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Abstract 

Using a novel enumeration task, we examined the encoding of 
spatial information during subitizing. Observers were shown 
masked presentations of randomly-placed discs on a screen 
and were required to mark the perceived locations of these 
discs on a subsequent blank screen. This provided a measure 
of recall for object locations and an indirect measure of 
display numerosity. Observers were tested on three stimulus 
durations (50, 200, 350 ms) and eight numerosities (2-9). 
Enumeration performance was high for displays containing up 
to six discs—a higher subitizing range than reported in 
previous studies. Error in the location data was measured as 
the distance between corresponding stimulus and response 
discs. Overall, location errors increased in magnitude with 
larger numerosities and shorter display durations. When 
errors were computed as disc distance from display centroid, 
results suggest a compressed representation by observers. 
Additionally, enumeration and localization accuracy 
increased with display regularity. 

Keywords: spatial attention; enumeration; subitizing; visual 
indexing. 

I. Introduction 
When presented with a set of objects, humans can estimate 
quickly the set’s numerosity with reasonable accuracy. This 
estimate of number supports various cognitive processes 
and assists decision-making and action-planning. Given the 
importance of such abilities, it would be reasonable to 
expect that a cognitive system employs several methods to 
obtain numerosity information. The challenge, however, lies 
in clearly identifying the possible mechanisms involved and 
determining the conditions under which they are employed. 

The primary mechanism responsible for numerosity 
perception is the nonverbal mental magnitude system that 
also has been observed in animals and preverbal infants. 
Magnitudes are inferred mental entities that represent the 
numerosity or magnitude of things in the world via a mental 
“accumulator” or “number line” (Dehaene, 1992; Gallistel 
& Gelman, 1992). An accumulator mechanism is thought to 
enable the precise representations of duration and 
numerosity in rats by accumulating neural signals (Meck & 
Church, 1983). In humans, this accumulator system may 
represent discrete numerosities through an incrementing 
process that produces a preverbal count (Gallistel & 
Gelman, 1992, 2000). Although analog magnitudes are 
argued to underlie most numerical abilities, an alternate 

mechanism may be employed for smaller numerosities. The 
term subitizing is used to describe the fast and accurate 
enumeration of 1-4 objects (Kaufman, Lord, Reese, & 
Volkmann, 1949). Trick & Pylyshyn (1989, 1994) proposed 
that a visual indexing mechanism may be utilized for 
subitizing. Visual indexes are “pointers” that automatically 
pick out and stick to visual items displaying characteristics 
of “objecthood” (e.g., good continuation, cohesion). Each 
item that is to be tracked or enumerated is assigned an index 
in a bottom-up manner, enabling a simultaneous selection of 
four objects (Pylyshyn, 1989). Subitizing is thought to be 
the rapid enumeration of these active indexes. When a 
precise count is required for larger sets, this mechanism can 
be used to keep track of items that have been counted 
already, which increases the time required to make a 
numerosity judgment. 

There are theoretical disagreements on the interpretation 
of the performance differences between small and large sets. 
Some studies attribute the change in the reaction times to 
the capacity limitations of information transfer into short-
term memory (Cowan, 2001; Klahr, 1973) or a shifting of 
enumeration strategies (Mandler & Shebo, 1982). The rapid 
identification of small-set numerosity also can be attributed 
to the fast mapping of a label to the discrete increments on a 
mental magnitude (Gallistel & Gelman, 1991) or the fast 
counting of active indexes (Trick & Pylyshyn, 1994). 
Whether two systems are responsible for enumeration has 
yet to be determined conclusively, and this area of research 
continues to provide evidence supporting both perspectives.  

Regardless of the mechanism responsible for subitizing, 
accurately enumerating a set requires the selection of each 
visual object. If an indexing mechanism is responsible for 
subitizing, observers would be able to report on four objects 
even under time constraints, but with poor memory for 
locations. Alternatively, if each object must be encoded into 
working memory for recall, then errors in enumeration and 
location recall should be similar. Numerosity perception has 
been studied extensively but little is known about the spatial 
information that is encoded when enumerating. To address 
this topic, the current study examines the location encoding 
that occurs in subitizing. 

