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Abstract 

In fMRI research, the goal of correcting for multiple comparisons is to identify areas of 

activity that reflect true effects, and thus would be expected to replicate in future studies. Finding 

an appropriate balance between trying to minimize false positives (Type I error) while not being 

too stringent and omitting true effects (Type II error) can be challenging. Furthermore, the 

advantages and disadvantages of these types of errors may differ for different areas of study. In 

many areas of social neuroscience that involve complex processes and considerable individual 

differences, such as the study of moral judgment, effects are typically smaller and statistical 

power weaker, leading to the suggestion that less stringent corrections that allow for more 

sensitivity may be beneficial, but also result in more false positives. Using moral judgment fMRI 

data, we evaluated four commonly used methods for multiple comparison correction 

implemented in SPM12 by examining which method produced the most precise overlap with 

results from a meta-analysis of relevant studies and with results from nonparametric permutation 

analyses. We found that voxel-wise thresholding with family-wise error correction based on 

Random Field Theory provides a more precise overlap (i.e., without omitting too few regions or 

encompassing too many additional regions) than either clusterwise thresholding, Bonferroni 

correction, or false discovery rate correction methods.  
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Evaluating Methods of Correcting for Multiple Comparisons Implemented in SPM12 in Social 

Neuroscience fMRI Studies: An Example from Moral Psychology 

Correcting for multiple comparisons has been one of the most significant challenges in 

the statistical analysis of fMRI data (Bennett, Miller, & Wolford, 2009). Because more than one 

hundred thousand voxels are compared simultaneously during analysis, the chances of Type I 

error are very high in the absence of  any correction (Genovese, Lazar, & Nichols, 2002). In 

order to address this issue, researchers have developed various correction methods. For instance, 

Bonferroni’s correction method, one of the traditional methods for multiple comparison 

correction, divides the nominal significance level (e.g., p < .05) by the number of tests being 

performed (Bland & Altman, 1995). Although Bonferroni correction produces good control of 

Type I error, it has the disadvantage of removing both false and true positives when applied to 

whole brain analyses. To address this issue, many researchers use a family-wise error (FWE) 

correction method based on Random Field Theory (RFT) (Nichols, 2012). Unlike the traditional 

Bonferroni method, which only accounts for the total number of comparisons, this method 

assumes that the error fields can be a lattice approximation to an underlying random field usually 

with a Gaussian distribution (Brett, Penny, & Kiebel, 2004; Eklund, Nichols, & Knutsson, 2016). 

Moreover, the false discovery rate (FDR) correction method was developed. This method is 

thought to be more sensitive and less likely to produce Type II error than FWE correction 

methods. Unlike the aforementioned methods that control for the possibility of any false 

positives, this method focuses on the expected proportion of false positives only among survived 

entities (Genovese et al., 2002; Nichols, 2013). In terms of the implementation of the FDR 

correction method, neuroimaging has relied on the standard FDR procedure, the linear step-up 

procedure, or so-called Benjamini and Hochberg procedure (Benjamini & Hochberg, 1995; 
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Benjamini, Krieger, & Yekutieli, 2006), although more sophisticated procedures, such as 

adaptive linear step-up procedures, have been developed (Benjamini et al., 2006).  

These correction methods can be performed at different levels of inference (i.e., voxel-

wise and clusterwise inference; Flandin & Novak (2013) using fMRI analysis software (e.g., 

SPM) and customized MATLAB codes. In the case of voxel-wise inference, each individual 

voxel is treated as a unit for analysis, and any voxel exceeding a threshold after applying one of 

the aforementioned correction methods is considered statistically significant in the whole brain 

or specified regions of interest (Nichols, 2012). In the case of clusterwise inference, statistically 

significant clusters showing activation are detected based on the number of contiguous voxels; 

this type of inference does not control the estimated false positive probability of each individual 

voxel in each region, but controls such a probability of the region as a whole (Woo, Krishnan, & 

Wager, 2014). This clusterwise inference has been one of the most popular methods used for 

multiple comparison correction because it is considered to be more sensitive than voxel-wise 

inference (Woo et al., 2014). 

Although the aforementioned correction methods, particularly RFT FWE correction and 

FDR correction, have been implemented in widely used fMRI analysis software (e.g., SPM) with 

parametric assumptions, a nonparametric analysis tool, Statistical non-Parametric Mapping 

(SnPM) (Nichols & Holmes, 2002), uses permutations in order to correct for multiple 

comparisons without several assumptions required for parametric analysis, such as normally 

distributed data and mean parameterization. Instead, SnPM requires several minimal assumptions 

pertaining to the empirical null hypothesis (Nichols, 2012). For instance, in the case of a two-

sample t-test, the subjects are assumed to be exchangeable under the null hypothesis, which 

might be violated if the subjects are related; in the case of a one-sample t-test, sign flipping, 
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which is based on an assumption that the errors have a symmetric distribution, is used (Winkler, 

Ridgway, Webster, Smith, & Nichols, 2014). The application of SnPM is considered less 

stringent than the Bonferroni and RFT-FWE correction methods applied by software supporting 

parametric analysis when it is applied using voxel-wise inference (Eklund et al., 2016; Nichols & 

Hayasaka, 2003); however, clusterwise inference with SnPM is considered to be more stringent 

(Eklund et al., 2016). Furthermore, the randomise function in FSL and the corresponding 

function in the BROCCOLI software (Eklund, Dufort, Villani, & LaConte, 2014), which are 

based on the same statistical principles used for SnPM, have been utilized to evaluate false-

positive rates and sensitivity of traditional correction methods (Eklund et al., 2016). 

Although clusterwise inference has become a popular method for multiple comparison 

correction, a recent study evaluating different correction methods has raised concerns that the 

RFT-applied FWE correction method for clusterwise inference implemented in widely-used 

fMRI analysis software, such as SPM and FSL, inflates false-positive rates and produces 

erroneous outcomes (Eklund et al., 2016). RFT clusterwise inference relies on two strong 

assumptions that might cause such erroneous outcomes. It assumes that “the spatial smoothness 

of the fMRI signal is constant over the brain” (Eklund et al., 2016, p. 7902), and that there is a 

specific shape in the spatial autocorrelation function (Eklund et al., 2016). Using resting-state 

fMRI and cognitive experimental fMRI data analyzed with putative task designs, Eklund et al. 

(2016) report that rather than a false-positive rate of 5%, the most common software packages 

(SPM, FSL, AFNI) resulted in false-positive rates of up to 70% when RFT clusterwise inference 

was performed. However, the RFT-applied voxel-wise inference produced conservative 

outcomes with a false-positive rate of 5% or less (Eklund et al, 2016). Furthermore, there have 

been concerns regarding the FDR method as well. Although the FDR correction method reduces 
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the probability of Type II error with enhanced sensitivity, this method is perhaps more likely to 

produce Type I error compared to other more conservative correction methods (Bennett, 

Wolford, & Miller, 2009). 

The problem of appropriately correcting for multiple comparisons may be especially 

concerning in the field of social neuroscience in which balancing the risk of Type I and Type II 

error is sometimes an especially difficult task. Social and affective fMRI experiments often, 

though not always, produce smaller effect sizes and have weaker statistical power compared to, 

for example, sensory-motor experiments; there are several reasons for this (Lieberman & 

Cunningham, 2009). In many areas of social neuroscience, the psychological processes measured 

by these experiments are often poorly defined and are not directly observable (Poldrack, 2011). 

For example, in the field of moral psychology, the process of moral judgment – determining 

whether something is right or wrong –involves a number of different lower order processes, and 

is a task that can be accomplished in different ways by different individuals (Blasi & Hoeffel, 

1974; Narvaez, Getz, Rest, & Thoma, 1999). Furthermore, the mental states of the individual are 

often not as certain. We cannot, for example, know with certainty that a person is “experiencing 

empathy” at a particular moment in time, nor expect the neural correlates of such a reported 

experience to be the same for all individuals. In contrast, with sensory and motor phenomena, 

there is a closer mapping between experimental inputs (e.g., a visual cue) and behavioral outputs 

(e.g., the person taps his fingers) and much less variability from trial-to-trial or person-to-person 

(Lieberman & Cunningham, 2009).  

Although there are some examples of larger effects and more precise study designs 

within social neuroscience, such as the response of the fusiform face area to images of faces, 

many social neuroscience studies involve complex paradigms that may allow for multiple mental 
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processes to occur, and in which the timing of processing is less precise. Thus, it has been argued 

that attempts to diminish Type I errors may be problematic in many social neuroscience studies, 

as they increase the probability of missing true effects (Lieberman & Cunningham, 2009). As a 

result, more lenient correction methods have become common in the field, in order to improve 

sensitivity. However, given the recent report demonstrating the possibility of inflated false 

positive rates possibly produced by the application of methods with better sensitivity (e.g., 

clusterwise inference), researchers should be cautious when applying such methods for 

correction in social neuroscientific studies. 

