; only infinite systems can’ (Yi 2003, 1032). The common solution

of this problem of explaining phase transitions in statistical mechanics is to take the

‘thermodynamic limit’, which means to assume that the system in question consists of an

infinite number of particles: ‘Mathematical physics avoids this result by taking the ther-

modynamic limit, for it is possible for systems with infinite N to display singular behavior

for non-vanishing partition functions’ (Callender 2001, 549). No real system consists of

infinitely many particles, not even the whole universe does, and there is no such thing as an

‘approximately infinite’ system:

‘However, even if the thermodynamic limit can be given a full philosophical justi-

fication, that justification cannot turn an infinity to a finite quantity. We can grant that

it is often fine to substitute finite N with infinite N for the purposes of practical

physics. But if the system is really finite N, what we have until we say more is a

mathematical proof that it cannot undergo a phase transition’ (550, emphasis

added).

Therefore, copying the thermodynamic concept of phase transitions as singularities in

statistical mechanics does not allow for their explanation. Of course, a numerical simulation

of a finite number of particles might deliver an appropriate mechanical explanation of phase

transitions. But this is not only highly improbable due to the complexity of the equations,

which would have to deal with a really huge number of particles: ‘The equations for actual

systems are too difficult to solve. Indeed, this is the very reason why statistical mechanics

uses singularities in the partition function as a way of studying phase transitions’ (551,

consider also the huge number of the Avogadro constant, which is defined as the number of

particles in a single mole of a substance). Also the fundamental problem of interpreting

numerical values has to be considered as in the cases of general relativity and quantum

mechanics: in the case of simulating phase transitions, these values would have to be

physically interpreted as phase transitions, what apparently would have to rely on criteria

taken from phenomenological thermodynamics. However, the typical textbook explanation

of phase transitions in statistical mechanics by means of partition functions can at best

considered to be a special comparing relation to phenomenological thermodynamics under

the fictional assumption of infinite systems and hence might establish a special kind of

neighbouring relation between these two theories (similar to the fictional assumption of

varying Planck’s constant in order to establish a direct relation between classical and

quantum mechanics), but it does not provide an appropriate explanation of phase transitions

by statistical mechanics. This explanation is an explanation by statistical thermodynamics,

which is a mixture of both theories and which contains substantial parts of phenomeno-

logical thermodynamics. For this reason, this explanation does not give rise to an

eliminative reduction of thermodynamics to statistical mechanics. As in the other two cases

presented in this paper, the working physicist typically uses mixtures of theories and should

therefore be very cautious about reductionist claims.

Another example in this context is the universality of critical phenomena, which,

according to Batterman (2002), can neither be explained by phenomenological thermo-

dynamics nor by statistical mechanics alone but needs the systematic help of both con-

ceptions within statistical thermodynamics: ‘[…] we cannot understand the universality of

critical phenomena in fluids […] without asymptotically sewing statistical aspects of the

behavior of the fluids’ components onto singular thermodynamic structures (critical

points). These thermodynamic structures are necessary for a complete understanding of the

emergent critical phenomena of interest’ (127, emphasis added). According to Batterman,

an explanation of the universality of critical phenomena is particularly only possible with
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the systematic support of thermodynamics, which exceeds purely heuristic considerations.

Therefore, phenomenological thermodynamics is not eliminatively reduced to statistical

mechanics as Newton’s theory of gravitation is not eliminatively reduced to general rel-

ativity and as classical mechanics is not eliminatively reduced to quantum mechanics: in

all these cases the latter theory is not able to explain many phenomena without the

systematic help of the—independent and not logically implied—first theory, and, as the

problem of the universality of critical phenomena shows once more, not for pragmatic

reasons, but as a matter of principle.