Studies on the spatial coding of object locations have 
shown that observers tend to remember locations by using 
spatial cues to categorize locations according to geometric 
“prototypes” (Huttenlocher, Hedges, & Duncan, 1991). 
When presented with a dot inside a geometric shape, 



children remembered the location as being further away 
from the midline and edges of that shape—a bias towards 
the central tendency of the shape category, or prototype 
(Huttenlocher, Newcombe, & Sandberg, 1994). In adults, 
the representation of locations also was biased towards the 
prototype of spatial categories and these biases increased as 
memory became less certain over extended response delays 
(Spencer & Hund, 2002). These studies suggest that a single 
system for representing space is likely to serve both verbal 
and motor responses that are spatial in nature (Spencer, 
Simmering, & Schutte, 2006). 

One potentially useful approach to understanding 
enumeration is to apply statistical and computational 
methods used in the study of visual perception. For 
example, one recent study used an information theoretic 
framework to model the human ability to learn statistical 
regularities from object features in visual displays, and 
tested whether observers used this information to enhance 
their ability to identify the locations of specific colors 
(Brady, Konkle, & Alvarez, 2009). The authors 
hypothesized that if there were more redundancies in the 
information input, then more content can be stored (as 
predicted by information theory). Their results indicate that 
more regular displays did in fact facilitate the encoding of 
information, which increased color recall performance in a 
way that could be predicted by a Bayesian learning model. 

The primary goal of the current study is to characterize 
the spatial encoding during the enumeration of small sets of 
dots that were randomly placed on a computer screen and to 
determine if location and enumeration accuracy can be 
predicted by the statistical or geometric properties of these 
displays. To investigate this possibility, we devised an 
enumeration task that presented a display with randomly-
placed small black discs. After a mask, observers marked 
the perceived location of each disc, which also served as 
their numerosity response (see Figure 1). Three stimulus 
durations (50, 200, or 350 ms) and eight numerosities (2-9) 
were tested. These stimuli were presented very briefly in 
order to prevent verbal counting and the response method 
allowed for a nonverbal report of numerosity and location 
(similar to a reporting methodology described in Dent & 
Smyth, 2006). Enumeration accuracy is measured as the 
percent of trials with an accurate numerosity report and the 
average (absolute) number of miscounts. For each trial, each 
disc on a response display was paired with a disc on the 
stimulus display to determine location accuracy, which is 
the distance between these corresponding discs.  

The location data from this experiment was used to 
characterize observers’ representations of objects selected 
for enumeration. The properties of the disc configurations in 
the test displays were compared to those in the observers’ 
responses. This enabled quantitative comparisons between 
the actual stimulus and its representation. One testable 
prediction is that a display with more regularity would allow 
more content to be encoded more accurately into working 
memory, leading to better enumeration performance and 
object localization. Display regularity was obtained by 

applying Delaunay Triangulation methods to identify 
“simplexes”—triangles with vertices comprised of display 
discs without other discs inside them (Kendall, 1989). This 
triangulation was applied to the elements in both the test and 
response displays, and the average area and side lengths of 
the resulting triangles were computed for each display. 
“Maximal circles”, which connect the vertices of each 
triangle simplex, have also been used to study regularity in 
the spacing between dots (Fidopiastis, Hoffman, Prophet, & 
Singh, 2000). Similarly, maximal circles were identified and 
the average radii of these circles was computed and 
compared to observer responses. Another form of statistical 
summary examined was the centroid of disc configurations. 
Humans can estimate the center-of-mass of an array of 
randomly arranged dots on a display with high accuracy 
(Juni, Singh, & Maloney, 2008; Zhou, Chu, Li, & Zhan, 
2006). The computation of this centroid estimate may prove 
to be crucial when representing individual locations. For 
each display, we computed the centroid and the distances of 
each element on the display from its centroid. We then 
compared the values between the stimulus and response data 
in order to estimate variability and compression.  