Because of the unique goals and challenges of social neuroscience research, it is 

important to evaluate the various methods for multiple correction reviewed above in the context 

of a social neuroscientific experiment. Previous studies have evaluated different correction 

methods by using data from various clinical, visual, cognitive, and behavioral experiments 

(Eklund et al., 2016; Nichols & Hayasaka, 2003; Nichols & Holmes, 2002) and using simulation 

data (Nichols & Hayasaka, 2003), but not using data collected in a social neuroscience 

experiment. Because of the issues raised above regarding small effects and reduced statistical 

power, one of the challenges with many types of social neuroscience research is that it is more 

difficult to determine which activations are indeed false positives. However, in the context of the 

more complex and noisier data of some social neuroscience experiments, one way to generate an 

activation map that may more closely reflect the “true” pattern of activity for a particular process 

– in order to evaluate these methods – is to use meta-analysis. Meta-analysis has been suggested 

as a feasible method to enhance the statistical power of fMRI analysis and better examine the 

overall brain activity pattern associated with a certain functionality of interest by analyzing a 
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large amount of data while addressing the issue of reverse inference (Eklund et al., 2016; 

Lieberman & Cunningham, 2009; Poldrack, 2011).  

Thus, in the present study we compare the quality of various correction methods in the 

analysis of data collected in one area of social neuroscience that is faced with the challenges 

mentioned above – an fMRI study of moral judgment. We used datasets and results from a 

quantitative meta-analysis of previously published fMRI studies on moral cognition and emotion 

(Han, 2017) in order to identify which correction method results in activations that most closely 

resemble results from the meta-analysis. Furthermore, as recommended by Nichols & Holmes 

(2002), we also compare results from each correction method with results produced by SnPM 

analyses, which does not require any parametric assumptions. We test four thresholding methods 

which have been widely used in the field – FDR, thresholding with RFT clusterwise inference, 

RFT-based FWE voxel-wise thresholding implemented in SPM, and Bonferroni correction. 

Methods and Materials 

Subjects and Materials 

In the present study we reanalyzed previously collected fMRI data (Han, 2016; Han, 

Chen, Jeong, & Glover, 2016; Han, Glover, & Jeong, 2014). This fMRI data was obtained from 

16 participants (8 male) who attended a Northern Californian university. They were 

undergraduate and graduate students who ranged in age from 21 to 34 years (M = 28.59, SD = 

3.18). Functional brain images were acquired while they were making judgments about 60 socio-

moral dilemmas that were previously developed for fMRI experiments (Greene, Nystrom, 

Engell, Darley, & Cohen, 2004; Greene, Sommerville, Nystrom, Darley, & Cohen, 2001). The 

dilemma set consisted of three different types of dilemmas: moral-personal (22 dilemmas), 

moral-impersonal (18 dilemmas), and non-moral dilemmas (20 dilemmas). Moral-personal 
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dilemmas tend to provoke negative intuitive emotional responses among participants and often 

involve salient harm to human lives. Moral-impersonal dilemmas involved moral content but did 

not intend to provoke strong gut-level responses (e.g., should you return a lost wallet). Non-

moral dilemmas included simple value-neutral mathematical problem sets. Participants were 

asked to choose one of two options to address each presented dilemma. Functional brain images 

were acquired using a spiral in-and-out sequence (TR = 2000ms, TE = 30ms, flip angle = 90) 

(Glover & Law, 2001). For the functional images, a total of 31 oblique axial slices were scanned 

parallel to the AC-PC with 4-mm slice thickness, 1-mm inter-slice skip. The resolution was 3.75 

x 3.75 mm (FOV = 240mm, 64 x 64 matrix). Similar to Greene et al.’s (2001, 2004) 

experiments, we modeled brain activity four scans before, one during and three scans after the 

moment of response. 

Procedures 

Reanalysis of fMRI data. We reanalyzed the brain images using four different 

approaches for multiple comparison correction. These approaches were FDR correction 

(Genovese et al., 2002), clusterwise inference-applied thresholding (Flandin & Novak, 2013), 

voxel-wise thresholding with FWE correction based on the RFT implemented in SPM12 

(Flandin & Novak, 2013; Nichols, 2013), and FWE correction using Bonferroni’s method 

(Nichols & Holmes, 2002). Analyses were performed by using SPM12. The FDR inference was 

performed in MATLAB software and was based on example code developed by Nichols (2013). 

Also, a customized MATLAB code was composed to implement voxel-wise thresholding instead 

of peak-wise analysis that is the default in SPM. For the first-level estimation, a separate general 

linear model (GLM) was set for each participant that examined neural activity during each of 

three conditions. Each regressor was convolved with a standard hemodynamic response function 
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(HRF). For comparisons between conditions, second-level estimation was conducted. The 

performed comparisons were conducted for these pairs: all moral (moral-personal + moral-

impersonal) versus non-moral, moral-personal versus non-moral, moral-impersonal versus non-

moral, moral-personal versus moral-impersonal, and moral-impersonal versus moral-personal. 

We applied four different thresholds for comparison. First, a voxel-wise threshold of p < .05 was 

used after applying one of the three multiple comparison correction methods (i.e., FDR, RFT 

FWE, Bonferroni’s FWE). Second, we also applied an uncorrected voxel-wise threshold of p < 

.001 with a clusterwise threshold of p < .05 after FWE correction, which was provided by 

SPM12. For cross-check, we also conducted the reanalysis with SnPM. Similarly, a voxel-wise 

threshold of p < .05 after applying FWE correction was used and 5,000 permutations were 

performed.  

Meta-analysis of previous fMRI experiment for the basis for evaluation. We 

evaluated the four correction methods by comparing findings from our analyses of fMRI data to 

those from a meta-analysis of fMRI studies on moral cognition and emotion (Han, 2017). 

GingerALE software (version 2.3.6), which implements the activation likelihood estimation 

(ALE) method (Eickhoff et al., 2009; Eickhoff, Bzdok, Laird, Kurth, & Fox, 2012; Laird, 

Lancaster, & Fox, 2005), was employed in the meta-analysis. The meta-analysis examined a 

previously collected set of activation foci that were found by previous neuroimaging studies that 

compared neural correlates between moral and non-moral task conditions (for details see Han, 

2017). This dataset included 45 experiments with 959 participants and 463 activation foci 

reported by 43 articles (see Table S1 for the list of included articles). In particular, comparisons 

between overall moral versus non-moral task conditions and moral versus non-moral judgment 

were performed. For the former comparison the whole dataset was meta-analyzed; for the 
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comparison between moral versus non-moral judgment, we meta-analyzed a subset of the whole 

dataset (18 experiments with 373 participants and 142 activation foci reported in 17 articles) that 

included previous studies focusing on moral judgment among various moral functions. For both 

meta-analyses, we used FDR of .01 as a cluster-forming threshold and .05 for clusterwise 

inference as suggested (Fox et al., 2013). The calculated ALE map was compared with results 

produced by the aforementioned four correction methods for quality evaluation. 

Overlap index calculation and quality evaluation. The present study aimed to 

quantitatively examine the overlap between survived activation foci after the application of each 

correction method and those found by the meta-analysis, foci in the ALE map created by 

GingerALE, and SnPM. We may simply represent the degree of overlap with the ratio of the 

number of overlapped voxels to the total number of voxels of a reference area. In case of the 

present study, two different types of ratios can be calculated: the ratio of the number of 

overlapped voxels (|VOvl|) to the number of survived activation foci after applying correction 

method (|VCor|;  |VFDR| in case of FDR correction, |VCLU| in case of clusterwise inference 

thresholding,  |VRFT| in case of RFT-applied FWE voxel-wise thresholding, |VBon| in case of 

Bonferroni’s method-applied FWE correction) and that of the number of overlapped voxels to 

the number of activation foci found by meta-analysis (|VMeta|) and SnPM (|VSnPM|). However, 

these ratios would not provide us with enough information regarding the overall fit; instead, it 

may demonstrate a biased result. For instance, if survived voxels are completely contained by 

activation foci found by the meta-analysis, |VOvl|/|VCor| becomes 1.00, but |VOvl|/|VMeta| can be 

smaller than 1.00. On the other hand, if resultant voxels from the meta-analysis are subsets of 

survived voxels, |VOvl|/|VMeta| is 1.00 while |VOvl|/|VCor| can become smaller than 1.00. In these 
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situations, we cannot make an accurate decision about which case shows a greater overlap solely 

based on the two independent ratios.  

Instead, we may consider employing a unified overlap index, which takes into account 

both ratios simultaneously. The harmonic mean, instead of the arithmetic mean, would be a 

feasible and reliable way to calculate the overall overlap index with two different ratios, given its 

definition (Marchiori & Latora, 2000). We can then calculate the overall overlap index (IOvl) as 

follows: 
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Five hypothetical cases are introduced as examples (see Figure 1). Red areas represent 

survived voxels after the application of correction method, yellow areas represent activation foci 

found by meta-analysis, and white areas represent overlapped voxels. Table 1 demonstrates two 

different ratios calculated for each case. 

<Place Figure 1 about here> 

Table 1. Sole Ratios Compared to Overlap Index for the Cases Depicted in Figure 1 

 Case 1 Case 2 Case 3 Case 4 Case 5 

|VOvl| / |VCor| .15 .33 1.00 .00 1.00 
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|VOvl| / |VMeta| 1.00 .48 .15 .00 1.00 

IOvl .26 .39 .26 .00 1.00 

 

Both case 1 and 3 show why the sole ratio, instead of the overall overlap index, may be 

misleading when we attempt to evaluate the overlap quantitatively. Although one of two 

different types of overlap ratios is 1.00, another ratio is significantly smaller and vice versa (.15); 

in this case, we are not able to decide which one would better represent the overall trend of 

overlap. Instead, the overall overlap index would be a non-biased solution to address this issue. It 

can provide us with a unified value for overlap index by taking into account two different types 

of ratios at the same time. For instance, case 1 and 3 in fact show an identical degree of overlap 

as visualized in Figure 1 and their overall overlap indices are identical to each other. 