Furthermore, in the case of phenomenological thermodynamics and statistical mechan-

ics, there is a problem even worse than that of the universality of critical phenomena: there

is no statistical explanation of the macroscopic phenomenon of irreversibility and increasing

entropy. Actually, a statistical explanation of the second law of thermodynamics seems to be

impossible. Physics textbooks tell us that a systems state transforms to a more probable

state, but they leave open the question, why the actual state of our world, according to this

explanation, should have a low probability. The statistical explanation of increasing entropy

leads to the question, why at present entropy is low and was even lower in the past, what is,

according to the cited textbook explanation, highly improbable. Boltzmann assumed that we

live at a time and at a place of the developing universe, which has low entropy due to a

fluctuation. But modern cosmology shows that this explanation fails. Currently, physicists

are studying cosmological arguments, which show that the entropy was—against proba-

bility—low at the beginning of the universe, or arguments from a certain interpretation of

quantum mechanics, the GRW-interpretation, which prove the irreversibility of thermo-

dynamic processes (cf. e.g. Hellman 1999). But an explanation of the macroscopic irre-

versibility by statistical mechanics alone seems to be impossible. Therefore, this is a

phenomenon, which is explained by thermodynamics (by its second law with its non-

statistical Clausius definition of entropy—the problem of explaining increasing entropy is

solely a problem of the reductionist approach to thermodynamics) but non-accessible to

statistical mechanics alone. If a statistic-mechanical explanation were possible, it would

have to be amended by some cosmological or quantum theories, what seems not to be

adequate for an explanation of simple thermodynamic phenomena: ‘[…] do I really have to

go back to the big bang and some special kind of primordial low entropy cosmic state; or,

alternatively, must I descend to random fluctuations in the evolving quantum wave function

[according to the GRW-interpretation], in order to explain why my popsicle melted?!’ (l.c.,

p. 209). Even if the reductionist claims that in the case of irreversibility a reduction of

phenomenological thermodynamics to statistical mechanics plus cosmology or quantum

mechanics would be possible, then she also has to show, how phase transitions and the

universality of critical phenomena can be explained by this conglomerate. Again, it is not

possible to prove that such explanations are fundamentally impossible, but the burden of

proof is definitely transferred to the reductionist’s position.

All in all, since the first part shows that there is no eliminative reduction without the

explanation of all the corresponding phenomena, a reduction of thermodynamics to sta-

tistical mechanics according to Definition 2 is not yet achieved and seems to be impossible.

This leads to a further example of neighbourhood without reduction.

3 Conclusion

Altogether, the investigation of the three examples in the second part shows that, according

to the concepts introduced in the first part, modern physical theories are rather
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neighbouring each other than being reduced to more fundamental theories. There are only

some historical examples of reductions according to Definition 2, which make reduced

theories redundant. This is the case of the examples of Galileo’s law of falling bodies,

Kepler’s laws of planetary motion, the Newtonian description of the orbits of the planets or

the ideal gas law. In contrast, reductionist claims, which state that the modern physical

theories considered here can be reduced eliminatively, are nothing but speculations about

the plausibility of the fundamental possibility of explanations that may exist but have not

yet been found. In physics, we are on a good way to demonstrate the neighbourhood of

modern physical theories, what admittedly is critical in the case of classical and quantum

mechanics though it would satisfy the common belief in physics. But at the moment, we

are far away from an ‘authentic’ reduction of all physics to physics of a fundamental level.

For that matter, all we can do is speculate. Yet I won’t do that here, because—aside from

concerns about the incitement of scientific development—there is nothing bad about the

pluralistic picture, according to which a complete description of the physical world

requires many neighbouring but independent theories, while only few of them have been

reduced in the progress of science. In addition, pluralism needs not to imply disunity,

because the neighbouring relation provides a connection between different theories, which

is indeed weaker than an eliminative reduction would be, but which nonetheless may be

strong enough to guarantee the unity of physics. And as it was mentioned above, physicists

are used to explain phenomena by mixtures of theories anyway.

In summary, this paper demonstrates some limits of reductionism in physics (or at least

indicates some arguments for its non-orthodox claims, cf. Gutschmidt 2009 for a full

elaboration) and proposes at the same time, by means of the differentiation between

neighbourhood and eliminative reduction, a new approach to the intertheoretic relations in

physics.
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