The various regularity measures described above may be 
used to develop a model that predicts enumeration and 
localization performance. The current study aims to 
contribute to this goal by characterizing the spatial encoding 
during enumeration. This can lead to a better understanding 
of the nature of numerosity representations obtained under 
brief viewing conditions and help identify the mechanisms 
that contribute to this process. Using the characteristics of 
possible mechanisms—such as the Weberian nature of a 
magnitude mechanism or the set-based limitation of an 
indexing mechanism—we can test which model best 
explains the current data and identify the properties that are 
better predictors of accurate enumeration. 

 

 
Figure 1. Schematic of this enumeration experiment. 

 
 

II. Methods 
Participants: 24 Rutgers University undergraduates 
participated in one session for course credit or payment.  
 
Apparatus: The experiment was programmed in MATLAB 
with Psychophysics Toolbox 3.0.8 (Brainard, 1997) and 
presented using a desktop computer running Windows XP 



(Intel Pentium 4 processor). The stimuli were displayed on a 
19” color CRT monitor with a resolution of 1280 x 1024 
pixels and a refresh rate of 70 Hz; contrast was set to 100% 
and brightness was set to 50%. The screen dimensions were 
approximately 35° by 27° in visual angle. 
 
Stimuli: Test displays contained 2-9 identical black discs 
(35 pixels in diameter, or ~1°) presented on a gray screen 
for 50, 200, or 350 ms. The discs were randomly placed on 
the screen with the following constraints: discs could not 
appear within 115 pixels (~3°) or more than 715 pixels 
(~20°) of each other, or within ~200 pixels of the screen 
edges. This produced an effective viewing display of 21° by 
16° (768 x 614 pixels). Adequate separation of objects was 
emphasized to ensure “preattentive” object discriminability, 
since more attentional resources are required for accurate 
discrimination when separated by less than 1° (Bahcall & 
Kowler, 1999). The test display was masked using a 
random-dot texture created by randomly assigning a white 
or black value to a grid of 4 x 4 pixel squares. 
 
General procedure: Observers sat approximately 60 cm 
from a computer screen in a darkened room. They were 
given instructions by the experimenter and performed six 
practice trials to ensure understanding of the task. Each trial 
began with a 2,500 ms presentation of a gray screen with a 
white central fixation cross. The stimulus screen was then 
flashed for a designated duration. A black screen appeared 
for one frame (16 ms) before a mask comprised of a 
random-dot texture was presented for 85 ms. Finally, a gray 
input screen with a crosshair pointer appeared and remained 
until observers made their responses by placing markers 
(“X”) on each of the perceived disc locations. Pressing the 
space bar initiated the next trial. It was emphasized to the 
observers that the number of markers placed on the screen 
should represent the number of discs seen on the test 
display, even if they were unsure about the exact location. 
Response coordinates were recorded by the program. See 
Figure 1 for a diagram of a trial. 
 
Processing the location data: The location data was 
comprised of two files, one for the stimulus display and 
another for the response display. In order to analyze the 
accuracy of location representations, stimulus and response 
coordinates (x-y values) were paired using the following 
procedure. When a trial had the same number of stimulus 
and response elements (i.e., correctly enumerated displays), 
a Procrustes analysis on the convex hulls of the element 
locations was used to identify the best fit of the response to 
the stimulus coordinates for each trial. Procrustes analysis 
determines the similarity between two shapes by estimating 
the best fit of one set of points to a comparison set by 
factoring out variations in scaling, rotation, and translation 
(Goodall, 1991). After applying the relevant scaling, 
rotation, or coordinate position transformations, Delaunay 
Triangulation and nearest-neighbor methods were used to 
identify stimulus-response pairs. For calculating pattern 

regularity on a display, the mean and variance values were 
computed for the areas of triangle simplexes (identified by 
the triangulation), connecting edges, and the radii of the 
maximal circles that circumscribe the triangle simplexes. 
Trials with unpaired discs, which primarily occurred when 
displays were under- or over-counted, were not included in 
the location analysis (15% of possible data points). 
 