Furthermore, the overall overlap index value of case 2 is greater than the calculated index values 

of case 1 and 3; this result is consistent with what we would expect from the apparent ratio of 

white areas to other areas as presented in the diagrams. 

For the evaluation of correction methods in the present study, we calculated the overall 

overlap index for one contrast, i.e., all moral versus non-moral, because included task conditions 

in the meta-analysis that intended to be performed are moral cognition and emotion in general, 

and moral judgment that did not distinguish task conditions according to the nature of moral 

dilemmas, i.e., moral-personal and moral-impersonal dilemmas. The overlap index was also 

calculated for case of the overlap between survived voxels after the application of each 

thresholding method and SnPM. As a result, four overlap indices were calculated (IOvl(FDR), 

IOvl(CLU), IOvl(RFT), and IOvl(Bon)) for each type of meta-analysis (either moral cognition and emotion 
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in general, or moral judgment) and SnPM. We examined which correction method produced the 

highest overlap index value.  

Results 

Reanalysis of fMRI data 

We reanalyzed the fMRI to examine which voxels were significantly activated by the 

different contrasts in the moral judgment task after the application of each correction method. 

Although we used the spiral in-and-out method that is more robust against the signal dropout in 

ventral areas in the prefrontal cortex compared to the EPI methods (Glover, 2012; Glover & 

Law, 2001), some prefrontal regions below z = -12 demonstrated signal loss and were excluded 

for our reanalysis (see Figure S1). Figure 2 demonstrates survived voxels for each contrast (all 

moral versus non-moral, moral-personal versus non-moral, moral-impersonal versus non-moral, 

moral-personal versus moral-impersonal, and moral-impersonal versus moral-personal). Table 2 

summarizes the number of survived voxels for each correction method. In addition, Table S2 

provides information regarding survived voxels for each contrast. As previous methodological 

studies have shown, the Bonferroni method-applied FWE voxel-wise thresholding was most 

conservative, and the FDR-applied thresholding was most lenient (Bennett, Wolford, et al., 2009; 

Nichols, 2013) among four different thresholding methods in terms of the number of survived 

voxels (>?@A ⊃ >CDE ⊃ >A?F ⊃ >GH&)	for all contrasts, except for the contrast of moral-personal 

vs. moral-impersonal. 

<Place Figure 2a-e about here> 

Table 2. Number of Voxels Surviving with Four Different Thresholds and SnPM Method as a 

Reference 
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FDR 

(|VFDR|) 

Clusterwise 

inference 

(|VCLU|) 

RFT FWE 

(voxel-

wise) 

(|VRFT|) 

Bonferroni’s 

FWE (|VBon|) 

Voxel-

wise 

SnPM 

(|VSnPM|) 

All moral vs. non-

moral 
24,524 14,424 264 66 416 

Moral-personal vs. 

non-moral 
20,883 13,540 817 227 2,084 

Moral-impersonal vs. 

non-moral 
13,787 7,458 0 0 20 

Moral-personal vs. 

moral-impersonal 
2,816 2,941 46 0 370 

Moral-impersonal vs. 

moral-personal 
11,474 6,826 22 2 235 

 

 

Examination of Overlap with Meta-analysis and SnPM Results 

By using the equation for the calculation of the overall overlap index, we examined the quality of 

each correction method. Survived voxels after the application of each correction method were 

compared with activation foci identified in the ALE maps created by GingerALE and SnPM. 

Although some ventral parts of the prefrontal cortex below z = -12 were excluded from our fMRI 

reanalysis due to signal dropout, no excluded voxels overlapped with any significant voxels in 



 16 

the ALE maps as significant voxels were located above z = -8 in the ventromedial prefrontal 

cortex. Figure 3 demonstrates comparisons with common activation foci of moral cognition and 

emotion in general, and moral judgment, respectively. Table 3 shows the calculated overall 

overlap index for each case. As presented, the best overall overlap was achieved when the RFT 

FWE corrected voxel-wise thresholding was applied. In all cases, the RFT FWE showed the best 

performance. In the comparisons with the meta-analysis of moral cognition and emotion in 

general, FDR resulted in 21.4% less overlap with meta-analysis results than RFT FWE, 

thresholding with clusterwise inference resulted in 2.9% less overlap, and Bonferroni FWE 

resulted in 66% less overlap. In the comparisons with the meta-analysis of moral judgment, FDR 

resulted in 72.8% less overlap with meta-analysis results than RFT FWE, thresholding with 

clusterwise inference resulted in 66.2% less overlap, and Bonferroni FWE resulted in 54.3% less 

overlap. Finally, when the results were compared with SnPM, FDR resulted in 87.3% less 

overlap with SnPM results than RFT FWE, thresholding with clusterwise inference resulted in 

78.4% less overlap, and Bonferroni FWE resulted in 32.8% less overlap.  

<Place Figure 3a-c about here> 

Table 3. Overlap Index Representing the Degree of Overlap between Activated Voxels Using 

Each Correction Method and Results from the Meta-Analyses and SnPM 

 FDR 

(IOvl(FDR)) 

(24,524 

voxels) 

Clusterwise 

inference 

(IOvl(CLU)) 

(14,424 voxels) 

RFT FWE 

(IOvl(RFT)) 

(264 voxels) 

Bonferroni’s 

FWE (IOvl(Bon)) 

(66 voxels) 
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Meta-analysis: moral 

cognition and emotion in 

general (3,258 voxels) 

.081 .100 .103 .035 

Meta-analysis: moral 

judgment (1,287 voxels) 

.041 .051 .151 .069 

SnPM: moral-personal + 

moral-impersonal (416 

voxels) 

.033 .056 .259 .174 

Note. The number of survived voxels for each case is presented in parentheses. 

 

Discussion 

There has been much discussion in the literature about the importance of finding a 

balance between Type I and Type II errors in fMRI studies. Although some have advocated for 

less stringent thresholds in order to reduce the risk of missing true effects in social and affective 

neuroscience studies (Lieberman & Cunningham, 2009), recent studies by Eklund et al. (2016) 

and Bennett et al. (2009) suggest that some of these methods may be far more lenient than 

expected or desired. Determining an appropriate method for balancing Type I and Type II error 

is particularly difficult in social neuroscience studies, which often (though not always) involve 

complex paradigms that measure less precise and more variable mental processes, resulting in 

smaller effect sizes and weaker power.  
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In the present study, we evaluated four different methods for correcting for multiple 

comparisons within the social neuroscience domain of moral judgment by examining which 

method produced results that most closely matched the effects identified in a meta-analysis (i.e., 

an estimate of the “real” effects) and SnPM (i.e., an estimate without any parametric 

assumptions). As in previous studies, we found that the RFT-applied FWE correction 

implemented in SPM was similar to or slightly less conservative than the Bonferroni FWE 

correction method, but more conservative than the FDR correction (Bennett, Wolford, et al., 

2009; Eklund et al., 2016; Nichols, 2013; Nichols & Hayasaka, 2003; Nichols & Holmes, 2002) 

in the case of voxel-wise inference. Also, as recently reported, the clusterwise thresholding 

provided in SPM12 by default was also more lenient than the voxel-wise FWE-applied 

thresholding (Eklund et al., 2016). When compared to results from meta-analyses of studies on 

moral cognition and emotion in general, and moral judgment specifically, as well as those from 

the application of SnPM, activation maps from the RFT FWE-applied voxel-wise thresholding 

demonstrated the most overlap, as calculated by the overall overlap index.  

These findings suggest that the RFT FWE-applied voxel-wise thresholding may be an 

acceptable correction method for studies of moral psychology despite the limitations that have 

been discussed in the field of social neuroscience (e.g., conservativeness and a lack of statistical 

power). The RFT FWE-applied voxel-wise thresholding may provide a more appropriate balance 

between false positives and false negatives than other correction methods. Although this method 

implemented in SPM is susceptible to reduced sensitivity, in the context of some areas of social 

neuroscience the RFT FWE-applied voxel-wise thresholding may still be considered a viable 

correction method given the calculated overall overlap indices despite the statistical power issue. 

However, researchers in social neuroscience should seriously consider cross-checking the 
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thresholding method with meta-analyses and/or SnPM in order to evaluate whether it is 

appropriate to apply the method in the context of their study.  

In the present study, we compared different correction methods in the context of a moral 

judgment task. However, this unique approach of comparing the results from different correction 

methods to those of a meta-analysis could be applied to many different domains of social and 

affective neuroscience. Future studies using this approach can provide more information about 

whether voxel-wise RFT FWE results in the most overlap with meta-analysis results in other 

domains within social and affective neuroscience. 

The primary limitation of the present study is the imperfect nature of the meta-analysis 

that was used to examine the quality of the multiple correction methods. The meta-analysis was 

based on studies that implement a variety of tasks related to moral cognition and emotion, and 

that use a variety of correction methods and thresholds, thus introducing the possibility of biased 

results. However, by aggregating data from many studies, the hope is that the meta-analysis 

technique can provide a relatively unbiased indicator of the areas that appear to be commonly 

activated across many studies – particularly in social neuroscience studies that involve rather 

complex processes. In addition, as Eklund et al. (2016) warned that the employment of meta-

analysis does not necessarily mitigate the need for the application of valid inferential 

methodologies for individual studies.  

