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If you want to understand the nature of time, you might want to look
at our most fundamental physical theories. There are two such: general
relativity, and quantum field theory. Any accurate description of the universe
— and in particular, of the nature of time — must somehow combine the
insights of these two theories.

Some experts (e.g. Earman 2002, Rovelli 1991, Rovelli 2008) argue that
a universe that is both relativistic and quantum-theoretic must, of neces-
sity, be an unchanging, essentially timeless universe. But the arguments for
this claim often depend on intricacies of the the Hamiltonian formulation of
Einstein’s field equations.

In this note, I provide a more elementary argument that any quantum
theory of spacetime will dispense with the traditional notion of the passage
of time. In particular, I prove that quantum theory rules out the possibility
of any quantity that one might call “the time interval between two events.”

The mathematical fact on which my philosophical argument is based has
long been known (see e.g. Pauli 1933), although we give a more concise and
transparent proof. Nonetheless, metaphysicians seem to have been ignorant
of this fact, or to have judged it unimportant. I hypothesize that metaphysi-
cians ignored these results because they were usually presented as showing
that, “time is not an observable” — more a problem for an empirical theory
of observability than for metaphysics. But that description of the results is
an understatement. The results shows that, insofar as quantities are repre-
sented by operators, time is not a quantity at all — not even an unobservable
quantity.

Assume then that we have a quantum theory whose state space is a vector
space H with inner-product, and whose time evolution is represented by a
group {ut = eith : t ∈ R} of symmetries of H, where h is an operator that
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has spectrum bounded from below. In other words, we assume that there is
a lower bound on energy.

Suppose now for reductio ad absurdum that for any interval (a, b) of real
numbers, there is a subspace s(a, b) of states that come about during that
interval. Let e(a, b) to represent the projection onto the subspace s(a, b).

For any state v, applying the time-evolution operator ut to v evolves the
state forward by t (in whatever units of time we are using). Thus, if a state
v is in the subspace s(a, b), the evolved state utv should be in s(a + t, b + t).
But a unitary operator u maps a subspace s onto a subspace s′, i.e. u(s) = s′,
if and only if u∗(s′) = s. Hence, we should have ute(a, b) = e(a + t, b + t)ut

for all a, b, t in R. We are now ready to derive a contradiction from the
assumption that there is a quantity called “time,” whose value changes.

Lemma (Hegerfeldt 1994). Suppose that ut = eith, where h is a half-bounded
operator. Let e be a projection onto a subspace, and let f(t) = 〈utv, eutv〉.
Then either f(t) 6= 0 on a dense open set, or f(t) = 0 for all t.

Theorem. Suppose that there is an assignment (a, b) 7→ s(a, b) of temporal
intervals to subspaces of state space H such that:

1. uts(a, b) = s(a + t, b + t)ut for all t ∈ R, and

2. s(a, b) is orthogonal to s(c, d) when (a, b) is disjoint from (c, d).

Then s(a, b) = 0 for all (a, b).

[In the physics literature, this theorem might be phrased as follows:
“There is no operator that is canonically conjugate to the energy opera-
tor” or more precisely as “there is no system of imprimitivity whose unitary
operators generate time evolution.”]

Proof. Let v be a vector in s(a, b). We will show that v = 0, in particular,
s(a, b) contains no unit vectors. Consider the function defined by

f(t) = 〈utv, e(a, b)utv〉 = 〈v, e(a + t, b + t)v〉, (t ∈ R).

Clearly f satisfies the hypotheses of Hegerfeldt’s lemma. Furthermore, for
all t > |b− a|,

f(t) = 〈v, e(a + t, b + t)v〉 = 〈e(a, b)v, e(a + t, b + t)v〉 = 0,
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since the subspaces s(a, b) and s(a + t, b + t) are orthogonal. In particular,
f(t) = 0 on an open set, and Hegerfeldt’s lemma entails that f(t) = 0 for all
t ∈ R. Thus,

0 = f(0) = 〈v, e(a, b)v〉 = 〈v, v〉,

from which it follows that v = 0.

Some have already grappled with the implications of this result (see
Hilgevoord 2001). A common response is to claim that time is a quantity in
quantum theory, but that it is represented by a parameter (c-number) rather
than by an operator. But that distinction is merely verbal, and does nothing
to help us understand the special role of time in quantum theory.1 What is
the difference between quantities that can be represented by operators, and
those — such as ‘amount of time’ — that cannot? And why is time the only
such parametric quantity? What is special about time?
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