III. Results 
Enumeration Accuracy 
The enumeration results replicate previous studies, with the 
highest accuracy observed in low numerosities. This range 
was maintained for six items—better than in previous 
studies where accuracy declines after four items. A follow-
up experiment was conducted that included a control where 
numerosity was reported using Arabic numerals (Haladjian, 
Pylyshyn, & Gallistel, 2009). Observers performed better in 
the location-marking block (six items) than the control 
block (four items), supporting the current results.  

Analysis of variance was conducted on the enumeration 
performance with observer included as a random variable. 
The largest numerosity condition of nine discs was excluded 
to control for anchoring effects. Analyzing the proportion of 
trials with perfect enumeration revealed main effects for 
display duration (F=34.7(2,276), p<.01) and numerosity 
(F=68.8(6,276), p<.01), with interactions (F=7.7(12,276), 
p<.01). Analyzing the absolute value of miscounts for each 
condition also revealed main effects for display duration 
(F=36.1(2,276), p<.01) and numerosity (F=51.2(6,276), 
p<.01), with interactions (F=11.8(12,276), p<.01). Figure 2 
depicts the proportion of trials correctly enumerated and 
Figure 3 depicts the average absolute number of miscounts. 
Errors increased with larger numerosities but fewer errors 
were found with longer display durations. When observers 
made errors, they were generally underestimates (84% of 
errors were underestimates). Performance in the 50-ms 
display was significantly worse than the 200- and 350-ms 
durations for the 6-9 disc displays in both these analyses. 

 
 

 

Figure 2. Proportion of trials with correct enumeration. 
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Figure 3. Average counting errors. 

 
Location Accuracy 
Location error is reported as the Euclidean distance between 
the coordinates of stimulus-response pairs for each trial. 
ANOVA results indicate main effects for display duration 
(F=27.2(2,276), p<.01) and numerosity (F=81.4(6,276), 
p<.01), with no interactions (F=1.4(12,276), p=.15). Errors 
increased with larger numerosities and generally decreased 
with longer display durations (see Figure 4). The mean and 
variance of the following variables were computed to 
estimate display regularity: 1) area of Delaunay “simplex” 
triangles; 2) length of the triangle segments (shared edges 
were counted only once); 3) radii of the maximal circles that 
circumscribed the simplexes; 4) distance between each disc 
and the display centroid; and 5) radius of the enclosing 
“circumcircle” around the display elements (to estimate disc 
dispersion). Since performance was significantly worse in 
the 50-ms displays, only data from the 200- and 350-ms 
display durations (combined) are reported here. 

The centroid (or center-of-mass) for each display was 
computed by calculating the mean x- and y-coordinate of all 
discs on a display. The compression measure is shown in 
Figure 5 as the average centroid-to-disc distances, that is, 
the average distance from discs on a display to the centroid. 
The substantially smaller distances in the observers’ 
responses suggests that their representation is compressed 
around the centroid of the display. The average dispersion 
(minimum enclosing circle radius) of the discs on a stimulus 
display ranged from 203 pixels (SD=73) in 2-numerosity 
displays to 358 pixels (SD=19) in 9-numerosity displays; for 
response data, this dispersion ranged from 185 pixels 
(SD=73) to 314 pixels (SD=44), indicating compression. 