Another limitation is that, as is common in meta-analyses, our meta-analysis was not 

limited to previous studies that utilized the same paradigm (Greene et al.’s (2001, 2004) 

experimental design). Thus, the activation foci identified in the meta-analysis might include 

brain voxels not directly associated with moral judgment, the process of interest, and might be 
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inappropriate to be used for a comparison and evaluation. Of course, the best way to address this 

issue is to only meta-analyze published studies that used Greene et al.’s (2001, 2004) dilemmas; 

however, due to the limited number of studies, this was not feasible. To address this issue, we 

tried to apply a more stringent inclusion rule (i.e., meta-analyzing studies related to moral 

judgment instead of moral cognition and emotion in general) in order to address this issue; the 

results demonstrated that there were greater overlaps between activation foci found by the 

aforementioned fMRI experiment and activation foci found by a meta-analysis of studies related 

moral judgment compared to those found by a meta-analysis of studies related moral cognition 

and emotion in general.  

Given these limitations associated with meta-analysis, researchers may have to employ 

additional cross-checking methods, such as SnPM, which is free from any error originating from 

parametric assumptions, to provide further evaluation of findings (Nichols & Hayasaka, 2003). 

Researchers may also consider utilizing alternative correction methods not assessed here, such as 

the threshold-free cluster enhancement (TFCE), which is considered to have greater sensitivity 

than the traditional methods and allows for the false positive rate to be set at a predetermined 

level by the permutation test (Smith & Nichols, 2009). Although, this function has not been 

implemented in SPM, which was examined in the present study, it is available in FSL as an 

option in the randomise permutation-based inference tool. 

Conclusion 

The goal of correcting for multiple comparisons in fMRI studies is to generate clusters of 

activity that reflect true effects, and thus would be expected to replicate in future studies. Here 

we show that using the RFT FWE-applied voxel-wise thresholding method in a study of moral 

judgment produced the most overlap with results from a meta-analysis on moral cognition and 
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moral emotion and the most overlap with SnPM analyses, suggesting that this method may be the 

best for achieving the goal of identifying true effects. Although this method suffers from 

potentially insufficient statistical power, which has been a significant issue in social 

neuroscience, it may be an acceptable option in the context of experiments focusing on morality 

and possibly other domains of social neuroscience, as long as its application is cross-checked 

with other methods.    
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Figure Legends 

Figure 1. Sample cases for the overall overlap index calculation 

Figure 2. Survived voxels after the application of correction methods. Blue: voxel-wise FDR; 

green: clusterwise inference; yellow: voxel-wise RFT FWE; red: voxel-wise Bonferroni FWE. 

(a) All moral (moral-personal + moral-impersonal) vs. non-moral. (b) Moral-personal vs. non-

moral. (c) Moral-impersonal vs. non-moral. (d) Moral-personal vs. moral-impersonal. (e) Moral-

impersonal vs. moral-personal. Figures created with XjView (Cui, Li, & Song, 2015). 

Figure 3. Comparisons between voxels identified using the four correction methods (sky blue: 

voxel-wise FDR; crimson red: clusterwise inference; yellow: voxel-wise RFT FWE; bright red: 

voxel-wise Bonferroni FWE) and voxels identified in the meta-analyses and SnPM (areas 

surrounded by blue lines). (a) Comparisons with meta-analysis of general moral cognition and 

emotion in general. (b) Comparisons with meta-analysis of moral judgment. (c) Comparisons 

with voxels identified by SnPM. Figures created with XjView (Cui et al., 2015). 
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Figure 2(c) 
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Figure 2(d) 
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Supplementary	Materials	
	
Table	S1.	Experiments	Included	in	the	Meta-analysis	

References	 Subject	 Foci	
Type	

Contrast	 Threshold	
Judgment	 Non-judgment	

Judgment	Experiments	
Moll,	de	Oliveira-Souza,	
Bramati,	et	al.	(2002)	

7	 3	 x	 	 Moral	vs.	Non-moral	emotions	 p	<	.001,	uncorr.	

Heekeren	et	al.	(2003)	 8	 9	 x	 	 Moral	vs.	Semantic	judgment	 p	<	.005,	uncorr.	
Heekeren	et	al.	(2005)	 12	 8	 x	 	 Moral	vs.	Semantic	judgment	 p	<	.001,	uncorr.	
Berthoz	et	al.	(2006)	 12	 8	 x	 	 Moral-related	intentional	vs.	Accidental	violation	judgment	 p	<	.001,	uncorr.	
Borg	et	al.	(2006)	 24	 7	 x	 	 Moral	vs.	Non-moral	harm	 p	<	.05,	corr	

Young	et	al.	(2007)	
1	 10	 6	 x	 	 Moral	belief	task	vs.	

Photo	presentation	
p	<	.001,	uncorr.	

2	 17	 6	 	 	

Harrison	et	al.,	(2008)	 22	 8	 x	 	 Moral	dilemma	vs.	Stroop	task	 p	<	.05,	corr.	

Harenski	et	al.	(2008)	 33	 16	 x	 	 Moral	vs.	Non-moral	violation	 p	<	.001,	uncorr.	

Young	and	Saxe	(2008)	 17	 6	 x	 	 Moral	vs.	value-neutral	judgment	 p	<	.001,	uncorr.	

Sommer	et	al.	(2010)	 12	 6	 x	 	 Moral	vs.	Neutral	conflicts	 p	<	.05,	corr.	

Schleim	et	al.	(2011)	 40	 6	 x	 	 Moral	vs.	value-neutral	judgment	 p	<	.005,	corr.	

FeldmanHall	et	al.	(2012)	 14	 14	 x	 	
Moral	(real	+	hypothetical)	vs.	
Non-moral	

p	<	.05,	corr.	

Reniers	et	al.	(2012)	 24	 6	 x	 	 Moral	vs.	Non-moral	decision-making	 p	<	.05,	corr.	

FeldmanHall	et	al.	(2014)	 38	 1	 x	 	 Moral	vs.	Non-moral	dilemmas	 p	<	.05,	corr.	



Han	et	al.	(2014)	 16	 11	 x	 	
Moral	(personal	+	impersonal)		
vs.	Non-moral	(arithmetic)	

p	<	.001,	uncorr.	

Shenhav	and	Greene	(2014)	 35	 5	 x	 	 Integrative	moral	vs.	utilitarian	&	emotional	judgment	 p	<	.05,	corr.	

Sommer	et	al.	(2014)	 32	 16	 x	 	 Moral	vs.	Neutral	conflicts	 p	<	.05,	corr.	

Subtotal	 373	 142	 	 	 	 	
Non-judgment	experiment	
Moll	et	al.	(2001)	 10	 10	 	 x	 Moral	vs.	factual	evaluation	 p	<	.0001,	uncorr.	
Berthoz	et	al.	(2002)	 12	 20	 	 x	 Socio-moral	vs.	Non-socio-moral	violation	stories	 p	<	.0001,	uncorr.	
Moll,	de	Oliveira-Souza,	
Eslinger,	et	al.	(2002)	

7	 17	 	 x	 Moral	vs.	Non-moral	pictures	 p	<	.005,	uncorr.	

Singer	et	al.	(2004)	 11	 13	 	 x	 Moral	vs.	Non-moral	status	face	watching	 p	<	.001,	uncorr.	
Takahashi	et	al.	(2004)	 19	 15	 	 x	 Moral	guilt	and	embarrassment	vs.	Neutral	feeling	 p	<	.001,	uncorr.	
Moll,	de	Oliveira-Souza,	et	al.	
(2005)	

13	 22	 	 x	
Moral	indignation	vs.	
Basic	disgust,	neutral	

p	<	.005,	uncorr.	

Finger	et	al.	(2006)	 16	 5	 	 x	 Moral	vs.	Conventional	transgression	evaluation	 p	<	.05,	corr.	
Harenski	and	Hamann	(2006)	 10	 2	 	 x	 Moral	vs.	Non-moral	violation	watching	 p	<	.001,	uncorr.	

Moll	et	al.	(2007)	 12	 31	 	 x	
Moral	(Guilt,	Embarrassment,	Compassion,	Indignation)	vs.	
Neutral	agency	

p	<	.005,	uncorr.	

Robertson	et	al.	(2007)	 16	 10	 	 x	 Justice/care	vs.	Non-moral	strategy	evaluation	 p	<	.001,	uncorr.	

Borg	et	al.	(2008)	 50	 24	 	 x	 Socio-moral	vs.	Pathogen	disgust	feeling	 p	<	.05,	corr.	

Prehn	et	al.	(2008)	 23	 6	 	 x	
Socio-moral	vs.	Grammatical	
errors	

p	<	.05,	corr.	

Takahashi	et	al.	(2008)	 15	 7	 	 x	
Moral	beauty	+	depravity	vs.	
Emotion-neutral	

p	<	.001,	uncorr.	

Immordino-Yang	et	al.	(2009)	 13	 8	 	 x	 Moral	vs.	Physical	admiration	 p	<	.05,	corr.	

Young	and	Saxe	(2009)	
1	 14	 6	 	 x	

Moral	vs.	Non-moral	intention	evaluation	
p	<	.001,	uncorr.	

2	 14	 6	 	 	 	

Cope	et	al.	(2010)	 100	 17	 	 x	 Moral	vs.	Nonmoral	wrongdoing	evaluation		 p	<	.05,	corr.	
Harenski	et	al.	(2010)	 30	 10	 	 x	 Moral	vs.	Non-moral	picture	viewing	 p	<	.05,	corr.	



	
Included	Articles	
Avram,	M.,	Gutyrchik,	E.,	Bao,	Y.,	Pöppel,	E.,	Reiser,	M.,	&	Blautzik,	J.	(2013).	Neurofunctional	correlates	of	esthetic	and	moral	

judgments.	Neuroscience	Letters,	534,	128–32.	http://doi.org/10.1016/j.neulet.2012.11.053	
Avram,	M.,	Hennig-Fast,	K.,	Bao,	Y.,	Pöppel,	E.,	Reiser,	M.,	Blautzik,	J.,	…	Gutyrchik,	E.	(2014).	Neural	correlates	of	moral	judgments	in	

first-	and	third-person	perspectives:	implications	for	neuroethics	and	beyond.	BMC	Neuroscience,	15,	39.	
http://doi.org/10.1186/1471-2202-15-39	

Berthoz,	S.,	Armony,	J.	L.,	Blair,	R.	J.	R.,	&	Dolan,	R.	J.	(2002).	An	fMRI	study	of	intentional	and	unintentional	(embarrassing)	violations	
of	social	norms.	Brain,	125,	1696–1708.	http://doi.org/10.1093/brain/awf190	

Berthoz,	S.,	Grèzes,	J.,	Armony,	J.	L.,	Passingham,	R.	E.,	&	Dolan,	R.	J.	(2006).	Affective	response	to	one’s	own	moral	violations.	
NeuroImage,	31(2),	945–50.	http://doi.org/10.1016/j.neuroimage.2005.12.039	

Borg,	J.	S.,	Lieberman,	D.,	&	Kiehl,	K.	A.	(2008).	Infection,	incest,	and	iniquity:	investigating	the	neural	correlates	of	disgust	and	
morality.	Journal	of	Cognitive	Neuroscience,	20,	1529–1546.	http://doi.org/10.1162/jocn.2008.20109	
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Michl	et	al.	(2014)	 14	 28	 	 x	 Shame	and	guilt	vs.	neutral	emotion	 p	<	.0002,	uncorr.	
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FeldmanHall,	O.,	Dalgleish,	T.,	Thompson,	R.,	Evans,	D.,	Schweizer,	S.,	&	Mobbs,	D.	(2012).	Differential	neural	circuitry	and	self-
interest	in	real	vs	hypothetical	moral	decisions.	Social	Cognitive	and	Affective	Neuroscience,	7,	743–51.	
http://doi.org/10.1093/scan/nss069	

FeldmanHall,	O.,	Mobbs,	D.,	&	Dalgleish,	T.	(2014).	Deconstructing	the	brain’s	moral	network:	Dissociable	functionality	between	the	
temporoparietal	junction	and	ventro-medial	prefrontal	cortex.	Social	Cognitive	and	Affective	Neuroscience,	9,	297–306.	
http://doi.org/10.1093/scan/nss139	

Finger,	E.	C.,	Marsh,	A.	A.,	Kamel,	N.,	Mitchell,	D.	G.	V,	&	Blair,	J.	R.	(2006).	Caught	in	the	act:	the	impact	of	audience	on	the	neural	
response	to	morally	and	socially	inappropriate	behavior.	NeuroImage,	33(1),	414–21.	
http://doi.org/10.1016/j.neuroimage.2006.06.011	

Fourie,	M.	M.,	Thomas,	K.	G.	F.,	Amodio,	D.	M.,	Warton,	C.	M.	R.,	&	Meintjes,	E.	M.	(2014).	Neural	correlates	of	experienced	moral	
emotion:	an	fMRI	investigation	of	emotion	in	response	to	prejudice	feedback.	Social	Neuroscience,	9(2),	203–18.	
http://doi.org/10.1080/17470919.2013.878750	

Han,	H.,	Glover,	G.	H.,	&	Jeong,	C.	(2014).	Cultural	influences	on	the	neural	correlate	of	moral	decision	making	processes.	
Behavioural	Brain	Research,	259,	215–28.	http://doi.org/10.1016/j.bbr.2013.11.012	

Harenski,	C.	L.,	Antonenko,	O.,	Shane,	M.	S.,	&	Kiehl,	K.	A.	(2010).	A	functional	imaging	investigation	of	moral	deliberation	and	moral	
intuition.	NeuroImage,	49(3),	2707–16.	http://doi.org/10.1016/j.neuroimage.2009.10.062	

Harenski,	C.	L.,	&	Hamann,	S.	(2006).	Neural	correlates	of	regulating	negative	emotions	related	to	moral	violations.	NeuroImage,	
30(1),	313–24.	http://doi.org/10.1016/j.neuroimage.2005.09.034	

Harrison,	B.	J.,	Pujol,	J.,	López-Solà,	M.,	Hernández-Ribas,	R.,	Deus,	J.,	Ortiz,	H.,	…	Cardoner,	N.	(2008).	Consistency	and	functional	
specialization	in	the	default	mode	brain	network.	Proceedings	of	the	National	Academy	of	Sciences	of	the	United	States	of	
America,	105(28),	9781–6.	http://doi.org/10.1073/pnas.0711791105	

Heekeren,	H.	R.,	Wartenburger,	I.,	Schmidt,	H.,	Prehn,	K.,	Schwintowski,	H.-P.,	&	Villringer,	A.	(2005).	Influence	of	bodily	harm	on	
neural	correlates	of	semantic	and	moral	decision-making.	NeuroImage,	24(3),	887–97.	
http://doi.org/10.1016/j.neuroimage.2004.09.026	

Heekeren,	H.	R.,	Wartenburger,	I.,	Schmidt,	H.,	Schwintowski,	H.-P.,	&	Villringer,	A.	(2003).	An	fMRI	study	of	simple	ethical	decision-
making.	Neuroreport,	14,	1215–1219.	http://doi.org/10.1097/00001756-200307010-00005	

Immordino-Yang,	M.	H.,	McColl,	A.,	Damasio,	H.,	&	Damasio,	A.	(2009).	Neural	correlates	of	admiration	and	compassion.	Proceedings	
of	the	National	Academy	of	Sciences,	106(19),	8021–8026.	Journal	Article.	http://doi.org/10.1073/pnas.0810363106	

Michl,	P.,	Meindl,	T.,	Meister,	F.,	Born,	C.,	Engel,	R.	R.,	Reiser,	M.,	&	Hennig-Fast,	K.	(2014).	Neurobiological	underpinnings	of	shame	
and	guilt:	a	pilot	fMRI	study.	Social	Cognitive	and	Affective	Neuroscience,	9(2),	150–7.	http://doi.org/10.1093/scan/nss114	

Moll,	J.,	de	Oliveira-Souza,	R.,	Bramati,	I.	E.,	&	Grafman,	J.	(2002).	Functional	networks	in	emotional	moral	and	nonmoral	social	



judgments.	NeuroImage,	16,	696–703.	http://doi.org/10.1006/nimg.2002.1118	
Moll,	J.,	de	Oliveira-Souza,	R.,	Eslinger,	P.	J.,	Bramati,	I.	E.,	Mourao-Miranda,	J.,	Andreiuolo,	P.	A.,	&	Pessoa,	L.	(2002).	The	neural	

correlates	of	moral	sensitivity:	A	functional	magnetic	resonance	imaging	investigation	of	basic	and	moral	emotions.	Journal	of	
Neuroscience,	22(7),	2730–2736.	Journal	Article.	

Moll,	J.,	De	Oliveira-Souza,	R.,	Garrido,	G.	J.,	Bramati,	I.	E.,	Caparelli-Daquer,	E.	M.	A.,	Paiva,	M.	L.	M.	F.,	…	Grafman,	J.	(2007).	The	self	
as	a	moral	agent:	linking	the	neural	bases	of	social	agency	and	moral	sensitivity.	Social	Neuroscience,	2,	336–352.	
http://doi.org/10.1080/17470910701392024	

Moll,	J.,	de	Oliveira-Souza,	R.,	Moll,	F.	T.,	Ignácio,	F.	A.,	Bramati,	I.	E.,	Caparelli-Dáquer,	E.	M.,	&	Eslinger,	P.	J.	(2005).	The	moral	
affiliations	of	disgust:	a	functional	MRI	study.	Cognitive	and	Behavioral	Neurology,	18,	68–78.	http://doi.org/00146965-
200503000-00008	[pii]	

Moll,	J.,	Eslinger,	P.	J.,	&	Oliveira-Souza,	R.	(2001).	Frontopolar	and	anterior	temporal	cortex	activation	in	a	moral	judgment	task:	
preliminary	functional	MRI	results	in	normal	subjects.	Arquivos	de	Neuro-Psiquiatria,	59(3–B),	657–64.	