Display regularity was measured in terms of the 
variability in the size of the Delaunay simplexes and the size 
of the maximal circles that circumscribe these triangles. 
Here we report the effects of regularity as measured by the 
variability in the edge lengths of Delaunay simplexes; 
however, similar patterns of results were obtained with the 
area of the simplexes and the size of the maximal circles. 
Figure 6 depicts the average segment lengths and also 
suggests a compression of these representations. To 

compare levels of display regularity, the standard deviation 
of the triangle segments in the test displays were grouped 
into quartiles, where 25% of the trials with least variation 
are in the first quartile and 25% of trials with the most 
variation are in the last quartile. This allowed us to plot 
location errors as functions of increasing variability 
(decreasing regularity) in Figure 7 and counting errors in 
Figure 8. These two charts show that displays with lower 
variability produce lower errors in both counting and 
localization (counting performance for displays <6 items are 
not shown since observers performed almost perfectly). 

To compare the regularity of the test and response 
patterns, the overall compression in the response patterns 
was first undone using the scaling estimate from the 
Procrustes analysis. The variance in the simplex segment 
length for these “uncompressed” response patterns was then 
compared to, and found to be lower than, the variance in the 
corresponding stimulus patterns. This suggests that 
observers imposed regularity on the response patterns than 
there was not present in the stimulus patterns. Figure 9 plots 
stimulus and response data from two representative trials, 
which illustrates the imposed compression and regularity. 
 

 
Figure 4. Average location errors in pixels. 

 

 

Figure 5. Average centroid-to-disc distance in pixels 
(200 & 350 ms displays combined). 
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Figure 6. Average segment lengths of Delaunay triangle 

simplexes (200 & 350-ms displays combined). 
 

 
Figure 7. Location errors as a function of increasing triangle 

segment variability (200 & 350-ms displays combined). 
 
 

 
Figure 8. Counting errors as a function of increasing triangle 

segment variability (200 & 350-ms displays combined). 

	
   	
  

Figure 9. Representative samples of location data with the 
triangulation simplexes drawn. 

 
 

IV. Discussion 
The visual system is thought to use redundancies from 
visual stimuli in order to encode information efficiently, as 
proposed by information theory applications to perception 
(Attneave, 1954). The current results showing better 
performance in displays with more regular patterns indicates 
a more efficient encoding of object locations that may be 
supported by an information theory of perception. When the 
triangle simplexes of a display have less variance, observers 
are more accurate in representing these more regular 
displays and exhibit better enumerating and localization 
performance. Additionally, there appears to be a tendency 
for compressing distances around the centroid. Even after 
factoring out the overall compression in the response 
patterns, these distances were found to be less variable in 
the response configurations than in the test configurations. 
This could indicate that observers are either assuming there 
is more regularity when they reconstruct the image, or 
representation errors are biased towards less variability or 
towards more “prototypical” representations of shape. This 
observed tendency to impose regularity on variable displays 
supports findings from previous studies (e.g., Taylor, 1961).  

Increasing stimulus exposure durations from 50 ms to 200 
ms produced more accurate enumeration for numerosities 
greater than six and more accurate location encoding for all 
numerosities. This suggests a coarse location-estimation 
process that occurs initially and is updated over time. The 
disassociation in enumeration and location performance for 
the smaller numerosity range also suggests that enumeration 
occurs independent of location-encoding: attention may be 
required to effectively encode locations but subitizing may 
be preattentive. This may indicate that visual indexes are 
responsible for subitizing, since location information does 
not need to be encoded initially to assign an index, but over 
time information can be bound to these indexes in order to 
build more accurate feature representations, including 
locations (Pylyshyn, 1989). The current results suggest that 
the indexing mechanism is implemented for smaller 
numerosities, but further experiments to support this 
conclusion are required.  

The current experiment describes a novel methodology 
that implements a nonverbal report of numerosity, which 
appears to enable high enumeration accuracy of six items. 
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Allowing observers to enumerate by location may be a more 
accurate demonstration of selection abilities during fast 
enumeration, and this type of selection is sensitive to the 
geometric and statistical properties of the visual input. The 
observed location errors occur systematically and may 
benefit from inherent geometric regularities. Further 
analyses of these location data from a statistical perception 
or information theoretic perspective promise to reveal 
important information about the spatial nature of numerosity 
representations. 
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