Parkinson,	C.,	Sinnott-Armstrong,	W.,	Koralus,	P.	E.,	Mendelovici,	A.,	McGeer,	V.,	&	Wheatley,	T.	(2011).	Is	Morality	Unified?	
Evidence	that	Distinct	Neural	Systems	Underlie	Moral	Judgments	of	Harm,	Dishonesty,	and	Disgust.	Journal	of	Cognitive	
Neuroscience,	23,	3162–3180.	http://doi.org/10.1162/jocn_a_00017	

Prehn,	K.,	Wartenburger,	I.,	Meriau,	K.,	Scheibe,	C.,	Goodenough,	O.	R.,	Villringer,	A.,	…	Heekeren,	H.	R.	(2008).	Individual	differences	
in	moral	judgment	competence	influence	neural	correlates	of	socio-normative	judgments.	Social	Cognitive	and	Affective	
Neuroscience,	3(1),	33–46.	Journal	Article.	http://doi.org/10.1093/Scan/Nsm037	

Reniers,	R.	L.	E.	P.,	Corcoran,	R.,	Völlm,	B.	A.,	Mashru,	A.,	Howard,	R.,	&	Liddle,	P.	F.	(2012).	Moral	decision-making,	ToM,	empathy	
and	the	default	mode	network.	Biological	Psychology,	90(3),	202–10.	http://doi.org/10.1016/j.biopsycho.2012.03.009	

Robertson,	D.,	Snarey,	J.,	Ousley,	O.,	Harenski,	K.,	Bowman,	E.	D.,	Gilkey,	R.,	&	Kilts,	C.	(2007).	The	neural	processing	of	moral	
sensitivity	to	issues	of	justice	and	care.	Neuropsychologia,	45(4),	755–766.	Journal	Article.	
http://doi.org/10.1016/j.neuropsychologia.2006.08.014	

Schleim,	S.,	Spranger,	T.	M.,	Erk,	S.,	&	Walter,	H.	(2011).	From	moral	to	legal	judgment:	the	influence	of	normative	context	in	lawyers	
and	other	academics.	Social	Cognitive	and	Affective	Neuroscience,	6(1),	48–57.	http://doi.org/10.1093/scan/nsq010	

Shenhav,	A.,	&	Greene,	J.	D.	(2014).	Integrative	moral	judgment:	dissociating	the	roles	of	the	amygdala	and	ventromedial	prefrontal	
cortex.	The	Journal	of	Neuroscience :	The	Official	Journal	of	the	Society	for	Neuroscience,	34(13),	4741–9.	
http://doi.org/10.1523/JNEUROSCI.3390-13.2014	

Singer,	T.,	Kiebel,	S.	J.,	Winston,	J.	S.,	Dolan,	R.	J.,	&	Frith,	C.	D.	(2004).	Brain	Responses	to	the	Acquired	Moral	Status	of	Faces.	
Neuron,	41,	653–662.	http://doi.org/10.1016/S0896-6273(04)00014-5	

Takahashi,	H.,	Kato,	M.,	Matsuura,	M.,	Koeda,	M.,	Yahata,	N.,	Suhara,	T.,	&	Okubo,	Y.	(2008).	Neural	correlates	of	human	virtue	



judgment.	Cerebral	Cortex,	18,	1886–1891.	http://doi.org/10.1093/cercor/bhm214	
Takahashi,	H.,	Yahata,	N.,	Koeda,	M.,	Matsuda,	T.,	Asai,	K.,	&	Okubo,	Y.	(2004).	Brain	activation	associated	with	evaluative	processes	

of	guilt	and	embarrassment:	an	fMRI	study.	NeuroImage,	23(3),	967–74.	http://doi.org/10.1016/j.neuroimage.2004.07.054	
Young,	L.,	Cushman,	F.,	Hauser,	M.,	&	Saxe,	R.	(2007).	The	neural	basis	of	the	interaction	between	theory	of	mind	and	moral	

judgment.	Proceedings	of	the	National	Academy	of	Sciences	of	the	United	States	of	America,	104,	8235–8240.	
http://doi.org/10.1073/pnas.0701408104	

Young,	L.,	Nichols,	S.,	&	Saxe,	R.	(2010).	Investigating	the	Neural	and	Cognitive	Basis	of	Moral	Luck:	It’s	Not	What	You	Do	but	What	
You	Know.	Review	of	Philosophy	and	Psychology,	1(3),	333–349.	http://doi.org/10.1007/s13164-010-0027-y	

Young,	L.,	&	Saxe,	R.	(2008).	The	neural	basis	of	belief	encoding	and	integration	in	moral	judgment.	NeuroImage,	40(4),	1912–20.	
http://doi.org/10.1016/j.neuroimage.2008.01.057	

Young,	L.,	&	Saxe,	R.	(2009).	An	FMRI	investigation	of	spontaneous	mental	state	inference	for	moral	judgment.	Journal	of	Cognitive	
Neuroscience,	21,	1396–1405.	http://doi.org/10.1162/jocn.2009.21137	

Young,	L.,	Scholz,	J.,	&	Saxe,	R.	(2011).	Neural	evidence	for	“intuitive	prosecution”:	the	use	of	mental	state	information	for	negative	
moral	verdicts.	Social	Neuroscience,	6(3),	302–15.	http://doi.org/10.1080/17470919.2010.529712	

	
	
	



Table	S2.	Activation	foci	for	each	contrast	

Region	 BA	
MNI	coordinates	

t	 k	
x	 y	 z	

Moral	Personal	+	Impersonal	vs.	Non-moral	
FDR	applied	
Medial	Frontal	Gyrus	 10,	24,	31,	32	 -6	 54	 12	 11.37	 19742	
Middle	Temporal	Gyrus	 19,	22,	39,	40	 54	 -60	 4	 7.25	 2250	
Middle	Temporal	Gyrus	 19,	39	 -56	 -72	 14	 7.52	 888	
Inferior	Parietal	Lobule	 2,	40	 -66	 -32	 30	 6.42	 729	
Parahippocampa	Gyrus	 19,	36,	37	 -28	 -44	 4	 4.35	 339	
Insula	 13	 34	 8	 -6	 4.78	 178	
Parahippocampa	Gyrus	 	 28	 -14	 -18	 5.22	 75	
Superior	Temporal	Gyrus	 22	 54	 6	 4	 4.06	 60	
Inferior	Temporal	Gyrus	 20,	21	 50	 -6	 -34	 3.71	 53	
Insula	 21	 40	 -8	 -12	 4.38	 48	
Fusiform	Gyrus	 	 46	 -26	 -18	 4.19	 39	
Middle	Frontal	Gyrus	 6	 26	 -12	 60	 3.63	 35	
Hippocampus	 	 -24	 -16	 -16	 3.76	 28	
Parahippocampa	Gyrus	 19,	37	 30	 -44	 -10	 3.95	 26	
Superior	Frontal	Gyrus	 10	 22	 66	 0	 5.36	 22	
Culmen	 	 22	 -42	 -18	 3.13	 4	
Middle	Temporal	Gyrus	 21	 -64	 -60	 4	 3.13	 2	
Temporal	Lobe	 	 -30	 -52	 16	 3.08	 2	
Middle	Temporal	Gyrus	 	 -40	 -54	 6	 3.08	 1	
Temporal	Lobe	 	 48	 -16	 -26	 3.07	 1	
Precuneus	 19	 22	 -86	 40	 3.05	 1	
Precuneus	 	 -6	 -62	 64	 3.05	 1	
Cluster-wise	correction	applied	
Medial	Frontal	Gyrus	 10,	24,	31,	32	 -6	 54	 12	 11.37	 12185	
Middle	Temporal	Gyrus	 19,	22,	39,	40	 54	 -60	 4	 7.25	 1165	
Middle	Temporal	Gyrus	 19,	39	 -56	 -72	 14	 7.52	 632	
Inferior	Parietal	Lobule	 2,	40	 -66	 -32	 30	 6.42	 442	
RFT-FWE	applied	
Medial	Frontal	Gyrus	 9,	10,	32	 -6	 54	 12	 11.37	 223	
Medial	Cingulate	Cortex	 31	 -12	 -28	 38	 8.13	 14	
Middle	Frontal	Gyrus	 	 -30	 28	 42	 8.93	 8	
Medial	Frontal	Gyrus	 10,	32	 -2	 46	 -6	 8.46	 8	
Precuneus	 	 -12	 -42	 44	 7.90	 4	
Medial	Cingulate	Cortex	 	 6	 -24	 42	 7.90	 3	
Superior	Frontal	Gyrus	 10,	32	 -24	 44	 26	 7.93	 2	



Middle	Temporal	Gyrus	 	 -56	 -72	 14	 7.52	 1	
Anterior	Cingulate	Cortex	 	 2	 26	 28	 7.51	 1	
Bonferroni's	FWE	
Medial	Frontal	Gyrus	 10	 -6	 54	 12	 11.37	 63	
Middle	Frontal	Gyrus	 	 -30	 28	 42	 8.93	 2	
Anterior	Cingulate	Cortex	 32	 8	 42	 8	 8.88	 1	
SnPM	
Medial	Frontal	Gyrus	 9,	10,	32	 -6	 52	 16	 8.69	 264	
Posterior	Cingulate	Cortex	 23,	31	 0	 -54	 24	 7.19	 41	
Medial	Cingulate	Cortex	 7,	31	 -14	 -30	 42	 7.81	 26	
Medial	Cingulate	Cortex	 24,	31	 4	 -16	 42	 6.92	 21	
Superior	Frontal	Gyrus	 10	 -24	 44	 26	 8.71	 18	
Paracentral	Lobule	 5	 2	 -42	 52	 6.67	 14	
Corpus	Callosum	 	 -6	 -26	 26	 7.13	 6	
Posterior	Cingulate	Cortex	 	 0	 -56	 6	 6.48	 6	
Superior	Frontal	Gyrus	 	 22	 42	 32	 6.91	 4	
Subcallosal	Gyrus	 25,	34	 8	 4	 -16	 6.61	 3	
Medial	Cingulate	Cortex	 31	 8	 -30	 42	 6.29	 3	
Corpus	Callosum	 	 -8	 -42	 18	 6.75	 2	
Middle	Temporal	Gyrus	 39	 -56	 -70	 16	 6.53	 2	
Superior	Occipital	Gyrus	 19	 -42	 -82	 26	 6.47	 2	
Anterior	Cingulate	Cortex	 	 10	 38	 10	 7.01	 1	
Middle	Temporal	Gyrus	 19	 -58	 -68	 12	 6.73	 1	
Medial	Cingulate	Cortex	 24	 -6	 -8	 38	 6.37	 1	
Medial	Cingulate	Cortex	 	 -6	 -4	 38	 6.28	 1	
Moral	Personal	vs.	Non-moral	
FDR	applied	
Medial	Frontal	Gyrus	 9,	10,	31,	32	 8	 40	 8	 12.06	 17317	
Superior	Temporal	Gyrus	 19,	22,	39,	40	 68	 -42	 10	 6.40	 1278	
Middle	Temporal	Gyrus	 19,	39	 -56	 -72	 16	 9.10	 776	
Inferior	Parietal	Lobule	 40	 -68	 -30	 28	 5.59	 426	
Hippocampus	 21,	35	 24	 -14	 -14	 5.47	 194	
Inferior	Temporal	Gyrus	 20,	21	 50	 -6	 -34	 5.11	 186	
Superior	Frontal	Gyrus	 6	 8	 16	 64	 4.35	 179	
Postcentral	Gyrus	 2,	5	 -32	 -46	 68	 6.20	 153	
Insula	 13,	21	 -36	 -16	 -2	 4.86	 103	
Hippocampus	 28,	35	 -24	 -14	 -14	 4.90	 79	
Superior	Temporal	Gyrus	 6,	22	 -54	 -2	 4	 3.71	 43	
Thalamus	 	 0	 -12	 0	 4.02	 35	
Superior	Temporal	Gyrus	 38	 34	 10	 -32	 4.51	 24	



Corpus	Callosum	 	 -16	 -40	 6	 3.99	 21	
Insula	 13	 38	 10	 -8	 3.44	 16	
Thalamus	 	 12	 -36	 8	 3.44	 15	
Middle	Temporal	Gyrus	 	 -48	 -16	 -16	 3.62	 10	
Superior	Frontal	Gyrus	 10	 22	 66	 0	 3.53	 10	
Precentral	Gyrus	 	 54	 6	 6	 3.41	 9	
Middle	Frontal	Gyrus	 	 -20	 -18	 64	 3.38	 2	
Middle	Temporal	Gyrus	 21	 68	 -12	 -12	 3.52	 1	
Lentiform	Nucleus	 	 -22	 -8	 -6	 3.52	 1	
Postcentral	Gyrus	 	 -44	 -40	 62	 3.16	 1	
Parahippocampa	Gyrus	 34	 16	 -2	 -18	 3.15	 1	
Temporal	Lobe	 	 -40	 -56	 8	 3.15	 1	
Extra-Nuclear	 	 -2	 -24	 4	 3.11	 1	
Precuneus	 19	 22	 -86	 40	 3.11	 1	
Cluster-wise	correction	applied	
Medial	Frontal	Gyrus	 9,	10,	24,	32	 8	 40	 8	 12.06	 8573	
Cingulate	Gyrus	 5,	7,	24,	31	 6	 -24	 42	 8.26	 3904	
Middle	Temporal	Gyrus	 19,	39	 -56	 -72	 16	 9.10	 529	
Middle	Temporal	Gyrus	 19,	22,	39	 54	 -62	 8	 6.22	 296	
Superior	Temporal	Gyrus	 22,	40,	42	 68	 -42	 10	 6.40	 238	
RFT-FWE	applied	
Medial	Frontal	Gyrus	 9,	10,	32	 8	 40	 8	 12.06	 715	
Anterior	Cingulate	Cortex	 24,	32	 -4	 34	 20	 8.18	 28	
Precuneus	 23,	31	 -4	 -56	 26	 8.06	 24	
Middle	Temporal	Gyrus	 39	 -56	 -72	 16	 9.10	 10	
Superior	Frontal	Gyrus	 10	 -22	 44	 26	 8.57	 10	
Medial	Cingulate	Cortex	 24	 6	 -24	 42	 8.26	 10	
Suballosal	Gyrus	 25	 2	 4	 -16	 8.24	 9	
Superior	Frontal	Gyrus	 	 24	 42	 26	 7.90	 5	
Medial	Cingulate	Cortex	 24,	32	 -2	 -12	 40	 7.75	 5	
Precuneus	 	 -12	 -42	 44	 7.56	 1	
Bonferroni's	FWE	
Medial	Frontal	Gyrus	 9,	10,	32	 8	 40	 8	 12.06	 217	
Anterior	Cingulate	Cortex	 	 -8	 40	 -2	 9.26	 6	
Anterior	Cingulate	Cortex	 	 -10	 38	 4	 8.99	 3	
Middle	Temporal	Gyrus	 	 -56	 -72	 16	 9.10	 1	
SnPM	
Anterior	Cingulate	Cortex	 9,	10,	24,	32	 8	 40	 8	 11.69	 1502	
Posterior	Cingulate	Cortex	 23,	30,	31	 8	 -54	 16	 9.07	 274	
Medial	Cingulate	Cortex	 24,	31	 6	 -24	 42	 8.55	 106	



Medial	Cingulate	Cortex	 31	 -14	 -34	 40	 8.56	 92	
Superior	Frontal	Gyrus	 10	 24	 42	 26	 8.68	 57	
Superior	Frontal	Gyrus	 10	 -24	 46	 26	 8.73	 43	
Middle	Frontal	Gyrus	 	 -30	 30	 42	 7.13	 6	
Corpus	Callosum	 	 -8	 -42	 18	 6.88	 2	
Suballosal	Gyrus	 25	 -4	 6	 -14	 6.72	 1	
Middle	Frontal	Gyrus	 	 26	 34	 42	 6.61	 1	
Moral	Impersonal	vs.	Non-moral	
FDR	applied	
Posterior	Cingulate	Cortex	 5,	7,	24,	31	 -12	 -32	 38	 6.54	 6905	
Middle	Temporal	Gyrus	 19,	22,	39,	40	 66	 -38	 24	 5.75	 1774	
Medial	Frontal	Gyrus	 9,	10,	32	 -4	 52	 10	 6.54	 965	
Superior	Frontal	Gyrus	 8,	9,	10	 24	 32	 38	 6.84	 801	
Superior	Frontal	Gyrus	 8,	9,	10	 -24	 44	 26	 5.42	 743	
Inferior	Parietal	Lobule	 1,	2,	3,	40	 -62	 -28	 30	 7.38	 637	
Culmen	 	 -32	 -50	 -34	 5.80	 606	
Middle	Temporal	Gyrus	 19,	39	 -56	 -70	 22	 5.31	 599	
Insula	 6,	13,	44	 -42	 0	 6	 5.26	 209	
Middle	Frontal	Gyrus	 6	 22	 2	 64	 3.99	 95	
Anterior	Cingulate	Cortex	 11,	25	 -10	 22	 -8	 4.27	 45	
Hippocampus	 	 20	 -40	 10	 4.43	 44	
Pons	 	 18	 -34	 -36	 4.10	 37	
Thalamus	 	 -12	 -26	 6	 4.02	 37	
Parahippocampa	Gyrus	 19,	36,	37	 32	 -46	 -10	 3.61	 31	
Superior	Frontal	Gyrus	 10,	46	 -24	 62	 22	 3.94	 30	
Insula	 13	 40	 6	 -6	 3.52	 30	
Medial	Frontal	Gyrus	 11,	32	 0	 32	 -12	 3.88	 28	
Parahippocampa	Gyrus	 	 44	 -28	 -18	 3.56	 27	
Superior	Temporal	Gyrus	 22	 52	 0	 4	 3.65	 18	
Temporal	Lobe	 20	 -40	 -14	 -24	 4.15	 17	
Insula	 13	 -38	 -22	 30	 3.72	 16	
Caudate	 	 20	 20	 10	 3.85	 14	
Corpus	Callosum	 	 2	 -6	 18	 3.71	 12	
Parietal	Lobe	 	 30	 -32	 44	 3.68	 12	
Thalamus	 	 2	 -22	 6	 3.57	 12	
Extra-Nuclear	 	 26	 -14	 24	 3.66	 11	
Thalamus	 	 0	 -12	 2	 4.17	 9	
Superior	Frontal	Gyrus	 10,	46	 -40	 54	 20	 3.81	 5	
Caudate	 	 -14	 20	 10	 3.69	 3	
Temporal	Lobe	 	 -40	 -52	 2	 3.49	 3	



Hippocampus	 	 -18	 -40	 6	 3.37	 2	
Superior	Frontal	Gyrus	 10	 24	 66	 0	 3.36	 2	
Insula	 	 34	 -18	 2	 3.31	 2	
Parahippocampa	Gyrus	 	 28	 -42	 -4	 3.37	 1	
Extra-Nuclear	 	 24	 12	 14	 3.35	 1	
Caudate	 	 20	 10	 20	 3.33	 1	
Culmen	 	 0	 -50	 -4	 3.32	 1	
Postcentral	Gyrus	 5	 -28	 -44	 70	 3.32	 1	
Insula	 	 36	 8	 8	 3.30	 1	
Cluster-wise	correction	applied	
Cingulate	Gyrus	 5,	7,	24,	31	 -12	 -32	 28	 6.54	 2297	
Posterior	Cingulate	Cortex	 7,	23,	30,	31	 6	 -54	 18	 6.37	 1205	
Medial	Frontal	Gyrus	 9,	10,	32	 -4	 52	 10	 6.54	 633	
Superior	Frontal	Gyrus	 8,	9,	10	 24	 32	 38	 6.84	 495	
Middle	Temporal	Gyrus	 19,	23,	22,	39	 46	 -72	 18	 5.63	 459	
Inferior	Parietal	Lobule	 1,	2,	40	 -62	 -28	 30	 7.38	 439	
Middle	Frontal	Gyrus	 8,	9,	10	 -24	 44	 26	 5.42	 437	
Inferior	Parietal	Lobule	 22,	40	 66	 -38	 24	 5.75	 432	
Middle	Temporal	Gyrus	 19,	39	 -56	 -70	 22	 5.31	 397	
Culmen	 19,	37	 -32	 -50	 -34	 5.80	 340	
Anterior	Cingulate	Cortex	 24,	32	 0	 30	 28	 5.83	 324	
RFT-FWE	applied	
N/A	 	      
Bonferroni's	FWE	
N/A	 	      
SnPM	
Inferior	Parietal	Lobule	 40	 -62	 -28	 30	 7.38	 13	
Superior	Frontal	Gyrus	 	 24	 32	 38	 6.84	 6	
Moral	Personal	vs.	Moral	Impersonal	
FDR	applied	
Medial	Frontal	Gyrus	 9,	10,	24,	32	 8	 52	 16	 8.34	 2394	
Precuneus	 7,	23,	31	 -4	 -56	 26	 8.17	 305	
Middle	Temporal	Gyrus	 20,	21	 48	 0	 -34	 4.44	 27	
Superior	Frontal	Gyrus	 8	 26	 40	 48	 5.10	 23	
Medial	Cingulate	Cortex	 24	 2	 -16	 40	 4.12	 21	
Caudate	 	 -16	 22	 8	 4.81	 16	
Angular	Gyrus	 39	 -50	 -76	 39	 4.59	 10	
Superior	Temporal	Gyrus	 39	 58	 -64	 22	 4.09	 6	
Extra-Nuclear	 	 14	 -4	 -10	 4.03	 4	
Superior	Frontal	Gyrus	 6	 12	 22	 64	 3.94	 4	



Insula	 	 -26	 12	 -14	 3.96	 2	
Middle	Frontal	Gyrus	 	 -22	 34	 -14	 3.93	 2	
Medial	Frontal	Gyrus	 	 -12	 68	 8	 4.01	 1	
Middle	Temporal	Gyrus	 9,	10,	24,	32	 -56	 -70	 26	 3.92	 1	
Cluster-wise	correction	applied	
Medial	Frontal	Gyrus	 9,	10,	32	 8	 52	 16	 8.34	 2596	
Precuneus	 7,	23,	31	 -4	 -56	 26	 8.17	 345	
RFT-FWE	applied	
Medial	Frontal	Gyrus	 9,	10	 8	 52	 16	 8.34	 28	
Medial	Frontal	Gyrus	 10	 -2	 62	 2	 8.06	 9	
Posterior	Cingulate	Cortex	 31	 -4	 -56	 26	 8.17	 8	
Medial	Frontal	Gyrus	 10	 -2	 54	 -2	 7.36	 1	
Bonferroni's	FWE	
N/A	 	      
SnPM	
Medial	Frontal	Gyrus	 9,	10,	32	 10	 50	 16	 9.66	 141	
Medial	Frontal	Gyrus	 10	 -2	 60	 0	 8.48	 83	
Anterior	Cingulate	Cortex	 10,	32	 -10	 40	 4	 8.23	 77	
Anterior	Cingulate	Cortex	 24,	32	 -2	 32	 20	 7.60	 33	
Precuneus	 31	 -4	 -56	 26	 8.32	 25	
Insula	 47	 -28	 10	 -16	 7.05	 6	
Corpus	Callosum	 	 -10	 20	 18	 7.16	 3	
Middle	Temporal	Gyrus	 21	 50	 2	 -30	 7.23	 2	
Moral	Impersonal	vs.	Moral	Personal	
FDR	applied	
Inferior	Parietal	Lobule	 7,	19,	39,	40	 32	 -46	 36	 9.03	 3301	
Inferior	Parietal	Lobule	 7,	19,	39,	40	 -28	 -60	 46	 6.55	 2661	
Middle	Frontal	Gyrus	 6,	8,	9,	46	 -38	 8	 32	 6.35	 1706	
Declive	 	 -4	 -76	 -28	 7.01	 1399	
Middle	Temporal	Gyrus	 20,	21,	22,	37	 -48	 -50	 -4	 6.90	 794	
Middle	Temporal	Gyrus	 20,	37	 52	 44	 -6	 6.78	 344	
Middle	Frontal	Gyrus	 6,	24,	32	 24	 6	 54	 4.87	 289	
Extra-Nuclear	 	 24	 12	 34	 4.78	 226	
Inferior	Frontal	Gyrus	 8,	9	 52	 10	 30	 4.94	 214	
Medial	Frontal	Gyrus	 6,	24,	32	 -12	 8	 52	 4.52	 123	
Insula	 13	 30	 24	 13	 4.52	 66	
Middle	Frontal	Gyrus	 46	 46	 42	 30	 4.17	 62	
Middle	Frontal	Gyrus	 10,	47	 -46	 42	 -4	 4.51	 47	
Middle	Occipital	Gyrus	 18	 28	 -84	 0	 3.66	 45	
Middle	Frontal	Gyrus	 	 40	 28	 26	 3.92	 42	



Inferior	Frontal	Gyrus	 22,	44,	45	 -60	 12	 8	 3.61	 36	
Declive	 -48	 -54	 -30 4.38	 15	
Pons	 18	 -38	 -38 4.31	 13	
Cuneus	 -22	 -96 4	 3.56	 13	
Middle	Frontal	Gyrus	 10,	47	 42	 56	 16	 3.54	 11	
Precentral	Gyrus	 -44 6	 12	 4.06	 10	
Pons	 0	 -30	 -36 3.80	 9	
Insula	 13	 -30 20	 4	 3.68	 9	
Cingulate	Gyrus	 32	 6	 20	 46	 3.59	 6	
Middle	Frontal	Gyrus	 10,	47	 -38 58	 14	 3.66	 5	
Temporal	Lobe	 34	 -58 -4 3.45	 5	
Inferior	Frontal	Gyrus	 45,	47	 -58 32	 0 3.60	 4	
Superior	Temporal	Gyrus	 -56	 -50	 14 3.39	 4	
Cuneus	 8	 16	 -82	 16 3.66	 3	
Cuneus	 22	 -98 -4 3.39	 3	
Fusiform	Gyrus	 20	 36	 -38	 -20 3.38	 3	
Temporal	Lobe	 30	 -44 0	 3.66	 2	
Orbitofrontal	Cortex	 46	 46	 -16 3.66	 1	
Middle	Frontal	Gyrus	 10,	47	 -30 64	 14	 3.51	 1	
Middle	Frontal	Gyrus	 10,	47	 -32 62	 16	 3.42	 1	
Extra-Nuclear	 28	 28	 4	 3.34	 1	
Cluster-wise	correction	applied	
Inferior	Parietal	Lobule	 7,	19,	39,	40	 32	 -46	 36 9.03	 2621	
Inferior	Parietal	Lobule	 7,	19,	40	 -28	 -60	 46 6.55	 1979	
Inferior	Frontal	Gyrus	 6,	8,	9,	46	 -38 8	 32	 6.35	 991	
Declive	 -4	 -76	 -28 7.01	 768	
Middle	Temporal	Gyrus	 19,	21,	22,	37	 -48	 -50 -4 6.90	 467	
RFT-FWE	applied	
Angular	Gyrus	 32	 -46	 36 9.03	 22	
Bonferroni's	FWE	
Parietal	Lobe	 32	 -46	 36 9.03	 2	
SnPM	
Angular	Gyrus	 7,	19,	39,	40	 32	 -46	 36 9.03	 203	
Declive	 -4	 -76	 -28 7.01	 10	
Temporal	Lobe	 -48	 -50 -4 6.90	 6	
Temporal	Lobe	 52	 -44 -6 6.78	 6	
Fastigium	 8	 -58	 -26 6.70	 5	
Middle	Temporal	Gyrus	 20	 56	 -48	 -14 6.56	 3	
Superior	Parietal	Lobule	 -28	 -60	 46 6.55	 2	



	
Figure	S1.	The	implicit	mask	in	SPM	near	the	VMPFC.	
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